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RANDOM COEFFICIENT DIFFERENTIAL MODELS OF GROWTH OF
ANAEROBIC PHOTOSYNTHETIC BACTERIA ∗
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Abstract. In many fields of science and engineering there are mathematical models given in terms of differential
equations with random coefficients. The randomness is due toerrors or uncertainty. Closed solutions are few, and
usually numerical approximations need to be calculated. Polynomial chaos is a powerful method in this regard. Here
we apply this method to several modeling approaches for the time evolution of photosynthetic bacterial populations.
Usual methods used in microbiology are contrasted with approaches based on differential equations with random
coefficients. Numerical results based on laboratory data for two different species of bacteria are presented.
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1. Introduction. Differential equations with random coefficients are used asmodels in
many different applications. In many situations they are better in describing the real behavior
than equations with deterministic coefficients because of errors in the observed or measured
data, because of variability of the conditions, and also because of uncertainties or lack of
knowledge. Uncertainty can be due to variables that cannot be measured and also to missing
data. Random differential equations have been used in the last few decades to deal with errors
and uncertainty. For example see [17] and [13]. Another method of dealing with uncertainty
and errors is to add an additive or multiplicative noise termto the equation; see, for example,
[7] and [13].

The most well known methods to work with random coefficient differential equations are
the Monte Carlo method, moment methods, and polynomial chaos.

1. Monte Carlo. In this approach (see, for example, [11] and [3]), the basic procedure
is:

• Generate sample values of the random variable(s) from theirknown or assumed
probability density function.

• Solve the deterministic equation corresponding to each value.
• Calculate statistics, such as mean and variance, of the set of deterministic so-

lutions.
This method is straightforward, but very expensive since itrequires many realiza-
tions.

2. Method of Moments. This method is based on obtaining the moments of the solu-
tion, usually only the mean and variance; see, for example, [5] and [16]. Usually
expansions in terms of a small random term about a deterministic coefficient or
mean square calculus are used. Soong [16] applied the method to a Malthus growth
population model and Villafuerte [19] extended it to the logistic growth model.
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3. Polynomial Chaos. The method will be described and applied to population growth
models in Section4.

In the life sciences, a very important field of study is that ofpopulation growth and
evolution of organisms with time. Field observations and laboratory experiments are often
performed to determine the sizes of different types of populations under varying conditions
and their changes with time. To be able to extend the results to other situations and to make
predictions, mathematical models are needed. These modelsinvolve parameters, such as the
rate of growth, that are usually determined from the measurements of the population size by
some sort of curve fitting. Two population models widely usedare exponential growth, or
Malthusian growth, and logistic growth.

Even when the measurements are done with the utmost care, themeasured values will
differ somewhat; in fact, sometimes the variability is quite dramatic. This is due to inaccura-
cies in the methods used to assess population size, error (human or otherwise), and variability
in the populations, as well as other unknown factors; in reality, what one obtains are param-
eters that have some variation. The initial value of the population can also have variations,
but these are due only to errors in their measurement. As previously mentioned, a new way
to deal with the variation of the parameters is to consider them to be random variables with a
specified, given distribution.

In this paper, we will use actual laboratory data from the growth of anaerobic photosyn-
thetic bacteria under infrared lighting conditions. Theseorganisms use light energy to reduce
CO2 and synthesize carbohydrates, which simultaneously results in an increase in biomass.
Initially, when there is no competition for light and/or CO2, the growth may be modeled
with an exponential growth model. Later, as the population increases in size, the access to
light and/or CO2 is reduced; the experimental values can now be better fitted using a logistic
model. (One of the data sets fits very well an ‘s-curve’ given by a logistic growth model.
The second data set has two points where, for unknown reasons, the population appears to
have decreased. So we do not expect the models to fit very well for these data.) We will
consider that the fitted parameters are random variables andwill obtain the equations for the
time evolution of their means and variances. We will then solve these equations and show the
effects of the randomness on longer time predictions.

The rest of the paper is structured as follows. In Section2, the biological problem of
the growth of anaerobic photosynthetic bacteria is presented and the experiments described.
In Section3, the mathematical models with fixed parameters are introduced and the curve
fitting procedure presented. In Section4, the random models are discussed and in Section5
numerical results pertaining to them are presented. Finally, Section6 draws the conclusions.

