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NUMERICAL BIFURCATION OF SEPARABLE PARAMETERIZED EQUATIO  NS*

YUN-QIU SHENF AND TJALLING J. YPMAT
Dedicated to ctor Pereyra on the occasion of his 70th birthday

Abstract. Many applications give rise to separable parameterizedtgms, which have the form (y, 1)z +
b(y, 1) = 0, wherez € RN,y € R™, u € R®, and the(N + n) x N matrix A(y, u) and(N 4+ n) vectorb(y, )
areC2-Lipschitzian in(y, u) € Q C R™ x R*. We present a technique which reduces the original equtditite
form f(y, u) = 0, wheref : Q — R™ is C2-Lipschitzian in(y, 11). This reduces the dimension of the space within
which the bifurcation relation occurs. We derive expressicequired to implement methods to solve the reduced
equation. Numerical examples illustrate the use of thentiecie.

Key words. separable parameterized equations, singular value dexsitiop, static bifurcation points, ex-
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1. Introduction. Separable parameterized equations have the form

Ay, p)z + by, p) =0, (1.1)

where the( N + n) x N matrix A(y, ) and the(N + n) vectorb(y, 1) areC?-Lipschitzian

in (y, ) € Q2 C R" x R%, andz € RY. Such equations arise in the analytical or numerical
solution of differential equations and elsewhere. For gxlanthe equilibrium solutions of
the Lorenz equations

d Y p2(z1 —y)
E 21| = [M1Y — 21 —Yz2
z2 Yz1 — p3z2

satisfy the separable equation

ue 0 o — 2y

-1 —y L ] + | my | =0. (1.2)
2

Yy —H3 0

As another example, consider the interface problem

pu(z) + F(u(z)) = 0onx € (0,7),
Ugg () + pu(z) =00nzx € (v,1),
u(0) = u(l) =0,
u(y +€) + € [pu(y) + F(u(y)] =0,

for some smalt > 0 and some nonlinedr. We discretize this problem with finite differences

and writey = [y1,...,yn]|? for the node values af on (0,~] andz = [z1,. .., zy]|T for the
node values offy, 1). If we chooseh = ¢, the discrete equations are
EnXN :| [[P(yvﬂ)] ><1:|
+ nxl| =, 1.3
[ AR [ )
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where
00 --- 0 -2+ h%u 1
: : 1 —2+1n?
E = . i ) D(M) - ‘LL )
00 0 : 1
1 0 0 1 —24+h%
hzﬂyl + th(yl) Yn
h2pya + h2F (y2) 0
Py, p) = : , Qly,p) = | .
b2 pyn + h* F (yn) 0

Numerous applications that give rise to equations of thef(ir.1), as well as a number of
approaches to solving such problems, may be found in thewesiticle [L4].

This paper will focus on the most common situation, in whiodre is only one parameter
1, thatiss = 1. Whens > 1, there is generally one parameter that is of primary intgfes
exampley; in (1.2)) and we can treat this parameter as the only parameter.

We have previously presented techniques for solving

A(y)z+b(y) =0 1.4)

by reducing the equation to a nonlinear system involviny oné variabley [29, 37]. Alter-
natively, the standard projection method VARPRQ,[13, 14] replaces {.4) by the problem
min, , ||A(y)z + b(y)| 2, which is equivalent to solving

min | (7~ A@)A* (1)) )], - (L.5)

Iterative techniques for solvindL(5) usually require one SVD or QR factorization at each
step [L1, 13, 14, 21], whereas the method o9, 37] requires only one LU factorization in
every step 23, 29, 30, 33]. The latter method has recently been extended to rankieiefic
matricesA(y) [30, 33].

In this paper, we extend the method @8] 37] to the parameterized forni (1), solving
instead a nonlinear equation of the form

fly,u) =0 (1.6)

in y andu only. We prove that our reduction preserves static bifiooat we can thus lo-
cate the bifurcation in a smaller space and compute bifioresitmore economically by solv-
ing (1.6) rather than solvingl(.1) directly. Our general methods for computing bifurcation
points 7, 28, 32] are here adapted to the particular form ofg) that arises from the sep-
arable form {.1), which gives rise to distinctive analytical propertieslaxpressions. Our
specialized formulation is also applicable to curve tragkand switching€].

