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BOUNDARY CONDITIONS IN APPROXIMATE COMMUTATOR
PRECONDITIONERS FOR THE NAVIER-STOKES EQUATIONS *

HOWARD C. ELMANT AND RAY S. TUMINARO?!

Abstract. Boundary conditions are analyzed for a class of precontti® used for the incompressible Navier-
Stokes equations. We consider pressure convection-iffusreconditioners [SIAM J. Sci. Comput., 24 (2002),
pp. 237-256] and [J. Comput. Appl. Math., 128 (2001), pp-26B] as well as least-square commutator methods
[SIAM J. Sci. Comput., 30 (2007), pp. 290-311] and [SIAM Ji. S2omput., 27 (2006), pp. 1651-1668], both of
which rely on commutators of certain differential operatohe effectiveness of these methods has been demon-
strated in various studies, but both methods also have s@fi@emhcies. For example, the pressure convection-
diffusion preconditioner requires the construction of glaae and a convection—diffusion operator, together with
some choices of boundary conditions. These boundary donsliare not well understood, and a poor choice can
critically affect performance. This paper looks closelypabperties of commutators near domain boundaries. We
show that it is sometimes possible to choose boundary gonslito force the commutators of interest to be zero at
boundaries, and this leads to a new strategy for choosingdaoy conditions for the purpose of specifying precondi-
tioning operators. With the new preconditioners, Krylobspace methods display noticeably improved performance
for solving the Navier-Stokes equations; in particular,sméndependent convergence rates are observed for some
problems for which previous versions of the methods did mbttst this behavior.
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1. Introduction. Consider the Navier—Stokes equations

nu —vV3u+ (u-grad)u+gradp = f,

(1.1) —diva = 0,

on C R?, d = 2 or 3. Here,u is thed-dimensional velocity fieldp is the pressure, and

is the kinematic viscosity, which is inversely proportibteathe Reynolds number. The value
n = 0 corresponds to the steady-state problemanrd 1 to the case of unsteady flow. It is
assumed that satisfies suitable boundary conditions@m, which is subdivided as follows:

09, = {x €092 u-n<0}, theinflow boundary
08, {z € 0 ]u-n =0}, thecharacteristic boundary
09, {z € 0 |u-n >0}, theoutflow boundary

Linearization and discretization of (1) by finite elements, finite differences or finite volumes
leads to a sequence of linear systems of equations of the form

02 50 JB1-L)

These systems, which are the focus of this paper, must bedalveach step of a nonlinear
(Picard or Newton) iteration, or at each time step. H&@ndB” are matrices correspond-
ing to discrete divergence and gradient operators, respcand ' operates on the discrete
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velocity space. In this paper, we focus only din-stablediscretizations where the corre-
sponding(2, 2) block entry is identically zero.

In recent years, there has been considerable activity idékelopment of efficient iter-
ative methods for the numerical solution of the stationarg ully-implicit versions of this
problem. These are based on new preconditioning methodsddrom the structure of the
linearized discrete problem given ith.@). An overview of the ideas under consideration can
be found in the monograph of Elman, Silvester and Watl#n A survey of solver algo-
rithms and issues associated with saddle point systemseppe[l]. The key to attaining
fast convergence lies with the effective approximatiorhaf $chur complement operator

(1.3) S =BF BT,

which is obtained by algebraically eliminating the vel@stfrom the system.

Two approaches of interest are theessure convection—diffusigRCD) preconditioner
proposed by Kay, Loghin and Wathe8] [and Silvester et al.12], and theleast squares
commutator(LSC) preconditioner developed by Elman et &]. [ We will describe (vari-
ants of) these in Sectioh. They are derived using a certabommutatorassociated with
convection-diffusion and divergence operators, which mteduce here. Consider the linear
convection-diffusion operator

(1.4) F=-vV?+w-V,

where the convection coefficiemt is a vector field inR?. This operator is defined on the
velocity space (we will not be precise about function sppees derived from linearization
of the convection term inl(1) via Picard iteration. We will also assume that there is an
analogous operatdf(®) defined on the pressure space. Badenote the divergence operator
on the velocity space. For two-dimensional problems,

[_7-‘(”1)

}‘(uz)} )
where
Flu) = Fluz) — (86—;2 + 53—;2) —|—w1% + MQ(% .