2. Anaerobic photosynthetic bacterial growth. In this section, we briefly describe
how the experiments to measure the population sizes ofRhodobacter capsulatus (R. capsu-
latus)andChlorobium vibrioforme (C. vibrioforme)under infrared lighting conditions were
performed.

Rhodobacter capsulatus(DSM 1710) andChlorobium vibrioformestrain 6030 (DSM
260) were obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen
(DSMZ, Braunschweig, Germany).Rhodobacter capsulatuswas grown in a medium pro-
posed by Sistrom [15] and modified by Kessi et al. [8]. Chlorobium vibrioformewas grown
in Medium 40 as recommended by the DSMZ.

All cultures were plated anaerobically to ensure culture purity before use. Plates were
made using the specified medium plus 15 g/L Bacto-Agar (DifcoLaboratories, Detroit, MI)
and incubated in an anaerobic jar. Once pure cultures were insured, three tubes containing 20
mL of fresh media were inoculated with 1 mL of mature culture,meaning that pigmentation
had been observed for two weeks. These tubes were allowed to grow anaerobically for two
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weeks in light using three 60W tungsten incandescent light bulbs (Crystal Clear, ACE, Oak
Brook, IL) at21oC. Five tubes, each containing 20 mL of media, were then inoculated with 1
mL culture and placed in the dark for 12 hours. After the dark incubation period, the cultures
were grown under anoxic conditions under infrared illumination.

Bulbs used for IR incubations were placed behind 58 mm R72 infrared glass filters (Hoya
Corporation, Tokyo, Japan) that allowed wavelengths of light above 700nm to pass. All
cultures were incubated between21 − 23oC. Light intensity was measured using a Digital
Lux Meter (LX-101A, Lutron, Taipei, Taiwan).Rhodobacter capsulatuswas incubated at a
light intensity of 60 lux;C. vibrioformewas provided 120 lux.

Direct cell counts were made using the Acridine Orange Method [9] and a Dialux 20
epifluorescence microscope fitted with a lens micrometer (Leitz, Germany). Fifteen to twenty
fields were counted and averaged to determine the populationsize at any point in time. Cell
numbers were assessed upon initial inoculation and then again when pigmentation was visible
in the cultures. Cell counts were then made every two to threedays until a stationary phase
was achieved. The measured values are presented in the next section.

3. Mathematical models and curve fitting. If we let y(t) be the population of a given
species at timet, then the simplest model for the growth or decay of the population is that
the rate of change is proportional to the size of the population. This is the model proposed by
Thomas Malthus in 1798 [10, 12]. The differential equation for this model is

dy

dt
= ry(t), (3.1)

wherer is the growth rate. The solution for an initial value of the populationy(0) = y0 is
y(t) = y0 exp(rt). For up to nine days, our bacteria populations have a growth rate that looks
exponential.

But, of course, as the population keeps growing inside the test tubes, there starts to be a
competition for the limited resources, mainly light and possibly CO2. In 1838, Verhulst [18]
proposed that the growth rate should decrease with the size of the population. This leads to
the logistic equation

dy

dt
= r

(

1 − y

K

)

y. (3.2)

Herer is still the growth rate andK is the equilibrium value. The solution, subject to initial
valuey(0) = y0, is

y(t) =
y0K

y0 + (K − y0) exp(−rt) .

Our data, for times up to 14 days, resembles logistic growth.
We will fit our experimental data to both exponential and logistic models using least

squares. That is, we have a set of experimental values(ti, yexpi), i = 1, . . . ,m, with m the
number of data points, a set of parameters to fit,rj , j = 1, . . . , npar, with npar the number
of parameters to fit, and a model for the size of the populationf(r, ti) , with f a vector-valued
function of dimensionm andr the vector of parameters of sizenpar. We want to find the
values ofr that minimize

ψ(r) =

m
∑

i=1

(f(r, ti) − yexpi)
2;
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TABLE 3.1
Cell counts.

