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DIAMETER BOUNDS FOR EQUAL AREA PARTITIONS OF THE UNIT SPHERE *

PAUL LEOPARDIf

Abstract. The recursive zonal equal area (EQ) sphere partitioningrithgn is a practical algorithm for par-
titioning higher dimensional spheres into regions of eqarel and small diameter. Another such construction is
due to Feige and Schechtman. This paper gives a proof foraheds on the diameter of regions for each of these
partitions.
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1. Introduction. Stolarsky [L2, p. 581] asserts the existence for any natural nunber
of a partition of the unit spher®’ ¢ R?*! into N regions of equal area and small diameter.
The recursive zonal equal area (EQ) sphere partitioningrélgn [8, Section 3] is a practical
means to achieve such a partition. Feige and SchechtBaivge a construction which can
easily be modified to give another such partition.

In this paper we prove that the both EQ partition and the medliffeige-Schechtman
partition satisfy Stolarsky’s assertion. This paper is¢bepanion to§] and is meant to be
read in conjunction with that paper. Any definitions and tiotanot found here are to be
found in [8]. The proofs given here are based on those in the Ph.D. th@siad much of the
technical detail which has been omitted here can be fourrd the

This paper is organized as follows. Sectrepeats enough of the definitions and theo-
rems of B] to orient the reader. Sectidghcontains the continuous model of the EQ partition
which is used in the proof of the properties of this partitiddection4 proves that the EQ
partition satisfies Stolarsky’s assertion. Secttooontains estimates which will be used in
the remainder of the paper. Secti6provides a proof that the modified Feige-Schechtman
construction satisfies Stolarsky’s assertion. An appepdavides proofs for some of the
lemmas. Further proofs and more details can be found]in [

2. Preliminaries. For convenience, this section repeats some of the defisitod re-
states some of the theorems givengh [
For any two pointa, b € S¢, the Euclidean and spherical distances are related by

”av bH =7 (S(aa b))v

where
(2.1) Y(0) := \/2—2c059:2sing.
Ford > 0, the area o§? c R4*+! is given by p, p. 1]
2t
O'(Sd) = .
L(5)
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2 P. LEOPARDI

For all that follows, we will use the following abbreviatisnFord > 1, we define
w:=0(S"1) and Q:=o(S9).

The area of a spherical c&{{a, 6) of spherical radiug and centea is [6, Lemma 4.1 p. 255]

0
(2.2) V() =0 (S(a,0)) = w/o (sin&)?~1de.

The function® is the inverse oV .
This paper considers the Euclidean diameter of regionmeléfis follows.
DEFINITION 2.1. Thediameterof a regionR € S¢ ¢ R4*! is

diam R := sup{||x — y|| | x,y € R}.

The following definitions are specific to the main theorenasest here.
DEFINITION 2.2. A setZ of partitions ofS? is said to bediameter-boundewith diam-
eter boundX € R, ifforall P € Z, for eachR € P,

diam R < K |P| "4 .
DEFINITION 2.3. The set of recursive zonal equal area partition$éis defined as
EQ(d) := {EQ(d, N) | N € N }.

whereEQ(d, N) denotes the recursive zonal equal area partition of the splitereS? into
N regions, which is defined via the algorithm given & $ection 3].

The partitionEQ(d, N) has the following properties.

THEOREM2.4.Ford > 1andN > 1, the partitionEQ(d, N) is an equal area partition
of S,

The proof of Theoren2.4is straightforward, following immediately from the constr
tion of the EQ partition§, Section 3].

THEOREM2.5.For d > 1, EQ(d) is diameter-bounded in the sense of Definittoh

Theorem?2.5is a special case of Stolarsky’s assertion:

THEOREM 2.6. [12, p. 581]For eachd > 0, there is a constant; such that for all
N > 0, there is a partition of the unit sphe®¢ into IV regions, with each region having area
Q/N and diameter at mostN 4.

We will also often refer to the following quantities, definedsteps 1 to 3 of the EQ
partition algorithm forEQ(d, N) [8, Section 3.2].

