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SPHERICAL QUADRATURE FORMULAS WITH EQUALLY SPACED NODES
ON LATITUDINAL CIRCLES *

DANIELA ROSCAf

Abstract. In a previous paper, we constructed quadrature formulascbas some fundamental systems of
(n + 1)2 points on the spheren(4 1 equally spaced points taken en+ 1 latitudinal circles), constructed by
Lain-Fernandez. These quadrature formulas are of iok&qry type. Therefore the degree of exactness is at least
n. In some particular cases the exactness cam el and this exactness is the maximal that can be obtained, based
on the above mentioned fundamental system of points. Irpdper we try to improve the exactness by taking more
equally spaced points at each latitude and equal weightsaftr latitude. We study the maximal degree of exactness
which can be attained with + 1 latitudes. As a particular case, we study the maximal exastof the spherical
designs with equally spaced points at each latitude. Ofsggwall of these quadratures are no longer interpolatory.
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1. Introduction. LetS? = {x € R3 : ||z||» = 1} denote the unit sphere of the Eu-
clidean spac®&? and let

W [0,7] x [0,27) — S?,

(p,0) — (sin p cos b, sin psin 8, cos p)

be its parametrization in spherical coordinatgsf). The coordinatep of a point
£(¥(p,0)) € S?is usually called the latitude gf Let P, k = 0,1,..., denote the Legendre
polynomials of degreé on [—1, 1] normalized by the conditio®; (1) = 1, and letV}, be
the space of spherical polynomials of degree less than @leégu. The dimension oV, is
dimV,, = (n + 1)? and an orthogonal basis &f, is given by

{Y#(G,p) = Pl'l(cos p)e'®, —m <1 <m, 0<m< n} .

HereP? denotes the associated Legendre functions, defined by

N 2 v
PY(t) = (H) (1—t2)”/2%Pm(t), v=0,...,m, t€[-1,1].

For given functions, g : S> — C, the inner product is taken as

(f,9) = Szf(é)g(i) dw(§),

wheredw (&) stands for the surface element of the sphere. We also depdig Ibhe set of
univariate polynomials of degree less than or equail.to

2. Spherical quadrature. Let n,p € N, B, = (B1,...,8.,41) € [0,2m)" L,
P =1(p1,-,Pnt1), 0 < p1 < p2 < ...< ppg1 <, andlet

B + 2km

=1,... 1L, k=1,... 1
p+1 y J ) ,TL+7 ’ ap+}

S(Brs Pusp) = {6 (ps. 01), 01 =
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be a system ofp + 1) equally spaced nodes at each of the latitudesWe consider the
quadrature formula,

(2.1) F Ydw (& zz Z (&)

with 5.7'7/6 € S(ﬁna pnvp)
A particular case, when is odd,p = n, and

B =

am, forjeven,
0, for j odd,

with e € [0, 2),(see [, 2]) was already considered id][ Here the weightsv; are uniquely
determined and are calculated by direct manipulation ofes@ram matrices of a local basis
associated with the fundamental system of po#(i8,,, p,,, n). The quadrature formulas are
interpolatory and therefore the degree of exactness isaatie In [4] we showed that the
degree of exactnessis+ 1 if and only ifa = 1 andznfl1 w;Pyg1(cos p;) = 0. In [5] we
proved that + 1 is the maximal degree of exactness attained in this pasti@alse.

In the following, for a fixedn, we wish to study the maximum degree of exactness
which can be achieved with such a formula. This means to ieplogt ¢.1) be exact for
the spherical polynomialg),, for I = —m, ..., m, and to specify the maximum value of
which makes?.1) exact.

On the one hand, evaluating the integral2nij for these spherical polynomials, we get

T 2m
/ Pl (cos p)e'?dw (&) = / Plll(cos p) sinpdp/ e0dp.
52 0 0
However,

2 o
/ eiwdﬂ _ 271', forl = ,07
o 0, otherwise.

