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THE HEAT TRANSFORM AND ITS USE IN THERMAL IDENTIFICATION
PROBLEMS FOR ELECTRONIC CIRCUITS ∗

STEFAN KINDERMANN† AND MARCIN JANICKI‡

Abstract. We define and analyze a linear transformation – the heat transform – that allows to map solutions
of hyperbolic equations to solutions of corresponding parabolic equations. The inversion of this mapping can be
used to transform an inverse problem for the heat equation toa similar problem for the wave equation. This work
is motivated by problems of finding interfaces, boundaries and associated heat conduction parameters in the thermal
analysis of electronic circuits when transient data are available. Since the inversion of the transformation is ill-posed,
we use a semi-smooth Newton scheme to regularize it enforcing sparsity of the solution. We present some numerical
results of this procedure for simulated and measured data, which shows that heat conduction effects due to interfaces
and boundaries can be found and classified by an inversion of the heat transform.
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1. Introduction. The thermal analysis of electronic systems is a crucial fieldin modern
electronics. An improved understanding of the thermal behavior of semiconductor devices is
necessary due to the increased operating frequency and the associated high dissipated power
density, which is directly related to the temperature. Reliable thermal circuit models are
required to predict system temperature in order to prevent severe damage. The first essential
step in building such models is to find from experiments the main heat equation parameters
that govern the heat flow.

The stated problem leads to a parameter identification problem for parabolic equations.
Such problems are usually nonlinear and often exponentially ill-posed. On the contrary, sim-
ilar problem associated with hyperbolic equations such as the wave equation are much less
ill-posed and, in some circumstances, can even be solved in astable way, e.g., in tomogra-
phy. The fundamental difference of the ill-posedness between these two cases is clear from
the governing equations: While hyperbolic equations allowtransportation of energy and in-
formation with finite speed, parabolic equation do not show wave-type behavior, but initial
information is smoothed out and can hardly be recovered.

In this paper, we present a new way of analyzing experimentaltransient temperature
data of an electronic system by the use of a linear transformation, the heat transform, which
can be used to obtain qualitative information about the associated heat equation parameters,
in particular, the location of interfaces and boundaries and the associated heat conduction
parameters there.

The main idea of this paper is to relate parabolic equations to hyperbolic equations by
the use of the heat transform. This is extremely useful because it allows us to link severely ill-
posed inverse problems for the heat equation to similar but mildly ill-posed problem for the
wave equation. Since the heat transform is linear, the benefit of our approach is to split a non-
linear severely ill-posed problem into a linear one (inverting the heat transform) and a mildly
ill-posed nonlinear one (parameter identification for waveequations). The main difficulty is
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thus reduced to a linear inverse problem, for which advancedregularization techniques can
be used.

We also note that our work can give a justification to the oftenused practice of speaking
of heat waves that travel through an electronic package. Of course, such a notion does not
make sense for parabolic equations, as heat travels with infinite speed. (Note that we do not
deal with non-standard heat equations of hyperbolic type, for which heat waves would make
sense.) In our approach the heat waves correspond to solutions of the wave equation which
can be related to the heat and temperature (using the heat transform) in a mathematically
rigorous way.

The central idea of the heat transform introduced in this paper is not new, but is a slight
modification (a time integrated version) of the heat transform defined by Widder [24]. It is
known that this transform maps the wave equation to the heat equation in the case of classical
solutions [5], and this has been used, e.g., in [13, 14]. However, we study this transformation
in the more general distributional setting, which is necessary, because solutions of the heat
equation need not be classical (at interfaces) or can have singularities, e.g., if the heat source
and the measurement point coincide.

To our knowledge such a treatment is new in this context. A standard way of analyzing
the thermal properties of electrical circuits is to computethe time-constant spectrum [17, 18]
or structure functions [3, 21, 22, 23] from the thermal response data. However, these methods
can be seen as model reduction techniques and they suffer from the fact that the computed
parameters do not have a real physical interpretation. On the contrary, in our approach, invert-
ing the heat transform yields a wave equation solution, which can be interpreted as reflection
waves at interfaces and boundaries. Hence, we can relate thethermal response to a few param-
eters (the traveling time of the reflected waves), from whichthe heat conduction parameter or
the geometry such as layer thickness can be computed.

The paper is organized as follows: In Section2, we introduce the partial differential
equation of interest and define the heat transform, both for functions and distributions. Fur-
thermore, we show that the proposed transformation maps wave equation solutions to heat
equation solutions, cf. Theorems2.8 and2.9, which are the main theoretical results. The
analysis is done in abstract Hilbert spaces and for distributional solutions. In Section3, we
study some of the properties of the heat transform. Section3.1underpins the theoretical result
of Theorems2.8and2.9by an example which also indicates the structure of wave solutions
and how parameters can be found by measuring the travel time.In Section4, we consider the
discretization and inversion of the heat transform, for which we use a modified semi-smooth
Newton method to enforce the expected sparsity structure. Finally, in Section5, we present
some numerical results using both simulated and experimental data.

2. PDE model and the heat transform.The thermal behavior of an electronic circuit
is usually modelled by variants of the heat equation. Data for calibration of thermal models
are obtained by the following experiment: one of the active devices or resistors is used to heat
the system by a Heaviside power step and the transient thermal response is recorded at one
or more locations. Alternatively, the system can be heated first to its thermal steady state and
then the cooling curve can be captured.

A large class of electronic systems can be modelled by multi-layer slabs. In this case,
the heat source is placed on the top surface and the temperature response is measured at one
or several location; see Fig.2.1. These data are used to determine the relevant heat equation
parameters, such as the geometry, the location of layer interfaces, possible defects of the
package, or to build reduced thermal models.