Q 1 — 20,
(2.3) Vii=—, 0.:=0(Vg), 0=V, nj== .
N o1

3. A continuous model of the partition algorithm. Step 4 of the EQ patrtition algo-
rithm [8, 3.2] is the first rounding step, which produeefom n;. We define

so that

(31) (SF:pé].
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For N > 2,if n; > 5 then Step 4 yields

1 1
nec n1—§,n1—|—§ s

1
2

and thereforeq], Lemma 3.5.1, p. 87]

1 1
1— 1 .
pe[ 2n; + 1’ +2n1—1)

We see that bounds ferare given by lower bounds far;. The crudest such bound is given
by n; > 3 which merely implies thap > 1/2.

We can re-express the bound > % in terms of a lower bound oV by means of the
functionv, where

(3.2) v(z) = (%)7 (ﬁ ~20 (%)) .

The functionv defined by 8.2) satisfies/(2) = 0, v(N) = ny, andv(z) is monotonically
increasing inc for x > 2 [7, Lemma 3.5.2, p. 87]. As a consequence, it is possible toelefin
the inverse functioV, where

(3.3) No(y) :==v " (y)

for y > 0. We then have\y (v(z)) = = andv (N (y)) =y forz > 2 andy > 0, and by the
inverse function theorer, (y) is monotonic increasing in for y > 0.
For N > z such thatr > A;(1/2), we then have

(3.4) ny > v(x) > %
and
(3.5) p € lpr(@), pu ()],
where
1 1
(3.6) pr(z) =1- (@) +1 and pp(z) =1+ (@) =1

We can make., () andpy (x) arbitrarily close to 1 by making large enough. More pre-
cisely,

(3.7) pr(x) /1, andpy(z) \, 1 asz — oc.

Step 6 of the EQ partition algorithm is the second roundimg stvhich produces;
from y,. By examining steps 5 to 7 of the EQ partition algorithm, istgaightforward to
verify thatford > 1, N > 1 andi € {1, ...,n} the following relationships hold7, Lemmas
3.5.3,3.5.4, pp. 88-89]:

1 1 n n
a; € {—5,5], a, =0, ;yi:;mi:N—Z

V(0:41) — V(9,)

€ No,
Vr 0

My = Yi + Q-1 — a; =

V(ﬁz) = V(ﬁF,i) + a;—1VR.
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To make it easier to find bounds for functions which vary frazne to zone, such asandm,
we define and use continuous analogs of these functions wHyisinstead of having to find
a bound for a function value over + 2 points, wheren varies with N, we need only find
a bound for a function over a fixed number of points and comtirsuintervals. We therefore
define the functions

V(& +6r) — V()

(3.8) YW := Vi , M(7,8,9) = V() + 1+ 5,
T(r,9) =0 (V) — 7Vr), B(B,0) := V(9 + 6r) + BVr),
A V) = B(B,9) — T (1,0 P = i
(Taﬁa ) (57 ) (T7 )7 W(T7ﬁ7 ) fe[T(%?%(ﬁﬁ)] Slnga
P(r, 8,0) = W(r, 8,9) M(r, B,0) T4,
so thatfori € {1,...,n}, we have
Y(Ori) = i, M(=ai-1,a:,9F;) = my,
T(—ai—1,9F;) = Vi, B(ai,Vp,;i) = Dit1,
A(=a;—1,ai,9F;) = 0;, W(—ai—1,a;,9F,;) = w;,
P(—ai-1,ai,VF;) = pi.

These functions have symmetries which follow from the syrmi@e of the trigonometric
functions. The functiof) satisfies

V(r =) =Y —dp).
The functionsZ” and2 satisfy the identities

T(r,m=19)=mn—B(r,9 —dp) and
BB,m—9)=n—-T(8,9 —0p).

For eachf € {M, A, W, P}, the functionf satisfies
f(T,ﬁ,ﬂ'_ﬁ) = f(ﬁ77—70 _6F)

For our feasible domain we therefore use thelzedefined as follows.
DEFINITION 3.1. Thefeasible domaif is defined as

D := D, UD,, UD;,

where

)

],ﬁzm},

N =
N =

(3.9 D :={(r,5,9) | 7=0,8¢€ [—

m

11 11
Dm = {(T75719) | TE |:_§7§:| 76 |:_§7§:| 70 € [19F727F_0C_2§F]}7
11

D= {(r8.0) | 7€ |-5.5] =00 =7~ 0.~ e}

We can now use the feasible dom&irand the analogue functiodsand? to bound the
maximum diameter of regions of the EQ partition.
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LEmMmMA 3.2. [7, Lemma 3.5.11]Assume that > 1 and thatEQ(d — 1) has diameter
boundk. Then forN > 2, if we define

maxdiam(d, N) := . g&ﬁ ) diam R,
S )

then

maxdiam(d, N) < \/(mlz;x A)2 + RQ(m]Iz;XP)Q.

