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THE HEAT TRANSFORM AND ITS USE IN THERMAL IDENTIFICATION
PROBLEMS FOR ELECTRONIC CIRCUITS *

STEFAN KINDERMANN AND MARCIN JANICKI}

Abstract. We define and analyze a linear transformation — the heatftnans- that allows to map solutions
of hyperbolic equations to solutions of corresponding palia equations. The inversion of this mapping can be
used to transform an inverse problem for the heat equati@nsimilar problem for the wave equation. This work
is motivated by problems of finding interfaces, boundaries associated heat conduction parameters in the thermal
analysis of electronic circuits when transient data ardaa. Since the inversion of the transformation is illsed,
we use a semi-smooth Newton scheme to regularize it enfpaparsity of the solution. We present some numerical
results of this procedure for simulated and measured datizhvehows that heat conduction effects due to interfaces
and boundaries can be found and classified by an inversidredfeat transform.
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1. Introduction. The thermal analysis of electronic systems is a crucial freldodern
electronics. An improved understanding of the thermal biiaf semiconductor devices is
necessary due to the increased operating frequency andsbeiated high dissipated power
density, which is directly related to the temperature. &#& thermal circuit models are
required to predict system temperature in order to prevevdre damage. The first essential
step in building such models is to find from experiments thénrhaat equation parameters
that govern the heat flow.

The stated problem leads to a parameter identification prolibr parabolic equations.
Such problems are usually nonlinear and often exponeptibljosed. On the contrary, sim-
ilar problem associated with hyperbolic equations sucthassave equation are much less
ill-posed and, in some circumstances, can even be solvedtabde way, e.g., in tomogra-
phy. The fundamental difference of the ill-posedness betwhese two cases is clear from
the governing equations: While hyperbolic equations all@amsportation of energy and in-
formation with finite speed, parabolic equation do not shcavevtype behavior, but initial
information is smoothed out and can hardly be recovered.

In this paper, we present a new way of analyzing experimerdakient temperature
data of an electronic system by the use of a linear transfilomgahe heat transform, which
can be used to obtain qualitative information about the@ated heat equation parameters,
in particular, the location of interfaces and boundaried #re associated heat conduction
parameters there.

The main idea of this paper is to relate parabolic equatiorts/perbolic equations by
the use of the heat transform. This is extremely useful bee@wallows us to link severely ill-
posed inverse problems for the heat equation to similar bladyrill-posed problem for the
wave equation. Since the heat transform is linear, the beafefur approach is to split a non-
linear severely ill-posed problem into a linear one (inwggthe heat transform) and a mildly
ill-posed nonlinear one (parameter identification for wageiations). The main difficulty is
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thus reduced to a linear inverse problem, for which advamegdlarization techniques can
be used.

We also note that our work can give a justification to the ofteed practice of speaking
of heat waves that travel through an electronic package.oOfse, such a notion does not
make sense for parabolic equations, as heat travels withitsnBpeed. (Note that we do not
deal with non-standard heat equations of hyperbolic typewhich heat waves would make
sense.) In our approach the heat waves correspond to sWuifdhe wave equation which
can be related to the heat and temperature (using the haafdren) in a mathematically
rigorous way.

The central idea of the heat transform introduced in thisepépnot new, but is a slight
modification (a time integrated version) of the heat tramsfdefined by Widder44]. Itis
known that this transform maps the wave equation to the ltpedten in the case of classical
solutions p], and this has been used, e.g.,113[14]. However, we study this transformation
in the more general distributional setting, which is neaggshecause solutions of the heat
equation need not be classical (at interfaces) or can hagelsirities, e.g., if the heat source
and the measurement point coincide.

To our knowledge such a treatment is new in this context. Addad way of analyzing
the thermal properties of electrical circuits is to comptlie time-constant spectrurhy, 18]
or structure functionsd, 21, 22, 23] from the thermal response data. However, these methods
can be seen as model reduction techniques and they sufferthe fact that the computed
parameters do not have a real physical interpretation. ®ndhtrary, in our approach, invert-
ing the heat transform yields a wave equation solution, tvban be interpreted as reflection
waves at interfaces and boundaries. Hence, we can reldtesttmeal response to a few param-
eters (the traveling time of the reflected waves), from whighheat conduction parameter or
the geometry such as layer thickness can be computed.

The paper is organized as follows: In Sectignwe introduce the partial differential
equation of interest and define the heat transform, bothuiectfons and distributions. Fur-
thermore, we show that the proposed transformation mapge wgquation solutions to heat
equation solutions, cf. Theoren2s8 and2.9, which are the main theoretical results. The
analysis is done in abstract Hilbert spaces and for digtdbal solutions. In Sectiofi, we
study some of the properties of the heat transform. Seétibanderpins the theoretical result
of Theorem=.8and2.9by an example which also indicates the structure of wavetisols
and how parameters can be found by measuring the travel ingectiord, we consider the
discretization and inversion of the heat transform, forathive use a modified semi-smooth
Newton method to enforce the expected sparsity structurallf, in Section5, we present
some numerical results using both simulated and experahdata.

2. PDE model and the heat transform. The thermal behavior of an electronic circuit
is usually modelled by variants of the heat equation. Data#ibration of thermal models
are obtained by the following experiment: one of the acteices or resistors is used to heat
the system by a Heaviside power step and the transient thezsponse is recorded at one
or more locations. Alternatively, the system can be heatstltf its thermal steady state and
then the cooling curve can be captured.