In the following we use a quite general PDE description for this: We assume that the
heat source strength is constant in time and, thus, the temperature is modelled by the abstract



ETNA
Kent State University 

http://etna.math.kent.edu

166 S. KINDERMANN AND M. JANICKI

heat source sensor Transient Data

Temperature

Time

FIG. 2.1.Experimental setup

parabolic equation foru(t, x), t ≥ 0, x ∈ Ω,

(2.1) ∂
∂t
u = Au+ Θ(t)χ,

wereΘ(t) denotes the Heaviside function

Θ(t) =

{

1, t > 0,
0, t ≤ 0,

χ(x) is a function only depending on the space variablex that describes the shape and location
of the source, andA denotes a general time-independent linear second order elliptic partial
differential operator together with appropriate boundaryconditions. The assumption thatA
is time-independent is true, if the coefficients in the operator and the boundary conditions are
independent of time. Such an assumption is not very restrictive in reality, as long as a linear
model is considered.

A standard model forA for the thermal analysis of electrical circuits is the Laplace
operator

A = D∆,

whereD is the diffusivity depending on the material. If the diffusivity is not constant due to
multiple materials, an appropriate operator would be

Au =
1

ρc
div(λ∇u),

with the thermal conductivityλ , the densityρ, and the specific heatc. Right now, we do not
specifyA. The specific structure ofA is only relevant when analyzing the heat wave function,
but is not needed in the analysis of the heat transform.

We further have to supplement the equation with an initial condition: we assume thatu
is initially at a constant reference temperature which we can take without loss of generality
to be0. Thus,

(2.2) u(t = 0, x) = 0, x ∈ Ω.

An observation of a thermal experiment described above yields the thermal profile at some
point

y(t) := u(t, xobs), t ∈ R
+ := {t > 0}.

A very important task in the thermal analysis of circuits is to find out about the inter-
nal structure of the electronic system from such thermal measurementsy. This can serve for
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several purposes, for instance, to determine thermal parameters (e.g., thermal diffusivity, con-
ductivity, heat transfer coefficients, boundary conditions, etc.), to improve modelling of the
circuit or for model reduction, by building a simpler model of the circuit which have similar
thermal response.

A common way to analyse the thermal response is to calculate the so-calledtime-constant
spectrum[22], R̃(τ), defined as

(2.3) y(t) =:

∫ ∞

0

R̃(τ)(1 − exp(− t

τ
))dτ.

An alternative version of the time constant spectrum uses a change of variablesτ = exp(ξ)
andR(ξ) = R̃(exp ξ) exp ξ. In this caseR is given by [22]

(2.4) y(t) =:

∫ ∞

−∞
R(ξ)(1 − exp(− t

exp(ξ)
))dξ.

Based on this, further transformation can be made to find another representation of the
system, such as thestructure function[3, 21, 22, 23].

The time-constant spectrum completely determines the thermal system in a specific con-
figuration, but it has a drawback: it is not clear, how the information inR is related to any real
geometric structure of the package. It would be advantageous to directly infer form the data
some information about the internal structure of the package, such as interfaces, cooling or
heat-transfer parameters. Right now, such information is extracted fromR̃ on a more or less
heuristic basis drawn from experience. Some more rigorous attempts using the time-constant
spectrum have been made by relating the structure function to a one-dimensional heat flow
model [3], but the validity of this simplified model in more general, non symmetric situations
is not clear.

In order to circumvent this drawback, we propose to compute adifferent function – the
heat wave function – instead of the time-constant spectrum.This allows us to directly find out
about the internal structure of the package, as long as we canmake sense out of the solution
of the wave equation corresponding to the operatorA.

Associated to (2.1) we define the following heat wave functionw(s, x), s ≥ 0, x ∈ Ω,
as a weak solution of the wave equation

(2.5) ∂2w
∂s2 = Aw + δ(s)χ,

supplemented with zero Cauchy data

(2.6) w(s = 0, x) = 0, ∂
∂s
w(s = 0, x) = 0, x ∈ Ω.

Hereδ is the delta-distribution centered at0. Alternatively, we can definew as solution
of (2.5) on R × Ω together with the condition thatw(s, x) = 0 for s ≤ 0, or in other words,
that the support ofw is contained in the positives-axis.

Now the main idea is to find a transformation that relatesu to w. This transformation
is central to our analysis and we will refer to it as the heat transform. We first define it for
real-valued functions.

DEFINITION 2.1. Theheat transformis the linear transformation, that maps a function
w : R

+ → R to the functionHw(t)

(2.7) Hw(t) :=

∫ ∞

0

w(s)Φ(
s

2
√
t
)ds,
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whenever the integral exists. HereΦ is the complementary error function

Φ(x) := erfc(x) :=
2√
π

∫ ∞

x

e−τ2

dτ.

Of course, the definition only makes sense, when the integralexists. The heat wave
functionw is not necessarily a function, but rather a distribution. The extension of definition
(2.7) to distributions is obvious, if we only do formal calculations: ifw is a distribution in
S′(R), then formally we could define its heat transform by the duality paring

(Hw)(t) := 〈w,Φ(
.

2
√
t
)〉S′,S . t > 0.

We did not specify this equation as a definition, because it isnot clear that the right-hand
side exists, becauseΦ( .

2
√

t
) is not inS(R). However, it certainly exists for distributions with

compact support (see [12, Thm 2.3.1]), and fort > 0. For tempered distributionsS ′ with
support inR

+, we can define the heat transform by using an appropriate cutoff-function:
DEFINITION 2.2. Let w ∈ S′(R) with support inR

+. Let ψ(s) ∈ C∞(R) a cutoff
function, which is1 in a neighborhood ofsupp(w), and 0 for s < −s0 < 0, for some
s0 ∈ R

+. Then the heat transform is defined as

(2.8) Hw(t) :=
〈

w,ψ(.)Φ
(

.

2
√

t

)〉

S′,S
,

for t > 0.
This definition makes sense as we show in the following lemma.
LEMMA 2.3. Withψ as in definition(2.2), and fort > 0 fixed,ψ(.)Φ( .

2
√

t
) is in S(R).

Proof. By induction it is immediate that

(2.9)
∂k

∂sk
Φ(

s

2
√
t
) = e

−s2

4t pk−1(
s√
t
)

1

t
k
2

, k ≥ 1,

with a polynomialpk−1 of degreek − 1. Thus, all derivatives of orderk > 0 are rapidly
decaying functions fort > 0. However,lims→−∞ Φ( s

2
√

t
) is not decaying, but due to the

multiplication with the cutoff-function the decay is established. The definition ofHw does
not depend on the choice of the cutoff-function, by the definition of the support.