We need only consider the northern hemisphere to obtainiélvatind for the diameter of a
region of the recursive zonal equal area partitio§&fFirst define the following subdomains
of the feasible domaim,
o
2 )

Ja
7
The following result then holds.

LEmMMA 3.3. [7, Lemma 3.5.12]For f € {M,A, W, P} and(r,3,9) € D_, we can
find (7', 5',9%) € D such thatf (v, 5',¢') = f(r,8,9). In particular, if (1, 5,9) € Dy,
then(r’, #',¢') € D, and if (1, 8,9) € D,,—, then(7', 5',9") € Dy,

COROLLARY 3.4.For f € {M, AW, P},

Dy = {(T,ﬁ,ﬁ)eﬂ) ‘ﬁg

NI RN

D_ = {(T,ﬁ,ﬁ)eﬂ) ‘19>

max [ = max f.
D ! Dy !

An analysis of the diameter of the polar caps is not needethé&proof of Theoren2.5.
It is included for completeness, and for comparison to thigé-€Schechtman bound to be
examined below. This is a consequence of the isodiametuiality forS®.
THEOREM 3.5. (Isodiametric inequality fa®?) Any regionR c S? of spherical diame-
ter § < = has area bounded by
o(R) <V <g) .

Equality holds only for spherical caps of spherical radgls

This result is well known; se€] for a proof of a generalized version of this inequality,
based on the proof ofl].

We have the following upper bound for the diameter of a podar of EQ(d, N).

LEMMA 3.6. Ford > 1 and N > 2, the diameter of each polar cap 8fQ(d, N) is
bounded above bi. N~ i, where

%
K. ::2(@) .
w

The following two bounds are used in the proof of Theorzm
LEMMA 3.7.For d > 1, there is a positive constait¥, € N and a monotonic decreas-
ing positive real functiod< o such that for each partitiofLQ(d, N') with
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N > x > Np,

al-

m]guxA < Ka(z)N™4.

LEMMA 3.8.For d > 1, there is a positive constafr € N and a monotonic decreas-
ing positive real functior'p such that for each partitioLQ(d, V) with
N >x > Np,

-

m}gx’P < Cp(x)N~1d.

4. Proofs of main theorems.

Proof of Theoren2.5. The theoremis true fat = 1, with EQ(1) having diameter bound
K, = 2, since the recursive zonal equal area partition algoritantifions the circleS! into
N equal segments, each of arc lengtty N, and therefore each segment has diameter less
than2z/N.

Now assume that > 1 and N > 2. We know from Lemm&3.2 that

maxdiam(d, N) < \/(mﬂz)}x A)2 + K2 (mﬁmx 73)2.

From Lemma3.7, we know that there is a positive consta&fit € N and a monotonic decreas-
ing positive real function Ko such that for each partitionEQ(d, N) with
N > x > Np,

m]guxA < KA(:C)Nfﬁ.

From Lemma3.8, we know that there is a positive constavi € N and a monotonic de-
creasing positive real functiafip such that for each partitioBQ(d, N) with N > = > Np,

mH%XP < Cp(z)N~14.
Define
NH = max(NA,Np).

Assuming thatEQ(d — 1) is diameter bounded, with diameter boumd then for
N > Np, we havemaxdiam(d, N) < Ky N—17,where

Ky = \/KA(NH)Q + IQQCP(NH)2.

Ford > 1 andN < Ny, we note that the diameter 8f is 2, and so the diameter of any
region is bounded by 2. Therefore fof < Ny, maxdiam(d, N) < K N—4,where

1

KL = 2NI?I
Finally, we see by induction that fat> 1, maxdiam(d, N) < K4N 4, where

Kd = Inax(KL, KH) a
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5. Estimates for caps.Later we will need to comparén 6 with sin(6 + ¢), for various
0 and¢. The following estimate is useful for this task. For@ll € R, we have

sin(f + ¢) — sinf = 2 sing cos <9+ g) .