On the other hand, evaluating the sum2nlf for these spherical polynomials, we get

n+1 p+1 n+1 p+1

ij ZPM COSp zl@k _ Zw P\ | CObp Z ilﬁj:ff”
Jj=1
n+1 p+1
—Z’LUPHCObp e P+ Z
Jj=1 k=1

The last sumis zeroff¢ (p+ 1)Z andisp+ 1if l € (p+ 1)Z.
With the above remarks, the quadrature form@al(is exact forY;!, with [ # 0, in the
case whenn < p + 1. In order to be exact fof = 0 we should have

ntl  ptl
. Py, (cosp)dw(§) = Z w; Z P, (cosp,),
j=1 k=1

which yields

n+1

E w; Py, (cos pj).

1
/ Po(2) p+1
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" . ) o o p+1 .
With the notatiorcos p; = rj, a; = 5—~w;, we arrive at

n+1

1
(2.2) /1 Pp(z)dz =Y a;Pn(r)).
_ =

In conclusion, we proved the following result.

PROPOSITION2.1. Letn,p,s € N such thats < p + 1, and consider the spherical
quadrature formula?.1) with &, . € S(8,,, p,,,p). This formula is exact for the spherical
polynomials inV; if and only if the quadrature formula

1 n+1
(2.3) /1 fla)de =Y a;f(r;)
_ =

is exact for all polynomials il .
Letus remark that, takingp = 0,1, ...,pin(2.2) (or, equivalently, taking = 1, z, ..., a?
in (2.3)), we obtain the system

n+1
1
2.4 A= (=D +1) ——
(2.4) ; (=D +1) 5=
for A = 0,...,p. This system hag + 1 equations an®n + 2 unknowns,a;,;,

7=1,...,n+ 1.
Next it is natural to ask when formul&. (1) is exact for spherical polynomials i with
s > p -+ 1. If we further impose that formula2(1) is exact for the spherical polynomials

Vi, l=-p—1,...,p+1,then we have

n+1
1
2.5 P = (1Pt 4 1) —— |
(25) ; (07t +1) =
n+1 )
(2.6) > a;(sinp;)P e = 0.

J=1

Equation 2.5) follows from the fact thatZ.1) is exact forYp0+1, while equation?.6) results

from the fact that formulaZ.1) is exact for the spherical polynomiaiil’gfl1 and};’ffl. For
l=-p,...,—1,1,...,p, both sides of quadraturé.(l) are zero, therefore it is exact.

In conclusion the following proposition holds.

PrROPOSITION2.2. Letn,p € N. Then formula2.1) is exact for all spherical polyno-
mials in'V}, if and only if conditions%.4) are satisfied for\ = 0, ..., p. Moreover, formula
(2.1 is exact for all spherical polynomials ii, if and only if supplementary conditions
(2.5 and (2.6) are fulfilled.

3. Maximal degree of exactness which can be attained with eqlly spaced nodes
at n + 1 latitudes. In this section we establish which is the maximum degree atmess
that can be obtained by taking the same number of equallyesipaodes on each of the
n + 1 latitudinal circles and then we construct quadrature fdaswith maximal degree of
exactness.

What is well known is that the systerd.{) is solvable for a maximal number of con-
ditions2n + 2 (for A = 0,1,...,2n 4+ 1), when it solves uniquely. This is the case of the
univariate Gauss quadrature formula. In this case, themmaxialue forp which can be taken
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in (2.4 isp = 2n + 1, implying that @.1) is exact for all spherical polynomials #k;,41. In
conclusion, the following result holds.

PrROPOSITION3.1. Letn € N and consider the quadrature formula.(). Its maximal
degree of exactnessis + 1 and if we want it to be attained, then we must take the cosines
of the latitudescos p; = r;, as the roots of the Legendre polynomiaJ,; and the weights
as [3]

2(1 - 7‘?)

(n +2)%(Prya(ry))?

One possible case when it can be attained is by taking- 2 equally spaced nodes at each
latitude and arbitrary deviations; € [0, 2).

The question which naturally arises is whether we can ololegree of exactnegs + 1
with fewer thar2n + 2 points at each latitude.

> 0.