R. capsulatus C. vibrioforme
Time Population Time Population

(days) (cells/mL) (days) (cells/mL)
0 5.83E+05 0 9.86E+05
2 6.35E+05 14 2.41E+06
4 1.08E+06 16 2.24E+06
7 3.20E+06 18 4.21E+06
9 5.23E+06 21 5.72E+06

11 5.28E+06 23 5.99E+06
14 5.30E+06 25 7.86E+06

28 6.52E+06

see, for example, [2]. Since in the majority of cases, the model curve will not go through all
the experimental points, the minimum value will not be zero.The final value ofψ(r) gives a
measure of how good the fit is. We will call this value the residual or the norm of the residual.

We will fit the parameters to our data in three ways. First (Case I), we will only use the
data up to nine days, and fit only the growth rate parameter to the Malthusian model. Second
(Case II), we will use the same data but also fit the initial value of the population to the same
model. Finally (Case III), we will use all the data and fit the growth rate, the initial value and
the equilibrium value using a logistic growth model.

In the process of fitting the parameters,y0 andK are scaled by106 to make all the
parameters that are fitted to be of the same order.

Table3.1contains the measured population values forR. capsulatusandC. vibrioforme
under IR lighting conditions. Figures3.1–3.2 plot the measured values of the populations
of R. capsulatusandC. vibrioforme, respectively, together with smooth cubic interpolation
curves going through those values. The curves do not represent exponential or logistic (“s-
shaped”) curves very well, but they give us a test case when wedo not expect the curve fitting
to be very good.

4. Random coefficients and polynomial chaos.

4.1. Exponential growth. To start with, let us consider the model ordinary differential
equation

dy(t;ω)

dt
= r(ω)y, y(0;ω) = y0(ω), (4.1)

where the growth rate coefficientr(ω) as well as the dependent variabley(t;ω) for a given
t are supposed to be random variables of the outcome of an experimentω taking values in
the set of all outcomesΩ. The latter is assumed to be properly equipped with aσ-algebra
F and a probability measureP such that the triple(Ω,F , P ) forms a probability space [14].
Moreover, the initial conditiony0(ω) and the growth rate are supposed to be independent
random variables. For several types of distributions of thegrowth rate, the time evolution
of the expected value ofy(t;ω) can be obtained in closed form. In order to develop a more
general methodology for the numerical solution of other evolution equations, we follow the
polynomial chaos approach [4, 20, 22] using the Wiener-Hermite chaos expansion. In this
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FIGURE 3.1. Population size of R. capsulatus versus time.

context, a random variableχ(ω) is projected on the space of polynomial chaoses

χ(ω) = χ0Γ0 +

∞
∑

i1=1

χi1Γ1(ξi1 (ω)) +

∞
∑

i1=1

i1
∑

i2=1

χi1i2Γ2(ξi1(ω), ξi2 (ω)) + . . . , (4.2)

where theΓi are successive polynomial chaoses of increasing degree in their arguments [21,
6, 4]. This expansion has been shown to converge for second-order random processes [1].
The polynomial chaoses can be arranged in a sequenceΦi(ξξξ(ω)), such that the expansion of
the random processes appearing in equation (4.1) takes the form:

y(t;ω) =
∞
∑

i=0

yi(t)Φi(ξξξ(ω)); r(ω) =
∞
∑

j=0

rjΦj(ξξξ(ω)), (4.3)

where theΦi are properly chosen polynomial basis functions of the random variable vectorξξξ.
The number of variables inξξξ represents the dimension of the chaos. We considerξξξ(ω) a vector
of standard Gaussian variables and take the basis functionsto be the Hermite polynomials,
leading to the Wiener chaos expansion. A Galerkin projection using the orthogonality of the
basis functions〈Φi,Φj〉 = δij〈Φi,Φi〉 together with truncation of the infinite series toP + 1
terms leads to a system of ordinary differential equations governing the time evolution of the
chaos coefficients of the solution

dym

dt
=

1

〈Φm,Φm〉

P
∑

i=0

P
∑

j=0

aijmrjyi(t),
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FIGURE 3.2. Population size of C. vibrioforme versus time.

whereaijm = 〈Φm,ΦjΦi〉. This system is then integrated in time using an appropriate
numerical method, and the chaos coefficients thus obtained can be subsequently used to com-
pute quantities of interest. For example, the mean ofy is the value of the first coefficient
y0(t), while the variance ofy is Var[y] =

∑P

i=1
y2

i (t)〈Φi,Φi〉. The inner product〈·, ·〉 in this
paper is always taken with respect to Gaussian measure.

