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Abstract. Many applications give rise to separable parameterized equations, which have the formA(y, µ)z +
b(y, µ) = 0, wherez ∈ R

N , y ∈ R
n, µ ∈ R

s, and the(N + n)× N matrix A(y, µ) and(N + n) vectorb(y, µ)
areC2-Lipschitzian in(y, µ) ∈ Ω ⊂ R

n × R
s. We present a technique which reduces the original equationto the

form f(y, µ) = 0, wheref : Ω → R
n is C2-Lipschitzian in(y, µ). This reduces the dimension of the space within

which the bifurcation relation occurs. We derive expressions required to implement methods to solve the reduced
equation. Numerical examples illustrate the use of the technique.

Key words. separable parameterized equations, singular value decomposition, static bifurcation points, ex-
tended systems, Newton’s method, LU factorization, curve switching and tracking.
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1. Introduction. Separable parameterized equations have the form

A(y, µ)z + b(y, µ) = 0, (1.1)

where the(N + n) ×N matrixA(y, µ) and the(N + n) vectorb(y, µ) areC2-Lipschitzian
in (y, µ) ∈ Ω ⊂ R

n × R
s, andz ∈ R

N . Such equations arise in the analytical or numerical
solution of differential equations and elsewhere. For example, the equilibrium solutions of
the Lorenz equations

d

dt
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 =
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

µ2(z1 − y)
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[

z1
z2

]

+





−µ2y
µ1y
0



 = 0. (1.2)

As another example, consider the interface problem

µu(x) + F (u(x)) = 0 onx ∈ (0, γ),

uxx(x) + µu(x) = 0 onx ∈ (γ, 1),

u(0) = u(1) = 0,

u(γ + ǫ) + ǫ2[µu(γ) + F (u(γ))] = 0,

for some smallǫ > 0 and some nonlinearF . We discretize this problem with finite differences
and writey = [y1, . . . , yn]T for the node values ofu on (0, γ] andz = [z1, . . . , zN ]T for the
node values on(γ, 1). If we chooseh = ǫ, the discrete equations are

[

En×N

[D(µ)]N×N

]

z +

[

[P (y, µ)]n×1

[Q(y, µ)]N×1

]

= 0, (1.3)

∗Received February 13, 2008. Accepted August 18, 2008. Published online on March 31, 2009. Recommended
by Godela Scherer.

†Department of Mathematics, Western Washington University, Bellingham, WA 98225-9063, USA
({yunqiu.shen, tjalling.ypma}@wwu.edu).

31



ETNA
Kent State University 

http://etna.math.kent.edu

32 Y.-Q. SHEN AND T. J. YPMA

where

E =




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
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
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,

P (y, µ) =











h2µy1 + h2F (y1)
h2µy2 + h2F (y2)
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h2µyn + h2F (yn)


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


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, Q(y, µ) =










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0
...
0


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





.

Numerous applications that give rise to equations of the form (1.1), as well as a number of
approaches to solving such problems, may be found in the review article [14].

This paper will focus on the most common situation, in which there is only one parameter
µ, that iss = 1. Whens > 1, there is generally one parameter that is of primary interest (for
example,µ1 in (1.2)) and we can treat this parameter as the only parameter.

We have previously presented techniques for solving

A(y)z + b(y) = 0 (1.4)

by reducing the equation to a nonlinear system involving only the variabley [29, 37]. Alter-
natively, the standard projection method VARPRO [12, 13, 14] replaces (1.4) by the problem
miny,z ‖A(y)z + b(y)‖2, which is equivalent to solving

min
y

∥

∥

(

I −A(y)A+(y)
)

b(y)
∥

∥

2
. (1.5)

Iterative techniques for solving (1.5) usually require one SVD or QR factorization at each
step [11, 13, 14, 21], whereas the method of [29, 37] requires only one LU factorization in
every step [23, 29, 30, 33]. The latter method has recently been extended to rank-deficient
matricesA(y) [30, 33].

In this paper, we extend the method of [29, 37] to the parameterized form (1.1), solving
instead a nonlinear equation of the form

f(y, µ) = 0 (1.6)

in y andµ only. We prove that our reduction preserves static bifurcations; we can thus lo-
cate the bifurcation in a smaller space and compute bifurcations more economically by solv-
ing (1.6) rather than solving (1.1) directly. Our general methods for computing bifurcation
points [27, 28, 32] are here adapted to the particular form of (1.6) that arises from the sep-
arable form (1.1), which gives rise to distinctive analytical properties and expressions. Our
specialized formulation is also applicable to curve tracking and switching [6].