Therefore forp € (0, 7], 0 € (0,7/2 — ¢/2], we havesin(d + ¢) > sinf > 0.
In the estimate below, we assume that (0,¢], £ € (0,7/2], and use the well-known
sine ratio function

We have the well-known estimate
(5.1) sinf € [sinc&, 1] 6.

In the estimates below we assume that (0,¢], £ € (0,7/2]. From @.2) we have
DV() = wsin®! 6. Using the estimate5(1) therefore gives us

DV(0) € [(sinc &)1 1] whdt.

Thus,

(5.2) V(9) € [(sinc )41, 1] ged.

If we then substitut®(v) for 0, we obtain forv € [0, V(£)] that
(5.3) O(v) € [1, (sincé) "] (g) Lot

The estimatesH(2) and 6.3) are crude. There are instances where we need a sharper
upper bound than that given by.9). The estimate below is more accurate for ladgf®r 0
away fromm/2.

LEMMA 5.1. [7, Lemma 2.3.18For d > 2 andf € [0, 7/2) we have

. d
w sin® #
5.4 0) < =——,
(6-4) V(6) d cosf
with equality only whe# = 0.
If we combine 6.2) with (5.4), we obtain the following result.
COROLLARY 5.2.Ford > 2 andd € [0,7/2) we have

1 1 W .4
(55) V(e) S [m, @} E sin® 0.
Recall from @.3) thatd,. = © (££) and define
(5.6) Jo(x) :=sinc O (Q> .
X

As aresult of 6.3), for N > = > 2, we have

(5.7) 9, € (1, Ju(z) 7] (ﬂf 51
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Using Lemmab.1, we obtain the following upper bound fgsin ¥...
LEMMA 5.3. [7, Lemma 3.5.14For x > 2,

. i
(5.8) x4 sin © (g> < (ﬁ) .
x w

Therefore, forN > 2,
d\ @
(5.9 sind, < (—) or.
w
Combining 6.6), (5.7), and 6.9), we have the estimate

(5.10) sind. € [Jo(x),1] (g)ﬁ o7

forN > x> 2.

6. The modified Feige and Schechtman constructionFeige and Schechtmaj[give
a constructive proof of the following lemma, which can bedugeprove Stolarsky’s assertion.
LEMMA 6.1. [5, Lemma 21, pp. 430-43Fpr each0 < v < 7/2 the spherés?—! can

be partitioned intaV = (O(l)/y)d regions of equal area, each of diameter at mpst

Lemmas6.1corresponds to a diameter bound of ordmi\fd_il) rather tharO(N @), but
the construction given in the prods,[pp. 430—431] is easily modified to yield the following
upper bound on the smallest maximum diameter of an equajpantition of S?.

LEMMA 6.2. Ford > 1, N > 2, there is a partition'S(d, N) of the unit spher&?
into N regions, with each regioft € F'S(d, N) having areaf)/N and Euclidean diameter
bounded above by

diam R < Y (min(r, 89,)),

with T defined byZ.1) andd. defined byZ.3).

We now use the modified Feige—Schechtman construction t@8tolarsky’s assertion,
Theorem2.6.

Proof of Theoren?.6. Ford = 1, we patrtition the circle into equal segments and the
proof is as per the proof of Theoreth5. Ford > 1 and N = 1, there is one region of
diameter2 = 2N~a. Ford > 1 andN = 2, there are two regions, each of diameter

d+1

2 = 257 N—4. Otherwise, we use Lemnfa2and the estimate$(7) and 6.9). Define

Nps =

6]

Q 0
= — < —
Je 6(]\7)\8’

with equality only whenV = Ngg. Therefore, forN > Nrg, Lemmass.3and6.2give us

ThenforN > Npg,

max diam R < 2 sin4d,. < 8 sind, < KFSNfé,
REFS(d,N)
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where
1
Qd\“
Krpg =8 <—> .
w
For2 < N < Nrg, we have
1
maxdiam FS(d, N) <2=2NIN~@ <2 NEIGN 4,
1
Let Krsr, :=2 Nfg. Using 6.5, we have

8) 7 smczd "™ §>Esm 8"

V(F)> 1 w 7 w 4T
8

We also havein % > 1, so that

v(5)> wa

Therefore

In other words,

Qd
K&y, =24 Npg < 87 — = K.