Note that att = 0 the functionΦ( s

2
√

t
) has a jump singularity ats = 0, so the heat

transform is not well defined for distributions att = 0. However, if we would like to be
Hw a solution to a heat equation, we have to be able to use values at t = 0, to state initial
conditions. We will remedy this situation by using a small time-shiftǫ > 0 and then letǫ tend
to 0; see (2.14) below.

We intend to show that the wave equation solution and the heatequation solution are
related by the heat transform. Here, some care has to be taken, since the heat wave function
is typically a distribution, so we have to use an appropriateweak solution. A weak solution
of (2.5), (2.6) will be a tempered distribution onR with values in a separable Hilbert spaceV
(see, e.g., [25]):

w : S(R) → V, in symbol:w ∈ S′(R;V ).

That is, for anyφ ∈ S, the mapping

S(R) → V

φ→ 〈w(., x), φ(.)〉S′(R),S(R)
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is linear and continuous.
Moreover, we assume that the operatorA induces a continuous bilinear form onV × V :

(2.10) a(u, v) := −(Au, v) bilinear and continuousV × V → R.

Now letw(s, x) be a classical solution such thatw(s, .) is twice differentiable with values in
V . Then multiplying (2.5) by a test function and integrating, we obtain a weak formulation
in the usual way (compare, e.g., [8]):

∂2

∂s2 (w(s, .), v)V ′,V + a(w(s, .), v) = δ(s)(χ, v)V ′,V .

Let ηi be an orthonormal basis ofV . Then we can expressw in the form

w(s, x) =

∞
∑

i=1

ζi(s)ηi(x),

and obtain

(2.11)
∞
∑

i=1

∂2

∂s2 ζi(s) (ηi, v)V ′,V + ζi(s)a(ηi, v) = δ(s)(χ, v)V ′,V .

This identity holds, because the series forw converges inV and the bilinear form is continu-
ous onV . Now this reasoning leads to an appropriate definition of a weak solution: we only
have to replaceζi by tempered distributions and consider equation (2.11) in S′.

DEFINITION 2.4. By a weak solution to(2.5) we mean aV -valued distributionS′(R;V )
with an expansion

(2.12) w(s, x) =

∞
∑

i=1

ζi(s)ηi,

whereηi is an orthonormal basis ofV andζi ∈ S′(R), such that∀φ ∈ S(R), ∀v ∈ V ,

∞
∑

i=1

〈

∂2

∂s2φ, ζi

〉

(ηi, v)V ′,V + 〈ζi, φ〉 a(ηi, v) = 〈δ, φ〉 (χ, v)V ′,V ,

such that allζi have support inR+. The support condition is the appropriate formulation of
zero initial data (2.6). From the derivation it should be clear that a classical solution is also a
weak solution.

We now have to define the heat transform for functions inS ′(R;V ).
DEFINITION 2.5. Letw ∈ S′(R, V ) with support inR

+. Then

(2.13) (Hw)(t) := 〈w,Φ(
.

2
√
t
)〉, t > 0,

or equivalently, ifw has an expansion as in(2.12), then

(Hw)(t) =

∞
∑

i=1

(Hζi)(t) ηi.

Note that the integral in this definition (2.13) is a Bochner integral [25]. As we have indicated,
we have to consider the value of(Hw)(t) at t = 0. This is a subtle point due to possible
singularities. We therefore need an approximated version of the heat transform:



ETNA
Kent State University 

http://etna.math.kent.edu

170 S. KINDERMANN AND M. JANICKI

DEFINITION 2.6. Letw ∈ S′(R, V ) or letw ∈ S′(R) with support inR
+. Then for any

ǫ > 0, we define

(2.14) (Hǫw)(t) := 〈w(. − ǫ),Φ(
.

2
√
t
)〉 = 〈w,Φ(

· + ǫ

2
√
t
)〉, t > 0.

The approximate transform has well-defined values att = 0. Moreover, ifw has support in
s > 0, then asǫ→ 0, the approximate heat transformHǫ converges toH:

LEMMA 2.7. Let w ∈ S′(R) with support inR
+. Thenφǫ(t) := (Hǫw)(t) is a

C∞(]0,∞[)-function with

lim
t→0

dk

dtk
φǫ(t) = 0 ∀k ∈ N.

If w ∈ S′(R) with support in{s ∈ R | s > 0}, then

Hw(t) = lim
ǫ→0

(Hǫw)(t)

for all t > 0.
Proof. Note thatw(.−ǫ) is inS′(R) and has support in[ǫ,∞[. SinceΦ( .

2
√

t
) is inC∞ for

t > 0,Hǫ is well defined. Moreover, from (2.9) it follows that on[ǫ,∞], limt→0 Φ( .

2
√

t
) = 0

in C∞([ǫ,∞[). Moreover, the same holds ford
k

dtk Φ( .

2
√

t
), which establishes the proof of the

first part. For the second part we observe thatΦ( ·+ǫ

2
√

t
) converges toΦ( ·

2
√

t
) in C∞([τ,∞[)

for any positiveτ asǫ → 0. Since the support ofw is contained in an interval[τ,∞[ this
suffices for convergence; cf. [12, Thm 2.3.1].

We now come to the main theorem: We postulate the existence ofa weak solution to
the wave equation and conclude that its heat transform satisfies the heat equation. The only
assumption onA is that the induced bilinear form is continuous and time-independent.

THEOREM 2.8. Letw : S ′(R) → V be a weak solution of the wave equation(2.5), and
(2.6) as in Definition2.4. Assume that the bilinear forma(., .) satisfies(2.10) and does not
depend on time. Let

uǫ := Hǫw.

Thenuǫ is inC∞([0, T ], V ) for anyT > 0 and satisfies

d
dt

(uǫ, v)V ′,V + a(uǫ, v) = Φ(
ǫ

2
√
t
) (χ, v)V ′,V ∀v ∈ V, t > 0.

Moreover,

(2.15) lim
t→0

uǫ(t, .) = 0.