There are numerous techniques for solving general bifurcation problems. The software
packages AUTO [10] and MATCONT [8, 9] and their successors implement a variety of
techniques for solving bifurcation problems in ordinary differential equations and algebraic
systems. Our technique is restricted to the particular form(1.1), and in that context has
the advantage of restricting the analysis and computationsto a much smaller space. For
background on bifurcation problems in general, see [2, 3, 16, 20, 26].
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2. Analysis. We assume throughout what follows that the matrixA(y, µ) has full rank
throughout the region of interest. The techniques of [30, 33] can be extended to the case when
A(y, µ) is rank deficient; for simplicity, we omit that generalization from this paper.

The following results form the basis for our method.
THEOREM 2.1. Let the(N + n) × N matrix A(y, µ) have full rankN in a region

Ω ∈ R
n × R

s. LetK be an(N + n) × n constant matrix such that the(N + n) × (N + n)
matrix

[

A(y, µ) K
]

is nonsingular. Then(y, z, µ) is a solution of (1.1) if and only if(y, µ)
satisfies

f(y, µ) ≡ ρ(y, µ)T b(y, µ) = 0 (2.1)

and

z = −A+(y, µ)b(y, µ), (2.2)

where

ρ(y, µ)T = −
[

0n×N In
] [

A(y, µ) K
]

−1
, (2.3)

andA+ is the pseudo-inverse ofA.
Proof. (=⇒) Clearly, (2.3) is equivalent to

ρ(y, µ)T
[

A(y, µ) K
]

= −
[

0n×N In
]

. (2.4)

Assume(y, z, µ) satisfies (1.1). Multiplying both sides of (1.1) from the left byρ(y, µ)T and
using (2.4), we have

ρ(y, µ)T [A(y, µ)z + b(y, µ)] = ρ(y, µ)T b(y, µ) = 0,

which is (2.1). Sincez is a solution of the linear system (1.1), z is also the unique least
squares solution of the linear system, which implies (2.2).

(⇐=) Assume(y, z, µ) satisfies (2.1) and (2.2). Then by (2.3)

0 = ρ(y, µ)T b(y, µ) = −
[

0n×N In
] [

A(y, µ) K
]

−1
b(y, µ),

which with (2.2) implies

A(y, µ)z + b(y, µ)

= A(y, µ)[−A+(y, µ)b(y, µ)] + b(y, µ)

= [IN+n −A(y, µ)A+(y, µ)]
[

A(y, µ) K
]

[

IN 0
0 In

]

[

A(y, µ) K
]

−1
b(y, µ)

= [IN+n −A(y, µ)A+(y, µ)]
[

A(y, µ) K
]

[
[

IN 0
] [

A(y, µ) K
]

−1
b(y, µ)

0

]

= [A(y, µ) −A(y, µ)A+(y, µ)A(y, µ)]
[

IN 0
] [

A(y, µ) K
]

−1
b(y, µ) = 0,

and thus (1.1) is satisfied.
THEOREM 2.2. Let the(N + n) × N matrix A(y, µ) have full rankN in a region

Ω ∈ R
n × R

s. LetK be an(N + n) × n constant matrix such that the(N + n) × (N + n)
matrix

[

A(y, µ) K
]

is nonsingular inΩ. Then(y, µ) ∈ Ω and(ỹ, µ) ∈ Ω are two distinct
solutions of (2.1)–(2.3) if and only if(y, z, µ) and(ỹ, z̃, µ) are two distinct solutions of (1.1).
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Proof. (=⇒) This is trivial. (⇐=) Assume(y, z, µ) 6= (ỹ, z̃, µ). If (y, µ) = (ỹ, µ), then
z = z̃ by (2.2) contradicting the assumption. Therefore(y, µ) 6= (ỹ, µ).

From Theorem2.2, for (y∗, µ∗) ∈ Ω and a fixedµ nearµ∗, the number of distinct
solutions of (2.1) is the same as the number of distinct solutions of (1.1). Thus, we have the
following corollary for static bifurcations:

COROLLARY 2.3. Under the conditions of Theorem2.2, the point(y∗, µ∗) ∈ Ω is a
bifurcation point of (2.1) if and only if(y∗, z∗, µ∗) is a bifurcation point of (1.1).

