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SPHERICAL QUADRATURE FORMULAS WITH EQUALLY SPACED NODES
ON LATITUDINAL CIRCLES ∗

DANIELA ROŞCA†

Abstract. In a previous paper, we constructed quadrature formulas based on some fundamental systems of
(n + 1)2 points on the sphere (n + 1 equally spaced points taken onn + 1 latitudinal circles), constructed by
Laı́n-Fernández. These quadrature formulas are of interpolatory type. Therefore the degree of exactness is at least
n. In some particular cases the exactness can ben + 1 and this exactness is the maximal that can be obtained, based
on the above mentioned fundamental system of points. In thispaper we try to improve the exactness by taking more
equally spaced points at each latitude and equal weights foreach latitude. We study the maximal degree of exactness
which can be attained withn + 1 latitudes. As a particular case, we study the maximal exactness of the spherical
designs with equally spaced points at each latitude. Of course, all of these quadratures are no longer interpolatory.
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1. Introduction. Let S2 = {x ∈ R3 : ‖x‖2 = 1} denote the unit sphere of the Eu-
clidean spaceR3 and let

Ψ : [0, π] × [0, 2π) → S
2,

(ρ, θ) 7→ (sin ρ cos θ, sin ρ sin θ, cos ρ)

be its parametrization in spherical coordinates(ρ, θ). The coordinateρ of a point
ξ(Ψ(ρ, θ)) ∈ S2 is usually called the latitude ofξ. Let Pk, k = 0, 1, . . . , denote the Legendre
polynomials of degreek on [−1, 1] normalized by the conditionPk(1) = 1, and letVn be
the space of spherical polynomials of degree less than or equal ton. The dimension ofVn is
dimVn = (n + 1)2 and an orthogonal basis ofVn is given by

{

Y l
m(θ, ρ) = P |l|

m (cos ρ)eilθ, −m ≤ l ≤ m, 0 ≤ m ≤ n
}

.

HereP ν
m denotes the associated Legendre functions, defined by

P ν
m(t) =

(

(k − ν)!

(k + ν)!

)1/2

(1 − t2)ν/2 dν

dtν
Pm(t), ν = 0, . . . , m, t ∈ [−1, 1].

For given functionsf, g : S2 → C, the inner product is taken as

〈f, g〉 =

∫

S2

f(ξ)g(ξ) dω(ξ),

wheredω(ξ) stands for the surface element of the sphere. We also denote by Πn the set of
univariate polynomials of degree less than or equal ton.

2. Spherical quadrature. Let n, p ∈ N, βn = (β1, . . . , βn+1) ∈ [0, 2π)n+1,
ρn = (ρ1, . . . , ρn+1), 0 < ρ1 < ρ2 < . . . < ρn+1 < π, and let

S(βn, ρn, p) = {ξj,k(ρj , θ
j
k), θj

k =
βj + 2kπ

p + 1
, j = 1, . . . , n + 1, k = 1, . . . , p + 1}
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be a system of(p + 1) equally spaced nodes at each of the latitudesρj . We consider the
quadrature formula,

(2.1)
∫

S2

F (ξ)dω(ξ) ≈
n+1
∑

j=1

wj

p+1
∑

k=1

F (ξj,k),

with ξj,k ∈ S(βn, ρn, p).
A particular case, whenn is odd,p = n, and

βj =

{

απ, for j even,
0, for j odd,

with α ∈ [0, 2),(see [1, 2]) was already considered in [4]. Here the weightswj are uniquely
determined and are calculated by direct manipulation of some Gram matrices of a local basis
associated with the fundamental system of pointsS(βn, ρn, n). The quadrature formulas are
interpolatory and therefore the degree of exactness is at leastn. In [4] we showed that the
degree of exactness isn + 1 if and only if α = 1 and

∑n+1
j=1 wjPn+1(cos ρj) = 0. In [5] we

proved thatn + 1 is the maximal degree of exactness attained in this particular case.
In the following, for a fixedn, we wish to study the maximum degree of exactness

which can be achieved with such a formula. This means to impose that (2.1) be exact for
the spherical polynomialsY l

m, for l = −m, . . . , m, and to specify the maximum value ofm
which makes (2.1) exact.

On the one hand, evaluating the integral in (2.1) for these spherical polynomials, we get
∫

S2

P |l|
m (cos ρ)eilθdω(ξ) =

∫ π

0

P |l|
m (cos ρ) sin ρ dρ

∫ 2π

0

eilθdθ.

However,
∫ 2π

0

eilθdθ =

{

2π, for l = 0,
0, otherwise.

