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RANDOM COEFFICIENT DIFFERENTIAL MODELS OF GROWTH OF
ANAEROBIC PHOTOSYNTHETIC BACTERIA *
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Abstract. In many fields of science and engineering there are matheahatiodels given in terms of differential
equations with random coefficients. The randomness is deerdos or uncertainty. Closed solutions are few, and
usually numerical approximations need to be calculatetn®mial chaos is a powerful method in this regard. Here
we apply this method to several modeling approaches foiirtmeevolution of photosynthetic bacterial populations.
Usual methods used in microbiology are contrasted with agares based on differential equations with random
coefficients. Numerical results based on laboratory datéwfo different species of bacteria are presented.
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1. Introduction. Differential equations with random coefficients are usethagels in
many different applications. In many situations they artédoén describing the real behavior
than equations with deterministic coefficients becauserofgin the observed or measured
data, because of variability of the conditions, and alscabse of uncertainties or lack of
knowledge. Uncertainty can be due to variables that cammatéasured and also to missing
data. Random differential equations have been used inshela decades to deal with errors
and uncertainty. For example séé&]and [L3]. Another method of dealing with uncertainty
and errors is to add an additive or multiplicative noise tésrthe equation; see, for example,
[7]and [13].

The most well known methods to work with random coefficieffedéential equations are
the Monte Carlo method, moment methods, and polynomialshao

1. Monte Carlo. In this approach (see, for exampld] pnd [3]), the basic procedure
is:

e Generate sample values of the random variable(s) fromkheivn or assumed
probability density function.
e Solve the deterministic equation corresponding to eaaleval
e Calculate statistics, such as mean and variance, of thd deterministic so-
lutions.
This method is straightforward, but very expensive sinaeduires many realiza-
tions.

2. Method of Moments. This method is based on obtaining thenemds of the solu-
tion, usually only the mean and variance; see, for examplearid [16]. Usually
expansions in terms of a small random term about a detertigiisefficient or
mean square calculus are used. Sodrfgpplied the method to a Malthus growth
population model and VillafuertelP] extended it to the logistic growth model.
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3. Polynomial Chaos. The method will be described and aghpliggopulation growth
models in Sectiod.

In the life sciences, a very important field of study is thatpopulation growth and
evolution of organisms with time. Field observations artublatory experiments are often
performed to determine the sizes of different types of patahs under varying conditions
and their changes with time. To be able to extend the resutither situations and to make
predictions, mathematical models are needed. These miodelge parameters, such as the
rate of growth, that are usually determined from the measangs of the population size by
some sort of curve fitting. Two population models widely usee exponential growth, or
Malthusian growth, and logistic growth.

Even when the measurements are done with the utmost carmesured values will
differ somewhat; in fact, sometimes the variability is @udramatic. This is due to inaccura-
cies in the methods used to assess population size, ermafhar otherwise), and variability
in the populations, as well as other unknown factors; initygalhat one obtains are param-
eters that have some variation. The initial value of the patmn can also have variations,
but these are due only to errors in their measurement. Asqugly mentioned, a new way
to deal with the variation of the parameters is to considentto be random variables with a
specified, given distribution.

In this paper, we will use actual laboratory data from thendghoof anaerobic photosyn-
thetic bacteria under infrared lighting conditions. Thesganisms use light energy to reduce
CO; and synthesize carbohydrates, which simultaneouslytsesuén increase in biomass.
Initially, when there is no competition for light and/or GQthe growth may be modeled
with an exponential growth model. Later, as the populatimméases in size, the access to
light and/or CQ is reduced; the experimental values can now be better fittied) @ logistic
model. (One of the data sets fits very well an ‘s-curve’ givgraldogistic growth model.
The second data set has two points where, for unknown reaenpopulation appears to
have decreased. So we do not expect the models to fit very arethése data.) We will
consider that the fitted parameters are random variables/dinubtain the equations for the
time evolution of their means and variances. We will thensthese equations and show the
effects of the randomness on longer time predictions.

The rest of the paper is structured as follows. In Secfipthe biological problem of
the growth of anaerobic photosynthetic bacteria is preskeahnd the experiments described.
In Section3, the mathematical models with fixed parameters are intredland the curve
fitting procedure presented. In Sectidrthe random models are discussed and in Seétion
numerical results pertaining to them are presented. Firadiction6 draws the conclusions.

2. Anaerobic photosynthetic bacterial growth. In this section, we briefly describe
how the experiments to measure the population sizéthoidobacter capsulatus (R. capsu-
latus) and Chlorobium vibrioforme (C. vibrioforma)nder infrared lighting conditions were
performed.