Now, define the commutator
(1.5) £ = BF -~ FWB = [B,F") — FWB,, B,F) - FWB, |,
whereB, = % andB, = a%- Whenw; andw, are constant and boundary effects are
ignored,£ = 0in (1.5. This observation leads to the PCD and LSC preconditiqraers
shown in Sectior2.

This discussion does not take into account any effects thatdary conditions may have
on the outcome. For example, the PCD preconditioner resjaidiscrete approximatiafi,
to the operatotF(?), and for this it is necessary that boundary conditions aatemt with
F®) be specified. In previous work, decisions about defining bdamnconditions within the
preconditioner have been made in an ad hoc manner. Thesgatexchave been primarily
guided by experimentation and they lack a solid basis. A pboice of boundary conditions
can critically affect the performance of the preconditicme

In this study, we systematically study the effects of boupdanditions on commuta-
tors of the form (.5, and we use these observations to define new versions ofGbeaRd
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LSC preconditioners. We show that for one-dimensional lemols, it is possible to specify
boundary conditions in such a way that the commutator is eeem at domain boundaries.
In particular, aRobinboundary condition is used at inflow boundaries for the cotiva-
diffusion operatorF(). It is interesting to note that Robin conditions appear inesal
somewhat related preconditioning contexts. 1i,[Section 11.5.1, p. 329] (see also the
references therein), Robin conditions are discussed mga@f domain decomposition and
how they enhance coercivity. In our context, the Robin ctoileads directly to discrete
(matrix) operators for which a corresponding discrete cartator is zero, and it results in
a perfect PCD preconditioner in a one-dimensional settirtyjs basic idea is then general-
ized to higher dimensions by splitting the differential cgters into components based on
coordinate directions. This split leads to several equat@ssociated with the commutator
that can be analyzed in a fashion similar to the one-dimeasicase. Although not all the
commutator equations can be satisfied simultaneouslypivssible to satisfy an important
subset of them. This again leads to an appropriate set ofdasyrconditions within the
PCD method for coordinate-aligned domains. The resultewy RCD preconditioner, when
combined with Krylov subspace solvers, displays signifiigaimproved convergence prop-
erties for solving a problem with inflow and outflow boundaonditions. For enclosed flow
problems (containing only characteristic boundaries},analysis shows that the Neumann
condition previously used] to define the convection-diffusion operatsf?) is, in fact, the
right choice.

Our analysis also leads naturally to a modification of the lpg&&onditioner that empha-
sizes important relationships for components of the comatouassociated with boundaries.
The convergence of the resulting LSC-preconditioned GMR&&tion appears to be inde-
pendent of the discretization mesh parameter. This castvath the (mild) mesh dependence
seen for the standard LSC method and it also helps explaithisadependence is caused by

boundary effects.

An outline of the paper is as follows. In Secti@ we briefly review the derivation
of the PCD and LSC preconditioners. In Secti®inwe present some preliminary results
for a commutator associated with a one-dimensional modeSdctiord, we show how to
split the differential commutator into components and exenthe effects of directionality
on properties of the components and of discrete versionisesht In Sectiorb, we analyze
the effects of satisfying different relationships asstedawvith the commutator. Specifically,
we show that a component of the commutator correspondirftgtditectionorthogonalto a
Dirichlet boundary plays a special role in the qualitiesied tommutator. New versions of
the PCD and LSC method that take these considerations intuatare derived in Section
6. In Section7, we demonstrate the improved performance of the new pretioners on two
benchmark problems, the backward-facing step, whose k@yrwbntains inflow, outflow,
and characteristic components, and the driven cavity prabivhich has only characteristic
boundaries. Finally, in Sectid® we make some concluding remarks.