These results imply that we only need to find bifurcation points of (2.1), which typically
involves a much smaller space than the original problem (1.1).

3. Implementation. Henceforth, assumes = 1. An appropriate matrixK to be used in
conjunction with Theorem2.1may be found as follows. Let a QR factorization ofA(y0, µ0)
at some point(y0, µ0) ∈ Ω near(y∗, µ∗) be

A(y0, µ0) = Q(N+n)×(N+n)R(N+n)×N ≡
[

q1 . . . qN+n

]











r11 · · · r1,N

. . .
...

rN,N

0n×N











,

where{q1, . . . , qN+n} is an orthonormal basis forRN+n and all the diagonal entries
r11, . . . , rN,N are nonzero because the rank ofA(y0, µ0) isN . If

K =
[

qN+1 . . . qN+n

]

(3.1)

then
[

A(y, µ) K
]

is nonsingular throughout a neighborhood of(y0, µ0), since it is nonsin-
gular at(y0, µ0):

[

A(y0, µ0) K
]

= Q(N+n)×(N+n)

[

R(N+n)×N eN+1 . . . eN+n

]

.

The next theorem describes the relation between the functionf(y, µ) defined in (2.1), the
derivatives off , and the nonsingular matrix

[

A(y, µ) K
]

. These expressions are required
in our numerical algorithms. We use the following notation:for a matrix or a vectorB(y, µ),
denote by(B(y, µ))′j and(B(y, µ))′′jk the matrix or vector having the same size with each
entry replaced by its derivative with respect toyj or by its second derivative with respect to
yj , yk respectively. We identifyµ ≡ yn+1. Thus,

(B(y, µ))′j ≡
∂

∂yj

B(y, µ), (B(y, µ))′′jk ≡
∂2

∂yk∂yj

B(y, µ), j, k = 1, 2, ..., n+ 1.

THEOREM 3.1. Letζ(y, µ) ∈ R
N , ψ(y, µ) ∈ R

n satisfy

[

A(y, µ) K
]

[

ζ(y, µ)
ψ(y, µ)

]

= −b(y, µ). (3.2)

Then

ψ(y, µ) = f(y, µ); (3.3)

(ψ′(y, µ))j = (f ′(y, µ))j = ρ(y, µ)T
(

[(A(y, µ))′jζ(y, µ)] + (b′(y, µ))j

)

; (3.4)

(ψ(y, µ))′′jk = (f(y, µ))′′jk

= ρ(y, µ)T [(A(y, µ))′j(ζ(y, µ))′k + (A(y, µ))′k(ζ(y, µ))′j+

(A(y, µ))′′jkζ(y, µ) + (b(y, µ))′′jk]. (3.5)
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Proof. (a) By direct computation using (3.2), (2.3), and (2.1):

ψ(y, µ) = −
[

0 In
] [

A(y, µ) K
]

−1
b(y, µ) = f(y, µ). (3.6)

This proves (3.3).
(b) Differentiating both sides of (3.2) with respect toyj or µ ≡ yn+1, we have

[

A(y, µ) K
]

[

(ζ(y, µ))′j
(ψ(y, µ))′j

]

+
[

(A(y, µ))′j 0
]

[

ζ(y, µ)
ψ(y, µ)

]

= −(b(y, µ))′j . (3.7)

Solving this equation for(ψ(y, µ))′j gives

(ψ(y, µ))′j = −
[

0 In
] [

A(y, µ) K
]

−1
[(A(y, µ))′jζ(y, µ) + (b(y, µ))′j ]

= ρ(y, µ)T [(A(y, µ))′jζ(y, µ) + (b(y, µ))′j ],

which proves(b).
(c) Differentiating both sides of (3.7) with respect toyk or µ ≡ yn+1, we have

[

A(y, µ) K
]

[

(ζ(y, µ))′′jk

(ψ(y, µ))′′jk

]

+
[

(A(y, µ))′j 0
]

[

(ζ(y, µ))′k
(ψ(y, µ))′k

]

+
[

(A(y, µ))′k 0
]

[

(ζ(y, µ))′j
(ψ(y, µ))′j

]

+
[

(A(y, µ))′′jk 0
]

[

ζ(y, µ)
ψ(y, µ)

]

= −(b(y, µ))′′jk.