Rhodobacter capsulaty®SM 1710) andChlorobium vibrioformestrain 6030 (DSM
260) were obtained from the Deutsche Sammlung von Mikradsgaen und Zellkulturen
(DSMz, Braunschweig, GermanyRhodobacter capsulatusas grown in a medium pro-
posed by Sistrom1[5] and modified by Kessi et al8]. Chlorobium vibrioformewas grown
in Medium 40 as recommended by the DSMZ.

All cultures were plated anaerobically to ensure culturgtpioefore use. Plates were
made using the specified medium plus 15 g/L Bacto-Agar (Difaboratories, Detroit, MI)
and incubated in an anaerobic jar. Once pure cultures wsuedd, three tubes containing 20
mL of fresh media were inoculated with 1 mL of mature cultuneganing that pigmentation
had been observed for two weeks. These tubes were allowadwoapnaerobically for two
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weeks in light using three 60W tungsten incandescent lighish(Crystal Clear, ACE, Oak
Brook, IL) at21°C. Five tubes, each containing 20 mL of media, were then iladed with 1
mL culture and placed in the dark for 12 hours. After the dadubation period, the cultures
were grown under anoxic conditions under infrared illuntioa

Bulbs used for IR incubations were placed behind 58 mm R7#aiiefl glass filters (Hoya
Corporation, Tokyo, Japan) that allowed wavelengths ditligbove 700nm to pass. All
cultures were incubated betweeh — 23°C. Light intensity was measured using a Digital
Lux Meter (LX-101A, Lutron, Taipei, Taiwan)Rhodobacter capsulatwgas incubated at a
light intensity of 60 lux;C. vibrioformewas provided 120 lux.

Direct cell counts were made using the Acridine Orange Me{®p and a Dialux 20
epifluorescence microscope fitted with a lens micrometdtg] @ermany). Fifteen to twenty
fields were counted and averaged to determine the popukierat any point in time. Cell
numbers were assessed upon initial inoculation and then agj@n pigmentation was visible
in the cultures. Cell counts were then made every two to thags until a stationary phase
was achieved. The measured values are presented in theeotghs

3. Mathematical models and curve fitting. If we let y(¢) be the population of a given
species at time, then the simplest model for the growth or decay of the pdmrias that
the rate of change is proportional to the size of the popaaflhis is the model proposed by
Thomas Malthus in 17981, 12]. The differential equation for this model is

dy = ry(t), (3.1)

dt
wherer is the growth rate. The solution for an initial value of thepptationy(0) = yo is
y(t) = yo exp(rt). For up to nine days, our bacteria populations have a grattthat looks
exponential.

But, of course, as the population keeps growing inside thiettbes, there starts to be a
competition for the limited resources, mainly light and gibk/ CO,. In 1838, Verhulst1§]
proposed that the growth rate should decrease with the sibe @opulation. This leads to
the logistic equation

dy Y
F=r(1-2)v. .

at ( K)Y (3.2
Herer is still the growth rate and is the equilibrium value. The solution, subject to initial
valuey(0) = yo, is

_ Yo X
Yo + (K —yo) exp(—rt)’

y(t)

Our data, for times up to 14 days, resembles logistic growth.

We will fit our experimental data to both exponential and $bigi models using least
squares. That is, we have a set of experimental valyegexp;),i = 1,..., m, with m the
number of data points, a set of parameters to-fitj = 1, ..., npar, with npar the number
of parameters to fit, and a model for the size of the populdtiery;) , with f a vector-valued
function of dimensionn andr the vector of parameters of sizg@ar. We want to find the
values ofr that minimize
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TABLE 3.1
Cell counts.
R. capsulatus C. vibrioforme

Time Population| Time Population

(days) (cells/mL)| (days) (cells/mL)

0 5.83E+05 0 9.86E+05

2  6.35E+05 14  2.41E+06

4  1.08E+06 16  2.24E+06

7  3.20E+06 18 4.21E+06

9 5.23E+06 21 5.72E+06

11 5.28E+06 23  5.99E+06

14  5.30E+06 25 7.86E+06

28  6.52E+06

see, for exampleZ]. Since in the majority of cases, the model curve will not getgh all
the experimental points, the minimum value will not be zéroe final value of)(r) gives a
measure of how good the fitis. We will call this value the rasidr the norm of the residual.