2. Review: preconditioners derived from approximate commtators. If finite ele-
ment methods are used to discretize the component opertérin (1.5), then a discrete
version of the commutator takes the form

(2.1) E=(Q,'B)(Q,'F) — (@, F})(@Q,'B),

where@, and(@), are the velocity mass matrix and pressure mass matrix, cégply. As-
suming that this matrix version of the commutator is alsols(ha., £ = 0), a straightfor-
ward algebraic manipulation leads to the approximation

(BQ,'B") ' F,Q,'BF'B" ~ I.
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That is, the inverse of the Schur complement can be appraaohizy

(2.2) (BF'BT) ' = A'F,Q,
where
(2.3) A, = BQ,'B”

is a discrete Laplacian. If the commutator is small, we ekpc [7,Q;, ' to be an effective
preconditioner for the Schur complement. In an impleméonata diagonal matrix (spectrally
equivalent to),) can be used to approximate the actiorQ;;fl, and similarly,Q, ! can be
replaced by a spectrally equivalent approximation2rB8( [17]. In the following, we will
assume thaf),, and@, represent these diagonal approximate mass matrices. Matame
or two multigrid cycles applied to a Poisson equation candezluio approximate the action
of Agl. A complete specification of the PCD preconditioriz@) requires that the matrik;,
be defined as though it comes from a differential operatooaection-diffusion operator)
having some boundary conditions associated with it; théspsimary focus of this paper.

For the LSC method), is defined in an alternative fashion. The basic idea is to &blym
solve a least squares problem designed to make a discrstervef the commutator small. In
particular, we solve a weighted least squares problem &oi‘throw of Fszjl (equivalently,
thei'" columnof Q' F') via

(2.4) min || [FTQ BT — B [X".i |,

where MATLAB -style notation is used to refer to matrix columns. Hekg,is a positive-
definite matrix defining an inner product and induced norm,

(2.5) (¢,q)n = (Hq,q), lallmr = (@)1

X is to be determined and produces an approximatioﬁpt@zjl. Note that 0.4) is derived
for the commutator withB; it is expressed in terms d8” only so that it looks like a least
squares problem for a column vector.

The choice of the weighting matrié and its relation to the commutator will be described
in Section6. Briefly here, the problem2(4) is derived by multiplyingE' of (2.1) by Q,,
transposing, and then attempting to make the result smahlidneast squares sense with
respect to theéf-inner product. The normal equations associated with tiablpm are

BHBT[XT).; = [BHFTQ,'B"],.
This leads to the definition
(2.6) F, = (BQ,'FHB")(BHB")™'Q,.

Substitution of this expression int@.¢) and using 2.3) then gives an approximation to the
inverse of the Schur complement matrix,

(2.7) (BQ,'B""Y(BQ,'FHB")(BHB")™ .

It is important to recognize that the matr#, is never explicitly computed. Moreover, as
above, 2.7) is used withQ, ! approximated by a diagonal matrix, and for practical coraput
tions the actions of BQ,, ' BT)~! and(BH B*)~ are approximated by one or two multigrid
cycles.
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These (PCD and LSC) preconditioners differ in several wagmfthe “standard” ones
described, for example, irb]. Most notably, previously the commutator was defined using
the gradient operator, &8V — VF (). The difference from1.5) appears innocuous since (for
constantw) the components of the composite differential operatoestlae sameHowever,
the commutator for the gradient leads to different requeata on boundary conditions than
that for the divergence operator, and there are advantagesirig the divergence operator.
We will elaborate on this at the end of this section.