T .
aj, with aj; =

3.1 —
(3.1) Wi 1

3.1. Maximal exactnes2n + 1 with only 2n + 1 nodes at each latitude.Consider
2n + 1 equally spaced nodes at each latitude. If we suppose thditimors (2.4) are satisfied
for A = 0,1,...,2n, then formula 2.1) will be exact for all spherical polynomial i, .
From Propositior?.2we deduce that, if we want it to be exact for all polynomial$/in ., 1,
then we should add the conditions

n+1

(3.2) Z ajrjz-”ﬂ =0,
j=1
n+1
(3.3) Z a;(sin p;)?" et = 0.

J=1

In this case the quadrature formuta?) becomes the Gauss quadrature formula. Thujll
be the roots of the Legendre polynomid); anda; are given in 8.1). Sincea,42—; = a;

andp; =7 — ppy2—j forj=1,...,n+ 1andrz; = 0 for evenn, condition 8.3 can be
written as
(n+1)/2
(3.4) Z a;(sin p;) 2" (i 4 ePnt2-i) = 0, forn odd
j=1
) n/2
(3.5) a%+161ﬁ%+1 + Z a;(sin p;)?" T (i 4 ePrr2-3) = 0, for n even
j=1

For n odd, equation .4) is always solvable and possible solutions are discussetpin
pendixA. Forn even the solvability of equatior8(5) is discussed in Appendi®. Numer-
ical tests performed fon < 100 show that inequality§.3) in AppendixB holds only for
n > 12. Therefore, the equatioB () is not solvable fon € {2,4,...,10} and solvable for
12 < n < 100. In conclusion, the following result holds.

PROPOSITION3.2. Letn € N and consider the quadrature formuld.() with 2n + 1
equally spaced nodes at each latitude. Foe {2,4,6,8,10} one cannot attain exactness
2n + 1. For n odd and forn € {12,14,...,100}, if cos p; are the roots of the Legendre
polynomial 2,1, the weights are as in3(1), the numbersg;; are solutions of equatior(3
(given in Appendices 1 and 2), then the quadrature form2lI# has the degree of exactness
2n + 1.

We further want to know if it is possible to obtain the maxirdagree of exactnegs + 1
with fewer points at each latitude.
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3.2. Maximal exactnes®n + 1 with 2n points at each latitude. Let us conside2n
points(p = 2n — 1) at each latitude. If we suppose that conditioBg)) are satisfied for
A=0,1,...,2n — 1, then formula 2.1) will be exact for all polynomials ii%,, ;. If we
want it to be exact fot’}, , for [ = —2n, ..., 2n, then we should add the conditions

n+1 D)
2n
(36) dun =T
=1
n+1 )
(3.7) > a;(sinp;) e = 0.
j=1
Further, if we want the formule2(1) to be exact foralty,, ., forl = —2n—1,...,2n + 1,
then we should impose the conditions
n+1
(3.8) Z ajr?”Jrl =0,
j=1
n+1 )
(3.9 Z a;(sin p; )™ cos pjei = 0.
j=1

From conditions §.6) and 3.8) we get again thatos p; = r; are the roots of the Legendre

polynomial P,+; anda; are as in §.1). Therefore, formulad.1) has the degree of exact-

ness2n + 1 if and only if equationsd.7) and (3.9 are simultaneously satisfied. Due to the
symmetry, they reduce to the system

(nt1)/2 -
(310) Z aj (sin p])2n (elﬁj + ezﬁn+2—j) — 07
=1
(nt1)/2
(3.11) Z a;(sin p;)2™ cos pj (e — ePn+2-i) = 0,

j=1
for n odd, and to the system

n/2
angleiB%“ + Z a;(sin p;) 2" (e  etPn+2-i) = 0,
j=1
2
a;(sin pj)?" cos p; (e — ePn+2-i) =,

n

~

.
Il
-

for n even.

Forn odd, we give some conditions on the solvability or non-soilty of this system
in AppendixC (PropositionC.1). Numerical tests performed for € {1,3,5,...,99} show
that the hypothese€(4) in AppendixC are fulfilled only forn € {1,3,...,13}, in each of
these cases the indébeingk = (n + 1)/2. In conclusion, for these values of the above
system has no solution and therefore the quadrature foroanaot have maximal exactness
2n + 1.