On the other hand, evaluating the sum in (2.1) for these spherical polynomials, we get

n+1
∑

j=1

wj

p+1
∑

k=1

P |l|
m (cos ρj)e

ilθj

k =

n+1
∑

j=1

wjP
|l|
m (cos ρj)

p+1
∑

k=1

eil
βj+2kπ

p+1

=

n+1
∑

j=1

wjP
|l|
m (cos ρj)e

il
βj

p+1

p+1
∑

k=1

eil 2kπ
p+1 .

The last sum is zero ifl /∈ (p + 1)Z and isp + 1 if l ∈ (p + 1)Z.
With the above remarks, the quadrature formula (2.1) is exact forY l

m with l 6= 0, in the
case whenm < p + 1. In order to be exact forl = 0 we should have

∫

S2

Pm(cos ρ)dω(ξ) =

n+1
∑

j=1

wj

p+1
∑

k=1

Pm(cos ρj),

which yields

∫ 1

−1

Pm(x)dx =
p + 1

2π

n+1
∑

j=1

wjPm(cos ρj).
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With the notationcos ρj = rj , aj = p+1
2π wj , we arrive at

(2.2)
∫ 1

−1

Pm(x)dx =

n+1
∑

j=1

ajPm(rj).

In conclusion, we proved the following result.
PROPOSITION 2.1. Let n, p, s ∈ N such thats < p + 1, and consider the spherical

quadrature formula (2.1) with ξj,k ∈ S(βn, ρn, p). This formula is exact for the spherical
polynomials inVs if and only if the quadrature formula

(2.3)
∫ 1

−1

f(x)dx ≈
n+1
∑

j=1

ajf(rj)

is exact for all polynomials inΠs.
Let us remark that, takingm = 0, 1, . . . , p in (2.2) (or, equivalently, takingf = 1, x, . . . , xp

in (2.3)), we obtain the system

(2.4)
n+1
∑

j=1

ajr
λ
j =

(

(−1)λ + 1
) 1

λ + 1
,

for λ = 0, . . . , p. This system hasp + 1 equations and2n + 2 unknowns, aj , rj ,
j = 1, . . . , n + 1.

Next it is natural to ask when formula (2.1) is exact for spherical polynomials inVs with
s ≥ p + 1. If we further impose that formula (2.1) is exact for the spherical polynomials
Y l

p+1, l = −p − 1, . . . , p + 1, then we have

n+1
∑

j=1

ajr
p+1
j =

(

(−1)p+1 + 1
) 1

p + 2
,(2.5)

n+1
∑

j=1

aj(sin ρj)
p+1eiβj = 0.(2.6)

Equation (2.5) follows from the fact that (2.1) is exact forY 0
p+1, while equation (2.6) results

from the fact that formula (2.1) is exact for the spherical polynomialsY p+1
p+1 andY −p−1

p+1 . For
l = −p, . . . ,−1, 1, . . . , p, both sides of quadrature (2.1) are zero, therefore it is exact.

In conclusion the following proposition holds.
PROPOSITION2.2. Let n, p ∈ N. Then formula (2.1) is exact for all spherical polyno-

mials inVp if and only if conditions (2.4) are satisfied forλ = 0, . . . , p. Moreover, formula
(2.1) is exact for all spherical polynomials inVp+1 if and only if supplementary conditions
(2.5) and (2.6) are fulfilled.

3. Maximal degree of exactness which can be attained with equally spaced nodes
at n + 1 latitudes. In this section we establish which is the maximum degree of exactness
that can be obtained by taking the same number of equally spaced nodes on each of the
n + 1 latitudinal circles and then we construct quadrature formulas with maximal degree of
exactness.

What is well known is that the system (2.4) is solvable for a maximal number of con-
ditions2n + 2 (for λ = 0, 1, . . . , 2n + 1), when it solves uniquely. This is the case of the
univariate Gauss quadrature formula. In this case, the maximal value forp which can be taken
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in (2.4) is p = 2n + 1, implying that (2.1) is exact for all spherical polynomials inV2n+1. In
conclusion, the following result holds.

PROPOSITION3.1. Let n ∈ N and consider the quadrature formula (2.1). Its maximal
degree of exactness is2n + 1 and if we want it to be attained, then we must take the cosines
of the latitudes,cos ρj = rj , as the roots of the Legendre polynomialPn+1 and the weights
as [3]

(3.1) wj =
2π

p + 1
aj , with aj =

2(1 − r2
j )

(n + 2)2(Pn+2(rj))2
> 0.

One possible case when it can be attained is by taking2n + 2 equally spaced nodes at each
latitude and arbitrary deviationsβj ∈ [0, 2π).

The question which naturally arises is whether we can obtaindegree of exactness2n+1
with fewer than2n + 2 points at each latitude.