Proof. A direct calculation shows that fort > 0, Φ( s

2
√

t
) satisfies

(2.16)
∂

∂t
Φ(

s

2
√
t
) =

∂2

∂s2
Φ(

s

2
√
t
).

Now assume thatw ∈ S′(R;V ) is a weak solution to (2.5) and (2.6). Since the support of
w(.−ǫ) is in [ǫ,∞[, and because of (2.9), a difference approximation tod

dt
Hǫw(t) ∼ ∆

∆t
Hǫw
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equals〈w(.− ǫ), ∆
∆t

Φ( .

2
√

t
)〉. The limit∆t→ 0 will converge inS′ to 〈w(.− ǫ), ∂

∂t
Φ( .

2
√

t
)〉,

because of the support ofw. Together with (2.16) this yields

d

dt
Hǫw(t) =

〈

w(.− ǫ),
∂2

∂τ2
Φ(

.

2
√
t
)

〉

= Hǫ(
∂2

∂τ2
w),

by the definition of distributional derivative. Sincew satisfies equation (2.11) anda(., .) does
not depend ont, it is obvious thatw(. − ǫ) satisfies the same equation but withδ(t) replaced
by δ(.− ǫ). Thus,

d
dt
Hǫw(t) +

∞
∑

i=1

〈Hǫζi〉 a(ηi, v)

=

(

δ(.− ǫ),Φ(
.

2
√
t
)

)

(χ, v)V ′,V = Φ(
ǫ

2
√
t
)(χ, v)V ′,V .

Note that fort ≥ 0,
∑∞

i=1(Hǫζi)ηi is an element inV by definition ofS′(R, V ) and

‖
∞
∑

i=1

(Hǫζi)(t)ηi‖2 =
∞
∑

i=1

|Hǫζi)(t)|2 = ‖(w(.− ǫ),Φ(
.

2
√
t
)‖2 ≤ C,

which shows that the series converges. Because of the continuity of a, we obtain

∞
∑

i=1

(Hǫζi)(t)a(ηi, v) = a(Hǫw(t), v).

The uniform boundedness of‖uǫ(t, .)‖V and of all its time-derivatives for anyt in [0, T ]
follows by the same arguments, hence,uǫ ∈ C∞([0, T ], V ). Equation (2.15) follows from
the first part of Lemma2.7.

We have seen that the approximate heat transform satisfies a heat equation similar to (2.1).
We can now take the limitǫ → 0. In view of Lemma2.7, uǫ will converge to the heat trans-
form if the assumptions of this lemma apply. If they are not satisfied, the pointwise limit does
not exist, but we can show the limit exists in an appropriate Banach space. For this we rely
on well-known estimates for parabolic equations assuming that the operatorA is uniformly
elliptic:

THEOREM 2.9. Let V ⊂ H ⊂ V ′ be a Gelfand triple, leta(., .) be as in Theorem2.8,
and additionally let a Garding inequality hold:

a(u, u) + k0‖u‖2
H ≥ α‖u‖2

V ∀u ∈ V,

for some constantsα > 0, k0 ≥ 0. Moreover, assume thatχ ∈ V ′. Then

u := lim
ǫ→0

uǫ

exists inL2([0, T ], V ) for all t > 0 and satisfies the heat equation(2.1) in a weak form

d

dt
(u, v)V ′,V + a(u, v) = Θ(t)(χ, v)V ′,V ∀v ∈ V

with zero initial data.
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Proof. We already know thatuǫ satisfies the heat equation with right-hand sideΦ( ǫ

2
√

t
)

in place ofΘ(t). According to standard parabolic estimates the weak solution depends con-
tinuously in theL2([0, T ];V )-norm on theL2([0, T ];V ′)-norm of the right-hand side. Now
asǫ→ 0,

Φ(
ǫ

2
√
t
) →

{

1, t > 0,
0, t = 0,

pointwise for allt. SinceΦ( ǫ

2
√

t
)) is bounded by a constant andχ ∈ V ′, the dominated

convergence theorem shows that

Φ(
ǫ

2
√
t
)(χ, .) → Θ(t)(χ, .) in L2([0, T ];V ′),

which proves the assertion.
This theorem provides the theoretical basis for the use of the heat transform. From

Theorem2.9 and Lemma2.7, we can conclude that solutionsw(s, x) to the wave equation
(2.5) and solutions to the heat equationsu(t, x) are related by

(2.17) u(., x) = Hw(., x).

When we are given thermal measurements satisfying (2.1), we can try to compute the under-
lying wave equation solution by invertingH. This heat wave function will -as in tomography-
contain much information on the internal structure of the package. The inverse problem of
finding internal parameter for the heat equation is then reduced to the corresponding problem
for the wave equation, which is less ill-posed.

3. Properties of the heat transform. We now show some elementary properties ofH.
PROPOSITION3.1. Letw(s) be an integrable function onR+ (i.e.,w ∈ L1(R+)). Then

Hw(t) is defined for allt > 0 and bounded. Then it holds that

lim
t→0

Hw(t) = 0,(3.1)

lim
t→∞

Hw(t) =

∫ ∞

0

w(s)ds.(3.2)

If, additionally d2

ds2w(s) is integrable, thenHw(t) is differentiable fort > 0 and

(3.3) d
dt
Hw(t) = H( d2

ds2w)(t) +
1√
πt
w(0) + d

ds
w(0).

Proof. As Φ is always bounded, and ifw is integrable, the integral exists. The assertions
(3.1), (3.2) follow from the dominated convergence theorem if we noticethat pointwise

lim
t→0

Φ(
s

2
√
t
) =

{

0, s > 0,
1, s = 0,

lim
t→∞

Φ(
s

2
√
t
) = 1, ∀s ≥ 0.

For (3.3) we notice that (2.16) is satisfied for all t > 0. Moreover, the integral
∫ ∞
0
w(s) ∂2

∂s2 Φ( s

2
√

t
)ds converges as above. Thus, integration by parts yields

∫ ∞

0

w(s)
∂2

∂s2
Φ(

s

2
√
t
)ds =

∫ ∞

0

∂2

∂s2
w(s)Φ(

s

2
√
t
)ds



ETNA
Kent State University 

http://etna.math.kent.edu

HEAT TRANSFORM 173

+w(s)
∂

∂s
Φ(

s

2
√
t
)|∞s=0 −

∂

∂s
w(s)Φ(

s

2
√
t
)|∞s=0.