Forn € {15,17,...,41} the system is solvable since hypothedgs/\-(C.8) in Ap-
pendix C are fulfilled, each time fov = (n + 1)/2. In the proof of PropositiorC.1, 3
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in AppendixC, we give a possible solution of the system. FRoe {43,45,...,99}, the
solvability is not clear yet. In this case, both sequengesj = 1,...,(n + 1)/2} and
{1, =1,...,(n+ 1)/2} satisfy the triangle inequality.

In Table3.1we summarize all the cases discussed above.

TABLE 3.1
Some choices for which the maximal degree of exactBess- 1 is attained, forP,41(cosp;) = 0,
je{l,...,n+1},n < 100.
number of nodeg n Bj
at each latitude
2n+2 N [0, 27)
2n+1 odd AppendixA
{2,4,6,8,10} () (cf. AppendixB)
{12,14,...,100} AppendixB
2n {1,3,...,13} (0 (cf. AppendixC, Prop.C.1, 1)
{15,17,...,41} AppendixC, Prop.C.1, 3
{43,45,...,99} no answer
even no answer

As a final remark, we mention that the improvement broughtéainterpolatory quadra-
ture formulas in 4], which were established only fot odd, is the following: In §], for
attaining the degree of exactnéss+ 1 one need$2n +2)? nodes. The quadrature formulas
presented here can attain this degree of exactness with{@mh¢ 2)(n + 1) nodes (for arbi-
trary choices of the deviations;) and with only(2n + 1)(n + 1) nodes or only2n(n + 1)
nodes (for some special cases summarized in Tali)e

4. A particular case: spherical designs.A spherical design is a set of points &t
which generates a quadrature formula with equal weightghvis exact for spherical poly-
nomials up to a certain degree. For a fixe& N, we intend to specify the maximal degree
of exactness that can be attained with the point$(if,,, p,,, p) and show for which choices
of the parameterg,,, p,,, p this maximal degree can be attained. Therefore, let us densi
the quadrature formula

n+1p+1

@) [ OO 2wy 30 3T P, Wi € € S(8,.0,.0)

j=1 k=1
If we require that this formula is exact for constant funnospwe obtain
4
Wnyp = 7T
P (n+1)(p+1)
As in the general case, we obtain that formuld) is exact for the spherical polynomialg,

form < p+1and—m <1 < m, [ # 0. In order to be exact fo¥,? form < p + 1, we
should have

1 9 n+1
/_1 P, (z)dx = - me(rj),
7j=1
wherer; = cos p;, forj =1,...,n+ 1. In conclusion, if the quadrature formula

2 n+1

1
4.2) [ rae~ =5 > 1)
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is exact for all univariate polynomials i, s < p+1, then the quadrature formuld.{t) will
be exact for all spherical polynomials¥a. If in (4.2 we takef (z) = 2™ form =1,...,p,
we obtain the system

JF
Al n+1
4.3 .
(43 o=
with A = 1,...,p. This system has + 1 unknowns. The maximal degree of exactness of

the quadrature formulal(2) (respectively, the maximal value pf is obtained in the classical
case of Chebyshev one-dimensional quadrature formulan Wieesystem4.3) has a unique
solution. In this case = n + 1, since the number of conditions needed to solve the quadra-
ture formula uniquely is: + 1. More precisely, in the one-dimensional case of Chebyshev
quadrature, it is known that; = r,, o for j = 1,...,[n/2] and that system4(3) has no
solution forn = 7 andn > 8. Forn € {2,4,6,8}, the quadrature formula4(2 has the
degree of exactness+ 1 if the conditions in 4.3) are fulfilled forA = 1,...,n + 1. For
n € {1, 3,5}, if the same conditions are fulfilled, the degree of exacti®east 2 since one
additional condition in4.3) for A = n + 2 is satisfied.

In conclusion, the following result holds.