3.1. Maximal exactness2n + 1 with only 2n + 1 nodes at each latitude.Consider
2n+ 1 equally spaced nodes at each latitude. If we suppose that conditions (2.4) are satisfied
for λ = 0, 1, . . . , 2n, then formula (2.1) will be exact for all spherical polynomial inV2n.
From Proposition2.2we deduce that, if we want it to be exact for all polynomials inV2n+1,
then we should add the conditions

n+1
∑

j=1

ajr
2n+1
j = 0,(3.2)

n+1
∑

j=1

aj(sin ρj)
2n+1eiβj = 0.(3.3)

In this case the quadrature formula (2.2) becomes the Gauss quadrature formula. Thus,rj will
be the roots of the Legendre polynomialPn+1 andaj are given in (3.1). Sincean+2−j = aj

andρj = π − ρn+2−j for j = 1, . . . , n + 1 andrn
2
+1 = 0 for evenn, condition (3.3) can be

written as

(n+1)/2
∑

j=1

aj(sin ρj)
2n+1(eiβj + eiβn+2−j) = 0, for n odd,(3.4)

an
2
+1e

iβ n
2

+1 +

n/2
∑

j=1

aj(sin ρj)
2n+1(eiβj + eiβn+2−j) = 0, for n even.(3.5)

For n odd, equation (3.4) is always solvable and possible solutions are discussed inAp-
pendixA. For n even the solvability of equation (3.5) is discussed in AppendixB. Numer-
ical tests performed forn ≤ 100 show that inequality (B.3) in AppendixB holds only for
n ≥ 12. Therefore, the equation (3.5) is not solvable forn ∈ {2, 4, . . . , 10} and solvable for
12 ≤ n ≤ 100. In conclusion, the following result holds.

PROPOSITION3.2. Let n ∈ N and consider the quadrature formula (2.1) with 2n + 1
equally spaced nodes at each latitude. Forn ∈ {2, 4, 6, 8, 10} one cannot attain exactness
2n + 1. For n odd and forn ∈ {12, 14, . . . , 100}, if cos ρj are the roots of the Legendre
polynomialPn+1, the weights are as in (3.1), the numbersβj are solutions of equation (3.3)
(given in Appendices 1 and 2), then the quadrature formula (2.1) has the degree of exactness
2n + 1.

We further want to know if it is possible to obtain the maximaldegree of exactness2n+1
with fewer points at each latitude.
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3.2. Maximal exactness2n + 1 with 2n points at each latitude. Let us consider2n
points(p = 2n − 1) at each latitude. If we suppose that conditions (2.4) are satisfied for
λ = 0, 1, . . . , 2n − 1, then formula (2.1) will be exact for all polynomials inV2n−1. If we
want it to be exact forY l

2n, for l = −2n, . . . , 2n, then we should add the conditions

n+1
∑

j=1

ajr
2n
j =

2

2n + 1
,(3.6)

n+1
∑

j=1

aj(sin ρj)
2neiβj = 0.(3.7)

Further, if we want the formula (2.1) to be exact for allY l
2n+1, for l = −2n− 1, . . . , 2n + 1,

then we should impose the conditions

n+1
∑

j=1

ajr
2n+1
j = 0,(3.8)

n+1
∑

j=1

aj(sin ρj)
2n cos ρje

iβj = 0.(3.9)

From conditions (3.6) and (3.8) we get again thatcos ρj = rj are the roots of the Legendre
polynomialPn+1 andaj are as in (3.1). Therefore, formula (2.1) has the degree of exact-
ness2n + 1 if and only if equations (3.7) and (3.9) are simultaneously satisfied. Due to the
symmetry, they reduce to the system

(n+1)/2
∑

j=1

aj(sin ρj)
2n(eiβj + eiβn+2−j) = 0,(3.10)

(n+1)/2
∑

j=1

aj(sin ρj)
2n cos ρj(e

iβj − eiβn+2−j ) = 0,(3.11)

for n odd, and to the system

an
2
+1e

iβ n
2

+1 +

n/2
∑

j=1

aj(sin ρj)
2n(eiβj + eiβn+2−j) = 0,

n/2
∑

j=1

aj(sin ρj)
2n cos ρj(e

iβj − eiβn+2−j) = 0,

for n even.
For n odd, we give some conditions on the solvability or non-solvability of this system

in AppendixC (PropositionC.1). Numerical tests performed forn ∈ {1, 3, 5, . . . , 99} show
that the hypotheses (C.4) in AppendixC are fulfilled only forn ∈ {1, 3, . . . , 13}, in each of
these cases the indexk beingk = (n + 1)/2. In conclusion, for these values ofn, the above
system has no solution and therefore the quadrature formulacannot have maximal exactness
2n + 1.