The limits ofw(s), ∂
∂s
w(s) at s → ∞ vanish due to our assumptions, the limits ats = 0

yield (3.3). Note that ∂
∂s
w(0) exists, due to Sobolev’s embedding theorem.

Equation (3.1) is consistent with the zero initial conditions imposed on the temperature.
Equation (3.2) is more interesting, as it allows us to compute the total temperature increase
u(∞, xobs) − u(0, xobs) by the integral over the wave function.

Since an alternative derivation of the heat transform couldbe done (at least formally) by
the Laplace-transform, we state the main property ofH under the Laplace transform:

PROPOSITION3.2. Define the Laplace transform

L(f)(τ) :=

∫ ∞

0

e−τtf(t)dt

and letw(τ) be integrable, then

(3.4) L(Hw)(τ) =
1

τ
L(w)(

√
τ ) ∀τ > 0.

Proof. SinceHw is bounded, its Laplace transform exists.

L(Hw)(τ) =

∫ ∞

0

∫ ∞

0

e−τtΦ(
s

2
√
t
)w(s)dsdt.

Becausew(s)e−τt is d(s, t) integrable andΦ is bounded, an application of Fubini’s theorem
leads to

L(Hw)(τ) =

∫ ∞

0

∫ ∞

0

e−τtΦ(
s

2
√
t
)dtw(s)ds.

A calculation of the inner integral - either using computer algebra or by integration by parts
and with formula [9, 3.472.3] – yields fors > 0,

∫ ∞

0

e−τtΦ(
s

2
√
t
)dt =

1

τ
e−s

√
τ .

The same holds fors = 0. This proves the result.
If we apply the Laplace transform to the heat and wave equations, then this again shows

that solutions of the heat equation and the wave equation arerelated via the heat transform. In
the Laplace domain,

√
τ in (3.4) is the factor responsible for changing the second derivative

in (2.5) to the first derivative in (2.1), while 1
τ

deals with the change of the delta-distribution
on the right-hand side in (2.5) to the Heaviside function in (2.1).

We now compare the heat transform to the time-constant spectrum. The following result
states that the time-constant spectrum can be calculated from the heat wave function:

THEOREM 3.3. Letw(s), d2

ds2w(s) be integrable andd
ds
w(∞) = w(0) = 0. Further-

more, lets d2

ds2w(s) be integrable as well. If̃R(τ) is defined as

R̃(τ) =

∫ ∞

0

1

π
sin(

s√
τ
)
1

τ
w(s)ds

andy(t) is defined by(2.3), then fort > 0,

y(t) = Hw(t).
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Proof. The integral exists and is bounded for anyτ > 0. The limit asτ → 0 can be
computed by integration by parts, and due to the assumptions,

−R̃(τ) =
1

π

∫ ∞

0

d2

ds2
sin(

s√
τ

)w(s)ds =
1

π

∫ ∞

0

sin(
s√
τ

)
d2

ds2
w(s)ds

− 1

π
sin(

s√
τ

)
d

ds
w(s)|∞0 +

1

π
√
τ

cos(
s√
τ
)w(s)|∞0 =

1

π

∫ ∞

0

sin(
s√
τ

)
d2

ds2
w(s),

which shows that̃R(τ) is uniformly bounded forτ ∈ [0,∞]. Hence, the integral in (2.3)
exists. Thus,

y(t) =

∫ ∞

0

∫ ∞

0

(1 − e−
t
τ )

1

π
sin(

s√
τ

)
1

τ
w(s)dsdτ

= − 1

π

∫ ∞

0

∫ ∞

0

(1 − e−
t
τ ) sin(

s√
τ

)
d2

ds2
w(s)dsdτ.

For the following integral, we use thatsin(s) ≤ s, for s ≥ 0,
∫ ∞

0

| sin(
s√
τ

)|| d
2

ds2
w(s)|ds ≤ 1√

τ

∫ ∞

0

s| d
2

ds2
w(s)|ds ≤ C

1√
τ
.

This shows that the iterated integral
∫ ∞

0

∫ ∞

0

|(1 − e−
t
τ ) sin(

s√
τ

)
d2

ds2
w(s)|dsdτ

exists. By Tonelli’s theorem we can switch integration and with (see [9, 3.952.6])
∫ ∞

0

(1 − e−
t
τ )

1

π
sin(

s√
τ

)
1

τ
dτ = Φ(

s

2
√
t
),

the result follows.
Since the transform ofw to R̃ is given as an integral equation, we conclude that the

problem of computing the time-constant spectrum from the heat wave function is a well
posed problem (in appropriate spaces), while the converse -finding thew from R̃ is an ill-
posed problem, as it involves the inversion of an integral equation.

If we use (2.4), then the time-constant spectrum can be computed (at leastformally) by
a convolution. Indeed, after a change of coordinates

s = exp η
2 , w̄(η) := w(exp η

2 ) exp η
2 ,

R =
1

2π

∫ ∞

−∞
sin(exp(

ξ − η

2
))w̄(η)dη.

3.1. Example. We now turn to an example which shows the advantages of the heat
transform. Consider the temperature in a 3D-blockΩ = [−1, 1]3. The temperatureu is
assumed to satisfy the heat equation as in (2.1),

(3.5)
∂

∂t
u(t, x) = D∆u+ Θ(t)χ(x),



ETNA
Kent State University 

http://etna.math.kent.edu

HEAT TRANSFORM 175

together with zero initial condition and homogenous Neumann conditions,

u(0, x) = 0, x ∈ Ω,
∂

∂n
u(t, x) = 0, x ∈ ∂Ω.

We now look at the corresponding heat wave function. According to our analysis it must
satisfy

(3.6) ∂2

∂s2w(s, x) = D∆w(s, x) + δ(s)χ(x),

together with zero Cauchy data att = 0 and the same boundary conditions asu. We further
assume that the source atx = 0 is very small such that we can approximate it by a delta
function centered atx = 0:

χ(x) = δ(x).