In addition to this essential difference, concerning bamgaonditions, there are also a
few structural differences between the new variants ddrere and those previously devel-
oped:

e PCD preconditioning. Previously, manipulation of the commutator that uses the
gradient operator led to the approximation

(2.8) (BF'BT) '~ Q, ' F,A

Thus the order in which the operators appear differs frarg)(

e LSC preconditioning. The scaling matrixt{ has previously been taken to be the
same a€); !, a diagonal approximation to the inverse velocity matrixdhand it
is taken as the reciprocal of the diagonalfofin [9] for highly variable viscosity
Stokes problems. Here, we consider other diagonal form& @ (2.7) to allow
for different treatment of boundary effects. A derivation®.7) using the gradient
would also change the order in whi¢h, and H appeatr.

o Both new methods use (3) explicitly for the discrete pressure Laplacidp, so that
no decision is needed for boundary conditions for this ojoera

These differences are negligible from the point of view afhguitational requirements.

3. One-dimensional analysis.Consider the one-dimensional operators

d? n d B d
Uda:2 wda:’ T dx

applied on aninterval, sy = (0, 1), wherer andw are positive constants. We are interested
here in the impact of boundary conditions on differentiall aliscrete commutators, and we
need not think of these operators as being associated witbbdem such asl( 1)

It is easy to see that the commutaltF — F )3 is identically zero ir2, with

—_ - _ d_3 d_2

3.2) BF =FW¥B = de3+wdm2'
Let us assume that a Dirichlet valu¢0) = 0 is specified at the inflow boundagy= 0 for
functionsu defined on(2, and that at the outflow boundaty = 1 we have a condition in
which vu’ = 0; the latter requirement is intended to be consistent wittaadard outflow
condition for (L.1); see ¢.1). In addition, one boundary condition dhis required for the
first-order equatiolBu = 0 to have a unique solution. To be consistent with the leftigbt
nature of the flow, we also take this to be a Dirichlet condit the left boundary.

Now, givenu, letv = Fu. Forv to be appropriate as an argument®bn the left side
of (3.2), we requirev(0) = 0. Then

P d+ du d+ _du
VNI T T ) e T T ) P

(3.1) F=F,=

Thatis, specifying the inflow value ofis the same as specifying the inflow value(efy% + w) p.
But p is the argument of the operat&i®’ in the second term of the commutatit?) - . So,
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to make the commutatdrat the inflow, we definér, applied to (any) to satisfy the Robin
boundary condition

(3.3) —vp +wp=0

atz = 0. This boundary condition more closely resembles a Dirichiea Neumann condi-
tion depending on the size of convection relative to diffusiThis is fundamentally different
from what has been done previousB],[where either a Neumann or Dirichlet condition is
imposed on a boundary depending on whether it corresponid§loav, outflow, or no slip.
The Robin condition is consistent with the analysisii][where it is shown that Dirichlet
conditions on inflow are preferred asapproaches 0. Also, notice that with our choice of
boundary condition forF,, the third-order operator ir3(2) has two inflow boundary condi-
tions specified at = 0, u = 0 and—vL% + wis = 0.

A similar argument can be made at outflow, whétés defined with a Neumann condi-
tion and no additional boundary conditions are needegfdrhus, the composite differential
operatorBFu is only required to satisfy a Neumann condition at outfloes, iz, = 0. For
the composite differential operat@?) Bu, we havep = Bu = u,. This implies thatF®)p
must be equipped with a Dirichlet conditipn= 0 at the outflow in order for the composite
differential operatotF () Bu to satisfy the same Neumann conditioni5u.

I T T T T T T T I
o T T2 Tp
T1 3 T, 1
2 2 2

F1G. 3.1. Grid points for MAC discretization of one-dimensional pehs.