For n ∈ {15, 17, . . . , 41} the system is solvable since hypotheses (C.7)-(C.8) in Ap-
pendixC are fulfilled, each time forv = (n + 1)/2. In the proof of PropositionC.1, 3



ETNA
Kent State University 

http://etna.math.kent.edu

SPHERICAL QUADRATURE 153

in AppendixC, we give a possible solution of the system. Forn ∈ {43, 45, . . . , 99}, the
solvability is not clear yet. In this case, both sequences{αj , j = 1, . . . , (n + 1)/2} and
{µj, j = 1, . . . , (n + 1)/2} satisfy the triangle inequality.

In Table3.1we summarize all the cases discussed above.

TABLE 3.1
Some choices for which the maximal degree of exactness2n + 1 is attained, forPn+1(cos ρj) = 0,

j ∈ {1, . . . , n + 1}, n ≤ 100.

number of nodes n βj

at each latitude
2n + 2 N [0, 2π)
2n + 1 odd AppendixA

{2, 4, 6, 8, 10} ∅ (cf. AppendixB)
{12, 14, . . . , 100} AppendixB

2n {1, 3, . . . , 13} ∅ (cf. AppendixC, Prop.C.1, 1)
{15, 17, . . . , 41} AppendixC, Prop.C.1, 3
{43, 45, . . . , 99} no answer

even no answer

As a final remark, we mention that the improvement brought to the interpolatory quadra-
ture formulas in [4], which were established only forn odd, is the following: In [4], for
attaining the degree of exactness2n+1 one needs(2n+2)2 nodes. The quadrature formulas
presented here can attain this degree of exactness with only(2n + 2)(n + 1) nodes (for arbi-
trary choices of the deviationsβj) and with only(2n + 1)(n + 1) nodes or only2n(n + 1)
nodes (for some special cases summarized in Table3.1).

4. A particular case: spherical designs.A spherical design is a set of points ofS2

which generates a quadrature formula with equal weights which is exact for spherical poly-
nomials up to a certain degree. For a fixedn ∈ N, we intend to specify the maximal degree
of exactness that can be attained with the points inS(βn, ρn, p) and show for which choices
of the parametersβn, ρn, p this maximal degree can be attained. Therefore, let us consider
the quadrature formula

(4.1)
∫

S2

F (ξ)dω(ξ) ≈ wn,p

n+1
∑

j=1

p+1
∑

k=1

F (ξj,k), with ξj,k ∈ S(βn, ρn, p).

If we require that this formula is exact for constant functions, we obtain

wn,p =
4π

(n + 1)(p + 1)
.

As in the general case, we obtain that formula (4.1) is exact for the spherical polynomialsY l
m

for m < p + 1 and−m ≤ l ≤ m, l 6= 0. In order to be exact forY 0
m for m < p + 1, we

should have
∫ 1

−1

Pm(x)dx =
2

n + 1

n+1
∑

j=1

Pm(rj),

whererj = cos ρj, for j = 1, . . . , n + 1. In conclusion, if the quadrature formula

(4.2)
∫ 1

−1

f(x)dx ≈
2

n + 1

n+1
∑

j=1

f(rj)
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is exact for all univariate polynomials inΠs, s < p+1, then the quadrature formula (4.1) will
be exact for all spherical polynomials inVs. If in (4.2) we takef(x) = xm for m = 1, . . . , p,
we obtain the system

(4.3)
n+1
∑

j=1

rλ
j =

(−1)λ + 1

λ + 1
·
n + 1

2
,

with λ = 1, . . . , p. This system hasn + 1 unknowns. The maximal degree of exactness of
the quadrature formula (4.2) (respectively, the maximal value ofp) is obtained in the classical
case of Chebyshev one-dimensional quadrature formula, when the system (4.3) has a unique
solution. In this casep = n + 1, since the number of conditions needed to solve the quadra-
ture formula uniquely isn + 1. More precisely, in the one-dimensional case of Chebyshev
quadrature, it is known thatrj = rn+2−j for j = 1, . . . , [n/2] and that system (4.3) has no
solution forn = 7 andn > 8. For n ∈ {2, 4, 6, 8}, the quadrature formula (4.2) has the
degree of exactnessn + 1 if the conditions in (4.3) are fulfilled forλ = 1, . . . , n + 1. For
n ∈ {1, 3, 5}, if the same conditions are fulfilled, the degree of exactnessis n + 2 since one
additional condition in (4.3) for λ = n + 2 is satisfied.

In conclusion, the following result holds.
PROPOSITION 4.1. Let n ∈ {1, 2, 3, 4, 5, 6, 8} and consider the quadrature formula

(4.1) with p + 1 equally spaced nodes at each latitude. Its maximal degree ofexactness is

(4.4) µmax =

{

n + 1, for n ∈ {2, 4, 6, 8},
n + 2, for n ∈ {1, 3, 5}.