Some exact solutions for the expected values of the dependent variable in the case of
this simple equation can be obtained. Sincey0(ω) andr(ω) are independent, from the exact
solution of the equation (3.1) one obtains:

ȳ(t) = ȳ0E[exp(rt)] = ȳ0

∫

exp(xt)fr(x) dx, (4.4)

whereȳ0 is the mean value ofy0(ω), fr(x) is the probability density function for the growth
rate, and the integration should be performed over the support of fr. If r(ω) is a Gaussian
random variable with mean̄r and varianceσ2

r , then the integral can be evaluated exactly to
give

ȳ(t) = ȳ0 exp

(

r̄t+
σ2

r t
2

2

)

.

Similarly, for an exponential distribution ofr, one obtains

ȳ(t) =
λȳ0
λ− t

,
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whereλ is the parameter of the exponential distribution, i.e.,r̄ = 1/λ. For a uniform distri-
bution ofr(ω) in (a, b), equation (4.4) leads to

ȳ(t) = ȳ0
exp(bt) − exp(at)

t(b− a)
.

These solutions have been used to confirm the numerical results obtained from the polynomial
chaos implementation.

4.2. Logistic growth. The logistic growth equation (3.2) is considered here, in which
the growth rater and the equilibrium (or saturation) levelK are random variables. Because
of the nonlinear term in the logistic equation, it is known that moment methods are difficult to
apply directly to (3.2) as they require closure for the higher-order moments. Moment methods
based on sensitivities can be easily used because an exact solution is known [20]; however, in
the case of differential equations where an exact solution is not available, these methods do
require computation of sensitivities, usually a more complicated task than solving the differ-
ential equations. On the other hand, the polynomial chaos expansion is rather straightforward
to apply. To develop the Galerkin projection of the solutionon the polynomial chaoses, and
taking into account the fact that the saturation levelK is necessarily positive, it is helpful to
introduceκ(ω) = 1/K(ω). Expanding this quantity in the polynomial chaos basis, similar to
equation (4.3), and introducing the corresponding expression in equation (3.2), one obtains:

P
∑

i=0

y′i(t)Φi =
P

∑

j=0

P
∑

i=0

rjyi(t)ΦjΦi

[

1 −
P

∑

k=0

P
∑

l=0

κkyl(t)ΦkΦl

]

. (4.5)

Again taking the inner product with the basis functionΦm, we obtain a system of ordinary
differential equations for the time dependent coefficientsin the solution,

dym

dt
=

1

〈Φm,Φm〉

P
∑

i,j=0

rjyi(t)aijm −
P

∑

i,j,k,l=0

yi(t)rjκkyl(t)bijklm, (4.6)

with aijm as defined above and the additional coupling coefficientbijklm = 〈Φm,ΦiΦlΦjΦk〉.
When the initial valuey0 and the reciprocal of the saturation levelκ are deterministic, the ex-
act solution for the first moment ofy(t;ω) is given by

ȳ(t) =

∫

y0fr(x)

κy0 + (1 − κy0) exp(−xt)dx. (4.7)

4.3. Random input representation. In most practical situations, a subset of the random
coefficients in the model must satisfy constraints inherentto the model itself. For example,
for the exponential growth model the initial populationy0(ω) has to be positive; no such
constraint is necessary forr(ω), although negative values ofr will lead to decrease of the
population size in time. For the logistic model bothy0(ω) andκ(ω) must be positive. Obvi-
ously, normal random variables are not good candidates for the positive quantities, since they
can take values all over the real axis. Thus, one needs to consider random variables whose
probability density functions have support on the positivereal axis. For this study we will
only focus on uniformly distributed random inputs, although gamma, beta, and lognormal
random inputs may be considered. To represent a non-Gaussian random input in a Hermite
chaos expansion, one can use the inverse transform method [14] to map both the random vari-
able which needs to be represented, sayr(ω) with cumulative distribution functionFr(x), and
the standard normal random variablesξξξ(ω) to the same probability space. Givenu uniformly