Now consider the discrete case, using the staggered meshigiFigure3.1correspond-
ing to a one-dimensional version of a mesh that might be usetirfarker-and-cell” (MAC)
finite differencesT]. Given a subdivision of0, 1), by analogy with higher dimensions, take
the discrete “velocities” (arguments of the matrix approationsF’ and B to F and B, re-
spectively) to be defined on interval endpoints, and therelisc'pressures” (arguments of
F, and BT) to be defined on interval centers. The discrete operatkesttee form ofn x n
matrices

[a+D —b d
—a a+b —b —d d
(34) F= ’ ' ’ , B= C ,
—a a+b —b —d d
L —c ¢ | L —d d_
a —b
—a a+b —b
(3.5) F, = . .
—a a+b —b
—a b+ec

We will explain in detail below how the first and last rowsiofare determined. We show
here how, giver¥’, the requirement that the commutai®f’ — £}, B be zero defines the first
and last diagonal entries &f,. Suppose these entries are unknowns to be determined,

[Fp]ll :gla [Fp]nnzgn
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It is easy to show that requiring the first row of the produBi® and ), B to be equal leads
to the condition on thél, 1)-entries

[BF]ll = d(a—i— b) = Eld—i-bd = [FpB]lla

giving &, = a as in B.5). The situation is slightly different for the right, outflplvoundary.
Here, the last rows oB F" and £, B are the same only iivo conditions hold:

(3.6) (a+£n)d: (a+b—|—c)d, §nd = (b+c)d

Fortuitously, these conditions are compatible and give= b + ¢ as in 8.5). Thus, itis
possible to construck), so that the discrete commutat®' — F,B is identically 0. It
follows from this that

BF'BT = F;'BB”,

i.e., the matrixF}, can be used to produce a “perfect” preconditionerfdr ' B”.

The entries ofF', B and the interior rows of}, are determined in a standard way. For
concreteness, we will describe the case where centeredetiifes are used for all convection
terms. After scaling by:?, this givesa = v + % andb = v — . The first row of I
corresponds to an equation centered:atvith a Dirichlet value forz,. In the last row of
F, the choice: = 2v comes from using a central discretization to the PDE andietiting
the ghost point via the outflow Neumann boundary conditiorithW = 1, B corresponds
to a centered difference approximation, scaledhBy The entries off,, centered at1 are
determined using

(3.7) [Foply = — (v + 4 )p_s +2vpy — (v — %) ps .

Special treatment is needed for the vadu% at the “ghost point’x
Robin condition 8.3), approximated at by

pPL—p_1 pr+p_1
G8) e v (B ) (B,

= —2. If we use the

1
2

h

then setting the difference operator on the right to zerddea

3.9 1= 1.
(3.9) oy =\ o5 |

Substitution into 8.7) gives

[Fpp]% :(l/-f—%h)p%—(l/—%h)p% :ap%—bp%.

That is, the discrete Robin conditioB.8) is exactly what is needed to make the discrete
commutator zero at the inflow boundary. It is also possiblmterpret the discrete outflow
condition as an approximation that incorporates a Dirichlessumption. Specifically, the
entries ofF}, centered at,,_. are

n—3

h h
(3.10 Bty == (045 ) g + (305 )y

This can be obtained by assuming a standard interior standikliminating the ghost point
using% (pn_% +pn+%) = 0 which is a discrete approximation to the Dirichlet conditio
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p = 0. It should be noted that the MAC discretization is speciathiat the pressure grid
contains no points on the boundary. Thus, each roW,0f an approximation of the differ-
ential operator (making use of boundary conditions for tre &nd last row). However, most
discretizations have points on the boundary. Considerexample, the discretizatioB F’
of the composite differential operat&F. The last row ofF’ can be written as an approxi-
mation toF in (3.1) where a ghost point is removed using the outflow conditioh = 0.
Application of B then entails finite difference approximation to the defxabperator, ap-
plied along this row. Thusi F’ would effectively be an approximation t8.¢) where a ghost
point is removed using the outflow condition éh It is not generally possible to exactly
satisfy a discrete commuting relationship by taking a Dilet approximation fotF, (e.g.,
F,(k,n) = 0for k # n, F,,(n,n) = 1 wheren is the dimension of},). This Dirichlet condi-
tion implies that the last row af}, B is simply the last row of3 which is an approximation to
u,. Further, the scaling of a simple Dirichlet condition (etgking instead, (n, n) = «) has
an effect on how much the commuting relationship is violated, the size of| BF' — F,, B|».
This follows from the fact thaBBF' is independent of this scaling whilg, B obviously de-
pends on the scaling. This scaling issue does not arise andatd discretization context so
long as the right hand side is scaled appropriately. In osechowever, it is the scaling of
F, which must be consistent with. This will be discussed further in Secti@n