It can be attained, for example, by takingn + 2 equally spaced nodes at each latitude
(p = n + 1), for all choices of the deviationsβj in [0, 2π) and for cos ρj the nodes of the
classical one-dimensional Chebyshev quadrature formula.

We wish to investigate if the maximal degree of exactnessµmax can be obtained with
fewer thann + 2 points at each latitude.

4.1. Maximal degree of exactness attained with onlyn + 1 points at each latitude.
Supposep = n and suppose (4.3) is fulfilled for λ = 1, . . . , n. This implies that (4.1) is
exact for the spherical polynomialsY 0

λ , for λ = 1, . . . , n. We want again to investigate if the
maximal degree of exactnessµmax can be attained with onlyn + 1 points at each latitude.

Case 1:n even. If we want formula (4.1) to be exact for all spherical polynomials in
Vn+1 = Vµmax

, it remains to impose the condition that (4.1) is exact forY 0
n+1 andY

±(n+1)
n+1 .

Exactness forY 0
n+1 means

∑n+1
j=1 rn+1

j = 0, which, together with (4.3) fulfilled for λ =
1, . . . , n, leads finally to the system in the classical one-dimensionalChebyshev case. Thus
rj = rn+2−j , for j = 1, . . . , n/2, rn

2
+1 = 0 and a solution exists only forn ∈ {2, 4, 6, 8}.

Further, exactness forY ±(n+1)
n+1 reduces to

(4.5) e
iβ n

2
+1 +

n/2
∑

j=1

(sin ρj)
n+1(eiβj + eiβn+2−j) = 0.

Numerical tests show that condition (B.3) in AppendixB is fulfilled for n ∈ {2, 4, 6, 8}.
Therefore, equation (4.5) is solvable.

Case 2: n odd. In this case, if we want formula (4.1) to be exact for all spherical
polynomials inVn+2 = Vµmax

, it remains to require that it is exact forY 0
n+1, Y 0

n+2, Y ±(n+1)
n+1

andY
±(n+1)
n+2 .
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Exactness for the spherical polynomialY 0
n+1 reduces to the condition

n+1
∑

j=1

rn+1
j =

n + 1

n + 2
,

which, added to conditions (4.3) for λ = 1, . . . , n, leads again to the system in the classical
one-dimensional Chebyshev case (which is uniquely solvable).

Exactness forY 0
n+2 reduces to condition

n+1
∑

j=1

rn+2
j = 0,

which is automatically satisfied.

Further, exactness forY ±(n+1)
n+1 andY

±(n+1)
n+2 means, respectively,

(n+1)/2
∑

j=1

(sin ρj)
n+1(eiβj + eiβn+2−j) = 0.(4.6)

(n+1)/2
∑

j=1

(sin ρj)
n+1 cos ρj(e

iβj − eiβn+2−j ) = 0.(4.7)

In conclusion, the maximal degree of exactnessn+2 is attained if and only ifrj are the nodes
in univariate Chebyshev quadrature and the system (4.6)-(4.7) is solvable. The solvability of
this system is discussed in AppendixC in the general case. Forn = 1, the non-solvability is
clear. Forn = 3, the system is again not solvable (cf. PropositionC.1, AppendixC), since
µ1 < µ2. For n = 5, it is solvable since the hypotheses (C.5)-(C.6) in PropositionC.1 are
satisfied, withv = 2.

To summarize the above considerations, we state the following result.
PROPOSITION 4.2. Let n ∈ {1, 2, 3, 4, 5, 6, 8} and consider the quadrature formula

(4.1) with n+1 equally spaced nodes at each latitude. Then the maximal degree of exactness
µmax given in Proposition4.1 can be attained forn = 2, 4, 6, 8, if cos ρj are chosen as
nodes of the classical one-dimensional Chebyshev quadrature formula and the numbersβj

are chosen as described in AppendixB. For n = 1, 3, the maximal degree of exactness cannot
be attained, while forn = 5 it can be attained if the deviationsβj , j = 1, . . . , 6, are taken as
described in AppendixC, PropositionC.1, 2.

The natural question which arises now is: Is it possible to have maximal degree of ex-
actnessn + 1 with only n points at each latitude? The answer is given in the following
section.

4.2. Maximal degree of exactness with onlyn points at each latitude. Let us consider
n points at each latitude(p = n− 1) and suppose (4.3) holds forλ = 1, . . . , n− 1. We want
to see if the maximal degree of exactnessµmax can be attained with onlyn points at each
latitude.