We will fit the parameters to our data in three ways. First 8daswe will only use the
data up to nine days, and fit only the growth rate parametéetdtalthusian model. Second
(Case 1), we will use the same data but also fit the initialieadf the population to the same
model. Finally (Case Il1), we will use all the data and fit tire\gth rate, the initial value and
the equilibrium value using a logistic growth model.

In the process of fitting the parameters, and K are scaled byl0° to make all the
parameters that are fitted to be of the same order.

Table3.1 contains the measured population valuesRocapsulatugandC. vibrioforme
under IR lighting conditions. Figure3.1-3.2 plot the measured values of the populations
of R. capsulatusndC. vibrioforme respectively, together with smooth cubic interpolation
curves going through those values. The curves do not reftregsponential or logistic (“s-
shaped”) curves very well, but they give us a test case whetom®t expect the curve fitting
to be very good.

4. Random coefficients and polynomial chaos.

4.1. Exponential growth. To start with, let us consider the model ordinary differahti
equation

dy(t; w)
dt

=r(w)y,  y(0;w) = yo(w), (4.1)

where the growth rate coefficienfw) as well as the dependent varialylg; w) for a given

t are supposed to be random variables of the outcome of anieety taking values in

the set of all outcome®Q. The latter is assumed to be properly equipped withra@gebra

F and a probability measute such that the tripléQ2, 7, P) forms a probability spacelf].
Moreover, the initial conditionys(w) and the growth rate are supposed to be independent
random variables. For several types of distributions ofgrewth rate, the time evolution

of the expected value af(¢; w) can be obtained in closed form. In order to develop a more
general methodology for the numerical solution of otherd@ion equations, we follow the
polynomial chaos approach,[20, 22] using the Wiener-Hermite chaos expansion. In this
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FIGURE 3.1. Population size of R. capsulatus versus time.

context, a random variabjg(w) is projected on the space of polynomial chaoses

X@) =x0To + > X T1(& @) + D> xininl2(G, @), &G, (@) +...,  (4.2)

i1=1 i1=112=1

where thel; are successive polynomial chaoses of increasing degrbeimarguments1,

6, 4]. This expansion has been shown to converge for second-maddom processed]
The polynomial chaoses can be arranged in a sequri€év)), such that the expansion of
the random processes appearing in equatiol) {akes the form:

y(tiw) =Y yiPiEW)): rw) =Y r;®;(EW)), (4.3)
i=0

J=0

where thed,; are properly chosen polynomial basis functions of the ramdariable vectoé.
The number of variables girepresents the dimension of the chaos. We conéidera vector
of standard Gaussian variables and take the basis fund¢tidms the Hermite polynomials,
leading to the Wiener chaos expansion. A Galerkin projeatising the orthogonality of the
basis functiong®;, ®;) = d;;(®;, ®;) together with truncation of the infinite seriesfo+ 1
terms leads to a system of ordinary differential equatianggning the time evolution of the
chaos coefficients of the solution

dy 1 P P
= e SN i),
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FIGURE 3.2. Population size of C. vibrioforme versus time.

wherea;j, = (@, ®,;®;). This system is then integrated in time using an appropriate
numerical method, and the chaos coefficients thus obtametde subsequently used to com-
pute quantities of interest. For example, the meap o the value of the first coefficient
yo(t), while the variance of is Var[y| = Zf:l y2(t)(®;, ®;). The inner product, -) in this
paper is always taken with respect to Gaussian measure.

Some exact solutions for the expected values of the deperdeaable in the case of
this simple equation can be obtained. Sipgév) andr(w) are independent, from the exact
solution of the equatior3(1) one obtains:

y(t) = yoE[exp(rt)] = yo / exp(at) fr(x) de, (4.4)

whereyy is the mean value afy(w), f(x) is the probability density function for the growth
rate, and the integration should be performed over the suppd... If r(w) is a Gaussian
random variable with meanand variancer?, then the integral can be evaluated exactly to
give

242
ot
y(t) = yo exp (Ft—i— ’“2 > .
Similarly, for an exponential distribution @f one obtains

Ao
A—t’

y(t) =
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where\ is the parameter of the exponential distribution, ire= 1/A. For a uniform distri-
bution ofr(w) in (a,b), equation 4.4) leads to

) 220t

These solutions have been used to confirm the numericatsedthined from the polynomial
chaos implementation.