A large class of electronic systems can be modelled by rayés slabs. In this case,
the heat source is placed on the top surface and the temperagponse is measured at one
or several location; see Fig.1. These data are used to determine the relevant heat equation
parameters, such as the geometry, the location of layerfécts, possible defects of the
package, or to build reduced thermal models.

In the following we use a quite general PDE description fas:tiWe assume that the
heat source strength is constant in time and, thus, the tetype is modelled by the abstract
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FIG. 2.1.Experimental setup

parabolic equation fot (¢, z), t > 0, x € €,
(2.1) %u:Au—i—@(t)X,

were©(t) denotes the Heaviside function

1, t>0,
G(t)_{ 0, t<0

x(z) is afunction only depending on the space varialleat describes the shape and location
of the source, and! denotes a general time-independent linear second ordigticpartial
differential operator together with appropriate boundeopditions. The assumption that
is time-independent s true, if the coefficients in the opmrand the boundary conditions are
independent of time. Such an assumption is not very reisgiai reality, as long as a linear
model is considered.

A standard model forA for the thermal analysis of electrical circuits is the Laa
operator

A= DA,

whereD is the diffusivity depending on the material. If the diffuiy is not constant due to
multiple materials, an appropriate operator would be

Au = idiv(/\Vu),
pc
with the thermal conductivity , the densityp, and the specific heat Right now, we do not
specify A. The specific structure of is only relevant when analyzing the heat wave function,
but is not needed in the analysis of the heat transform.
We further have to supplement the equation with an initizditon: we assume that
is initially at a constant reference temperature which we te&ke without loss of generality
to be0. Thus,

(2.2) u(t=0,2)=0, x€Q.

An observation of a thermal experiment described abovelyitie thermal profile at some
point

y(t) == u(t, zops), tE€RT:={t>0}.

A very important task in the thermal analysis of circuitsasfind out about the inter-
nal structure of the electronic system from such thermalsueanentg. This can serve for
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several purposes, for instance, to determine thermal peteam(e.g., thermal diffusivity, con-
ductivity, heat transfer coefficients, boundary condiipetc.), to improve modelling of the
circuit or for model reduction, by building a simpler modéltbe circuit which have similar
thermal response.

A common way to analyse the thermal response is to calcllatea-calledime-constant
spectrun{22], R(r), defined as

2.3) y(t) = /Ooo R(r)(1 - exp(—é))dT.

An alternative version of the time constant spectrum usdsaage of variables = exp(¢)
andR(¢) = R(exp &) exp&. Inthis caseR is given by P2

e t
(2.9 ) = [ RO = expl— o).

Based on this, further transformation can be made to findremaepresentation of the
system, such as ttstructure functiorj3, 21, 22, 23].

The time-constant spectrum completely determines therthlesystem in a specific con-
figuration, but it has a drawback: it is not clear, how the infation in R is related to any real
geometric structure of the package. It would be advantagemdirectly infer form the data
some information about the internal structure of the paekagch as interfaces, cooling or
heat-transfer parameters. Right now, such informatioisaeted fromR on a more or less
heuristic basis drawn from experience. Some more rigortiests using the time-constant
spectrum have been made by relating the structure funali@nane-dimensional heat flow
model 3], but the validity of this simplified model in more generabmsymmetric situations
is not clear.

In order to circumvent this drawback, we propose to compudifarent function — the
heat wave function — instead of the time-constant spectiithis. allows us to directly find out
about the internal structure of the package, as long as wenedwe sense out of the solution
of the wave equation corresponding to the operaitor

Associated toZ.1) we define the following heat wave functian(s, ), s > 0, 2 € Q,
as a weak solution of the wave equation

(2.5) T — Aw + 5(s)x,
supplemented with zero Cauchy data
(2.6) w(s=0,2)=0, Zw(s=02)=0, z€e

Here/ is the delta-distribution centered @t Alternatively, we can define as solution
of (2.5 onR x Q together with the condition that(s, ) = 0 for s < 0, or in other words,
that the support of is contained in the positive-axis.

Now the main idea is to find a transformation that relates w. This transformation
is central to our analysis and we will refer to it as the hean$form. We first define it for
real-valued functions.

DEeFINITION 2.1. Theheat transfornis the linear transformation, that maps a function
w : RT — R to the functiorHw(t)

@.7) Hu(t) = /OOO w(s)q>(2iﬁ)ds,
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whenever the integral exists. Heteis the complementary error function
B(z) = erfe(z) = — /Oo 4
xT) = xXr) = \/E . (& T.

Of course, the definition only makes sense, when the intexyiats. The heat wave
functionw is not necessarily a function, but rather a distributione EBxtension of definition
(2.7) to distributions is obvious, if we only do formal calculatis: if w is a distribution in
S'(R), then formally we could define its heat transform by the dyadaring

(Hw)(t) = <w7¢(ﬁ))3/73. t > 0.