We therefore hav& rs;, < Kpg. Ford > 2 we have J, Lemma 2.3.20]

(6.1) % > \/%

For the caseV = 2, from (6.1) we obtain

Qd
20t < 89 Vord < 8 — = Kig.
w

Therefore Theorerd.6is satisfied by, = Kpg. O

REMARK 6.3. The Feige—Schechtman constants thus provides an upper bound for
the minimum constant for the diameter bound of an equal aaetitipn of S¢. Theorems.4
and2.5yield an alternate proof of Theoret6, with ¢; = K.

Appendix A. Proofs of Lemmas. The definitions of the functiona and? and the
definition of the feasible domaib depend on the fitting collar angfe-. Thus the proofs of
Lemmas3.7 and3.8 need an estimate fax. Recall from @.1) thatér = pd;. Therefore,
from (3.5), for N > x > Ny(1/2), whereN is defined by 8.3), we have

(A1) or € [pr(z), pu(2)]0r.

We also need estimates oy ;, as defined by Step 5 of the EQ partition algorittn$ec-
tion 3.2], and fowsin ¥ ; andV (V5 ;). Here and below, we generalize the definitionjef;,
by defining

19F,L =19, + (L — 1)6]:‘,
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for. € [1,n+1]. ForN > 2 > Ny(1/2), where\; is defined by 8.3), the estimatess(7)
and A.1) now yield

(A2) O e [(g)ia—lmm, (g)%@)%u—nmf@) 5.

The estimates fatin 95, andV (9, ) below assume tha¥ > = > ANy(1/2), whereNy
is defined by 8.3), and the lower bounds for these estimates also assume that

(A3) 0(3) + (- oute) (9) <I

If we define
() = sine <® (%) + (= 1)pu(a) (%) ;> ,

then from 6.1) and (A.2) we have the estimate
. d\* d\* i
sindr, € [JF,L(x) ((;) + (= 1)PL(~T)> ; (;) Je(z) T + (0 — 1)PH(~T)] o1
and from 6.2) we have the estimate
V(’l?pyb) S [SL_,L(I), SH,L(x)]VRv

where

If we define

= (e 00 ()"

then, since/p,(z) 1, J.(z) /' 1, pr(x) /' 1andpu(z) \, 1, asz — oo we see that
sp.(x) /s, andsy  (x) N\, s, asz — oo.

By makingz large enough andsmall enough, we can ensure that3) holds.
LEMMA A.1. [7, Lemma 3.5.16lf = > Ny(5), where\ is defined byg.3), then @.3

holds for
13
1,—1.
L e [ ) 4}
For the remainder of this paper we use the abbreviation
1
1=

Srd
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The proofs of Lemmas3.7 and 3.8 require the following results, which are proved
in [7, Chapter 3].
LEMMA A.2. [7, Lemma 3.5.17There is anz > N;(5), such that

1\ d
(a9) I (L) (2)') >3

LEMMA A.3. [7, Lemma 3.5.19f = > Ny (5), andz satisfies A.4), then forV > = we
have

3
(A.5) V(i +nor) > SV

As aresult of A.5), we have

From 2.2 and the symmetries of the sine function, foe (0, 7/2 — ndr /2], we have

% VW +ndp) = V() = DV +nor) — DV(V)

(A.6) =w (sind71(19 +ndp) —sin?! 9) >0,

with equality only when) = 5 — n%F. This results in the following corollary.
COROLLARY A.4. [7, Corollary 3.5.20]f z > Ny (5), andz satisfies Q.4), then for
N >z andd € [J., 7 — J. — ndr] we have
Vr

(A7) V(I +ndr) = V() > .

