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MONOTONE CONVERGENCE OF THE LANCZOS APPROXIMATIONS TO
MATRIX FUNCTIONS OF HERMITIAN MATRICES *

ANDREAS FROMMER

Abstract. When A is a Hermitian matrix, the actiorf(A)b of a matrix functionf(A) on a vectorb can
efficiently be approximated via the Lanczos method. In tlhiterwe usel/ -matrix theory to establish that the
norm of the error of the sequence of approximations is maricatly decreasing iff is a Stieltjes transform and
is positive definite. We discuss the relation of our apprdacrecent, more general monotonicity result of Druskin
for Laplace transforms. We also extend the class of funstioncertain product type functions. This yields, for
example, monotonicity when approximating sigh)d with A indefinite if the Lanczos method is performed f4#
rather thanA.
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1. Introduction. Throughout the whole paper let € C"*™ be a Hermitian matrix.
Then there exists an othornormal set of eigenvectotd wihich spansC™. We can express
this via the spectral decomposition

(1.1) A=QAQH, A =diag[\i,..., \n],

thei-th column of( being an eigenvector of for the eigenvalue,; andQ” Q = I.
Letspe€A) = {\1,..., A\, } denote the set of all eigenvalues4f Any function

f:z€espe¢A) — f(z)eC
can be extended to a matrix functignA) as

F(4) = Qf(M)Q™ wheref(A) = diag[f(\),..., f(An)]-

Other, equivalent, definitions are possible. For exampiid, the help of the polynomial of
degree at most — 1 which interpolateg on spe¢A) we have

f(A) =p(4),

and for f analytic there is a representation as a contour integratHerresolvent; see,
e.g., fL3. We will be particularly interested in cases whefds defined forz > 0 and
can be represented as an (improper Riemann-Stieltjegjraitef the form

e 1
1.2 = ———du(t
(12) 16)= | )
with & a natural number and(¢) : R — R a non-decreasing bounded function for which
[i=, 1/tkdp(t) is finite. Using (.1) we see that we then can represgat) as

£4) = [+ 4yt

=0
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the integral to be understood componentwise.

This paper deals with the situation where one wants to coenput f(A)b for some
vectorb € C". If Ais large and sparse, compultiffgA) is prohibitive, since it usually is a
dense matrix. The action gf(A) onb may, however, still be computable at reasonable cost,
and the Lanczos method has established itself as the sthwdgrto do so.

Let us recall that given an initial vectére C™, which for notational consistency is now
called!, o' # 0, the Lanczos process computes an orthonormal basig, . . ., v™ of the
Krylov subspace;,, (A, o) = span{s!, Ao',..., A"~ 15!} up to a maximum stage,.
(which is the degree of the minimal polynomial @f with respect tad) via the iteration (we
putv® = 0), as follows.

form=1,..., mmnax
B = [|7™]
v = 5" /B
7I}'m-i—l — Avm _ ﬁmvm—l
Oy = <u~)m+1’ vm>
5m+1 — ﬁ)m+1 o Oéml)m
The process is stopped for = muy.x Since this is the first index for whicti™ ! = 0.
The Lanczos process is usually summarized as
(13) AV = Vi Ty, + ﬁm-l-lvarleT

ms

whereV,, = [v!]...[v™] € C"*™, ¢,, is them-th Cartesian unit vector i€ andT,, is
the symmetric tridiagonal matrix

ar B
B2 B3
Ty = € R™*™,

ﬁm— 1 Qm—1 ﬁm
Bm  am

Based on the Lanczos method, the following approach forioibg approximations
u™ € Kn(A,b)tou = f(A)b has meanwhile established itself as standard:

(1.4) W = Voo f(Ton) Vb = B1Vin f (T )er.