Case 1: n odd. In this case, if we want formula (4.1) to be exact for all spherical
polynomials inVn+2 = Vµmax

, it remains to impose that it is exact forY 0
n+1, Y 0

n+2, Y ±n
n ,

Y ±n
n+1 andY ±n

n+2. Altogether, they imply thatrj = cos ρj are the abscissa in the classical
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univariate Chebyshev case, and the deviationsβj should satisfy the system

(n+1)/2
∑

j=1

(sin ρj)
n(eiβj + eiβn+2−j ) = 0,(4.8)

(n+1)/2
∑

j=1

(sin ρj)
n cos ρj(e

iβj − eiβn+2−j) = 0,(4.9)

(n+1)/2
∑

j=1

(sin ρj)
nP

(n)
n+2(cos ρj)(e

iβj + eiβn+2−j ) = 0.

SinceP
(n)
n+2(cos ρ) is an even polynomial of degree two incos ρ, using equation (4.8), we can

replace the last equation by

(4.10)
(n+1)/2

∑

j=1

(sin ρj)
n(cos ρj)

2(eiβj + eiβn+2−j ) = 0.

Forn = 1, the system is clearly not solvable.
For n = 3, the system is solvable sincesin3 ρ1 cos ρ1 = sin3 ρ2 cos ρ2. A solution can be
written as

β1 ∈ [0, 2π), β3 = β1, β2 = β4 = β1 + π (mod2π).

Forn = 5, up to now we do not have a result regarding the solvability of the system.

TABLE 4.1
Some choices for which the maximal degree of exactnessµmax is attained, forcos ρj , j ∈ {1, . . . , n + 1},

the nodes in the case of classical Chebyshev quadrature.

number of nodes n βj

at each latitude
n + 2 {1, 2, 3, 4, 5, 6, 8} [0, 2π)
n + 1 {2, 4, 6, 8} [0, 2π)

{1, 3} ∅ (cf. AppendixC, Prop.C.1, 2)
5 no answer

n 1 ∅
3 β1 ∈ [0, 2π), β3 = β1, β2 = β4 = β1 + π

{2,4,6,8} no answer

Case 2:n even. If we want formula (4.1) to be exact for all spherical polynomials in
Vn+1 = Vµmax

, it remains to impose that (4.1) is exact forY 0
n , Y 0

n+1, Y
±n
n andY ±n

n+1. Exact-

ness forY 0
n andY 0

n+1 means
∑n+1

j=1 rn
j = 1 and

∑n+1
j=1 rn+1

j = 0, respectively. Together with
(4.3) fulfilled for λ = 1, . . . , n − 1, they lead to the system in the classical one-dimensional
Chebyshev case. Thusrj = rn+2−j , for j = 1, . . . , n/2, rn

2
+1 = 0 and a solution exists

only for n ∈ {2, 4, 6, 8}. Further, using again the symmetry of the latitudes, exactness for
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Y ±n
n andY ±n

n+1 reduces to

e
iβ n

2
+1 +

n/2
∑

j=1

(sin ρj)
n(eiβj + eiβn+2−j) = 0,(4.11)

n/2
∑

j=1

(sin ρj)
n cos ρj(e

iβj − eiβn+2−j ) = 0.(4.12)

In conclusion, the maximal degree of exactnessµmax = n + 1 can be attained if and only if
the system (4.11)-(4.12) is solvable. Unfortunately we could not give a result regarding the
solvability of this system.

All these cases are summarized in Table4.1.

5. Numerical examples. In order to demonstrate the efficiency of our formulas, we
consider the quadrature formula

∫

S2

F (ξ)dω(ξ) ≈
m+1
∑

j=1

wj

p+1
∑

k=1

F (ξj,k),

with ξj,k(ρj , θ
j
k) ∈ S2, in the following cases:

1. The classical Gauss-Legendre quadrature formula, withm = n, p = 2n + 1,
cos ρj = rj , the roots of Legendre polynomialPn+1,

θj
k =

kπ

n + 1
,

wj =
2π

2n + 2
aj , with aj =

2(1 − r2
j )

(n + 2)2(Pn+2(rj))2
,

j = 1, . . . , n + 1, k = 1, . . . , 2n + 2. This formula has2n2 + 4n + 2 nodes and
is exact for polynomials inV2n+1. It is in fact a particular case of the quadratures
given in Proposition3.1, when all deviationsβj are zero.

2. The Clenshaw-Curtis formula1, with m = 2n, p = 2n + 1,

θj
k =

kπ

n + 1
, ρj =

(j − 1)π

2n
for j = 1, . . . , 2n + 1, k = 1, . . . , 2n + 2,

wj = w2n+1−j =
4πε2n+1

j

n(n + 1)

n
∑

l=0

εn+1
l+1

1

1 − 4l2
cos

(j − 1)lπ

n
, for j = 1, . . . , n,

where

εJ
j =

{

1
2 if j = 1 or j = J,
1 if 0 < j < J.