PropoOsITION4.1. Letn € {1,2,3,4,5,6,8} and consider the quadrature formula
(4.1) with p 4+ 1 equally spaced nodes at each latitude. Its maximal degregaiftness is

(4.4) . { n+1, forne{2,4,6,8},

n+2, forne{l,3,5}.

It can be attained, for example, by taking+ 2 equally spaced nodes at each latitude
(p = n + 1), for all choices of the deviations; in [0, 27) and forcos p; the nodes of the
classical one-dimensional Chebyshev quadrature formula.

We wish to investigate if the maximal degree of exactness. can be obtained with
fewer tham + 2 points at each latitude.

4.1. Maximal degree of exactness attained with only + 1 points at each latitude.
Suppose = n and suppose4(d is fulfilled for A = 1,...,n. This implies that 4.1) is
exact for the spherical polynomialg, for A = 1,...,n. We want again to investigate if the
maximal degree of exactnegs, ... can be attained with only + 1 points at each latitude.

Case 1:n even. If we want formula4.1) to be exact for all spherical polynomials in

Vig1 = V..., it remains to impose the condition that {) is exact forY,?, ; and nﬁ“’

Exactness foi!, | meansZ"fl1 r;l“ = 0, which, together with 4.3) fulfiled for A =

1,...,n, leads finally to the system in the classical one-dimensiGhabyshev case. Thus
Tj = Tnta—j, forj=1,...,n/2,r» 1 = 0 and a solution exists only for € {2, 4,6, 8}.
Further, exactness fdfni(f“) reduces to
. n/2
(4.5) P50 13 (sin ) (P eiPrrai) = 0.
j=1

Numerical tests show that conditioB.@) in AppendixB is fulfilled for n € {2,4,6,8}.
Therefore, equatior(5) is solvable.

Case 2:n odd. In this case, if we want formula.() to be exact for all spherical
ponnomiaIs inV,, 2 = V..., it remains to require that it is exact f&f°, ,, Y,?,,, Ynﬁ(?“)
n+1)

andYn To
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Exactness for the spherical polynomig}, , reduces to the condition

+1
an’-lH _ntl
gt J n+2’

which, added to conditiongl(3 for A = 1, ..., n, leads again to the system in the classical
one-dimensional Chebyshev case (which is uniquely sadyabl

Exactness fot,", , reduces to condition

which is automatically satisfied.

Further, exactness faf," """ andY;" 5" means, respectively,

(n+1)/2
(4.6) Z (sin p;)" (e 4 etPnt2-i) = 0.
j=1
(n+1)/2
4.7) Z (sin p;)" ! cos p;(e?i — etfnr2-i) = 0.
j=1

In conclusion, the maximal degree of exactness2 is attained if and only if; are the nodes
in univariate Chebyshev quadrature and the systef)-(4.7) is solvable. The solvability of
this system is discussed in Appendixn the general case. Far= 1, the non-solvability is
clear. Forn = 3, the system is again not solvable (cf. Propositid, AppendixC), since
1 < po. Forn = 5, it is solvable since the hypothesés.§)-(C.6) in PropositionC.1 are
satisfied, withv = 2.

To summarize the above considerations, we state the fallpvasult.

ProPOSITION4.2. Letn € {1,2,3,4,5,6,8} and consider the quadrature formula
(4.7) with n 4 1 equally spaced nodes at each latitude. Then the maxima¢dexjrexactness
Imaz QivVen in Propositiord.1 can be attained fon = 2,4,6,8, if cosp; are chosen as
nodes of the classical one-dimensional Chebyshev quadrédrmula and the numbers;
are chosen as described in AppenBixor n = 1, 3, the maximal degree of exactness cannot
be attained, while for, = 5 it can be attained if the deviation, j = 1, ..., 6, are taken as
described in Appendi&, PropositionC.1, 2.

The natural question which arises now is: Is it possible teehmaximal degree of ex-
actnessn + 1 with only n points at each latitude? The answer is given in the following
section.

4.2. Maximal degree of exactness with only points at each latitude. Let us consider
n points at each latitude@ = n — 1) and supposei(3) holds for\ = 1,...,n — 1. We want
to see if the maximal degree of exactness,,. can be attained with only points at each
latitude.