We did not specify this equation as a definition, becauseribisclear that the right-hand
side exists, becaude(m) is notinS(R). However, it certainly exists for distributions with
compact support (sed g, Thm 2.3.1]), and fot > 0. For tempered distributionS’ with
support inR ™, we can define the heat transform by using an appropriatéfduttction:

DEFINITION 2.2. Letw € &'(R) with support inR*. Lety(s) € C*°(R) a cutoff
function, which isl in a neighborhood okupp(w), and0 for s < —so < 0, for some
s0 € RT. Then the heat transform is defined as

(2.8) Hut) = (w00 (57)) -

fort > 0.
This definition makes sense as we show in the following lemma.
LEMMA 2.3. With« as in definition(2.2), and fort > 0 fixed,zﬁ(.)@(m) isin S(R).
Proof. By induction it is immediate that

o S —s2 s .1
—O(—=) =€ pp_1(—)—, k=>1,
Osk (2\/E) Pr 1(\/E)t§ o

with a polynomialp,_; of degreek — 1. Thus, all derivatives of ordet > 0 are rapidly
decaying functions fot > 0. However,lim,_, @(Qf/z) is not decaying, but due to the
multiplication with the cutoff-function the decay is edsished. The definition of{w does
not depend on the choice of the cutoff-function, by the deéfiniof the support. d

Note that att = 0 the function@(;ﬁ) has a jump singularity at = 0, so the heat
transform is not well defined for distributions at= 0. However, if we would like to be
‘Hw a solution to a heat equation, we have to be able to use valdes &, to state initial
conditions. We will remedy this situation by using a smati¢ishifte > 0 and then let tend
to 0; see £.14 below.

We intend to show that the wave equation solution and the depadtion solution are
related by the heat transform. Here, some care has to be,tsikee the heat wave function
is typically a distribution, so we have to use an appropneatek solution. A weak solution

of (2.9), (2.6) will be a tempered distribution dR with values in a separable Hilbert spdce
(see, e.g.,49):

(2.9)

w:SR) =V, insymbolw e S (R;V).
That s, for anyp € S, the mapping
SR) -V
¢ — (w(.,2),0(.))s ®),s®)
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is linear and continuous.
Moreover, we assume that the operafoinduces a continuous bilinear form éhx V:

(2.10) a(u,v) := —(Au,v) bilinear and continuou x V' — R.

Now letw(s, ) be a classical solution such thats, .) is twice differentiable with values in
V. Then multiplying .5 by a test function and integrating, we obtain a weak forrioma
in the usual way (compare, e.g8]):

2 (w(s,.),v)vrv +a(w(s,.),v) = 6(s)(x, v)v7v

Letn; be an orthonormal basis &f. Then we can expressin the form
w(s,z) = i Gi(s)mi (),
=1
and obtain
(2.11) i LGi(s) iy 0)vr v + G8)almi, v) = 3(5) (6 v)vr v
i=1

This identity holds, because the seriesdoconverges il and the bilinear form is continu-
ous onV. Now this reasoning leads to an appropriate definition of aknsolution: we only
have to replac€; by tempered distributions and consider equat®Ai () in S'.

DEFINITION 2.4. By a weak solution t¢2.5) we mean & -valued distributionS’ (R; V')
with an expansion

(2.12) w(s, x) =Y G(s)m,
=1
wheren; is an orthonormal basis df and¢; € S'(R), such thatvg € S(R), Vv € V,

Z <aa_522¢1 Cl> (771‘7U)V’,V + <C7,7 ¢> a’(nia ’U) = <51 ¢> (Xa U)V’,Va

i=1

such that all¢; have support ilR*. The support condition is the appropriate formulation of
zero initial data 2.6). From the derivation it should be clear that a classicaltson is also a
weak solution.

We now have to define the heat transform for functionS'i(R; V).

DEFINITION 2.5. Letw € S'(R, V) with support inR*. Then

(2.13) (Fw)(t) = {w, ®(572), ¢>0,

or equivalently, ifw has an expansion as {2.12, then

oo

(Hw)(t) = > (HG)(t) ns-

i=1

Note that the integral in this definitiod (13 is a Bochner integralf5]. As we have indicated,
we have to consider the value (f{w)(t) att = 0. This is a subtle point due to possible
singularities. We therefore need an approximated versidiecheat transform:
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DEFINITION 2.6.Letw € S'(R, V) orletw € §'(R) with support inR*. Then for any
e > 0, we define

. -+ €
—)) = (w, D(——=
5 \/Z» (w, @(5 7
The approximate transform has well-defined values-at0. Moreover, ifw has support in
s > 0, then as — 0, the approximate heat transfofi. converges td+:

LEMMA 2.7. Letw € S'(R) with support inR*. Theng¢.(t) = (Hw)(t) is a
C*(]0, oo[)-function with

(2.14) (Hew)(t) == (w(. —€), P( ), t>0.

lim dtk@( )=0 VkeN.

If w € 8&'(R) with supportin{s € R|s > 0}, then

Huw(t) = liI%(Hew) (1)

€—

forall t > 0.
Proof. Note thatw(.—e¢) isinS’(R) and has supportifz, co[. Sinced( \/)lsinCOO for

t > 0, H. is well defined. Moreover, from2(9) it follows that on[e, o], lim;_.¢ <I>(2f) 0

in C°°([e, oo[). Moreover, the same holds fg‘g—cb ), which establishes the proof of the
first part. For the second part we observe m@ﬁ converges tab (5= ) in C*°([r, o))

for any positiver ase — 0. Since the support ab is contained in an mtervaﬂ— oo| this
suffices for convergence; cflp, Thm 2.3.1]. O

We now come to the main theorem: We postulate the existeneewsak solution to
the wave equation and conclude that its heat transfornfigatitie heat equation. The only
assumption oM is that the induced bilinear form is continuous and timeejpendent.

THEOREM2.8. Letw : §'(R) — V be a weak solution of the wave equati@ns), and
(2.6) as in Definition2.4. Assume that the bilinear fora., .) satisfieg2.10 and does not
depend on time. Let

Ue 1= Hew.
Thenu, isin C*([0,T], V') foranyT > 0 and satisfies
d €
G (e, v)vr v+ alue, v) = @(2—\/2) OGv)yvy YoeVit>0.