If 2 > No(5), andN > z thenn > 5, s0¥p < 5. Since8rd > 167 > 49, we
therefore have
4]
(A.8) nop < 7F
Proof of Lemma3.6. Assume thatl > 1 and N > 1. From @.3) we know that the
diameter of each of the polar caps of the partifttf)(d, V) is 2 sin .. From 6.9 we have
the estimate

1
da
2sindd, < 2 <%> N~—i,
w

forN >z >2.10

Proof of Lemma3.7. Throughout this proof, we assume thét> = wherex > Nj(5),
with Ny defined by 8.3), so thatn > 5. Using Corollary3.4, we also assume that
(1,3,9) € D,. For the top collar(r, 3,9) € Dy, (3.9 givesT =0, 3 € [-1,1],9 = J..
From 2.2) we have

V(B(B,9.)) = V(¥ + 6r) + Vi < V(W + 0p) + %.
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Sincen > 5, we haved. + op € [¥., ™ — 9. — ndr|, and we can use\(7) to obtain
V
V(B(8,0c)) < V(De +dp) + -7 < V(0 + (1+0)dp),
and therefore

8(67 190) < 190 + (1 + 77)5F
Therefore 8.8) yields
A(T, 8,9) = A0, 5,9.) = B(B,9.) — T(0,9.) = B(5,9:) — 9. < (1 +1n)dp.

For (r,5,9) € Dyy (3.10 givesT € [—3,3], 8 € [-1,4],9 € [9p2, Z — 2£]. Since
n > 5, we haved + 6r € [V, m — J. — ndr], since

o+ S6p < Do+ 200 < T
2 2
yielding
T 6F
19+6F<§+7<7T—’l9c—5p.

From 2.2), (3.9), and A.7), we now have

V(B(B,9)) = V(0 +0r) + BVr < V(I +F) + % <V + (1+n)p).
We therefore have
(A.9) B(3,9) <+ (1+n)ip.

Sincedy — nop > 9., using @.2), (3.8), and QA.7), we also have
V(T (r,9) = V() + Vi > V)~ 22 > V(0 — i),
so that
(A.10) Y —ndp < T(7,9).
Combining @A.9) and (A.10) and using 8.8), we therefore have
A(r,8,9) = B(8,9) — T(1,9) < (14 2n)dp.
The estimateA.1) now yields

A(r, B,0) < Ka(z)N™1,

where

al=

Ka(z) := (1+2n) pu(z) Q7,
with pg («) defined by 8.6). We also have

Ka(z) \, Ka(oo) := (14 2n) Q7 asz — oo,
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sincepy (z) \, 1 asz — oo, by(3.7). O

Proof of Lemma8.8 Throughout this proof, we assume thét> = wherez > N;(5),
with Ay defined by 8.3), so thatn > 5. Using Corollary3.4, we also assume that
(1, 8,9) € D;. We will show that

with C; monotonic non-increasing areh, monotonic non-decreasing. We first examing
Using A.9) for ¢ < 7/2 — (1 + n)dr, we have

W(r, 3,9) < sin(d+ (1 +n)or) <sind + (1+n)or.
Ford e [n/2(1 4+ n)or,m/2 — dr /2], we have

™

2
1 > —
sind 4+ (14 n)dp > - (2

1+ 77)5F) + (1 +n)dp = 1.

Hence W(r, 8,9) < sind + (1 +n)dp. Sinced € [J., 7 — J.] we havesin ¥ > sin¥. and
therefore

0
W(Taﬁa'ﬂ) < (1 + (1 + 77)81DF19 ) sin 9.

From (A.1) we havedp < pH(x)QiN%l. From 6.10 we have

1
Qd\* -
sind. > J.(z) (—) N7,

w

so thatW(r, 3,9) < C1(z) sind, with

pu(z) fw\ia

=1 1 —
Ci(e) =1+ (1+0) T ()
with ’f,’j((j)) N\, lasz — oo, since.(x) / 1 andpy(z) \, 1 asz — co. ThusC}(z) is
monotonic nonincreasing as— oo. Now for M. From (3.8) we have