This amounts to orthogonally project the matrdxonto the subspack,, (A, b) and to ap-
proximatef (A)b by the matrix function evaluated on the subspace.7]ntp which we also
refer for a detailed historic account includinty] 20, 24], this method is called thspectral

Lanczos decomposition methdebr brevity, let us call just the (n-th) Lanczos approx-
imation to f(A)b. Note that form = mu.x we haveAV,, = V,,,T,,. Sincef(T,,) can be

represented as a polynomialTiy, we have that

f(A)b = 61meaxf(Tmmax)€1-

Note also thatX.4) still requires to comput¢ (7., ). ButT,, will be of much smaller size
than A and, in addition, it is tridiagonal. So various appropriegehniques may be applied
to computef (75, ), including those using the spectral decompositioTgf see, e.g.,17
or[13.

Our purpose is to investigate the error
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of the Lanczos approximations™ and we will identify situations wherge™ || decreases
monotonically. Our basic result holds for the case whérie positive definite ang’ can be
represented in the forni(2). In this sense, we extend a well-known result for the Coajag
Gradient (CG) method for solvingx = b; see, e.g.,41]. CG is mathematically equivalent
to the Lanczos method described above with) = »~! which can be expressed in the form
(1.2 using the step functioa:

<1 . 0 fort=0,
f(z):/t +tdw(t) with w(t):{ 1 fort>o0

=0 <

In the CG method the residual® = b — Au™ are collinear to the Lanczos vectors, see
[21]):

(1.5) = (=) o™

The presentation of the results in this paper will be gresitiyplified if we flip the direc-
tion of every other Lanczos vectof” just in the way suggested b¥.6). So let

VE = =¥ (=)™ ™.

The basic relation](.3) can then equivalently be expressed as

(1.6) AVE =VETE L (1) g,, el
with
o =B
B2 an —B33
Ti _ . .

_ﬁmfl Qm —1 _ﬁm
_5771 (7%

Of course, T = S~!T,,S with the signature matri§ = diag[l, —1,...,(—=1)""1] €
R™*™_Since for any matrix function and any non-singular mafixone has (see, e.g17],

[13], or [19])
XfA)X™! = f(XAXT),

we see thaf (T,) = Sf(TE)S~1. It follows that the Lanczos approximatiafi® from (1.4
is also given by

(1.7) u™ = B VEF(TEe.

The remainder of this paper is organized as follows: In $aciwe will study some
properties of7’t using M-matrix theory. In Sectiof we will use these to prove the mono-
tone convergence for the given class of functions. Sediisndevoted to a comparison with
the recent results fronB]. In Section5 we extend our results to a larger class of functions,
thus including Lanczos type methods for approximating tti®a of the matrix sign function.
The paper ends with a general discussion of the techniqeesinsSectiort and some con-
clusions where we also address the impact of inexact artibm@therwise, exact arithmetic
is assumed throughout.
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2. Properties of T,,, and T In this section we assumé to be positive definite. Let
us first note that from1(.3) and (L.6) we immeditaley see that

T =VH>AV,, TF=WVHHAVE = 51,57

So, sinceA is positive definite, we have tha@},, andT.: are both positive definite, too. From
the Lanczos process it is also clear that all non-zero entrfi€’,, are real and positive. Let
D,, = diaglay, ..., o] be the diagonal part of,,, and letB,,, = T,,, — D,,. ThenB,, > 0,
where ">" stands for the entrywise partial ordering. smag = D,, — B,,, we see that the
off-diagonal entries of = are all nonpositive. A matrix with nonpositive off-diagdeatries
whose inverse is (componentwise) nonnegative is called-amatrix. The following lemma
shows thafl’*" is an M-matrix.

LEMMA 2.1.1f A is positive definite, then

(TH) ' >0

Proof. A well-known result for M-matrices (se&[ Theorem 2.3, G20]) states that for
B € R™™ with nonpositive off-diagonal entries the relatiéit ! > 0 is equivalent to that
all eigenvalues of3 have positive real parts. Bat: = (VX)) AV * has only nonpositive
off-diagonal entries and its eigenvalues are all positua;e A is positive definite. O

M-matrices have plenty of useful properties. The two that eednare collected in the
following lemma. For a proof se&] Exercise 5.1], for example.