There are numerous techniques for solving general bifiorcg@roblems. The software
packages AUTO J0] and MATCONT [8, 9] and their successors implement a variety of
techniques for solving bifurcation problems in ordinarffefiential equations and algebraic
systems. Our technique is restricted to the particular f¢tr), and in that context has
the advantage of restricting the analysis and computatioress much smaller space. For
background on bifurcation problems in general, s8] 16, 20, 26].
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2. Analysis. We assume throughout what follows that the mattiyy, 1) has full rank
throughout the region of interest. The techniques36f B3] can be extended to the case when
A(y, u) is rank deficient; for simplicity, we omit that generalizatifrom this paper.

The following results form the basis for our method.

THEOREM 2.1. Let the(N + n) x N matrix A(y, u) have full rank N in a region
Q e R" x R®. LetK be an(N + n) x n constant matrix such that theV + n) x (N + n)
matrix [A(y, ) K] is nonsingular. Theffy, z, 1) is a solution of {.1) if and only if (y, 1)
satisfies

Fy. 1) = ply, 1) 0y, 1) =0 (2.1)
and
z=—A"(y, )by, ), (2.2)
where
p(y, )" == [Onxn  In] [Aly,p) K|, (2.3)

and AT is the pseudo-inverse eff.
Proof. (=) Clearly, @.3) is equivalent to

ply, )" [Aly,p) K] == [Onxn 1] (2.4)

Assume(y, z, 11) satisfies {.1). Multiplying both sides of {.1) from the left byp(y, 1)* and
using @.4), we have

p(y, 1) [A(y, 1)z + by, 1)] = p(y, w) " b(y, ) =0,

which is 2.1). Sincez is a solution of the linear systen.(), z is also the unique least
squares solution of the linear system, which impl2&)(
(<) Assume(y, z, 1) satisfies 2.1) and @.2). Then by 2.3

0= p(y, )Ty, 1) = = [Onxn L] [Aly, 1) K] bly, ),

which with (2.2) implies

Ay, )z + by, 1)
= Ay, w)[—A* (y, )by, 1)) + bly, 1)

= xen — Al A ) [AGe) K] [ D] (A K] 00

= [Intn — Aly, ) AT (y, )] [Aly, 1) K] {[IN 0] [A(ya%) K] by, p)

= [A(y, u) — Aly, ) A* (y, WA, )] [In - 0] [A(y,p) K]

and thus {.1) is satisfied

THEOREM 2.2. Let the(N + n) x N matrix A(y, u) have full rankN in a region
Q € R" x R®. LetK be an(N + n) x n constant matrix such that theV + n) x (N + n)
matrix [A(y, n) K] is nonsingular inQ. Then(y, 1) € Q and (7, 1) € Q are two distinct
solutions of 2.1)—(2.3 if and only if(y, z, 1) and(g, z, i) are two distinct solutions ofl(1).

by, p) =0,
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Proof. (=) This is trivial. (<) Assume(y, z, u) # (9, z, ). If (y, ) = (g, p), then
z = z by (2.2) contradicting the assumption. Therefdrep) # (g, 1). O

From Theoren?.2, for (y*,n*) € Q and a fixedu nearp*, the number of distinct
solutions of 2.1) is the same as the number of distinct solutionslof)( Thus, we have the
following corollary for static bifurcations:

COROLLARY 2.3. Under the conditions of Theoreth2, the point(y*, u*) € Qis a
bifurcation point of 2.1) if and only if (y*, z*, u*) is a bifurcation point of {.1).

These results imply that we only need to find bifurcation oot (2.1), which typically
involves a much smaller space than the original probler).(

3. Implementation. Henceforth, assume= 1. An appropriate matri¥< to be used in
conjunction with Theorer2.1 may be found as follows. Let a QR factorization4fyo, 1)
at some pointyo, po) € © near(y*, u*) be

11 T,N
A(yo, 10) = Q(N+m)x (N+n)R(Ntm)yxn = [0 -+ aN4n] - s
TN,N
OnXN
where{q, ..., qn+n} is an orthonormal basis f®&"+" and all the diagonal entries
r11,..., N,N @re nonzero because the rankyo, 110) is N. If
K=[qv+1 - qN4n) (3.1)

then[A(y, 1) K] is nonsingular throughout a neighborhoodgf, 110), since it is nonsin-
gular at(yo, 10):