Solving this equation for(ψ(y, µ))′′jk gives

(ψ(y, µ))′′jk = −
[

0 In
] [

A(y, µ) K
]

−1
[(A(y, µ))′j(ζ(y, µ))′k

+ (A(y, µ))′k(ζ(y, µ))′j + (A(y, µ))′′jkζ(y, µ) + (b(y, µ))′′jk]

= ρ(y, µ)T [(A(y, µ))′j(ζ(y, µ))′k + (A(y, µ))′k(ζ(y, µ))′j

+ (A(y, µ))′′jkζ(y, µ) + (b(y, µ))′′jk].

This proves (3.5).
From (3.4), we see that the Jacobian matrix off(y, µ) is given by

f ′(y, µ) = ρ(y, µ)T
([

(A(y, µ))′1ζ(y, µ) . . . (A(y, µ))′n+1ζ(y, µ)
]

+ b′(y, µ)
)

. (3.8)

The quantityρ(y, µ)T required in (3.5) and (3.8) may be computed from (2.3) by solv-
ing (2.4). The LU factorization of

[

A(y, µ) K
]

required also suffices to solve (3.2), thus
producing bothψ(y, µ) = f(y, µ) and the quantityζ(y, µ) required for (3.4). The quantity
(ζ(y, µ))′j required for (3.5) can be obtained by solving (3.7) using the same factors. Thus
one LU factorization suffices to compute all these quantities.

4. Computation. Let (y0, µ0) be a point in the solution set of (2.1). A nearby point
(y∗, µ∗) that satisfiesf(y∗, µ∗) = 0 is to be located. We treat three separate cases:(y0, µ0)
is (a) a regular point from which we seek another regular point (curve-tracking); (b) a point
near a bifurcation from which we seek the bifurcation point;or (c) a bifurcation point from
which we seek nearby regular points on different branches (curve-switching).
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Let the singular value decomposition (SVD) (see [15, 35, 36]) of then× (n+ 1) matrix
f ′(y0, µ0) be

f ′(y0, µ0) =
[

u1 . . . un

]







σ1 · · · 0
. . .

...
σn 0







[

v1 . . . vn+1

]T
, (4.1)

where{u1, ..., un} and{v1, ..., vn+1} form orthonormal bases forRn andR
n+1, respectively.

The singular values satisfyσ1 ≥ ... ≥ σn ≥ 0. The point(y0, µ0) is a regular point of the
solution set if the last singular valueσn is nonzero, and it is a bifurcation point ifσn = 0.
The point is near a bifurcation point ifσn is nonzero, but small [6]. We note that here and
elsewhere, accurate determination of matrix rank is critical; relevant techniques may be found
in [15, 18, 34, 36].

Case (a).For a regular point(y0, µ0) where the last singular valueσn is not small, the
tangent direction along the parameterized curve is given byvn+1 [6]. We choose(y(0), µ(0))
to be a point on that tangent line, then use Newton’s method tosolvef(y, µ) = 0 in the affine
space normal to the tangent vector to find the nearby point(y∗, µ∗), i.e., we select a starting
point

[

y(0)

µ(0)

]

=

[

y0
µ0

]

+ δvn+1, (4.2)

for someδ > 0 and then set

[

y(k+1)

µ(k+1)

]

=

[

y(k)

µ(k)

]

−

[

f ′(y(k), µ(k))
vT

n+1

]−1




f(y(k), µ(k))

vT
n+1

[

y(k) − y(0)

µ(k) − µ(0)

]



 , (4.3)

for k = 0, 1, . . .. Note that the matrix involved in (4.3) is invertible for(y(k), µ(k)) sufficiently
near(y0, µ0); see [22] for details. Under suitable conditions, this process converges to another
regular point on the same parameterized curve. For Newton’smethod and convergence rates
in more general contexts, see, for example, [7, 19, 24].