LEMMA 2.2. Let B,C € R™*™ be twoM-matrices and lefz € R™*"™ be such that
E>0.

() If B<C,then0 < C~ ' < B!,

(i) If B + FE has all its off-diagonal entries nonpositive, thBri+ E is an M-matrix.

3. Monotone convergence Our approach to prove monotone convergence, which builds
upon [g], starts from (.7). Since the Lanczos basis vectef$ are mutually orthogonal, if
we can show that the coefficient vectors represeniifigrom (1.7) in this basis, given as

s = ﬁlf(T$)€1 e R™,

satisfy
Sm—l
- oc| 7]
form =1,..., mmax, we have that the sequenpe™ || is monotonically increasing. Itis even

strictly increasing if for one component, for example thet lane, we have strict inequality in
(3.1. Moreover, sincef (A)b = u™===, we also see that the norm of the errors

Sm
em — ummax _ um — meax Smmax _ o

is monotonically decreasing. This is how we will prove ourim@sult stated as follows.
THEOREM 3.1. Let A be Hermitian and positive definite. Assume that the function
f :(0,00) — R can be expressed for all > 0 as

1) = [ Gute)

with p(¢) a non-decreasing function such thﬁfo tl,cdu(t) < oo andk € N. Letu™ be the
Lanczos approximation defined ib.§) or (1.7) ande™ = f(A)b—u™form =1,..., Mmax.
Then the following holds for the 2-norjin ||:
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(i) The sequencgu™|| is monotonically increasing.

(i) The sequencge™|| is monotonically decreasing.

Proof. As we just explained it is sufficient so sho®.{). To that purpose we use the
representation

oo

(3.2) s =By f(TE)ey = B /t_o(tl + TE)Ferdp.

Note that this integral exists since sp&g) (0, 00). Denote byl'x € R™*™ the matrix
obtained fronil’* by setting them — 1, m) and(m, m — 1) entries to zero,

ay —fe
—52 Q2 —53 4
Mt . . . _ Tm—l Y
@3 TE- Lo [T 2
_ﬁm—l Qpp—1 0
0 Uy,
Then
e [tI+TEL o
HA T = ol t+am
and

tI+TE <tI+T% forallt>0.

But for all t > 0 the matrixt] + Tt is an M-matrix by Lemmag.1and2.2(ji). Moreover,
again by Lemma.X(ii), the matrixtI + T+ is an M-matrix for allt > 0, too. And since
tI + T < tI+ T, part (i) of that lemma gives us

0<(tI+TEH) P <@t +TEH)forallt > 0.
Trivially, then, via repeated multiplication we get
0< (I +TEH ™ <@tr+TE)*forallt >0,

which results in

o0

0< / (tI +TE) "du < / (tI +TE)*dp.
t=0 t=0

Given the block structure3(3) and comparing the first columns, the inequality above finall

yields

m—1

o< [ s 0 } < s™. 0

COROLLARY 3.2. Let A be Hermitian and positive definite. Then the norms of the
Lanczos approximations™ to f(A)b increase monotonically, and the error norms
|| f(A)b — u™| decrease monotonically for the following functigfis

() f(z)=z"FkeN,

(i) f(z) =30, 2% witha; > 0,5 > 0fori=1,...,p,

(i) f(z) =212,
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(iv) f(z)=z"fora € (0,1),
() £(z) = (z— 1)~ log 2,
Vi) fz)=z"(1+2)P0<a<l,a+3€]0,1),
i) f(z) = Y2, 45 with o; > 0,8 > 0 for i = 1,2,.., and

lm; 00 2i = 00, lim; o0 | /3] < 00,
(viii) f is the result of a Stieltjes transform, i.e.,

f(z) = /too L (),

wherey is a non-decreasing real function such trﬁf %du(t) < 00,

(ix) f(z) = Zle vifi(z) with v; > 0 for all ¢ and f; any function from (i)-(viii) or a
constant.