To summarize this discussion: the discrete commutatorteques solved exactly for a
one-dimensional constant wind model problem with a MAC idiization by using a Robin
condition at inflow and a Dirichlet condition at outflow. Atthgh exact commuting is not
always possible in other situations, the differential caming relationships provide justifi-
cation for using these conditions as a guide for higher dsimral settings.

Before moving on to higher dimensional problems, we brief§cdss the commutator
with the gradient, which in the discrete one-dimensiontirsghas the form#" BT — BT F,,.
With F' as in @.4), a derivation identical to that above produces a zero cotatouat the
left boundary with the choicéF,].1 = b. We can interpret this in terms of centered finite
differences. Starting fron3(7), let the ghost point be defined using a discrete approxanati
to the boundary conditiop/ (0) = 0,

Substitution into 8.7) gives
[Foply = (v—"5)py — (v — %) pz = bpy —bps .

Thus, the discrete commutator with the gradient is zeroealdft boundary ifF}, is a discrete
version of () obtained using a Neumann condition at the inflow. In contatite case for
the divergence, however, it is not possible to also make iberete commutator zero at the
outflow boundary. Moreover, with the Neumann inflow conditithe continuous operator
F®) becomes degenerate in the case of pure convection; thattiseilimity — 0, F®)
applied to any constant function is zero. No such difficultgurs when the divergence is
used for the commutator, where the Robin conditi®B(induces a Dirichlet condition at the
inflow.

4. Analysis for higher dimensions. Commuting ideas are now extended to problems
in higher dimensions. We consider a two-dimensional regutéar domairt aligned with the
coordinate axes (see Figufel), where inflow and outflow conditions hold on the left and
right vertical boundaries df, respectively. This corresponds to Dirichlet valuesidarn the
left that satisfyu; > 0, and the solution satisfies

8u1 811,2

4.1 =1 5= —
(4.1) Vow TP 0, T 0,
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X @16X16017X170 X o X e Xg0
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FiG. 4.1. A two-dimensional rectangular domain with grid points foAM discretization.

on the right boundary withu; > 0. To simplify the discussion, we use periodic boundary
conditions on the top and bottom.

Consider a splitting of the convection-diffusion operatdrand 7 ) into components
associated with coordinate directions,

F=F +F, FO =Fp +FP),
where
(42) Fz:_Vaa_;Q‘i‘wla_am, F, :—Vaa—;z —|—w28%,

andF®) is split analogously. We can use these to split the commutat8) into four com-
ponents,

4.3) @B~ FB., @BF™ - B,

®B,F" —FPB,, @ B,F" - FPB,,

where the first pair comes from a splitting of the first block(&f5), and the second pair
comes from the second block. In particulér= [D + @), @ + @)]. The expressions in(3)
can be categorized by component orientations in relatiadhegwertical boundaries:

(@ orthogonal-orthogonal, (2 orthogonal-tangential,

(3 tangential-orthogonal, (@) tangential-tangential .
The first direction is associated with a componenBpfaind the second is associated with a
component ofF. For example(2) contains the horizontal-oriented part 8f(0/dx) which
is orthogonalto the left and right boundaries, together with the vertimaénted part ofF,
tangento the left and right boundaries.

Our aim is to understand how the choice of boundary condition 7 (*) affects these
commutators, and ultimately, to understand the impactdhisce has on discrete versions of
the commutators and the preconditioners. Indeed, alth¢ugh-(4.3) correspond to differ-
ential operators, we are primarily interested in the discmnes, andr, B and ) can be
thought of as continuous approximations to their discras@gues.