Moreover,

(2.15) lim u.(t,.) = 0.

t—0

Proof. A direct calculation shows that for> 0, ®(;*-) satisfies
(2.16) 2¢(i) — a_gq)(i)
' ot 2yt 0s2 2yt

Now assume thab € S'(R; V) is a weak solution to4.5) and @.6). Since the support of
w(.—e) isin [, oo[, and because o2(9), a difference approximation t& H.w(t) ~ £ Hew
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equals{w(. —e), £ ®( 57:))- The limit At — 0 will converge inS’ to (w(. ), %q}(ﬁi»’
because of the support of Together with 2.16 this yields

d ? . 02
EHEw(t) = <w( —€), W@(Tﬂ)> = He(WU))v

by the definition of distributional derivative. Sineesatisfies equatior?2(11) anda(., .) does
not depend om, it is obvious thatu(. — €) satisfies the same equation but wiil) replaced
by (. — ¢€). Thus,

oo

4 w(t) +Z (HeGi) alni,v

- (5(. o), @(279) (ol = B v

Note that fort > 0, >"°°, (He(;)n; is an element iV by definition ofS’(R, V') and

HZ(H G)(&mil* = ZIH O = [[(w(. —€), @ (2\[)”2 C,

=1
which shows that the series converges. Because of the aigtof a, we obtain

o0

Y (HeG)(B)alni, v) = a(Hew(t), v).

=1

The uniform boundedness di..(¢,.)||v and of all its time-derivatives for anyin [0, T
follows by the same arguments, henag,e C*°([0,T], V). Equation 2.15 follows from
the first part of Lemma.7. d

We have seen that the approximate heat transform satisfesst auation similar td( 1).
We can now take the limit — 0. In view of Lemma2.7, u. will converge to the heat trans-
form if the assumptions of this lemma apply. If they are ndis§ad, the pointwise limit does
not exist, but we can show the limit exists in an appropricaed&h space. For this we rely
on well-known estimates for parabolic equations assuntiagithe operator is uniformly
elliptic:

THEOREM2.9. LetV C H C V' be a Gelfand triple, let(.,.) be as in Theorer.g,
and additionally let a Garding inequality hold:

a(u,u) + kollullfy = aflulli, VueV,
for some constants > 0, kg > 0. Moreover, assume thate V’. Then
U= ll_)I% Ue
exists inL?([0, T], V) for all t > 0 and satisfies the heat equati¢h1) in a weak form

d
E(%U)V’,V +a(u,v) =00)x,v)vy YveV

with zero initial data.
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Proof. We already know that. satisfies the heat equation with right-hand Sﬂ%)

in place of©(t). According to standard parabolic estimates the weak swiudepends con-
tinuously in theL?([0, T; V)-norm on theL?([0, T']; V')-norm of the right-hand side. Now
ase — 0,

€ 1, t>0,
*G Lo 120

pointwise for allt. Since@(;ﬁ)) is bounded by a constant ande V’, the dominated

convergence theorem shows that

O(—=)(x.-) = O(t)(x,.) inL*([0,T]; V"),

€
2Vt
which proves the assertion. 0
This theorem provides the theoretical basis for the use eftthat transform. From
Theorem2.9and Lemma2.7, we can conclude that solutionss, ) to the wave equation
(2.5 and solutions to the heat equatiar(g, x) are related by

(2.17) u(., z) = Hw(., x).

When we are given thermal measurements satisfyang),(we can try to compute the under-
lying wave equation solution by invertirfg. This heat wave function will -as in tomography-
contain much information on the internal structure of thekame. The inverse problem of
finding internal parameter for the heat equation is theneceduo the corresponding problem
for the wave equation, which is less ill-posed.

3. Properties of the heat transform. We now show some elementary propertiegof
PROPOSITION3.1. Letw(s) be an integrable function oR* (i.e.,w € L'(RT)). Then
Huw(t) is defined for alt > 0 and bounded. Then it holds that

(3.1) }gr(l) Huw(t) =0,
(3.2) tlim Huw(t) = /OO w(s)ds.
o0 0

If, additionally%w(s) is integrable, therH{w(t) is differentiable fort > 0 and

(3.3) L Hw(t) = H(Lw)(t) + —=w(0) + Lw(0).

Proof. As @ is always bounded, andif is integrable, the integral exists. The assertions
(3.2), (3.2 follow from the dominated convergence theorem if we noticd pointwise

t—0 2/t 1, s=0, t—oo /T

For (3.3 we notice that .16 is satisfied for allt > 0. Moreover, the integral

f0°° w(s)ﬁ—jz@( 2f/z)ds converges as above. Thus, integration by parts yields

lim &(—>~) = { 0. 5>00 4 ey =1, vs > 0.

oo 2 s oo 92
/ w(s)a—q)(—)ds = %w(s)@( )ds
0

s
ds* "2/t 0 21
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0 5 oo 0 5 \eo
()05 2l = 5w

The limits of w(s), %w(s) ats — oo vanish due to our assumptions, the limitssat 0
yield (3.3). Note that%w(()) exists, due to Sobolev's embedding theorem. 0O

Equation 8.1) is consistent with the zero initial conditions imposed be temperature.
Equation 8.2) is more interesting, as it allows us to compute the totalperature increase
u(o0, zops) — u(0, zops) Y the integral over the wave function.

Since an alternative derivation of the heat transform cteldone (at least formally) by
the Laplace-transform, we state the main property{ainder the Laplace transform:

PrRoPOSITION3.2. Define the Laplace transform

L)@ = [ T et

0

and letw(7) be integrable, then

(3.4) L(Hw)(r) = %E(w)(\/?) Vr > 0.