Proof. Part (i) follows by taking the step function,

0 fort=0,
w(t)_{l fort > 0,

so thatz =% = ftojo ﬁdw(t). The functions considered in (ii) to (vii) are all particula
Stieltjes transforms, i.e., they are special cases of) (&giwe briefly outline now. For the
rational function case (i), assume tliat 5; < --- < 3, and define the step functianas

0 fort < [y,
wt) =19 X q; forf <t < Bi,
l_ya; forp, <t

to see thayf (z) = jf:oo h%zdw(t). Part (iii) is contained in (iv) for which we observe that for
a € (0,1),

o sin((1 — o)) /°° 1 du(t),
0

s t+ 2z

with p(t) = t~“; see B]. The fact that we are also in the presence of Stieltjes foams in
cases (v) and (vi) has been observedli][the case (vii) was treated iT]| Finally, if f is
of the form given in (ix) we have that™ = 3 - Zle fi(T£)e;. Herein, each individual
summandf;(T.)e; fulfills a relation analogous tdB(1) which thus carries over to the whole
sum. d

Let us remark that the set of Stieltjes transforms is a suifske set of completely mono-
tone functions. We refer tdl[l, Chapter 12] for a textbook treatment of Stieltjes transier
Defining the Stieltjes cone as the set of all functions of trenf

|
du(t
a+/0 qu(),

with ¢ > 0 andp as before, it can be shown that the Stieltjes cone is exautlydstric-
tion to the positive real axis of all functionswhich are holomorphic in the cut plari\
(—o0, 0], nonnegative ok ™ and which map the upper half plane to the lower half plane; see
[1, Chapter 3, Addenda and Problemg&], ¢r [11, Chapter 12.10].

The importance of the Stieltjes cone for the analysis of imdtmction methods has
been realized by several authors, for exampl€ji[] for approximation in extended Krylov
subspaces and il {] (see also §]) for an analysis of restarted variants.
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4. Relation to the exponential. For the matrix exponential we have the following result
which has recently been proved i [Theorem 1 and Remark 1].
THEOREM4.1. Let A be Hermitian and

g(z) = / w(t)e*dt, z € [a,b] D specA),
t=0
with w(t) real, nonnegative such thafz) exists and is bounded da, b]. Then the Lanczos
approximations texp(A)b as well as toy(A)b converge monotonically.
Now, let A be positive definite(a, b) = (—oo,0) and takef(z) = g(—z2), i.e.,

f(z) :/ w(t)e *dt, z € (0,00).
t=0
Then f can be interpreted as the Laplace transform (see, &.4.Jhapter 10]) ofw, pro-
vided w is from what is called the 'original spacé! in [11]. Laplace transforms are in-
timately related to Stieltjes transforms, since the lattiees arise as the result of two iter-
ated Laplace transforms. Indeed, as is explained in detdil1, Chapter 10.11], taking
o(s) = [, w(t)e *'dt, and assuming that this integral converges absolutely fior the
closed right half plane, the following transformations eaéid:

/ efsza(s)ds:/ / e e w(t) dt ds
0 o Jo
:/ / e~ G ds w(t) dt
o Jo

—/0 Z+tw(t)dt.

This shows that, at least for the cdse- 1, our Theoren8.1with u(t) = f:zow(T)dT
and ‘standard’ functions is actually a special case of what has been proveJiin[the
context of the matrix exponential. The proof presented Heseever, is quite different from
that in [6], and may thus have some value by itself. 6h pn analog to a semidiscretized one-
dimensional heat equation was built up from the Lanczosfioierfts, and the monotonicity
result was established considering the time stepping tgreoh an explicit Euler scheme.
Our approach, in turn, highlights the role df-matrices in this context and may be regarded

more ‘linear algebra oriented’.