[A(yo, o) K] = Q(N4n)x(N+n) [R(Ntn)xN  EN41 -+ ENin)-

The next theorem describes the relation between the fungtip 1) definedin 2.1), the
derivatives off, and the nonsingular matri@;A(y, 1) K] These expressions are required
in our numerical algorithms. We use the following notatitor:a matrix or a vectoB(y, 1),
denote by(B(y, 1)); and(B(y, n))’}, the matrix or vector having the same size with each
entry replaced by its derivative with respectjioor by its second derivative with respect to
Y;, Yr respectively. We identify, = y,,+1. Thus,

0 o
B '=_—B B N =——B i k=1,2,.. 1.
( (yvﬂ))] ay (yalu)v ( (y’u))jk aykayj (yalu)v I 72yt

THEOREM3.1.Let((y, u) € RN, 9(y, u) € R™ satisfy
Clys )| _
(A0 K] [S00] = o000, (3.2)
Then

V(1) = f(y, w; (3.3)
W'y, m))y = (' 1)5 = ply, )" ([(Aly, 1))5C(ys )] + (0 (y, 1)) 5 (3.4)
(¥ (y, ﬂ));‘lk = (f(y, ﬂ));‘lk

= p(y, )" [(A(y, 1)) ¢y, )i, + (A, 1))5 Sy 1)+
(Aly, 1))y, 1) + (b(y, 1)k )- (3.5)



ETNA
Kent State University
http://etna.math.kent.edu

BIFURCATION OF SEPARABLE EQUATIONS 35

Proof. (a) By direct computation using3(2), (2.3, and .1):

Gy, p) = — [0 L) [Ay, ) K] by, m) = fly, ). (3.6)

This proves 8.3).
(b) Differentiating both sides of3(2) with respect tay; or i = y,,+1, we have

(A 6] |S0 00+ [ty o) [§00] = 0wy @)
Solving this equation fofy (y, u))’; gives

W) = =10 L] [Aly,n) K] [(Aly, )¢ (s ) + (bly, )]
= p(y, )" [(Aly, 1))5¢ (Y, 1) + (b(y, 1))
which proveg).
(c) Differentiating both sides of3(7) with respect tqy;. or i = 4,11, we have

g e

)
# g o [{50h |+ (A o [S)
—(b(y, 1))

Solving this equation fofy(y, 1))’ gives

Wy )l == [0 L] [Aly,p) K]7 D5 (¢ (s 1))
+ (A(y, DMG,MM+M( D (M%HM%MM]
= p(y, 1) [(Aly, 1))y, 1) + (Ay, 1))5(C(ys 1))

+ (Aly, ) xSy, 1) + Oy, 1) )-

This proves 8.5. 0
From 3.4), we see that the Jacobian matrixfgf, 1) is given by

I, m) = ply, ) ([(Aw, )¢ ) (Al 1)1 Gy )] + 6 (y, 1)) . (3.8)

The quantityp(y, 1) required in 8.5 and @.8) may be computed fron2(3) by solv-
ing (2.4). The LU factorization of[A(y,u) K] required also suffices to solv8.p), thus
producing both)(y, 1) = f(y, 1) and the quantity (y, ) required for 8.4). The quantity
(C(y, )} required for 8.5 can be obtained by solving(7) using the same factors. Thus
one LU factorization suffices to compute all these quaistitie

4. Computation. Let (yo, po) be a point in the solution set o2(1). A nearby point
(y*, p*) that satisfies (y*, u*) = 0 is to be located. We treat three separate caggsio)
is (a) a regular point from which we seek another regulartp@urve-tracking); (b) a point
near a bifurcation from which we seek the bifurcation poart(c) a bifurcation point from
which we seek nearby regular points on different branche&wéeswitching).
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Let the singular value decomposition (SVD) (s&8, [35, 36]) of then x (n + 1) matrix
f'(o, ko) be

oy - 0
o, po) = [ur . g S DI Un+1]T7 (4.1)

on O

where{us, ..., u, } and{v1, ..., v, +1 } form orthonormal bases f®&" andR™*1, respectively.
The singular values satisty; > ... > o, > 0. The point(yo, 1o) is @ regular point of the
solution set if the last singular valug, is nonzero, and it is a bifurcation pointdf, = 0.
The point is near a bifurcation point if,, is nonzero, but smallg]. We note that here and
elsewhere, accurate determination of matrix rank is efitielevant techniques may be found
in [15, 18, 34, 36].