By the reflection principle, we can remove the boundary conditions by putting artifical sources
outsideΩ that mirror the source at the boundary. The location of thesesource is at(x, y, z) =
(2i, 2j, 2k), wherei, j, k ∈ Z. Thenw(s, x) satisfies

∂2

∂s2
w(s, x) = D∆w(s, x) + δ(s)

∞
∑

i,j,k=−∞
δ(x− (2i, 2j, 2k)), in R

3 × R
+,

where the initial conditions are the same. The solutionw is a superposition of fundamental
solutions to the wave equation, where the fundamental solutions have support ins ≥ 0. Note
that the diffusivity of the heat equation plays the role of the squared wave speedD = c2:
The fundamental solution to (3.6) is well known, in fact ifχ = δ(x − xsource), then the
fundamental solutionw(s, x) is the distribution [6]:

w(s, x) =
1

4πD|xsource − x|δ
(

t− |xsource − x|√
D

)

.

As mentioned above, the solution to (3.6) is a superposition of fundamental solutions at points
zi,j,k := (2i, 2j, 2k). Thus if we observe atx = xobs,

w(s, xobs) =
∑

(i,j,k)∈Z3

1

4πD|xsource − zi,j,k − xobs|
δ

(

s− |xsource − zi,j,k − xobs|√
D

)

.

We see that the wave equation solution is a superposition of delta-distributions with decreas-
ing intensity. The shift and intensity depends on the distance of the observer to the source.

Let us now observe the temperature at a pointxobs. According to Theorem2.9, u is
related tow by the heat transform:

u(t, xobs) = Hw(., xobs)(t).

If we compute the heat transform forw(s, xobs), we obtain

(3.7) u(t, xobs) =
∑

i,j,k

1

4πD|xsource − zi,j,k − xobs|
Φ

( |xsource − zi,j,k − xobs|√
4tD

)

.

This is exactly the solution to the heat equation. Indeed, ifwe use the Green’s function for
the heat equation,

G(x, t; y) =
1

(4πtD)
3

2

e−
|x−y|2

4Dt ,
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and again the reflection principle, then we can compute the solution to (3.5),

u(t, xobs) =
∑

i,j,j

∫ t

0

G(xobs, t− s; zi,j,k)ds.

Now by elementary integration this is exactly (3.7).
This examples shows, that if the wave equation solution is known (it can be computed

from u(t, xobs) by inverting the heat transform), then one can, for instance, find either the
location of the source or the diffusivity. In fact, if the location of the first pulse is found at
spuls, then

(3.8) spuls =
|xobs − xsource|√

D
,

which gives an easy formula to compute either the distance tothe source or the diffusivity if
one of them is known. On the contrary, it is not easy to find these parameters directly from
u(t, xobs).

Let us mention, that the amplitudes of the pulses can be negative. This happens, if we
replace the Neumann boundary condition by Dirichlet boundary conditionsu(t, x) = 0 on
∂Ω. The reflection principle is similar then, but the reflected sources have to be taken with a
negative sign.

Of course, further information can be obtained as well. Notethat at boundaries between
materials, one part of the wave is reflected and another part is refracted. The reflected wave
can be seen at the observation point, from which the locationof the interface can be computed.

From this example we also recognize that the heat transform maps the Green’s function
of the wave equation to the time-integrated Green’s function of the heat equation. From the
representation of general solutions by the Green’s function, it is clear that ifw solves the
wave equation,

∂2w

∂s2
= Au+

d

ds
φ(s)χ,

for a general functionφ, then its heat transform solves

∂u

∂t
= Au+ φ(t)χ,

which leads to a way of analysing temperature measurements other than the step-response
case.

4. Inversion of the heat transform. Given the observed temperature valuesy(t) at
certain points, we propose to invert the heat transform and look at the corresponding heat
wave functionw to find out about the internal structure (e.g., location of interfaces) of the
package. As this leads to an inversion of an integral equation of the first kind, this is certainly
a linear ill-posed problem. Moreover, as the kernel of the integral equation (2.17) is analytic,
we expect that it is a severely ill-posed problem. A way to compute approximate solutions
w(s) of the equation

(4.1) y(t) = Hw(t)

is by regularization [7]. There is a large choice of possible methods, that could be applied,
such as Tikhonov regularization, and some successful numerical experiment shows that this
is possible.
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However, when dealing with regularization, the regularization should always be some-
how related to the expected solution in order to give good results. Although most of the
well-known regularization methods give rise to convergence, the rate of convergence strongly
depends on the solution and on the interplay between regularization and solution properties
(in abstract form this appears as a source condition [7]).

In the example in the previous section, we saw that for small,localized sources, the wave
equation solution is a sum of delta pulses. Thus we can expectthat the solution has a sparse
structure, i.e., a discretized solutionw of (4.1) will only have a small number of nonzero
coefficients.

The use of sparsity based regularizations seems to be a promising way in this setting.
Recently, a number of algorithms that exploit the sparsity structure have been proposed [4,
19]. Closely related to this is the popular field of compressed sensing [2].

In our case we used the semi-smooth Newton method of Griesse and Lorenz [10], which
turned out to be quite fast and reliable. However, we modifiedtheir method, by introducing an
additional regularization term. As an alternative, the soft-thresholding algorithm of [4] could
be used. This has the advantage of being quite stable, but wasrather slow in our computations.

Let us describe the algorithm we used: the datau(t) are usually given at discrete time
points

y = u(ti)
m
i=1.

We discretizew as a sum of delta distributions

w(s) :=

n
∑

j=1

mjδ(s− sj) m = (mj)
n
j=1.

In the discrete setting this leads to a linear equation

y = Am

with the matrix

Ai,j = Φ(
sj

2
√
ti

)

The semi-smooth Newton method of [10] seeks a minimizer of the Tikhonov-type func-
tional

(4.2) J(m) =
1

2
‖Am− y‖2 + α

m
∑

i=1

|mi|.