5. Extensions. Assume that the functiofi can be represented as

wherep is a polynomial and is of the form considered in Theorednl, i.e.,

9(z) = /:; (t_‘_;z)kdﬂ(t)v

with () a non-decreasing real functioh € N, f1°° tikdu(k) < oo. An obvious way to ap-
proximatef (A)b is to first computé = p(A)b, e.g., using Horner’s scheme or a known stable
recurrence fop. This mainly requires only simple matrix vector multiplins. We then
approximateg(A)B using the Lanczos approach. Obviously, by Theo&irthis approach
leads to monotone convergence.
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Approximatingf (A)b in this manner we considerably increase the class of funstior
which the approximations tf(A)b converge smoothly, i.e., monotonously. In the following
example we explicitly list some functions which are fronstblass and which are important
in practice.

EXAMPLE 5.1. (SeeT].) The following matrix functions arise in the solution dfigtic
boundary problems of the form

(5.1) Aw — 707 = g(®)p

using the method of lines:
(i) For ¢ = 0 and the boundary conditiong)(0) = ¢, w(occ) = 0, we have
w(0) = exp(—OVA)gy, i.e., we have

f(z)=e V7 =1—g(2)z,

with

dp, wheredy = Mdt.

g(z z+t s

z

) = 1 —exp(=6vz) _ /°°
0

(i) The matrix square root arises from the Dirichlet to Nearm problem for%.1), i.e.,
F(z) = Vz=g(2)z withg(z) = =712,

wherez~1/2 was considered in Corollary.2 (iii).

With a slight modification of the Lanczos approach, the disten of this section also
holds for the matrix sign function as we will explain now. Coumting the action of the
sign function signA)b for a Hermitian, indefinite matri¥ is at the heart of very compute-
intensive numerical simulations in lattice quantum chrdgmamics with so-called overlap
fermions; see, e.g.1B]. Since A is indefinite, the theory developed so far does not apply
directly. Actually, numerical experiments reported 28] show that there is no monotone
decrease of the error norm if one computes the Lanczos ajppations as given byl(4).
Based on numerical experiments and a partly heuristic espian, the paper3] therefore
suggests to rather compute signb as (A2)~1/2(Ab); see also]. This means that we
use (.4) for

(5.2) f(B)b wheref(z) =2""2 B =A% b= Ab.

With Corollary 3.2 (iii), we now have a proof for the smooth convergence obsgsirce it
shows that the norm of the error of the Lanczos approximation (5.2) is monotonically
decreasing.

In the case of the matrix sign function, we know thsign(A)b|| = ||b||, because sigm)
is unitary. Together with the monotone convergence of th@pmations via {.4), we can
thus even get bounds on the error of the approximations diswpto the following proposi-
tion.

PROPOSITIONS.2. Assume thatl is Hermitian and that approximations™ for v =
sign(A)b are computed by the Lanczos methodBor'/2p with B = A2 b = Ab. Then the
sequencgu™|| is monotonically increasingju™|| < ||b|| for all m and

D1 = [l | < [l = w™ | < (I[]I* = [lu™]*) "
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Proof We use the notation introduced in Secti®nThus,

+ e ot ot s™
u="V, - andu™ =V, - s = |~ [ o ] .
Definings!” = 0fori = m+1,..., mmnax, We extends™ to a vector inR™==<x and we know
that
(5.3) 0<s* <sgi™=fori=1,..., Mmax-
Our task is to bound the minimum and the maximum of
B(S™) = flu = w2 = (s — 7 s )
_ <Smmx7 Smmx> —92. <Smmx7 Sm> + <Sm’ Sm>
=|b]|? =[lum]2

as a function o™ under the constraint$(3. From (.3 we see thats™max, s™) > [|s™||?,
which gives the bound(s™) < [|b]|> — ||u™||%. On the other hand, the Cauchy-Schwarz
inequality gives

(smmex, ™) < [|s™mex]| - []s™ ]
——
=loll - =[lum]
from which we deducé(s™) > (||b]| — [Ju™]|). a

6. Further discussion. Rational functions, which arise either directly or as apjma-
tions to other functions, have an important practical atkga in large scale computations if
they allow for a partial fraction expansion as considere@amollary 3.2 (ii): The Lanczos
approximations can now be obtained by simultaneously paifagy the CG iterations for all
p terms in the partial fraction expansion. Only one matrixtee multiplication per iteration
is needed for all systems together, and since CG relies o gourrencies, it is not neces-
sary to store all the Lanczos vectors. The storage requinestage thus determined by the
number of poles, but they are independentgfthe iteration count. Details can be found in,
e.g., fLO).