Case (a).For a regular pointyo, 1o) where the last singular valusg, is not small, the
tangent direction along the parameterized curve is given,by [6]. We choosdy(®), u(?))
to be a point on that tangent line, then use Newton’s methedli@ f (y, 1) = 0 in the affine
space normal to the tangent vector to find the nearby goint.*), i.e., we select a starting
point

(0)
{Z(o)] = B((JJ] + 0vnt1, (4.2)
for somed > 0 and then set
1 (k)| (k)
y®ET [y ® T ™), ) 1y e )(0) 4.3)
pRHD | ] ) v o7 Y Y ) .
n+1 n+1 u(k) _ H(O)

fork = 0,1,.... Note that the matrix involved ir(3) is invertible for(y %), 1.(¥)) sufficiently
near(yo, 10); see R2] for details. Under suitable conditions, this process evges to another
regular point on the same parameterized curve. For Newtoethod and convergence rates
in more general contexts, see, for example 1P, 24].

Case (b) We use the approach dT, 28, 31, 32] to compute a bifurcation poirit*, 11*)
from a nearby poin{yo, o). When (y*, u*) is a bifurcation point,f’(y*, u*) is rank-
deficient. Assume that its rankis 0 < r» < n — 1. The rank-deficiency is assumed to
be known, possibly detected by the existence of small saxqudluess, 11, ..., 0, at the
nearby poin{yo, o). The point(yo, 1o) near this bifurcation pointy*, ©*) is still a regular
point, but the last singular value is small. T{2 + 1 — r) x (2n + 1 — r) bordered matrix

_ [y, m)” L
is nonsingular in a neighborhood @f*, 1*) [28] if we select

R = [ur+1 un] , L= [vr+1 vn+1] , (4.5)

whereu; andv; are defined by the SVD4(1). For alternative choices of auxiliary vectors to
border a matrix, see, for examplé&, [L6, 17, 25]. Following [27, 28], we embedf (y, i) into
an extended system

Fly, i, )) = [f(y’“) + RA] , (4.6)

9(y, 1)
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where) € R"~" is a Lagrange-type vector apdy, 1) € R"*1~" is obtained by solving

M(y, p) EEZZH = [O(”E)“} : 4.7)

with & € R™~" being a random nonzero vector af(@, 1) € R™. We use Newton's method
to solve @.6): starting from

y© Yo
pO 1 = o,
A0) 0
we compute
v v Bk ] k) (k) \(k
pHD | =) | [F’ (y( INTEIDN >)} F(y( NP )), (4.8)
AB+D) AF)

for k = 0,1,2,.... The limitis (y*, x*,0). As shown in 7, 28], the Jacobian matrix of
F(y,p, ) is

/ o .f/(yv N) R
Fily ) = [—n(y,M)T[f(y,u)Tf”(y,u)] 0] ’ (4.9

in which the matrix;(y, ) € R(»+1)x(n+1-7) is gbtained by solving
[y, )" Ay, )] My, 1) = [Ont1-ryxn Lint1-n)] - (4.10)

andé(y, 1)" f" (v, 1) = 2271 [& (. 1) V2 f (y, ).
Case (c).Given a bifurcation pointyo, 1.0), we can locate nearby regular poifig, 1.*)
on several different branches. We adapt the method]db[find the relevant branch direc-
tions in the tangent space, then use the methag)-(4.3) for computing a regular point to
locate a point on any particular branch, using”, 1(*)) on a line given by the relevant di-
rection vecton instead of the tangent vectoy, ;. To find the appropriate direction vectors
w = Lﬁ = [UT+1 RPN /Un+1} [61 . BnJrlfr}T

we solve the numerical bifurcation equations

)

wh Tul (o, po)Jw =0, i=r+1,...,n;
that is, we find the vectors that satisfy

n

BN Q [wig VP filosmo)lL| B=0, i=r+1,...on; [|Blla=1,  (411)

j=1

whereu; ; is the jth component of the vectar; obtained from 4.1). The unknown coeffi-
cientsfy, ..., Bnr1—r in this system of quadratic equations can be found, for exany a
homotopy method4, 5].