The optimality condition can be written as

m− Sγα(m− γA∗A(m− y)) = 0

for anyγ > 0, using the soft-thresholding operator

Sω(m) = sign(m)max(0, |m| − ω),

where all operations are applied componentwise onm. The algorithm of [10] computes in
each iteration a vectormk, in the following way:
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1. Compute the active and inactive indices:

Ak : = {i ∈ N | |mk −A∗(Amk − y)|i > γα},
Ik : = {i ∈ N | |mk −A∗(Amk − y)|i ≤ γα}.

2. Compute the residual:

rk = mk − Sγα(mk − γA∗A(mk − y)).

3. Calculate the Newton update:
[

γMA,A γMA,I
0 II

] [

δmA
δmI

]

= −
[

δrk
A

δrk
I

]

.

4. Update

mk+1 = mk + δm.

HereMA,A, andMA,I are the submatrices ofA∗A, corresponding to active and inactive
indices. II is the identity matrix. Of course, the iteration has to be stopped by a suitable
stopping rule; see [10].

Local convergence of the iteratesmk to a minimizer of (4.2) was shown in [10]. One
problem, which we encountered is that this iteration might become unstable, as the matrix in
step3 can be ill-conditioned. So we introduced an ad-hoc regularization, and replaced step3
by

[

γMA,A + βγIA γMA,I
0 II

] [

δmA
δmI

]

= −
[

δrk
A

δrk
I

]

,

with some small positive parameterβ. Furthermore we included a damping factor in the
Newton update, such that step4 was changed to

mk+1 = mk + γδm.

It turned out that this helped to stabilize the problem. In this algorithm,γ acts as a stepsize
parameter, andα is a regularization parameter enforcing sparcity, whileβ is another regular-
ization parameter ensuring stability. They can be found by certain parameter choice rules.

The output of this algorithm is a regularized solution to thediscretized problem (4.1).
The relation between regularized solution and exact solution to (4.1) can be studied by the
standard theory of Tikhonov regularization (e.g., [7, 19]) and (4.2).

5. Numerical examples.The operation of the earlier presented mathematical apparatus
was verified for the numerical data, both for simulated and experimentally measured data.

5.1. Test example.We first applied the inversion of the heat transform to synthetic data
for a simple geometry to show the wave-like property of the numerically computed heat wave
function.

In the first example we considered the heat equation

d
dt
u = D∆u

on a cuboid(x, y, z) ∈ Ω = [0, 0.5] × [0, 0.5] × [0, 2]. The heat source is placed at the face
z = 0 in the form of a Neumann condition

∂

∂n
u = 1, ∂Ω ∩ {z = 0}.
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FIG. 5.1.Test example configuration.

At z = 2, we apply Robin-boundary conditions,

∂

∂n
u = −1

2
u, ∂Ω ∩ {z = 2},

while at all the other parts of the boundary we impose homogenous Neumann conditions
∂

∂n
u = 0; see Figure5.1. For the diffusivity, we setD = 2, and the initial conditions were

u = 0 at t = 0. In a weak formulation this problem has the form (2.1). The solution to the
heat equation is computed by 3D-FEM using FEMLAB. We consider an observation along
one of the lateral faces of the cuboid, atx = 0, y ∈ [0, 0, 5], z ∈ [0, 2] for a certain time
interval until the temperature reaches a steady state atT ∼ 20.

From these observation data, we computed the correspondingheat wave function by
inverting the heat transform using the semi-smooth Newton method from Section4. For
the discretization ofs, we used a grid with quadratically increasing spacing, and chose the
parameters (α = 0.6, β = 0.5, γ = 0.1).

The solution to the wave equation is expected to have the following behavior: Atz = 0
a planar wave is generated ats = 0, which travels in thez-direction. When it reaches the
boundary atz = 2, it is reflected and will move back toz = 0, where again reflection will
take place, and so on. Because of the shape ofΩ, the wave does not depend onx andy, but
only onz.

In Figure5.2 we plotted the result of the heat inversion, i.e., the intensity of the wave
functionw(s, x, y, z) for different values ofs over the coordinatez. It was indeed the case,
that the wave function did not depend onx, y in a significant way. In the figure we see that
ats = 0 a wave is generated which travels in the positivez-direction. The time, at which the
boundaryz = 2 is hit, calculates by (3.8) to s = 2√

D
∼ 1.4. This corresponds to the lower

parts of the pictures, where the bottom curve meets the rightboundary.
In the picture we also see two separate parts of a wave, which combine atz ∼ 1.5. We

suspect that this is due to reflections close to the source, but it could as well be an artefact due
to the ill-posedness.

Later ats ∼ 2.4, we see a reflected wave, which travels backwards fromz = 2 to z = 0.
However, this reflected wave is already smeared out quite a lot, an effect that might again
be due to the ill-posedness. High order reflections are not observed any more. We conclude
that the heat wave function gives a reasonable good qualitative picture: we can observe a
wave traveling from the source to the left and a reflected wavetraveling back. The location
of the wave peaks at different times and space position is, however, not totally reliable due
to the ill-posedness. Note that in this setting it is, of course, much simpler to calculate the
wave function directly by solving the wave equation with numerically with finite elements.
Our indirect computation via the heat equation solution andthe heat transform is done to
illustrate the possibility of finding the wave function fromthe heat equation solution. In a
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FIG. 5.2.Density of the wave functionw(s, ., ., z).

SensorSource

reflected wave

SensorSource

FIG. 5.3.Left: high contact resistance induces a reflected wave. Right: Low contact resistance.

experimental setting, the wave function cannot be computeddirectly, because the geometry
and the parameter are not known.

For the next examples we turned to more realistic data of an electronic circuits for a con-
figuration as in Figure2.1. The datay(t) used in this verification were both generated by a
thermal simulator and measured experimentally. The simulated structure heating curvesy(t)
were obtained with Fourier series Green’s function thermalsimulator [1, 11, 16], whereas
the measured data were obtained from the transient thermal tester T3SterR© provided by the
MicRed company. This equipment allows the registration of thermal transients with the reso-
lution of 1 microsecond and renders possible the analysis ofthe measurement data employing
the method described in [20, 22, 23].