Proof. SinceHw is bounded, its Laplace transform exists.

E(Hw)(T):/O /0 e‘”@(Q—ﬁ)w(s)dsdt.

Becausev(s)e™ "t is d(s, t) integrable andb is bounded, an application of Fubini's theorem
leads to

E(Hw)(T):/O /0 677t¢(2—\/g)dtw(s)ds.

A calculation of the inner integral - either using computigredra or by integration by parts
and with formula p, 3.472.3] — yields fos > 0,

T e rto(S g = LemsvE
/0 e (I)(Q\/Z)dt_Te .
The same holds for = 0. This proves the result. 0O
If we apply the Laplace transform to the heat and wave equsitihen this again shows
that solutions of the heat equation and the wave equatioekated via the heat transform. In
the Laplace domain,/7 in (3.4) is the factor responsible for changing the second devigati
in (2.5 to the first derivative inZ.1), while % deals with the change of the delta-distribution
on the right-hand side ir2(5) to the Heaviside function ir2(1).
We now compare the heat transform to the time-constantispecithe following result
states that the time-constant spectrum can be calculatedtfre heat wave function:
THEOREM 3.3. Letw(s), %w(s) be integrable andj—sw(oo) = w(0) = 0. Further-

more, Ietsj—;w(s) be integrable as well. IR(7) is defined as

- 1 . s .1
R(r) = /0 = mn(ﬁ);w(s)ds
andy(t) is defined by2.3), then fort > 0,
y(t) = Hw(t).
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Proof. The integral exists and is bounded for any> 0. The limit asT — 0 can be
computed by integration by parts, and due to the assumptions

R 0o 2 s 00 s 2
—R(1) = %/0 %sin(ﬁ)w(s)ds = %/0 sin(ﬁ)%w(s)ds

1 . s .d s | d?
—— sin(

oo Lcosiwsm:l Oosin—_ws
L) Lo+ Lz cost Sl = [ () ls)

which shows thaiR(7) is uniformly bounded forr € [0,00]. Hence, the integral in2(3
exists. Thus,

y(t) = /000 /000(1 - e_%)% sin(%)%w(s)dsah

:_%/OOO /Ooo(l—e_%)sin(%)j—;w(s)dsdr

For the following integral, we use thain(s) < s, for s > 0,

[ 1l uteids < 5= [ sl uslas < 0
; 51n\/7__ Taw(s S_\/;o sl Tz w(s)lds < 7

This shows that the iterated integral

/OOO /OOO (1 _ei)sm(%)j_;w(sﬂdm

exists. By Tonelli's theorem we can switch integration arithysee p, 3.952.6])

/00(1 _1)1 '(S)ld o
—e 7)=sin(—=)=—dr = ¢(——=
0 T VTOT 2/t
the result follows. 0O 3

Since the transform ofv to R is given as an integral equation, we conclude that the
problem of computing the time-constant spectrum from that eave function is a well
posed problem (in appropriate spaces), while the convefiseing thew from R is an ill-
posed problem, as it involves the inversion of an integrakdign.

If we use @.4), then the time-constant spectrum can be computed (atfaasally) by
a convolution. Indeed, after a change of coordinates

s=epl wn) = wepDepl,

1 oo

R Sin(exp(g%n))w(n)dn-

:% .

3.1. Example. We now turn to an example which shows the advantages of the hea
transform. Consider the temperature in a 3D-blétk= [—1,1]3. The temperature is
assumed to satisfy the heat equation aid)(

(3.5) %u(t, z) = DAu+ O(t)x(x),
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together with zero initial condition and homogenous Neumeanditions,

0
u(0,2) =0, x€Q, —u(t,x) =0, z€N.
on
We now look at the corresponding heat wave function. Acewydd our analysis it must
satisfy

(3.6) ;—;w(s,x) = DAw(s,z) + 0(s)x(z),

together with zero Cauchy datatat 0 and the same boundary conditionsiasiVe further
assume that the source at= 0 is very small such that we can approximate it by a delta
function centered at = 0:

x(x) = 6(x).

By the reflection principle, we can remove the boundary ctiora by putting artifical sources
outside? that mirror the source at the boundary. The location of tisesece is atz, y, z) =

(2i,24,2k), wherei, j, k € Z. Thenw(s, z) satisfies
02 >
Ww(s,x) = DAw(s,z) + (s) Z 8(x — (24,24,2k)), inR®xRT,
S

1,J,k=—o00

where the initial conditions are the same. The solutiois a superposition of fundamental
solutions to the wave equation, where the fundamentalisolsihave support is > 0. Note
that the diffusivity of the heat equation plays the role af 8guared wave spedd = c:
The fundamental solution t&(6) is well known, in fact ify = 6(x — Zsource), then the
fundamental solutiom (s, z) is the distribution §]:

( ) 1 5 ¢ |xsource - :E|
w\s,Tr) = — .
’ 47TD|Isou7‘ce - I| V D

As mentioned above, the solution ) is a superposition of fundamental solutions at points
zijk = (21,27, 2k). Thus if we observe at = x5,

w(s Tob ) = Z 1 5 <S _ |=Tsource — Zigk — xobsl)
o (i ezs AP\ Tsource = Zijik — Tobs| VD

We see that the wave equation solution is a superpositiopltd-distributions with decreas-
ing intensity. The shift and intensity depends on the distasf the observer to the source.