V(I +dr) —V(9)
Vr

M(r, 8,9) = 1

But

V(9 +6r) — V(D)
VR

= w/ sin?™t ¢ d¢ > wopsin? o
9
ford € [0,7/2 — dp/2]. Therefore,

M(1, 3,9) > wsin®™? 195—F -1
Vr

1

T d—1
sin® 'Y, N

d—1

> <prle - ) sin?~ YN T
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sincedy > 9J.. Using B.5 and 6.10 we therefore have
M(r, 8,9) > Colz)sin™ 9N T,

where

d—1
L 1-d 1—d w d
Cy(z) == pwQ @ — J.(x) (m) .
If Jc(a:)dflpL(a:)wédd%l > 1 then we have’;(z) > 0. This is true forz sufficiently large
sincewd?=! > 1 and since botl.(z) , 1 andpz(x) / 1 asz — co. We also see that,
is monotonically nondecreasirg.
Proof of Lemmé6.2 This proof uses a modified version of the construction given t

proof of [5, Lemma 21] in b, p. 430-431].

1. Givend > 1, N > 2, use .3 to determine).. Thenwe hav®(J.) = Vr = /N,
with V being the area we need for each region of the partition.

2. A saturated packin@f packing radiug is a packing of spherical caps of packing
radiusp such that another cap cannot be added without moving thérexisaps.
Create a saturated packing ®f by caps of spherical radiug., constructed via a
greedy algorithm so that each cap kisses at least one otheketn be the number
of caps in the packing. We see that no poin§éfis more thar2d.. from the centre
of a cap, otherwise we could have added another cap. Therifer centre points
of the packing are also the centres of a coverin§lby spherical caps of spherical
radius2d, [13, p. 1091] [L4, Lemma 1, p. 2112].

3. Now partitionS? into Voronoi cellsV;, i € {1,...,m} based on these: centre
points. The Voronoi cell/; corresponding to centre pointonsists of those points
of S? which are at least as close to the centre poias they are to of any of the
other centre points. We see that the Voronoi cells must @ottia packing caps and
be contained in the covering caps. Thus elchas area at leasty and spherical
diameter at moshin(r, 29..).

4. Now create a graph with a node for each centre point and an edge for each pair of
kissing packing caps.

5. Take any spanning treg of I" (also known as anaximal tree[10, Section 6.2
pp. 101-103]). The tred has leaves, which are nodes having only one edge, and
either a single centre node, or a bicentre, which is a paipdgs joined by an edge.
The centre or bicentre nodes are the nodes for which theesdiqrath to any leaf has
the maximum number of edge3][4, Volume 9, p. 430] 11, Chapter 6, Section 9,
p. 135]. If there is a single centre, mark it as the root nod¢hdre is a bicentre,
arbitrarily mark one of the two nodes as the root node. Nowter¢he directed tree
T from S by directing the edges from the leaves towards the rddt Chapter 6,
Section 7, p. 129].

6. For each leaj, of T definen; := |o(V;)/Vr], (with || denoting the least integer
function ofz).

7. PartitionV; into the super-regioi/; with o(U;) = n;Vgr and the remainder
Wj = V; \ Uj.

8. For each nonleaf nodeother than the root, defing;,, = V. U U(j,k)eT W;, thatis,
we add all the remainders of the daughters &b V. to obtainXy.

9. Now definen;, := |o(X})/Vr] and partitionX;, into the super-regiod/;, with
o(Uy) = ni Vg and the remainddVy, := X, \ Uy.

10. Continue until only the root node is left.
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11. For the root nodg, if we definelU, := V, U U(k,fz)e:r Wy, we see that we must have
o(Uy) = neVg, where

ny ::N—Zni.

i)

thatis, the area of the super-region corresponding to thiemade must be an integer
multiple of V. Since at each step we have assemblgadnly from the Voronoi cells
corresponding to kissing packing caps, eéghs contained in a spherical cap with
centre the same as the centre of the corresponding packingued spherical radius
min(m, 49.), and so the spherical diameter of ed&his at mostmin (7, 89.).

12. Now partition eaclt/; into n; regions of are&/’r, and letF'S(d, N) be the resulting
partition ofS?. ThenF'S(d, N) is a partition ofS? into IV regions, with each region
R € FS(d, N) having ared)/N and Euclidean diameter bounded above by

diam R < T (min(r, 89,)) = 2sin (min (3,40, )) . O

REMARK A.5. Feige and Schechtman’s proof uses a maximal packirtgadsof a
saturated packing, but maximality is harder to achieve d&edproof of Lemmas.2 only
needs a saturated packing.
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