4.2. Logistic growth. The logistic growth equatior3(2) is considered here, in which
the growth rate- and the equilibrium (or saturation) lev&l are random variables. Because
of the nonlinear term in the logistic equation, it is knowattmoment methods are difficult to
apply directly to 8.2) as they require closure for the higher-order moments. Mamethods
based on sensitivities can be easily used because an ekawrses known P0]; however, in
the case of differential equations where an exact solutarot available, these methods do
require computation of sensitivities, usually a more caogtéd task than solving the differ-
ential equations. On the other hand, the polynomial chaparesion is rather straightforward
to apply. To develop the Galerkin projection of the solutonthe polynomial chaoses, and
taking into account the fact that the saturation leféeils necessarily positive, it is helpful to
introducex(w) = 1/K (w). Expanding this quantity in the polynomial chaos basisjlainto
equation 4.3), and introducing the corresponding expression in equd8d), one obtains:

L LA P P
Z ' = Z Zr;yz 1- Z Zmyl(t)@k@l i (4.5)
=0 J=0 i=0 k=0 1=0

Again taking the inner product with the basis functidy,, we obtain a system of ordinary
differential equations for the time dependent coefficiemthe solution,

P

dym _ Z Z
dt = q) q) rjyz a/z_]m - yi(t)rjﬁkyl(t)bijklma (46)
m 4,j=0 i,9,k,1=0

with a;;,,, as defined above and the additional coupling coeffidigipt,, = (P, DD, Py).
When the initial valugy, and the reciprocal of the saturation lewedre deterministic, the ex-
act solution for the first moment gf(¢; w) is given by

_ o yOfr(x) T
y(t) = /liyo + (1 = Kyo) eXP(—It)d . #.7)

4.3. Random input representation.In most practical situations, a subset of the random
coefficients in the model must satisfy constraints inhetenhe model itself. For example,
for the exponential growth model the initial populatigf(w) has to be positive; no such
constraint is necessary fofw), although negative values ofwill lead to decrease of the
population size in time. For the logistic model batf{w) andx(w) must be positive. Obvi-
ously, normal random variables are not good candidatet&gpdsitive quantities, since they
can take values all over the real axis. Thus, one needs tadesrmrandom variables whose
probability density functions have support on the positiwal axis. For this study we will
only focus on uniformly distributed random inputs, althbugamma, beta, and lognormal
random inputs may be considered. To represent a non-Gaussidom input in a Hermite
chaos expansion, one can use the inverse transform meitfjad fnap both the random vari-
able which needs to be represented,igay) with cumulative distribution functiod;. (x), and
the standard normal random varialb§és') to the same probability space. Givemniformly
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TABLE 5.1
Parameters for R. capsulatus.

| r Yo K residual
Casel| .1762 1.8385
Caselll| .2822 .4174E+06 .1206
Casellll| .6157 .1244E+06 5.5623E+06 .600
TABLE 5.2

Parameters for C. vibrioforme.

| r Yo K residual
Case || .0774 2.2011
Casell| .1293 .3755E+06 1.0543

Case lll| .3184 .0292E+06 7.4242E+06  3.3127

distributed in(0, 1), the random variable(u) = F,~!(u) has the same distribution asThe

transformation is useful whefi. can be easily inverted. The inner products-@§) with the
basis functions can then be computed by mappin@ to):

L 1 ' -1 -1
= T3 %) = g /0 B () (F () du. (4.8)
Another alternative, which we adopt here, is to map the unifp distributed random vari-
ables in the intervala, b] to standard normals, in which case equatiérg)(for the case of
one-dimensional chaos becomes

= @ <a+<b—a>w@i(@>. 4.9)

5. Numerical experiments.

5.1. Deterministic model fitting. In this section we present the results of the curve
fitting for the three cases and of numerical experiments thighvarious models presented
above.

Case | refers to the results of fitting an exponential growtdeh to the measured data
of R. capsulatusip to nine days, considering that the growth raie the only parameter to
be fitted. ForC. vibrioforme the data fitted is up to 21 days. Since we are only fitting one
parameter, the fit is not as good as in the other two cases.

Case Il refers to the results of the curve fitting when the rhisdill growing exponen-
tially, but we have two parameters, the growth ratand the initial populationy,. ForR.
capsulatusthe data used is up to nine days, andGowibrioformeit is up to 21 days.

Case Il refers to the fit of a logistic model using all of theasered values. FdRr.
capsulatus the time is up to 14 days, and f@. vibrioformeit is to 28 days. Now we
have three parameters to fit: the growth rateéhe initial populationy,, and the saturation
constantk'.

The results for the three models are presentedRfarapsulatusn Table5.1and forC.
vibrioformein Table5.2 In both tables, “residual” is the value of the norm of thddeal as
defined above.

As expected the results of the curve fitting as measured héttiresidual” are better for
R. capsulatussince the data points f@. vibrioformedeviate more from an exponential or an
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FIGURE5.1.The three growth models for R. capsulatus.