Let us now observe the temperature at a peint. According to Theoren?.9, u is
related tow by the heat transform:

u(t, Tops) = Hw(., Tobs ) (t)-

If we compute the heat transform far(s, 2,5 ), we obtain

1 |xsource — Zigk — xobs|
3.7 t, Tobs) = P Zb .
( ) U( »Hob ) ”Zk 47TD|xsource — Zigk — xobs| < vatD

This is exactly the solution to the heat equation. Indeedieifuse the Green’s function for
the heat equation,

1 _lz—y?

G(x,t; S iDt
(= 5;) (47rtD)%e
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and again the reflection principle, then we can compute thaiso to (3.5),

t
u(t7xobs) = Z/ G(xobsat -5 Zi,qu)dS-
" Jo

4,5,J

Now by elementary integration this is exactB.1).

This examples shows, that if the wave equation solution @kmn(it can be computed
from w(t, z.p5) by inverting the heat transform), then one can, for instafioe either the
location of the source or the diffusivity. In fact, if the lation of the first pulse is found at
Spuis, then

(38) o |xobs - Isou7‘ce|

Spuls = T7

which gives an easy formula to compute either the distantieetgource or the diffusivity if
one of them is known. On the contrary, it is not easy to findehgmrameters directly from
u(t, Tobs)-

Let us mention, that the amplitudes of the pulses can be megdathis happens, if we
replace the Neumann boundary condition by Dirichlet bompdanditionsu(t, =) = 0 on
0. The reflection principle is similar then, but the reflectedrses have to be taken with a
negative sign.

Of course, further information can be obtained as well. Nb&t at boundaries between
materials, one part of the wave is reflected and another paefiacted. The reflected wave
can be seen at the observation point, from which the locafitime interface can be computed.

From this example we also recognize that the heat transfaasrthe Green'’s function
of the wave equation to the time-integrated Green'’s fumotibthe heat equation. From the
representation of general solutions by the Green’s functibis clear that ifw solves the
wave equation,

0%w d
o Au+ —
5 ut —d(s)x;
for a general functio, then its heat transform solves
ou
—=A t
gp = Autolt)x,

which leads to a way of analysing temperature measuremémgs than the step-response
case.

4. Inversion of the heat transform. Given the observed temperature valugs) at
certain points, we propose to invert the heat transform ao# kt the corresponding heat
wave functionw to find out about the internal structure (e.g., location a¢ifaces) of the
package. As this leads to an inversion of an integral eqonatiohe first kind, this is certainly
a linear ill-posed problem. Moreover, as the kernel of tHednal equation4.17) is analytic,
we expect that it is a severely ill-posed problem. A way to pate approximate solutions
w(s) of the equation

(4.1) y(t) = Huw(t)

is by regularizationT]. There is a large choice of possible methods, that couldppdied,
such as Tikhonov regularization, and some successful ricatexperiment shows that this
is possible.
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However, when dealing with regularization, the regulai@ashould always be some-
how related to the expected solution in order to give goodltes Although most of the
well-known regularization methods give rise to convergeitice rate of convergence strongly
depends on the solution and on the interplay between ragatiem and solution properties
(in abstract form this appears as a source condifijn [

In the example in the previous section, we saw that for shoalhlized sources, the wave
equation solution is a sum of delta pulses. Thus we can exipacthe solution has a sparse
structure, i.e., a discretized solutian of (4.1) will only have a small number of nonzero
coefficients.

The use of sparsity based regularizations seems to be agingmiay in this setting.
Recently, a number of algorithms that exploit the sparditycsure have been proposed [
19. Closely related to this is the popular field of compressatsing PJ.

In our case we used the semi-smooth Newton method of Griesseaenz [L0], which
turned out to be quite fast and reliable. However, we modtfieit method, by introducing an
additional regularization term. As an alternative, the-gbfesholding algorithm of4] could
be used. This has the advantage of being quite stable, buatiws slow in our computations.

Let us describe the algorithm we used: the datg are usually given at discrete time
points

m

y = u(ti)i;.

We discretizaw as a sum of delta distributions
w(s) := ijé(s —s5) m=(m;)i_;.
j=1

In the discrete setting this leads to a linear equation
y=Am

with the matrix
Sj

N

The semi-smooth Newton method df]] seeks a minimizer of the Tikhonov-type func-
tional

Ai,j = (I)(

1 m
(4.2) J(m) = §|\Am—y|\2—|—a2|mi|.

=1
The optimality condition can be written as
M~ Sya(m — YA A(m — y)) = 0
forany~ > 0, using the soft-thresholding operator
Sw(m) = sign(m) max(0, |m| — w),

where all operations are applied componentwiseronThe algorithm of L0] computes in
each iteration a vecton”, in the following way:
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1. Compute the active and inactive indices:

AP = {i e N||mF — A*(AmF — y)|; > val,
IF . = {i e N||mF — A*(Am* — y)|; < va}.

2. Compute the residual:
b =mk — S, (mF -y AT A(mF — y)).
3. Calculate the Newton update:

YMaa YMaz dma | _ [ o
0 IZ 6m1 o 57’% ’

4. Update
mFt = mF + 5m.

Here M 4 4, and M 4 7 are the submatrices of* A, corresponding to active and inactive
indices. Iz is the identity matrix. Of course, the iteration has to beppted by a suitable
stopping rule; seel[]].

Local convergence of the iterates® to a minimizer of ¢.2) was shown in [0]. One
problem, which we encountered is that this iteration migftdme unstable, as the matrix in
step3 can be ill-conditioned. So we introduced an ad-hoc regzddion, and replaced stép

by

YMaa+ BvIa YMaz dma | _ [ oy
0 II §mz o 57"% ’

with some small positive parametgr Furthermore we included a damping factor in the
Newton update, such that stépvas changed to

k+1

m =mF +~om.