5.2. Finding contact resistance from simulated data.The model equations and bound-
ary conditions were taken from [16]. The aim of the first part was to investigate the impact
of increasing the contact resistance between the layers, since this phenomenon was also con-
sidered during the measurements of the real circuit. The expected effect of the induced heat
wave function is sketched in Figure5.3. For a low contact resistance (right figure) the wave
will travel through, while for a high contact resistance a reflection wave should appear for the
heat wave function.

The structure consisted of two layers (1.52mm and 4.00mm thick) made of copper. The
heating curves were simulated for a small (10x10 microns) heat source, dissipating 10W, cen-
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FIG. 5.4.Effects of contact resistance (simulated data).

trally located on the top of the thinner layer. Two cases wereconsidered; first it was assumed
that the contact between the layers was ideal (full line) andthen the contact resistance was
increased (dashed line). Simulated logarithmically equidistant time samples were used to
compute the heat wave function by the algorithm above. In Figure5.4 we plotted the result
of the semi-smooth Newton method – the heat wavew(s, xobs) – on a logarithmic scale (i.e.
overlog(s)).

As can be seen, the contact resistance increases significantly the height of the peaks
located more to the right and forces an additional peak to appear atlog(s) ∼ −1. This result
shows the expected behavior as in Figure5.3. In the graph for the increased contact resistance
(dashed line), the additional peak atlog(s) ∼ −1 can be interpreted as reflection effect on the
interface. Hence, the effect of high/low contact resistance is easily visible in the heat wave
picture. But, of course, it is almost impossible to see the corresponding effect directly from
the datay(t).

5.3. Finding effect of cooling from experimental data. In Figures5.6 and 5.7 we
show the result of the inversion of the heat transform using experimentally measured data for
a circuit model as described in [15]. The purpose of this experiment was to characterize the
cooling boundary conditions from experimental datay(t).

Three experiments were performed, in one the heat sink was attached tightly, in the next
one, the heat sink was loosened and in a third experiment thermal grease was attached on the
interface between package and heat sink. These three experiments only change the boundary
conditions on the bottom. The heat wave function should indicate a difference between these
cases, as it is reflected differently – in a similar situationas in Figure5.3 – but now the
different reflection happens at the bottom boundary, not between the layers as in the previous
example.

Figure5.6shows the heat wave function computed from the data on a logarithmic scale
log(s). Here the full line corresponds to the case when the heat sinkis attached tightly, in the
next one, the heat sink was loosened (dashed-dotted line) and in a third experiment thermal
grease was attached on the interface between package and heat sink (dashed line).

Indeed, the figure displays this behavior as expected. We cansee a difference in the heat
wave solution atlog(s) ∈ [0, 3]. Note that the loose case has the highest peak atlog(s) ∼ 1.1,
compared to the other case. This has the interpretation thatthe loosening will create the
highest reflection of the heat wave, while the other case willconduct the wave in a better
way. The thermal grease here shows least reflections, indicating that it has the best thermal
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SensorSource SensorSource

FIG. 5.5.Left: Moderate cooling Right: Forced cooling.
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FIG. 5.6.Effects of loosening the heat sink (experimental data).

conducting properties amongst these three cases.

In Figure5.7 another experiment was considered. We investigated the effect of cooling
at the bottom: Two cases we analyzed: the solid line is the heat wave function for data with
forced air cooling at the bootom, while the dashed line corresponds to the same experiment
with cooling only by free convection (still air). The difference in the heat equation between
these two cases are again only the boundary conditions on thebottom, which have a different
heat transfer coefficient involved in either case. A sketch of the expected wave behaviors is
seen in Figure5.5. Different types of cooling will show a different reflected wave. For a high
cooling most of the energy will dissipate into the heat sink.For a comparable low cooling
some part of the energy will be reflected. The main differencebetween the two plots is at the
right-hand side atlog(s) ∈ [1, 5], while the heat wave function hardly differs for smaller times
s. From this picture we conclude that the peaks on the right-hand side starting atlog(2) ∼ 2
are due to the effects of the heat sink. The peaks at earlier time, e.g., atlog(s) ∼ −2.2, 0
are due to the reflections at the layers of the material. We seethat they are quite the same for
both experiments. The most obvious difference is the peak for the free convection cooling
(low cooling), which is not there for forced cooling. Again this fits the observation that in the
forced cooling case most of the wave energy will dissipate out and little will be reflected.

Note that the first peak on the left atlog(s) ∼ −5 is the wave that travels directly from
the source to the observation point without reflection.

Furthermore in view of equation (3.2) the total gain of temperature should be equal to
the integral of the wave function. Indeed, for the experimental cases a summation of the wave
functions agreed up to 10% to the total temperature gain.
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FIG. 5.7.Effects of blowing air on heat sink (experimental data).

6. Conclusion and comments.It is obvious from the pictures that the computed heat
wave function can be used to classify cooling boundary conditions and interfaces. It gives a
qualitative picture of the effects of, e.g., boundaries, interfaces and location of sources. The
reason for this is that the wave equation transports this information to the observation point.

From the computed heat wave function we can certainly distinguish cases when the heat
sink is not attached properly, or if forced cooling took place and we can compare the thermal
quality of an interface. As an possible application this canbe used to find, for instance,
manufacturing faults by comparing the heat wave function toa reference function.

Note that, once the heat wave function is computed, the comparison can be done by
visual inspection, and the regions, where additional peaksoccur can be related to the location
of interfaces or boundaries in the package by (3.8) (or similar formulae).

This certainly cannot be done just by inspection of the thermal datay(t), because the
effects of contact resistance and boundary condition arenot localizedthere, while they are in
the heat wave function. Furthermore, comparable methods offinding interface or boundary
conditions may give a quantitative estimate of parameters,but usually requires multiple time-
consuming numerical solutions of the heat equation; in our approach we only have to solve
one linear inverse problem.

Moreover, since the time-constant spectrum can be calculated from the heat wave func-
tion by (3.3), w(s) determines the thermal input-output behavior of the package. Thus, the
heat wave function can be used to characterize and classify the thermal response of a package,
replacing or completing the picture, that the time-constant spectrum gives.

We think that this new method of analyzing thermal data can help to better understand
thermal properties of electronic systems.
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