This formula has4n2 + 6n + 2 nodes and is exact for polynomials inV2n+1.

1This formula is sometimes called Chebyshev formula, since in the one-dimensional case it is based on the
expansion of a function in terms of Chebyshev polynomialsTi of the first kind. The nodescos jπ/2n are the
extrema of the Chebyshev polynomialT2n of degree2n.
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In our numerical experiments we have considered the following test functions:

f1(x) = −5 sin(1 + 10x3),

f2(x) = ‖x‖1/10,

f3(x) = 1/‖x‖1,

f4(x) = exp(x2
1),

wherex = (x1, x2, x3) ∈ S2.
From the quadrature formulas constructed in this paper, we consider those from Sec-

tion 3.1 and we compare them with the Gauss-Legendre and Clenshaw-Curtis quadratures
mentioned above. We do not present here quadratures from Proposition3.1for deviationsβj

different from zero, since in this case, for the above test functions, the errors are comparable
with the ones obtained for Gauss-Legendre (when allβj are equal to zero).

Figure5.1 shows the interpolation errors (logarithmic scale) for each of the functions
f1, f2, f3, andf4, respectively.

Appendix A. Forn odd, we provide solutions of the equation

(A.1)
q

∑

j=1

αj(e
iβj + eiβn+2−j ) = 0,

with q = (n + 1)/2, αj > 0 given and the unknownsβj , j = 1, . . . , n + 1. For this we need
the following result.

LEMMA A.1. Let A > 0 be given. Then, for everyz = τeiθ ∈ C with
0 ≤ τ ≤ 2A, θ ∈ [0, 2π), there existωj = ωj(τ, θ) ∈ [0, 2π), j = 1, 2, such that

(A.2) A(eiω1 + eiω2) = z.

Proof. Indeed, denoting

γ = arccos
τ

2A
∈

[

0,
π

2

]

,

a possible choice of theω1, ω2 which satisfy relation (A.2) is the following:
1. If θ − γ ≥ 0 andθ + γ < 2π, then(ω1, ω2) ∈ {(θ + γ, θ − γ), (θ − γ, θ + γ)};
2. If θ − γ < 0, then(ω1, ω2) ∈ {(θ + γ, θ − γ + 2π), (θ − γ + 2π, θ + γ)};
3. If θ + γ ≥ 2π, then(ω1, ω2) ∈ {(θ + γ − 2π, θ − γ), (θ − γ, θ + γ − 2π)},

or, shorter,
{

ω1 = θ + εγ (mod2π),
ω2 = θ − εγ (mod2π),

with ε ∈ {−1, 1}.

Equality (A.2) can be verified by direct calculations.
Let us come back to equation (A.1). Forj = 1, . . . , q, we considerzj = τje

iθj ∈ C with
0 ≤ τj ≤ 2αj , such that

z1 + . . . + zq = 0.

In fact, we takeq − 1 arbitrary complex numbersz∗j = τ∗
j eiθj , τ∗

j ≥ 0, j = 1, . . . , q − 1,

and then considerz∗q = −z∗1 − . . .− z∗q−1. The numberszj = τje
iθj , j = 1, . . . , q, satisfying
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FIG. 5.1.Interpolation errors (logarithmic scales) for the test functionsf1, f2, f3, f4.
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the inequalitiesτj ≤ 2αj are taken such that

τj = τ∗
j B, with B = min

k = 1, . . . , q,
τ∗
k > 0

2αk

τ∗
k

.

Denoting

γj = arccos
τj

2αj
, j = 1, . . . , q,

and applying LemmaA.1, we can write a solution of equation (A.1) as
{

βj = θj + εjγj (mod2π),
βn+2−j = θj − εjγj (mod2π),

with εj ∈ {−1, 1}.

Appendix B. Forn even, we discuss the equation

(B.1) αq+1e
iβq+1 +

q
∑

j=1

αj(e
iβj + eiβn+2−j) = 0,

with q = n/2, αj > 0 given and the unknownsβj , j = 1, . . . , q + 1. For determining a
non-trivial solution we need the following result.

LEMMA B.1. Leta, b1, . . . , bq > 0 such thata ≤ b1 + . . .+bq. Then there exist numbers
tj ∈ [0, 1] (not all of them equal) forj ∈ {1, . . . , q}, such that

(B.2) a =

q
∑

j=1

tjbj .