It turned out that this helped to stabilize the problem. lis #igorithm,y acts as a stepsize
parameter, and: is a regularization parameter enforcing sparcity, whilis another regular-
ization parameter ensuring stability. They can be founddsyain parameter choice rules.

The output of this algorithm is a regularized solution to thscretized problem4(.1).
The relation between regularized solution and exact smiuid @.1) can be studied by the
standard theory of Tikhonov regularization (e.d@,,19]) and @.2).

5. Numerical examples.The operation of the earlier presented mathematical appara
was verified for the numerical data, both for simulated angeexnentally measured data.

5.1. Test example.We first applied the inversion of the heat transform to sytittaata
for a simple geometry to show the wave-like property of thmetically computed heat wave
function.

In the first example we considered the heat equation

%u = DAu
on a cuboidz, y, z) € Q = [0,0.5] x [0,0.5] x [0,2]. The heat source is placed at the face
z = 0 in the form of a Neumann condition
0

%uzl, NN {z = 0}.
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Heating

L

FiG. 5.1. Test example configuration.

At z = 2, we apply Robin-boundary conditions,

0 1
L= T oNN{z=2},

while at all the other parts of the boundary we impose homogsrmeumann conditions
a%u = 0; see Figures.1. For the diffusivity, we seD = 2, and the initial conditions were
u = 0 att = 0. In a weak formulation this problem has the fortn1). The solution to the

heat equation is computed by 3D-FEM using FEMLAB. We cornrsiaieobservation along
one of the lateral faces of the cuboid,sat= 0, y € [0,0,5], z € [0,2] for a certain time

interval until the temperature reaches a steady stédfe~at20.

From these observation data, we computed the correspomgiagwave function by
inverting the heat transform using the semi-smooth Newtathiod from Sectiont. For
the discretization o, we used a grid with quadratically increasing spacing, amuke the
parametersq = 0.6, 5 = 0.5,y = 0.1).

The solution to the wave equation is expected to have thewiollg behavior: Atz = 0
a planar wave is generated at= 0, which travels in the:-direction. When it reaches the
boundary at: = 2, it is reflected and will move back te = 0, where again reflection will
take place, and so on. Because of the shape ¢ifie wave does not depend orandy, but
only onz.

In Figure5.2 we plotted the result of the heat inversion, i.e., the intgnsf the wave
functionw(s, z, y, z) for different values ok over the coordinate. It was indeed the case,
that the wave function did not depend orny in a significant way. In the figure we see that
ats = 0 a wave is generated which travels in the positivdirection. The time, at which the
boundaryz = 2 is hit, calculates by3.8) to s = % ~ 1.4. This corresponds to the lower
parts of the pictures, where the bottom curve meets the bighhdary.

In the picture we also see two separate parts of a wave, whbicibine atz ~ 1.5. We
suspect that this is due to reflections close to the sourt¢é,dnuld as well be an artefact due
to the ill-posedness.

Later ats ~ 2.4, we see a reflected wave, which travels backwards frem2 to z = 0.
However, this reflected wave is already smeared out quite, aafoeffect that might again
be due to the ill-posedness. High order reflections are netrvied any more. We conclude
that the heat wave function gives a reasonable good quaditpicture: we can observe a
wave traveling from the source to the left and a reflected vieareeling back. The location
of the wave peaks at different times and space position isgher, not totally reliable due
to the ill-posedness. Note that in this setting it is, of eeymMmuch simpler to calculate the
wave function directly by solving the wave equation with rerioally with finite elements.
Our indirect computation via the heat equation solution Hreheat transform is done to
illustrate the possibility of finding the wave function frotime heat equation solution. In a
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FiG. 5.2.Density of the wave function (s, ., ., z).

Source Sensor Source Sensor

| [

\ \

FiG. 5.3.Left: high contact resistance induces a reflected wave. tRigiw contact resistance.

experimental setting, the wave function cannot be compdiredtly, because the geometry
and the parameter are not known.

For the next examples we turned to more realistic data of@etr@nic circuits for a con-
figuration as in Figur@.1 The datay(¢) used in this verification were both generated by a
thermal simulator and measured experimentally. The sitadlstructure heating curvest)
were obtained with Fourier series Green’s function theraiulator fL, 11, 16], whereas
the measured data were obtained from the transient theesi@irtT3SteR) provided by the
MicRed company. This equipment allows the registratiorhefinal transients with the reso-
lution of 1 microsecond and renders possible the analyslsaineasurement data employing
the method described i2(, 22, 23].

5.2. Finding contact resistance from simulated data.The model equations and bound-
ary conditions were taken froni§]. The aim of the first part was to investigate the impact
of increasing the contact resistance between the layexs $his phenomenon was also con-
sidered during the measurements of the real circuit. Theebegl effect of the induced heat
wave function is sketched in FiguEe3. For a low contact resistance (right figure) the wave
will travel through, while for a high contact resistance figetion wave should appear for the
heat wave function.

The structure consisted of two layers (1.52mm and 4.00mek}timade of copper. The
heating curves were simulated for a small (10x10 microna) beurce, dissipating 10W, cen-
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FIG. 5.4.Effects of contact resistance (simulated data).

trally located on the top of the thinner layer. Two cases veergsidered; first it was assumed
that the contact between the layers was ideal (full line) #veth the contact resistance was
increased (dashed line). Simulated logarithmically ergtéaht time samples were used to
compute the heat wave function by the algorithm above. lif€i§.4 we plotted the result
of the semi-smooth Newton method — the heat waye x.;,s) — on a logarithmic scale (i.e.
overlog(s)).