A summary of the three algorithms above for computing a nepdint (y*, *) from a
given point(yo, o) in the solution set ofZ.1) follows.
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Procedure Summary Given an equation of the forml (1) with positive integersvV, n,
s = 1, and a poin{yo, i) on the solution curve ofX 1), compute nearby point($)*, u*)
in the solution set of4.1) as follows:

FactorA(yo, po) = QR; setK = [gn41, - - -, gnan] @Sin @.1). Use @.4) to find p(yo, p10)”
and use&.2) and @.4) to find f (yo, i0). Do a singular value decompositioh {) of f/(yo, 120)
to find singular values,, .. ., o,,, and singular vectors; , . . . , u,, andvy, . . ., v, 4 1. ldentify
the rankr of f/(yo, po). If oy, is large, setw = v,,41 and go to (a); ifo,, is small, go to (b);
if o, = 0, go to (c).

(a) (Computing a regular point) Séy©, u(*)) = (yo, o) + dw™ (4.2. Compute

(y*+D) | (1)) by Newton’s method4.3) for k = 0,1, .. until convergence.

(b) (Computing a bifurcation point) Form matricésand L as in @¢.5. Choose the
random vectorr € R*~". Set(y(©), (0 AO) = (yo, 1o, 0). Fork = 0,1,...
until convergence: compuljé(y ®) R, 1y Ry, 7 (R )y as in @.6),
(3.4 and @.5), form F(y®), u ’f), ’“)) andF’(y®) ) \(k)) using @.4)-(4.10,
and use Newton’s method.§).

(c) (Computing regular points near a bifurcation point)rRanatricesR and L as in
(4.5). Find direction vectors by solving @.11). For eachw, use procedure (a).

By repeatedly using the above algorithm, we can track anttkvbietween branches of
a solution set of the reduced equati@nlj.

5. Numerical examples.We present three examples to illustrate our method. Our first
example is the equilibrium solution of the Lorenz equatibr2);
EXAMPLE 5.1.

p2 0 —H2y

21
-1 -y LJ + | my | =0.
Yy —H3 0

We fix the values ofi; = 2 andus = 4, and we denote; asu. There is a bifurcation
point at(y*, u*) = (0, 1). With (yo, p10) = (—0.1,1.0025), a QR factorization gives

—0.8935 0.0299 0.4480| |—2.2383 —0.1340
A(yo, po) = | 0.4468  —0.0400 0.8938 0 —=3.9990| ,
0.0447  0.9988 0.0223 0 0

henceK = [0.4480 0.8938 0. O223]T. Using thisK, (2.4), (3.2, and @.8), we find
1/ (yo, po); an SVD factorization gives

7 (yos o) = [0.0045  0.0894] = [1] [0.0805 0] {0-0499 0-9988]

—0.9988 0.0499|"’

which suggests that a bifurcation point', 1.*) is nearby, since the only singular valae =
0.0895 is small. We extend the equation.{) to (4.6) by introducing a Lagrange-type vector
A € R, selectingy = 0.6319 at random, and defining the nonsingular bounded matrix

[y pn” L : _ ~ [0.0499 —0.9988
M(y’“)_[ RT o Wth E=1L=1y0088 00499 |

Applying Newton’s method4.8) to the extended systerd.@) using (b) in the Procedure
Summary, we approximate the bifurcation pofpt, u*, \*) = (0,1,0). Table5.1 shows

quadratic convergence of Newton's method for this extersyestiem, withd® (y, u, \) =
[y * D, pEFDAEED) — (8 8 A5,
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TABLE 5.1
Newton iterations for computing a bifurcation point in Exalmn5.1
Bl y® p®) AW AWy \)
0 | -1.0000e-01 1.0025e+00 0.0000e+00 —
1| 1.5025e-04 9.9248e-01 4.4822e-04 1.0065e-01
2| 1.1248e-10 1.0000e+00 1.0112e-06 7.5373e-03
3| 6.2814e-23 1.0000e+00 2.8357e-18 1.0116e-06
4 | 0.0000e+00 1.0000e+00 0.0000e+00 2.8357e-18