Case 1:n odd. In this case, if we want formula.(l) to be exact for all spherical
polynomials inV,, .o =V, it remains to impose that it is exact fo}°, ,, Y,2,,, Y, =",

Hmax?

Ynﬁ"l and Ynﬁ’g. Altogether, they imply that; = cosp; are the abscissa in the classical
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univariate Chebyshev case, and the deviati@nshould satisfy the system

(nt1)/2
(4.8) Z (sin p;)" ("7 4 ePn+2-7) = 0,
j=1
(n+1)/2
(4.9) Z (sin p;)™ cos p; (e — ePrr2-3) = 0,
j=1
(n+1)/2
Z (sinp;)" éi)Q(cos pi) (P 4 ePnr2-i) = 0.
j=1

SincePé’jr)2 (cos p) is an even polynomial of degree twodas p, using equation4.8), we can
replace the last equation by

(n+1)/2 _ _
(4.10) Z (sin p;)"(cos pj)Q(elﬁj + 615"“*]') =0.
j=1

Forn = 1, the system is clearly not solvable.

Forn = 3, the system is solvable sinein® p; cos p; = sin® py cos py. A solution can be
written as

p1 €10,2m), B3 = Bi, B2 = B4 = 1 +m (MOd27).
Forn = 5, up to now we do not have a result regarding the solvabilithhefgystem.

TABLE 4.1
Some choices for which the maximal degree of exactpgss is attained, forcos p;, j € {1,...,n + 1},
the nodes in the case of classical Chebyshev quadrature.

number of nodes n B
at each latitude
n-+2 {1,2,3,4,5,6,8} [0,27)
n+1 {2,4,6,8} [0,27)
{1,3} (0 (cf. AppendixC, Prop.C.1, 2)
5 no answer
n 1 [
3 B1€100,2m),B3 =01, fo=Pa=P1+7
{2,4,6,83 no answer

Case 2:n even. If we want formula4.1) to be exact for all spherical polynomials in

Vi1 = Vi, it remains to impose that(1) is exact fory,?, v,2, ,, v,;=" and Y- . Exact-
ness fory,) andY,?, meanszzjll rt =1 andzyill r*1 = 0, respectively. Together with

(4.3 fulfilled for A = 1,...,n — 1, they lead to the system in the classical one-dimensional
Chebyshev case. Thus = r,4o_;, forj = 1,...,n/2, r=41 = 0 and a solution exists
only forn € {2,4,6,8}. Further, using again the symmetry of the latitudes, e>xasstrior
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v andY,E" reduces to
_ n/2
(4.12) P Y (sin )" (1 4 €)= 0,
j=1
n/2
(4.12) Z(sin pj)n cos p; (eiﬁj _ eiﬁn+2—j) —0.
j=1

In conclusion, the maximal degree of exactness, = n + 1 can be attained if and only if
the system4.11)-(4.12 is solvable. Unfortunately we could not give a result refjyag the
solvability of this system.

All these cases are summarized in Tabl&

5. Numerical examples.In order to demonstrate the efficiency of our formulas, we
consider the quadrature formula

+1
w

JRGIECEDS

p+1
i Y F(&),
j=1 k=1
with & & (p;,0%) € S, in the following cases:
1. The classical Gauss-Legendre quadrature formula, with= n, p = 2n + 1,
cos p; = r;, the roots of Legendre polynomi#,; 1,

; km
gl — T
E 41
2T, with 20— 7j)
W = ———aj; a; =
T2 T (4 2)2(Paya(rs))?

j=1,...,n+1,k=1,...,2n + 2. This formula ha2n? + 4n + 2 nodes and
is exact for polynomials ift,,, 1. It is in fact a particular case of the quadratures
given in Propositior8.1, when all deviationg; are zero.