Proof. Of course, a trivial solution, when alltj are equal, is

tj = t∗ =
a

b1 + . . . + bq
∈ (0, 1], for j = 1, 2, . . . , q + 1,

and it leads to a trivial solution of (3.5).
For non-trivial solutions, lett = a(b1 + . . . + bq)

−1 ∈ (0, 1]. There existεj ∈ [0, t],
j = 1, . . . , q − 1 such that

c :=

∑q−1
j=1 εjbj

bq
≤ 1 − t.

The numberstj, defined as

tν =

{

t − εν , for ν 6= q,
t + c, for ν = q,

satisfy the equality (B.2).
We will prove that equation (B.1) is solvable if and only if

(B.3) αq+1 ≤ 2

q
∑

j=1

αj .
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Indeed, if the equation is solvable, (B.3) follows immediately by applying the triangle in-
equality. Conversely, suppose that (B.3) holds. From the previous lemma, there exist numbers
tj ∈ [0, 1] such thatαq+1 = 2

∑q
j=1 αjtj . Then a solution of equation (B.1) is

βj = arccos tj , βn+2−j = 2π − βj (mod2π), for j = 1, . . . , q,

βq+1 = π.

Appendix C. Forn odd, we discuss the solutions of the system

q
∑

j=1

αj(e
ixj + eiyj ) = 0,(C.1)

q
∑

j=1

µj(e
ixj − eiyj ) = 0,(C.2)

with q = n+1
2 , αj , µj > 0 given andxj , yj ∈ [0, 2π) unknowns. Due to our particular

problems (systems (3.10)-(3.11) and (4.6)-(4.7)), we will also suppose that

(C.3)
αj+1

µj+1
≥

αj

µj
for all j = 1, . . . , q − 1.

Forn = 1 the incompatibility is immediate, so let us suppose in the sequel thatn ≥ 3.
PROPOSITIONC.1. Under the above assumptions, the following statements are true:
1. If there existsk ∈ {1, . . . , q} such that

(C.4) αkµk > αk

k−1
∑

j=1

µj + µk

q
∑

j=k+1

αj ,

then the system(C.1)-(C.2) is not solvable.
2. If there existsv ∈ {1, . . . , q} such that

µv ≥

q
∑

j=1, j 6=v

µj ,(C.5)

αv ≤

q
∑

j=1, j 6=v

αj ,(C.6)

then the system is solvable.
3. If there existsv ∈ {1, . . . , q} such that

αv ≥

q
∑

j=1, j 6=v

αj ,(C.7)

µv ≤

q
∑

j=1, j 6=v

µj ,(C.8)

then the system is solvable.
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Proof.
1. We suppose that the system is solvable and letxj , yj , j = 1, . . . , q, be a solution. If

we multiply the equations (C.1)-(C.2) by µk andαk, respectively, and then we add
them, we get, for allk = 1, . . . , q,

2αkµkeixk =

q
∑

j=1, j 6=k

−(αkµj + αjµk)eixj + (αkµj − αjµk)eiyj .

Using the triangle inequality and the identitya + b + |a − b| = 2 max{a, b}, we
obtain

αkµk ≤

q
∑

j=1, j 6=k

max{αkµj , αjµk}.

Using now the hypothesis (C.3), this inequality can be written as

αkµk ≤ αk

k−1
∑

j=1

µj + µk

q
∑

j=k+1

αj ,

which contradicts (C.4). In conclusion, the system is incompatible.
2. Applying LemmaB.1, there are numberstj ∈ [0, 1], j = 1, . . . , q, j 6= v, such that

αv =
∑

j=1, j 6=v

αjtj .

We define the functionϕ : [0, 2] → R,

ϕ(t) =

q
∑

j=1, j 6=v

µj

√

4 − t2j t
2 − µv

√

4 − t2.

Sinceϕ(0) · ϕ(2) ≤ 0, there existst0 ∈ [0, 2] such thatϕ(t0) = 0. A simple
calculation shows that a solution of the system can be written as

xj = arccos
t0tj
2

, yj = 2π − xj (mod2π), for j 6= v,

xv = π + arccos
t0
2

, yv = π − arccos
t0
2

.

3. Lett1 = α−1
v

∑q
j=1, j 6=v αj ≤ 1 and define the functionϕ : [0, 1] → R,

ϕ(t) =
√

1 − t2
q

∑

j=1, j 6=v

µj − µv

√

1 − t21t
2.

Sinceϕ(0) · ϕ(1) ≤ 0, there existst0 ∈ [0, 1] such thatϕ(t0) = 0. Then we define

δν =

{

2ανt0, for ν 6= v,
2t0

∑q
j=1, j 6=v αj , for ν = v.

A simple calculation shows that a solution of the system can be written as

xj = arccos
δj

2αj
, yj = 2π − xj (mod2π), for j 6= v,

xv = π + arccos
δv

2αv
, yv = π − arccos

δv

2αv
.
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