Case (b).We use the approach of [27, 28, 31, 32] to compute a bifurcation point(y∗, µ∗)
from a nearby point(y0, µ0). When (y∗, µ∗) is a bifurcation point,f ′(y∗, µ∗) is rank-
deficient. Assume that its rank isr, 0 ≤ r ≤ n − 1. The rank-deficiency is assumed to
be known, possibly detected by the existence of small singular valuesσr+1, . . . , σn at the
nearby point(y0, µ0). The point(y0, µ0) near this bifurcation point(y∗, µ∗) is still a regular
point, but the last singular value is small. The(2n+ 1 − r) × (2n+ 1 − r) bordered matrix

M(y, µ) ≡

[

(f ′(y, µ))T L
RT 0

]

(4.4)

is nonsingular in a neighborhood of(y∗, µ∗) [28] if we select

R =
[

ur+1 . . . un

]

, L =
[

vr+1 . . . vn+1

]

, (4.5)

whereui andvi are defined by the SVD (4.1). For alternative choices of auxiliary vectors to
border a matrix, see, for example, [1, 16, 17, 25]. Following [27, 28], we embedf(y, µ) into
an extended system

F (y, µ, λ) ≡

[

f(y, µ) +Rλ
g(y, µ)

]

, (4.6)
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whereλ ∈ R
n−r is a Lagrange-type vector andg(y, µ) ∈ R

n+1−r is obtained by solving

M(y, µ)

[

ξ(y, µ)
g(y, µ)

]

=

[

0(n+1)×1

α

]

, (4.7)

with α ∈ R
n−r being a random nonzero vector andξ(y, µ) ∈ R

n. We use Newton’s method
to solve (4.6): starting from





y(0)

µ(0)

λ(0)



 =





y0
µ0

0



 ,

we compute





y(k+1)

µ(k+1)

λ(k+1)



 =





y(k)

µ(k)

λ(k)



 −
[

F ′

(

y(k), µ(k), λ(k)
)]

−1

F
(

y(k), µ(k), λ(k)
)

, (4.8)

for k = 0, 1, 2, . . .. The limit is (y∗, µ∗, 0). As shown in [27, 28], the Jacobian matrix of
F (y, µ, λ) is

F ′(y, µ, λ) =

[

f ′(y, µ) R
−η(y, µ)T [ξ(y, µ)T f ′′(y, µ)] 0

]

, (4.9)

in which the matrixη(y, µ) ∈ R
(n+1)×(n+1−r) is obtained by solving

[

η(y, µ)T h(y, µ)T
]

M(y, µ) =
[

0(n+1−r)×n I(n+1−r)

]

, (4.10)

andξ(y, µ)T f ′′(y, µ) ≡
∑n

j=1[ξj(y, µ)∇2fj(y, µ)].
Case (c).Given a bifurcation point(y0, µ0), we can locate nearby regular points(y∗, µ∗)

on several different branches. We adapt the method of [6] to find the relevant branch direc-
tions in the tangent space, then use the method (4.2)-(4.3) for computing a regular point to
locate a point on any particular branch, using(y(0), µ(0)) on a line given by the relevant di-
rection vectorw instead of the tangent vectorvn+1. To find the appropriate direction vectors

w = Lβ ≡
[

vr+1 . . . vn+1

] [

β1 . . . βn+1−r

]T
,

we solve the numerical bifurcation equations

wT [uT
i f

′′(y0, µ0)]w = 0, i = r + 1, . . . , n;

that is, we find the vectorsβ that satisfy

βT



LT (

n
∑

j=1

[ui,j∇
2fj(y0, µ0)]L



β = 0, i = r + 1, . . . , n; ||β||2 = 1, (4.11)

whereui,j is thejth component of the vectorui obtained from (4.1). The unknown coeffi-
cientsβ1, . . . , βn+1−r in this system of quadratic equations can be found, for example, by a
homotopy method [4, 5].

A summary of the three algorithms above for computing a nearby point (y∗, µ∗) from a
given point(y0, µ0) in the solution set of (2.1) follows.



ETNA
Kent State University 

http://etna.math.kent.edu

38 Y.-Q. SHEN AND T. J. YPMA

Procedure Summary. Given an equation of the form (1.1) with positive integersN,n,
s = 1, and a point(y0, µ0) on the solution curve of (2.1), compute nearby point(s)(y∗, µ∗)
in the solution set of (2.1) as follows:

FactorA(y0, µ0) = QR; setK = [qn+1, . . . , qn+N ] as in (3.1). Use (2.4) to findρ(y0, µ0)
T

and use (3.2) and (3.4) to findf ′(y0, µ0). Do a singular value decomposition (4.1) of f ′(y0, µ0)
to find singular valuesσ1, . . . , σn, and singular vectorsu1, . . . , un andv1, . . . , vn+1. Identify
the rankr of f ′(y0, µ0). If σn is large, setw = vn+1 and go to (a); ifσn is small, go to (b);
if σn = 0, go to (c).