2. The Clenshaw-Curtis formulawith m = 2n, p = 2n + 1,

; km (j—Dm )
0 = i =———forj=1,...,2 1,k=1,....2n+2
k ’I’L+17 p] 2TL .] ) ,TL+, ) 7n+7
4re?ntl o 1 (j—Dirm ,
Wj = Wopq1—j = m E?J:rlll —p3 ¢S - ,forj=1,...,n,
1=0
where
g i ifj=1lorj=1
STV ifo<j<

This formula hasin? + 6n + 2 nodes and is exact for polynomialsif,, . ;.

1This formula is sometimes called Chebyshev formula, simcthé one-dimensional case it is based on the
expansion of a function in terms of Chebyshev polynomiglsof the first kind. The nodesos jw/2n are the
extrema of the Chebyshev polynomi&i,, of degree2n.
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In our numerical experiments we have considered the foligwest functions:

f1(x) = =5sin(1 + 10x3),
f2(x) = [Ix[[1/10,

fs(x) =1/[x|l1,

fa(x) = exp(21),

wherex = (z1, 29, x3) € S2.

From the quadrature formulas constructed in this paper, ovesider those from Sec-
tion 3.1 and we compare them with the Gauss-Legendre and Clenshavs-Guadratures
mentioned above. We do not present here quadratures fropo§ition3.1 for deviationss;
different from zero, since in this case, for the above testfions, the errors are comparable
with the ones obtained for Gauss-Legendre (whep alire equal to zero).

Figure 5.1 shows the interpolation errors (logarithmic scale) forteat the functions
11, f2, f3, and f4, respectively.

Appendix A. Forn odd, we provide solutions of the equation

q
(A.1) D aj(e 4 etfnrai) =0,

Jj=1

with ¢ = (n + 1)/2, a; > 0 given and the unknowns;, j = 1,...,n + 1. For this we need
the following result.

LEMMA A.1. Let A > 0 be given. Then, for every = 7¢ € C with
0 <7 <24, 0 €l0,2n), there existv; = w;(7,0) € [0,27), j = 1,2, such that

(A.2) At +e™2) = 2,

Proof. Indeed, denoting

T 7T
~ = arccos A € [O, 5} ,
a possible choice of the;, ws which satisfy relationA.2) is the following:
1. If0 —~>0andf +~ < 2m, then(wy,ws) € {(0 + 7,0 —7),(0 — 7,0 +7)};
2. 10—y <0, then(wy,w2) € {(0 +7,0 —v+2m),(0 —v+2m,0+7)};
3. If0+~ > 2m, then(wi,ws) € {(0 +~v—2m,0 —~),(0 — 7,0+~ —2m)},
or, shorter,

{ w1 :9"‘5’7 (mOdZﬂ—)7 withe € {_171}

we = 0 — ey (Mod7),

Equality (A.2) can be verified by direct calculations. 0O
Let us come back to equatioA.(l). Forj = 1,...,q, we consider; = ;% € C with
0 <7; < 2ay, such that

21+ ...+ 24 =0.

In fact, we takey — 1 arbitrary complex numbers; = T;ei"j, >0,j=1,...,q -1,
and then consider; = —z{ —...—z;_;. The numbers; = e j=1,...,q,satisfying
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the inequalities; < 2c; are taken such that

. 2a
7 =7; B, with B = min *k.
k=1,....q, "k
e >0
Denoting
v = arccosl, j=1,...,q,
. a;

and applying Lemma.1, we can write a solution of equatioA(l) as

Bi =0 +¢e;v (mod2m), .

: - withe; € {—1,1}.

{ Prya—j = 0; — e;v; (mod2m), s et J

Appendix B. Forn even, we discuss the equation

q
(B.1) Qg€ 437 a (e 4 ey = 0,
j=1
with ¢ = n/2, o; > 0 given and the unknowns;, j = 1,...,¢ + 1. For determining a
non-trivial solution we need the following result.