ETNA
Kent State University 

http://etna.math.kent.edu

RANDOM COEFFICIENT DIFFERENTIAL GROWTH MODELS 51

TABLE 5.1
Parameters for R. capsulatus.

r y0 K residual
Case I .1762 1.8385

Case II .2822 .4174E+06 .1206
Case III .6157 .1244E+06 5.5623E+06 .600

TABLE 5.2
Parameters for C. vibrioforme.

r y0 K residual
Case I .0774 2.2011

Case II .1293 .3755E+06 1.0543
Case III .3184 .0292E+06 7.4242E+06 3.3127

distributed in(0, 1), the random variableρ(u) = F−1

r (u) has the same distribution asr. The
transformation is useful whenFr can be easily inverted. The inner products ofr(ω) with the
basis functions can then be computed by mapping to(0, 1):

ri =
1

〈Φ2

i 〉
〈r,Φi〉 =

1

〈Φ2

i 〉

∫

1

0

F−1

r (u)Φi(F
−1

ξξξ
(u)) du. (4.8)

Another alternative, which we adopt here, is to map the uniformly distributed random vari-
ables in the interval[a, b] to standard normals, in which case equation (4.8) for the case of
one-dimensional chaos becomes

ri =
1

〈Φ2

i 〉

〈

a+ (b − a)
1 + erf(ξ/

√
2)

2
,Φi(ξ)

〉

. (4.9)

5. Numerical experiments.

5.1. Deterministic model fitting. In this section we present the results of the curve
fitting for the three cases and of numerical experiments withthe various models presented
above.

Case I refers to the results of fitting an exponential growth model to the measured data
of R. capsulatusup to nine days, considering that the growth rater is the only parameter to
be fitted. ForC. vibrioforme, the data fitted is up to 21 days. Since we are only fitting one
parameter, the fit is not as good as in the other two cases.

Case II refers to the results of the curve fitting when the model is still growing exponen-
tially, but we have two parameters, the growth rater and the initial populationy0. For R.
capsulatus, the data used is up to nine days, and forC. vibrioformeit is up to 21 days.

Case III refers to the fit of a logistic model using all of the measured values. ForR.
capsulatus, the time is up to 14 days, and forC. vibrioforme it is to 28 days. Now we
have three parameters to fit: the growth rater, the initial populationy0, and the saturation
constantK.

The results for the three models are presented forR. capsulatusin Table5.1 and forC.
vibrioformein Table5.2. In both tables, “residual” is the value of the norm of the residual as
defined above.

As expected the results of the curve fitting as measured with the “residual” are better for
R. capsulatus, since the data points forC. vibrioformedeviate more from an exponential or an
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FIGURE 5.1.The three growth models for R. capsulatus.

“s-shaped” curve. The values of the fitted parameters dependsignificantly on the model used.
In most population growth models, the value ofr reported comes from fitting an exponential
growth model. It is important to have multiple experiments to be able to take averages.

Figures5.1and5.2 are plots of the three least squares fit curves together with the mea-
sured values. The figures show that the fitted curves approximate very well the experimental
data, with the exception of Case I. This result is to be expected since we only have one pa-
rameter to fit to measurements that are very difficult to perform accurately. The curves forR.
capsulatusfit better than those forC. vibrioforme, as expected.

5.2. Polynomial chaos.Figure6.1presents two results obtained by modeling the time
evolution of the population ofR. capsulatususing exponential growth. The polynomial chaos
solution for the mean is shown together with two limit curvesfor the usual interval of con-
fidence[ȳ(t) − 2S(t), ȳ(t) + 2S(t)], whereS(t) =

√

Var[y(t)] is the standard deviation
in the solution. Both computations use the same mean value ofr obtained from Case II to
allow comparison. For the top figure, only the growth rate is considered a Gaussian ran-
dom variable. For the bottom figure, the initial value is alsotaken as a random variable,
uniformly distributed in(0.4074, 0.4274). Note the small values of the variances in the ran-
dom coefficients; obviously introducing only a small randomness in the model inputs allows
a more faithful representation of the time evolution of the population. For this reason, it is
the authors’ opinion that the use of random coefficient differential equation models should be
investigated more extensively in mathematical biology.