(a) (Computing a regular point) Set(y(0), µ(0)) = (y0, µ0) + δwT (4.2). Compute
(y(k+1), µ(k+1)) by Newton’s method (4.3) for k = 0, 1, . . . until convergence.

(b) (Computing a bifurcation point) Form matricesR andL as in (4.5). Choose the
random vectorα ∈ R

n−r. Set(y(0), µ(0), λ(0)) = (y0, µ0, 0). For k = 0, 1, . . .
until convergence: computef(y(k), µ(k)), f ′(y(k), µ(k)), f ′′(y(k), µ(k)) as in (3.6),
(3.4) and (3.5), formF (y(k), µ(k), λ(k)) andF ′(y(k), µ(k), λ(k)) using (4.4)-(4.10),
and use Newton’s method (4.8).

(c) (Computing regular points near a bifurcation point) Form matricesR andL as in
(4.5). Find direction vectorsw by solving (4.11). For eachw, use procedure (a).

By repeatedly using the above algorithm, we can track and switch between branches of
a solution set of the reduced equation (2.1).

5. Numerical examples.We present three examples to illustrate our method. Our first
example is the equilibrium solution of the Lorenz equation (1.2).

EXAMPLE 5.1.




µ2 0
−1 −y
y −µ3





[

z1
z2

]

+





−µ2y
µ1y
0



 = 0.

We fix the values ofµ2 = 2 andµ3 = 4, and we denoteµ1 asµ. There is a bifurcation
point at(y∗, µ∗) = (0, 1). With (y0, µ0) = (−0.1, 1.0025), a QR factorization gives

A(y0, µ0) =





−0.8935 0.0299 0.4480
0.4468 −0.0400 0.8938
0.0447 0.9988 0.0223









−2.2383 −0.1340
0 −3.9990
0 0



 ,

henceK =
[

0.4480 0.8938 0.0223
]T

. Using thisK, (2.4), (3.2), and (3.8), we find
f ′(y0, µ0); an SVD factorization gives

f ′(y0, µ0) =
[

0.0045 0.0894
]

=
[

1
] [

0.0895 0
]

[

0.0499 0.9988
−0.9988 0.0499

]

,

which suggests that a bifurcation point(y∗, µ∗) is nearby, since the only singular valueσ1 =
0.0895 is small. We extend the equation (2.1) to (4.6) by introducing a Lagrange-type vector
λ ∈ R, selectingα = 0.6319 at random, and defining the nonsingular bounded matrix

M(y, µ) =

[

(f ′(y, µ))T L
RT 0

]

with R = 1, L =

[

0.0499 −0.9988
0.9988 0.0499

]

.

Applying Newton’s method (4.8) to the extended system (4.6) using (b) in the Procedure
Summary, we approximate the bifurcation point(y∗, µ∗, λ∗) = (0, 1, 0). Table5.1 shows
quadratic convergence of Newton’s method for this extendedsystem, withd(k)(y, µ, λ) =
‖(y(k+1), µ(k+1), λ(k+1)) − (y(k), µ(k), λ(k))‖2.
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TABLE 5.1
Newton iterations for computing a bifurcation point in Example 5.1.

k y(k) µ(k) λ(k) d(k)(y, µ, λ)
0 -1.0000e-01 1.0025e+00 0.0000e+00 —
1 1.5025e-04 9.9248e-01 4.4822e-04 1.0065e-01
2 1.1248e-10 1.0000e+00 1.0112e-06 7.5373e-03
3 6.2814e-23 1.0000e+00 2.8357e-18 1.0116e-06
4 0.0000e+00 1.0000e+00 0.0000e+00 2.8357e-18

At the bifurcation point(y, µ) = (0, 1), the SVD givesσ1 = 0 andL = I2. We findβ
by solving (4.11):

βT

[

0 −0.8944
−0.8944 0

]

β = 0, βTβ = 1.