As an example, consider thepole Zolotarev rational approximatidf, (z) to 2~/ on
an intervala, b] with 0 < a < b. This approximation minimizes ttrelative (.. -errorin|a, b]
over all rational functions with nominator and denominaibdegree< p. It has precisely
the form considered in Corollar§.2 (ii), and explicit formulae, involving the Jacobi elliptic
function, are known for the all positive parametessand 3;; see [L9. The use 0fZ,(2?)z
as an approximation to the sign function has been studie@dn As before we now have a
proof that the Lanczos approximations for

Zy(B)e with B = A?, ¢ = Ab

have their errors decrease monotonically.
As a last contribution, let us turn back and consider the icegrl,, rather than7;:.
Define

ay B

B2 a2 P
T = :[T’”Tl "].

o Uy,
ﬁm—l Om—1 0
0 O,
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If Ais positive definite, we have
0< T <Tpform=1,... Myax,
and thus fokk = 0,1, .. .,
TF <TFform =1,..., Mmax.

Assume that spégel) C [0,b) and that f can be developed into a power series

fz) =352, w,zl that converges for € [0, b] and that the derivatives satisfy”) (0) > 0
foralli = 1,2,.... From this power series representation, we immediatelytszte

0< f(Tm) < f(Tm).

Therefore, using the same argumentation as in Segigre obtain that for the Lanczos ap-
proximations u™ the norms ||u™| increase monotonically, whereas the error norms
IIf/(A)b — «w™|| are monotonically decreasing. This approach holds in @agi for
f(z) = exp(z), so that we are back to the results frofj for A positive definite. Actu-
ally, we can easily generalize & Hermitian but not necessarily positive definit&Ve start
from

exp(A + al) = exp(«) - exp(A).

Together with the shift invariance of the Lanczos procesdt{sg the matrix fromA to
A+al does not change the Lanczos vectgfsand shifts the tridiagonal matrices frdf, to
T, + o) this shows that the Lanczos approximationssfas(A) are, up to the scalar scaling
factorexp(«), identical to those foexp(A + o). Takinga sufficiently large makesl + o7
positive definite, from which the monotone decrease of ther@orms can be deduced.

7. Conclusion. We have shown that the error of Lanczos approximations t@dttien
of certain matrix functions on a vector is monotonically ising if the matrix is Hermitian
and positive definite. This was done by showing that the mafuthe coefficients of the
corresponding Lanczos vectors are monotonically increpsOur results hold in particular
for functions which arise as the result of a Stieltjes transf and thus for certain rational
functions and for the inverse square root. The results caaxtended to more general func-
tions, in this manner including Lanczos-type approximadito the matrix sign function for
indefinite matrices.

Our investigations assumed exact arithmetic throughaus. well known that in actual
numerical computations, inexact arithmetic due to rougdimors has a substantial effect
on the quality of the Lanczos vector$ which will loose their theoretical orthogonality;
see P2 for an analysis of error estimates for the CG method in toistext. For our results,
let us observe the following: Unles$ has very small eigenvalues, the computed matrices
T,, will usually still be positive definite ifA is. By construction, they are also Hermitian.
This implies that all what we have shown for the coefficierttoes s™ essentially remains
valid in the presence of round-off. The only, but major, cenmcis that once the vectors
are not orthogonal any more, an increase (decrease) in #féaients does not necessarily
imply an increase (decrease) of thenorm. However, the Lanczos vectors tend to keep
their orthogonality at least locally, and the coefficiemtghe Lanczos approximations tend
to change significantly only in the last few places. Thesenlaions motivate that we can
actually expect our monotonicity results to be also obsgtimeomputational pratice. At the
very least they explain themoothconvergence behavior observed in practice.

1we thank Vladimir Druskin for pointing this out in a persomaimmunication.
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