Figure6.2shows the evolution of the mean and the interval of confidencefor the logistic
model applied toR. capsulatus. The top figure only considers randomness in the growth
rate (Gaussian) and the initial condition (uniform in(0.0744, 0.1744)). The bottom figure
also takes into account randomness in the saturation levelK (uniform in (4.8, 6.32)). It is
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FIGURE 5.2.The three growth models for C. vibrioforme.

interesting to note the trend of the upper limit curve in the top figure. The increase continues
beyond the saturation level, peaks, and only then starts decreasing toward the mean value of
K. We have confirmed that with longer time integration, the upper and lower limits do join
the mean as one would expect.

Figures6.3and6.4replicate these results forC. vibrioforme. In the top part of Figure6.3,
the initial valuey0 is set to the fitted value from Case II, and the growth rate is considered
to have a normal distribution with the mean equal to the fittedvalue andVar[r] = 0.03.
In the bottom plot, the variance of the growth rate isVar[r] = 0.01, but the initial value
is uniformly distributed in(0.3655, 0.3855). The logistic models with random coefficients
shown in Figure6.4 are similar to the results forR. capsulatus, except that the peak in the
upper confidence limit does not appear. Although not shown here, we confirmed through
longer time integration that the upper and lower confidence limit curves eventually join the
mean value, as should be expected.

6. Conclusions. Modeling population growth is many times a difficult task dueto the
scarcity and scattering of the data, and to errors and uncertainty in it. Incorporating random-
ness in the population model is a natural alternative. In this paper, we have explored two
classical population growth models which have been modifiedto take into account the ran-
domness in the coefficients. While for very simple cases the exact solution for some of the
moments may be computed analytically, the numerical alternative based on polynomial chaos
that has been used here can be easily extended to take into account more difficult situations.
Here we have used several different hypotheses on the distribution functions of the random
coefficients. We have used actual data for two bacterial species growing under IR lighting
conditions, and have calculated numerical solutions. The extension we envision is a random
coefficient partial differential equations model for biofilm growth.
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FIGURE 6.1. Modeling of R. capsulatus with exponential growth. Top figure: r̄ = 0.2822, Var[r] = 0.03,
ȳ0 = 0.4174, Var[y0] = 0. Bottom figure: r̄ = 0.2822, Var[r] = 0.01, y0 uniformly distributed in
(0.4074, 0.4274).



ETNA
Kent State University 

http://etna.math.kent.edu

RANDOM COEFFICIENT DIFFERENTIAL GROWTH MODELS 55

 0

 1

 2

 3

 4

 5

 6

 7

 0  2  4  6  8  10  12  14

Logistic Data Fit
Mean

Mean - 2*S
Mean + 2*S

IR Data

 0

 1

 2

 3

 4

 5

 6

 7

 0  2  4  6  8  10  12  14

Logistic Data Fit
Mean

Mean - 2*S
Mean + 2*S

IR Data

FIGURE 6.2. Modeling of R. capsulatus with logistic growth. Top figure:r̄ = 0.6157, Var[r] = 0.04, y0

uniformly distributed in(0.0744, 0.1744), K̄ = 5.56, Var[K] = 0. Bottom figure:r, y0 same as for top figure,K
uniformly distributed in(4.8, 6.32).
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FIGURE 6.3. Modeling of C. vibrioforme with exponential growth. Top figure: r̄ = 0.1293, Var[r] =
0.03, ȳ0 = 0.3755, Var[y0] = 0. Bottom figure: r̄ = 0.1293, Var[r] = 0.01, y0 uniformly distributed in
(0.3655, 0.3855).
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FIGURE 6.4. Modeling of C. vibrioforme with logistic growth. Top figure:r̄ = 0.3184, Var[r] = 0.02, y0

uniformly distributed in(0.02, 0.04), Var[K] = 0. Bottom figure:r̄ = 0.3184, Var[r] = 0.01, y0 uniformly
distributed in(0.029, 0.031), K uniformly distributed in(5.06, 6.06).
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