We obtainβ = [±1, 0]T , [0,±1]T . Hence, the direction vectors arew = Lβ = I2β = β at
this bifurcation point. The direction[−1, 0]T points to the solution(y0, µ0) = (−0.1, 1.0025)
which is on the previously computed branch. So we only need tocompute solutions on the
other three branches. Withδ = 0.1, we obtain three points(0.1, 1.0025), (0, 1.1), (0, 0.9) on
these three branches respectively by using (c) of the Procedure Summary, as shown in Table
5.2, with

d(k)(y, µ) = ‖(y(k+1), µ(k+1)) − (y(k), µ(k))‖2.

TABLE 5.2
Newton iterations for computing branch points in Example5.1.

k y(k) µ(k) d(k)(y, µ)
0 1.0000e-01 1.0000e+00 —
1 1.0000e-01 1.0025e+00 2.5000e-03
2 1.0000e-01 1.0025e+00 1.6263e-18
0 0.0000e+00 1.1000e+00 —
1 0.0000e+00 1.1000e+00 8.3267e-017
0 0.0000e+00 9.0000e-01 —
1 0.0000e+00 9.0000e-01 2.7756e-017

EXAMPLE 5.2. This example is (1.3) with h = 0.1, γ = 0.3, n = 3, N = 6, and
F (u) = u2 − u3:

























0
0
1

−2 + 0.01µ 1

1
. . .

. . .
. . .

. . . 1
1 −2 + 0.01µ

























z +























0.01(µy1 + y2
1 − y3

1)
0.01(µy2 + y2

2 − y3
2)

0.01(µy3 + y2
3 − y3

3)
y3
0
...
0























= 0,

wherez ∈ R
6. There is a bifurcation point at(y∗, µ∗) = (0, 0, 0, 0). We begin with a point
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(y0, µ0) = (0, 0, 0,−0.1). A QR factorization ofA(y0, µ0) gives

KT =





0.523 0.324 0.468 0.400 0.333 0.266 0.199 0.133 0.066
−0.805 −0.118 0.345 0.295 0.246 0.196 0.147 0.098 0.049
0.282 −0.939 0.118 0.101 0.084 0.067 0.050 0.033 0.017



 .

With this K, (2.4), (3.2), and (3.8) give f ′(y0, µ0). An SVD decomposition givesσ1 =
0.5067, σ2 = 0.0010 andσ3 = 0.0010. Since two of these singular values are much smaller
than the first, the rank off ′(y∗, µ∗) is taken to ber = 1; that is, a bifurcation point(y∗, µ∗) is
assumed to be nearby. The SVD also givesL andR for use in (4.4). We extend the equation
(2.1) to (4.6) by introducing a Lagrange-type vectorλ ∈ R

2, selectingα = [0.2722, 0.4590]T

at random, and defining the nonsingular bordered matrixM(y, µ) by (4.4). Applying New-
ton’s method (4.8) to the extended system (4.6) using (b) in the Procedure Summary with
λ(0) = [0, 0]T , we approximate the bifurcation point(y∗, µ∗, λ∗) = (0, 0, 0, 0, 0, 0). Ta-
ble 5.3 shows quadratic convergence of Newton’s method for this extended system, with
d(k)(y, µ, λ) = ‖(y(k+1), µ(k+1), λ(k)) − (y(k), µ(k), λ(k))‖2.

TABLE 5.3
Newton iterations for computing a bifurcation point in Example 5.2.

k y
(k)
1 µ(k) λ

(k)
1 d(k)(y, µ, λ)

0 0.0000e+00 -1.0000e-01 0.000e+00 —
1 -5.6807e-18 4.1633e-17 -8.2888e-21 1.0000e-01
2 3.8519e-33 -1.8489e-32 -1.5046e-36 4.2531e-17
3 -6.8423e-49 2.7369e-48 0.0000e+00 1.9641e-32

At the bifurcation point(y0, µ0) = (0, 0, 0, 0) the SVD givesσ1 = 0.5071, σ2 = σ3 = 0
and

L =









0 1 0
1 0 0
0 0 0
0 0 1









, R =





−0.5816 −0.1984
0.8109 −0.0645
−0.0645 0.9780



 .

We solve forβ from (4.11) for i = 2, 3: βTβ = 1 and

βT





0.0045 0 0.0022
0 0.0195 0.0097

0.0022 0.0097 0



β = 0,

βT





0.0195 0 0.0097
0 −0.0045 −0.0022

0.0097 −0.0022 0



β = 0.