At the bifurcation poin{y, 1) = (0,1), the SVD givesr; = 0 andL = . We find3
by solving @.11):

0 —0.8944] ,

T T
 osoua o |PT0 AL
We obtaing = [+1,0]7,[0,41]7. Hence, the direction vectors ate= L3 = I3 = (3 at
this bifurcation point. The directioi-1, 0]” points to the solutiofyo, 110) = (—0.1,1.0025)
which is on the previously computed branch. So we only neabiopute solutions on the
other three branches. With= 0.1, we obtain three point®.1, 1.0025), (0,1.1), (0,0.9) on
these three branches respectively by using (c) of the Puwwe€&®Limmary, as shown in Table

5.2 with

d® (y, ) = || (y*D, @) — (y®) B,

TABLE 5.2
Newton iterations for computing branch points in Example
k| y® pt ™) (y, 1)
0 | 1.0000e-01 1.0000e+00 —
1| 1.0000e-01 1.0025e+00 2.5000e-03
2 | 1.0000e-01 1.0025e+00 1.6263e-18
0 | 0.0000e+00 1.1000e+00 —
1| 0.0000e+00 1.1000e+00 8.3267e-017
0 | 0.0000e+00 9.0000e-01 —
1 | 0.0000e+00 9.0000e-01 2.7756e-017

ExAMPLE 5.2. This example is1(3) with » = 0.1,y = 0.3, n = 3, N = 6, and
F(u) = u? — u:

0 [0.01(py1 + 92 — y3)]
(1) 0.01(py2 + vg - yg)
0.01(pys +ys — vy
—24001p 1 - ( v ) 0
I 1 —2+40.01p i 0 1

wherez € RS. There is a bifurcation point dy*, 1*) = (0,0, 0,0). We begin with a point
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(Yo, o) = (0,0,0,—0.1). A QR factorization ofA(yo, 110) gives

0.523  0.324 0.468 0.400 0.333 0.266 0.199 0.133 0.066
KT = [-0.805 —0.118 0.345 0.295 0.246 0.196 0.147 0.098 0.049
0.282 —0.939 0.118 0.101 0.084 0.067 0.050 0.033 0.017

With this K, (2.4), (3.2), and 8.8 give f’(yo, t0). An SVD decomposition gives; =
0.5067, o2 = 0.0010 andos = 0.0010. Since two of these singular values are much smaller
than the first, the rank of (y*, u*) is taken to be: = 1; that s, a bifurcation pointy™*, *) is
assumed to be nearby. The SVD also gitesnd R for use in ¢.4). We extend the equation
(2.1) to (4.6) by introducing a Lagrange-type vectore R2, selectingy = [0.2722, 0.4590]7

at random, and defining the nonsingular bordered matfiyy, 1) by (4.4). Applying New-
ton’s method 4.8) to the extended systerd.@) using (b) in the Procedure Summary with
A0 = 10,0]", we approximate the bifurcation poitw*, «*, \*) = (0,0,0,0,0,0). Ta-

ble 5.3 shows quadratic convergence of Newton’s method for thisredeéd system, with
d®) (y, i, A) = (| (*HD, B NED) — (g8 uE AR .

TABLE 5.3
Newton iterations for computing a bifurcation point in Exalen5.2

M k) AP d™ (y, 1, \)
0.0000e+00 -1.0000e-01 _ 0.000e+00 —
-5.6807e-18 4.1633e-17 -8.2888e-21  1.0000e-01
3.8519e-33 -1.8489e-32 -1.5046e-36 4.2531e-17
-6.8423e-49 2.7369e-48 0.0000e+00 1.9641e-32

WN PP O

At the bifurcation poin{yo, 120) = (0,0, 0,0) the SVD givesr; = 0.5071,00 =03 =0
and

(1) (1) 8 —0.5816 —0.1984
L= 00 ol R= 08109 —0.0645
00 1 —0.0645 0.9780

We solve for3 from (4.11) fori = 2,3: 373 = 1 and

0.0045 0 0.0022
g1 o 0.0195 0.0097| 8 =0,
0.0022 0.0097 0

0.0195 0 0.0097
Tl o —0.0045 —0.0022| 8 =0.
0.0097 —0.0022 0

We obtain eight3 values:

0 0 [£0.7071]  [£0.5774]
0],|x07071|,| 0 |,|=0.5774],
+1| |F0.7071] [F0.7071| |F0.5774]

which withw = L gives eight direction vectors:

0] [+0.7071] 0 [£0.5774]
0 0 +0.7071| |+0.5774
0" 0 ’ 0 ’ 0

+£1] |F0.7071] [F0.7071] |F0.5774]
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Besides the known solution point on the incoming branch, biaio seven other solutions
(y*, u*)T, each on a different branch:

0 0.073404 —0.068373 0
0 0 0 0.073404
01’ 0 ’ 0 ’ 0 ’
0.1 —0.068016 0.073047 —0.068016
0 0.058896 —0.056670
—0.068373 0.058896 —0.056670
0 ’ 0 ’ 0
0.073047 —0.055427 0.059881

We list in Table5.4the Newton iterations for the last point, with

d® (y, ) = || (y "D, @ FT) — (y & B,

TABLE 5.4
Newton iterations for computing branch points in Exampl2

k Y ys" ys pk) d™ (y, 1)

0 | -5.7740e-02 -5.7740e-02 0.0000e+00 5.7740e-02 —

1| -5.6689e-02 -5.6689e-02 0.0000e+00 5.9841e-02 2.5735e-0
2 | -5.6670e-02 -5.6670e-02 -1.7241e-23 5.9881e-02 4.8880e-
3| -5.6670e-02 -5.6670e-02 -4.9661e-30 5.9881e-02 1.788le-
4| -5.6670e-02 -5.6670e-02 -5.9353e-34 5.9881e-02 2.1382e-

ExampPLE 5.3. We apply our method to a single species problem from emastical
biology. Suppose the species grows exponentially with ametdisperses by diffusion across
a thin region, which we treat as an open interval. At the ragid of this interval the species
exhibits logistic growth with rate-dependent carryingaeify and migration. This gives rise
to a parameterized linear parabolic equation with nonlibeandary conditions. Let(¢, x)
denote the population of the species, and let the populatitre right end point of the interval
bew(t). We have the following equations:

U = pu+ Ugg, = €(0,1) with w(£,0) =0, w(t,1)=v(t)
ve = ol = (B/u)o] + ults 1 — ) + (=2 + pe)o — ¢

and

for some smalk > 0, where the parameterand the constants, c are all positive.
Now consider the state solutions of the differential equrei Discretize: in = using
h=1/(N+1),uzz(z) = (u(z + h) + u(z — h) — 2u(z))/h*. Denoting
Z = [u(h),u(2h),,u(Nh)]T, y="v
and choosing = h, we obtain the state solutionsy in the form of (L.1) with n = 1:

Ay, p)z + by, p) =0,
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where
-2+ h%u 1
1 -2+ h%u
Ay, p) = ]
1 —2+h%u

0 0 1 (N+1)xN

and
€
bly,p) = ven

(=2+ hPp)y + py — By* — ¢’

with ey the Nth standard basis elementlid .

For certain values of the constarisc, there is a turning point on the solution curve.
To illustrate this numerically, we chooge = 0.1, soN = 9, and we sef3 = 0.2, ¢ =
82.0409593298. Table5.5 lists eight successive regular points far, 1) along this curve,
computed using4.2)—(4.3 repeatedly. The only singular value of the derivativef’(y, 1)
of the reduced function at each point has the valug/*)) > 3. Our method traverses the
turning point without difficulty, treating it as any regulpoint. The turning point, which is
near(y™®, u), can be located exactly using the methods3@] [

TABLE 5.5
Branch of regular points passing through a turning point ixainple5.3.
| y® L0 |y )
1.725427e+01 8.162099e+00b | 2.125353e+01 8.106957e+00
1.825369e+01 8.127131e+006 | 2.225342e+01 8.122532e+00
074
(03]

1.925353e+01 8.107532e+ 2.325313e+01 8.146625e+00
2.025353e+01 8.101405e+ 2.425265e+01 8.177871e+00
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