“s-shaped” curve. The values of the fitted parameters degigndicantly on the model used.
In most population growth models, the valueraeported comes from fitting an exponential
growth model. It is important to have multiple experimeitbé able to take averages.

Figures5.1and5.2 are plots of the three least squares fit curves together hétimea-
sured values. The figures show that the fitted curves appedginery well the experimental
data, with the exception of Case I. This result is to be exqabsince we only have one pa-
rameter to fit to measurements that are very difficult to perfaccurately. The curves f&.
capsulatusdit better than those fo€. vibrioforme as expected.

5.2. Polynomial chaos.Figure6.1 presents two results obtained by modeling the time
evolution of the population dR. capsulatusising exponential growth. The polynomial chaos
solution for the mean is shown together with two limit curfesthe usual interval of con-
fidence[y(t) — 25(t), g(t) + 25(t)], whereS(t) = /Var[y(t)] is the standard deviation
in the solution. Both computations use the same mean valuebfained from Case Il to
allow comparison. For the top figure, only the growth ratedasidered a Gaussian ran-
dom variable. For the bottom figure, the initial value is aisken as a random variable,
uniformly distributed in(0.4074, 0.4274). Note the small values of the variances in the ran-
dom coefficients; obviously introducing only a small rand@ss in the model inputs allows
a more faithful representation of the time evolution of tlepplation. For this reason, it is
the authors’ opinion that the use of random coefficient défftial equation models should be
investigated more extensively in mathematical biology.

Figure6.2 shows the evolution of the mean and the interval of confidémrcthe logistic
model applied taR. capsulatus The top figure only considers randomness in the growth
rate (Gaussian) and the initial condition (uniform(in0744,0.1744)). The bottom figure
also takes into account randomness in the saturation féviniform in (4.8,6.32)). Itis
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FIGURE5.2. The three growth models for C. vibrioforme.

interesting to note the trend of the upper limit curve in e figure. The increase continues
beyond the saturation level, peaks, and only then startedsing toward the mean value of
K. We have confirmed that with longer time integration, thearmmnd lower limits do join
the mean as one would expect.

Figuress.3and6.4replicate these results far. vibrioforme In the top part of Figuré.3,
the initial valuey, is set to the fitted value from Case Il, and the growth rate isicered
to have a normal distribution with the mean equal to the fittelle andVar[r] = 0.03.

In the bottom plot, the variance of the growth ratéVisc[r] = 0.01, but the initial value
is uniformly distributed in(0.3655, 0.3855). The logistic models with random coefficients
shown in Figures.4 are similar to the results fdR. capsulatusexcept that the peak in the
upper confidence limit does not appear. Although not showr,hee confirmed through
longer time integration that the upper and lower confideimé turves eventually join the
mean value, as should be expected.

6. Conclusions. Modeling population growth is many times a difficult task daehe
scarcity and scattering of the data, and to errors and wingrin it. Incorporating random-
ness in the population model is a natural alternative. Is fi@iper, we have explored two
classical population growth models which have been modifigdke into account the ran-
domness in the coefficients. While for very simple cases #tagtesolution for some of the
moments may be computed analytically, the numerical ater@ based on polynomial chaos
that has been used here can be easily extended to take imtordcaore difficult situations.
Here we have used several different hypotheses on thebdistm functions of the random
coefficients. We have used actual data for two bacterialispggowing under IR lighting
conditions, and have calculated numerical solutions. Kbension we envision is a random
coefficient partial differential equations model for biofigrowth.
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FIGURE 6.1. Modeling of R. capsulatus with exponential growth. Top ggur = 0.2822, Var[r] = 0.03,
yo = 0.4174, Var[yo] = 0. Bottom figure: # = 0.2822, Var[r] = 0.01, yo uniformly distributed in
(0.4074, 0.4274).
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FIGURE 6.3. Modeling of C. vibrioforme with exponential growth. Top figu7 = 0.1293, Var[r] =
0.03, yo = 0.3755, Var[yo] = 0. Bottom figure:7 = 0.1293, Var[r] = 0.01, yo uniformly distributed in
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FIGURE 6.4. Modeling of C. vibrioforme with logistic growth. Top figuré:= 0.3184, Var[r] = 0.02, yo
uniformly distributed in(0.02, 0.04), Var[K]| = 0. Bottom figure:7 = 0.3184, Var[r] = 0.01, yo uniformly

distributed in(0.029, 0.031), K uniformly distributed in(5.06, 6.06).
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