LEMMA B.1. Leta, by, ...,by > 0 suchtha < b +...+b,. Then there exist numbers
t; € [0,1] (not all of them equal) foy € {1,..., ¢}, such that

q
(B.2) a=Y tb;.
j=1

Proof. Of course, a trivial solution, when &lj are equal, is

a

ti=tf = —
J b1+ ...+ by

€(0,1], forj=1,2,...,q+1,

and it leads to a trivial solution oB(5).
For non-trivial solutions, let = a(by + ... + by)~"' € (0,1]. There exist:; € [0, 1],
j=1,...,q— 1suchthat

qg—1

. eib;
C::M <1-—t.

bq

The numbers;, defined as

t—e,, forv#gq,
ty, =
t+c¢, forv=yg,

satisfy the equalityf.2). d
We will prove that equationH.1) is solvable if and only if

q
(B.3) Qg1 < QZaj.
j=1
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Indeed, if the equation is solvableB.@) follows immediately by applying the triangle in-
equality. Conversely, suppose thBtg) holds. From the previous lemma, there exist numbers
tj € [0, 1] such thatvg1 = 2 379_, a;t;. Then a solution of equatiorB(1) is

53' = arccostj, ﬂnJrQ,j =21 — 53' (m0d2ﬂ'), forj = 1, .., q,

Bot1 = .

Appendix C. Forn odd, we discuss the solutions of the system

ozj(e”j +ei) =0,

M=

(C.1)
1

<.
Il

(C.2) (€7 — ¢iv7) =0,

M-

<
Il
-

with ¢ = 2 «a;,u; > 0 given andz;,y; € [0,27) unknowns. Due to our particular

problems (systems8(10-(3.11) and @.6)-(4.7)), we will also suppose that

(C.3) Gt > Y forallj=1,...,q— 1.

Hj+1 My

Forn = 1 the incompatibility is immediate, so let us suppose in ttiséthatn > 3.
PrROPOSITIONC.1. Under the above assumptions, the following statementsaee t
1. Ifthere existg € {1,..., ¢} such that

k—1 q
(C.4) Qi > ok D itk Y o,
j=1 j=k+1

then the systerfC.1)-(C.2) is not solvable.
2. Ifthere exist® € {1,..., ¢} such that

q
(CS) oy = Z Mg,
=1, j#v
q
(C.6) a, < Z o,
=1, j#v

then the system is solvable.
3. Ifthere existy € {1,..., ¢} such that

q
(C.7) oy > Z aj,
J=1, j#v
q
(C8) Ho < Z Hijy
J=1, j#v

then the system is solvable.
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Proof.
1. We suppose that the system is solvable andlgg;, j = 1, ..., ¢, be a solution. If
we multiply the equationsd.1)-(C.2) by u anday, respectively, and then we add
them, we get, foralk =1, ..., q,

q
2apppe’™ = Z — (o py + o) e + (appj — ajpug)e™ .
=1, j#k

Using the triangle inequality and the identity+ b + |a — b] = 2max{a, b}, we
obtain

q
gy < Z max{ o iy, o ik}
=157k

Using now the hypothesi€(3), this inequality can be written as

k—1 q
ak#kfgakE:/%‘+Nk }: Qjs
j=1 j=k+1

which contradicts€.4). In conclusion, the system is incompatible.
2. Applying LemmaB.1, there are numbets € [0,1], j =1,...,q, j # v, such that

Qg = E ajtj.
J=1,j#v

We define the functior : [0,2] — R,

q
o(t) = Z frj\ /4 — 512 — pp, /4 — 12,

j=1, j#v
Sincep(0) - p(2) < 0, there existgy € [0,2] such thatp(tg) = 0. A simple
calculation shows that a solution of the system can be wiréte
tot; )
Tj = arccos 7=, y; = 21 — z; (mod27), for j # v,
lo lo
Xy = T + arccos 5, Yp = T — arccos 5
3. Letty =, ' 379, ., o; < 1 and define the functiop : [0,1] — R,

q

) = V1= >y — /1832

J=1, j#v
Sincep(0) - ¢(1) < 0, there exists, € [0, 1] such thatp(ty) = 0. Then we define
5 — 20,10, forv # v,
Y 2t0 2 i gy TOrv =

A simple calculation shows that a solution of the system @awiitten as

Y
Tj = arccos 2—3, y; = 2w — x; (mod2), for j # v,
@

51} v
T, = T + arccos —, Y, = T — arccos .
20, Qly
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