We obtain eightβ values:




0
0
±1



 ,





0
±0.7071
∓0.7071



 ,





±0.7071
0

∓0.7071



 ,





±0.5774
±0.5774
∓0.5774



 ,

which withw = Lβ gives eight direction vectorsw:








0
0
0
±1









,









±0.7071
0
0

∓0.7071









,









0
±0.7071

0
∓0.7071









,









±0.5774
±0.5774

0
∓0.5774









.
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Besides the known solution point on the incoming branch, we obtain seven other solutions
(y∗, µ∗)T , each on a different branch:









0
0
0

0.1









,









0.073404
0
0

−0.068016









,









−0.068373
0
0

0.073047









,









0
0.073404

0
−0.068016









,









0
−0.068373

0
0.073047









,









0.058896
0.058896

0
−0.055427









,









−0.056670
−0.056670

0
0.059881









.

We list in Table5.4the Newton iterations for the last point, with

d(k)(y, µ) = ‖(y(k+1), µ(k+1)) − (y(k), µ(k))‖2.

TABLE 5.4
Newton iterations for computing branch points in Example5.2.

k y
(k)
1 y

(k)
2 y

(k)
3 µ(k) d(k)(y, µ)

0 -5.7740e-02 -5.7740e-02 0.0000e+00 5.7740e-02 —
1 -5.6689e-02 -5.6689e-02 0.0000e+00 5.9841e-02 2.5735e-03
2 -5.6670e-02 -5.6670e-02 -1.7241e-23 5.9881e-02 4.8580e-05
3 -5.6670e-02 -5.6670e-02 -4.9661e-30 5.9881e-02 1.7311e-08
4 -5.6670e-02 -5.6670e-02 -5.9353e-34 5.9881e-02 2.1932e-15

EXAMPLE 5.3. We apply our method to a single species problem from mathematical
biology. Suppose the species grows exponentially with timeand disperses by diffusion across
a thin region, which we treat as an open interval. At the rightend of this interval the species
exhibits logistic growth with rate-dependent carrying capacity and migration. This gives rise
to a parameterized linear parabolic equation with nonlinear boundary conditions. Letu(t, x)
denote the population of the species, and let the populationat the right end point of the interval
bev(t). We have the following equations:

ut = µu+ uxx, x ∈ (0, 1) with u(t, 0) = 0, u(t, 1) = v(t) and

vt = µv[1 − (β/µ)v] + u(t, 1 − ǫ) + (−2 + µǫ2)v − c

for some smallǫ > 0, where the parameterµ and the constantsβ, c are all positive.
Now consider the state solutions of the differential equations. Discretizeu in x using

h = 1/(N + 1), uxx(x) ≈ (u(x+ h) + u(x− h) − 2u(x))/h2. Denoting

z = [u(h), u(2h), ..., u(Nh)]T , y = v

and choosingǫ = h, we obtain the state solutionsz, y in the form of (1.1) with n = 1:

A(y, µ)z + b(y, µ) = 0,
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where

A(y, µ) ≡

















−2 + h2µ 1

1 −2 + h2µ
. . .

. . .
. . . 1
1 −2 + h2µ

0 . . . 0 1

















(N+1)×N

and

b(y, µ) ≡

[

yeN

(−2 + h2µ)y + µy − βy2 − c

]

,

with eN theN th standard basis element inR
N .

For certain values of the constantsβ, c, there is a turning point on the solution curve.
To illustrate this numerically, we chooseh = 0.1, soN = 9, and we setβ = 0.2, c =
82.0409593298. Table5.5 lists eight successive regular points for(y, µ) along this curve,
computed using (4.2)–(4.3) repeatedly. The only singular valueσ1 of the derivativef ′(y, µ)
of the reduced function at each point has the valueσ1(y

(k)) > 3. Our method traverses the
turning point without difficulty, treating it as any regularpoint. The turning point, which is
near(y(4), µ(4)), can be located exactly using the methods of [32].

TABLE 5.5
Branch of regular points passing through a turning point in Example5.3.

k y(k) µ(k) k y(k) µ(k)

1 1.725427e+01 8.162099e+005 2.125353e+01 8.106957e+00
2 1.825369e+01 8.127131e+006 2.225342e+01 8.122532e+00
3 1.925353e+01 8.107532e+007 2.325313e+01 8.146625e+00
4 2.025353e+01 8.101405e+008 2.425265e+01 8.177871e+00
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