As can be seen, the contact resistance increases sigrifithatheight of the peaks
located more to the right and forces an additional peak teapatlog(s) ~ —1. This result
shows the expected behavior as in Fighite In the graph for the increased contact resistance
(dashed line), the additional peak@g(s) ~ —1 can be interpreted as reflection effect on the
interface. Hence, the effect of high/low contact resistaisceasily visible in the heat wave
picture. But, of course, it is almost impossible to see theesponding effect directly from
the datay(t).

5.3. Finding effect of cooling from experimental data.In Figures5.6 and5.7 we
show the result of the inversion of the heat transform uskmpementally measured data for
a circuit model as described in]. The purpose of this experiment was to characterize the
cooling boundary conditions from experimental dafs).

Three experiments were performed, in one the heat sink washegd tightly, in the next
one, the heat sink was loosened and in a third experimenmhtigrease was attached on the
interface between package and heat sink. These three egrds only change the boundary
conditions on the bottom. The heat wave function shouldcizigi a difference between these
cases, as it is reflected differently — in a similar situatamnin Figure5.3 — but now the
different reflection happens at the bottom boundary, nateen the layers as in the previous
example.

Figure5.6 shows the heat wave function computed from the data on aitbgdc scale
log(s). Here the full line corresponds to the case when the heaisikached tightly, in the
next one, the heat sink was loosened (dashed-dotted likpaanthird experiment thermal
grease was attached on the interface between package drsitthe@ashed line).

Indeed, the figure displays this behavior as expected. Wseaa difference in the heat
wave solution alog(s) € [0, 3]. Note that the loose case has the highest pehigét) ~ 1.1,
compared to the other case. This has the interpretationthieabbosening will create the
highest reflection of the heat wave, while the other case amifiduct the wave in a better
way. The thermal grease here shows least reflections, itmtichat it has the best thermal
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FiG. 5.5.Left: Moderate cooling Right: Forced cooling.

- - - grease|
tight

.= +=" loose A\

-3 L L L L L L L
-3 -2 -1 0 1 2 3 4 5

FiG. 5.6.Effects of loosening the heat sink (experimental data).

conducting properties amongst these three cases.

In Figure5.7 another experiment was considered. We investigated tleetedf cooling
at the bottom: Two cases we analyzed: the solid line is thewaee function for data with
forced air cooling at the bootom, while the dashed line cgromds to the same experiment
with cooling only by free convection (still air). The diffence in the heat equation between
these two cases are again only the boundary conditions dyoth@m, which have a different
heat transfer coefficient involved in either case. A sketcthe expected wave behaviors is
seen in Figur&.5. Different types of cooling will show a different reflecteéwve. For a high
cooling most of the energy will dissipate into the heat sifkr a comparable low cooling
some part of the energy will be reflected. The main differdmsteveen the two plots is at the
right-hand side dog(s) € [1, 5], while the heat wave function hardly differs for smaller éisn
s. From this picture we conclude that the peaks on the rightdiside starting dbg(2) ~ 2
are due to the effects of the heat sink. The peaks at eartie, te.g., atog(s) ~ —2.2,0
are due to the reflections at the layers of the material. Weteddhey are quite the same for
both experiments. The most obvious difference is the peakhffree convection cooling
(low cooling), which is not there for forced cooling. Agahns fits the observation that in the
forced cooling case most of the wave energy will dissipateaod little will be reflected.

Note that the first peak on the leftlaiz(s) ~ —5 is the wave that travels directly from
the source to the observation point without reflection.

Furthermore in view of equatiorB(2) the total gain of temperature should be equal to
the integral of the wave function. Indeed, for the experitabrases a summation of the wave
functions agreed up to 10% to the total temperature gain.
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FIG. 5.7.Effects of blowing air on heat sink (experimental data).

6. Conclusion and comments.It is obvious from the pictures that the computed heat
wave function can be used to classify cooling boundary dandi and interfaces. It gives a
qualitative picture of the effects of, e.g., boundarietgifaces and location of sources. The
reason for this is that the wave equation transports th@imétion to the observation point.

From the computed heat wave function we can certainly d@jsish cases when the heat
sink is not attached properly, or if forced cooling took @amd we can compare the thermal
quality of an interface. As an possible application this t&nused to find, for instance,
manufacturing faults by comparing the heat wave functioa teference function.

Note that, once the heat wave function is computed, the casgmacan be done by
visual inspection, and the regions, where additional peakar can be related to the location
of interfaces or boundaries in the package ®y3) (or similar formulae).

This certainly cannot be done just by inspection of the thedrdatay(t), because the
effects of contact resistance and boundary conditiomatdocalizedhere, while they are in
the heat wave function. Furthermore, comparable methodiadihg interface or boundary
conditions may give a quantitative estimate of paramebersysually requires multiple time-
consuming numerical solutions of the heat equation; in @pr@ach we only have to solve
one linear inverse problem.

Moreover, since the time-constant spectrum can be caémifadbm the heat wave func-
tion by (3.3), w(s) determines the thermal input-output behavior of the paekagus, the
heat wave function can be used to characterize and clabsithérmal response of a package,
replacing or completing the picture, that the time-conisspectrum gives.

We think that this new method of analyzing thermal data cdp teebetter understand
thermal properties of electronic systems.
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