We begin with the discrete setting. The discrete analogyé.8f is

@ BIFéul) _ FUEP)BI’ @ Bsz(U1) _ Fy(p)BI,

(4.4)
®B,F\"” —F"B, @ B,F\" - F"B,.

For marker-and-cell finite differences, assufhis subdivided into am: x n grid; an example
is shown in Figurel.1for m = 5 andn = 4. The component matrices are then structured as
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follows:
(4 5) FISUQ = dlag(Flv 7F1)7 FI('UQ) - dlag(F27 7F2)7
' FY) = diag(Fs, - ,F3), B, = diag(By, - ,B1),
and
dI qI oI I _y
. . 01 dr - =11
46) F") =F") =FF = ' ,  B,= _
- oooql o
ql o1 di -1 I

F) E2) and £P) are finite difference discretizations &%,. F, F, andF; are tridiago-
nal matrices corresponding to discretization along a sihgkizontal grid line.F; is identical
to F' of (3.4). F; is somewhat different due to the location with respect toltbendaries of
the grid points labeled®.” F5 near the boundaries is to be determingg.also corresponds
to discretization along a single horizontal grid line andlentical toB of (3.4). F;“”, Fé“z)

andFé”) are finite difference approximations #,. They are identical to each other because
of the periodic boundary conditions. All the approximagdo.F,, andF, are block matrices
where the block order ia and each of the individual blocks is of order. It is easy to see
that the entries of the commutators ih.4) corresponding to interior points @2 are zero
whenw is constant in4.2).

Let us examine in detail what happens along boundaries. iBleeete commutata®) is
the block-diagonal matrix

(47) diag(BlFl —F3Bl,...,BlF1 —F3Bl).

As F; and B; are identical to the matrices in the one-dimensional sdéertescribed in
Section3, it follows that this expression is zero whég at inflow includes a discrete version
of the Robin condition

(4.8) —V% +wyp = 0.

Specifically,[F3]11 = a and[F3]12 = —b. Similarly, F5 should include a Dirichlet condition
at outflow. The complication not seen in the one-dimensioasé is thaf’; also appears in
the commutato@). In particular, this discrete commutator is

Iy — I3 —(Fy — F3)
—(Fy — I3) F, — F3
(4.9) : ) ;

—(Fy —F3) Iy —F3

which is only zero ifF3 = F,. This implies thatF; should include a Dirichlet condition at
inflow and a Neumann condition at outflow, as these are thedayrconditions fotF,, (and

so consequently foF,). For example, at infloWFs]11 = 2a + b and[F»]12 = —b, and so
taking [F3]11 = 2a + b and[F3];2 = —b makes@®) equal zero along the inflow boundary.
Thus, the conditions required to maf@ equal to zero are incompatible with the conditions

1The (1, 1)-entry of F» is larger than the1, 1)-entry of F; due to the fact that the leftmost grid poing" is
closer to the boundary than the leftmost grid poirt™
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required to makel) equal zero.F53 can be chosen to make eith@r or (3 in (4.4) equal to
zero at the inflow boundary. However, they cannot both be gienaltaneously.
Now consider the commutato@® and(@) of (4.4). Observe that fof2),

Bld qu Blf dBl qu fBl
u Byl Bid . (B, dB, .
B, F{") = e = ot = F"B,.
- - bBug - qB
qu Blé Bld qu éBl dBl
Similarly, for @),
d—aq)l q (—d+0)1
(=d+ 0TI (d—q)I q I -1
ByF{") = - =F¥p,
(=d+0)I (d—q)I ql
ql —I (—d+0I (d—gI

Thus, no special requirements are needed along the veticaldaries in order fo2) and
@ to be zero; they are compatible with each other and they daffiett @) and(® as they
do not depend oti’s. This implies that it is possible for three of the four comatots in
(4.4) to be zero simultaneously at each vertical boundary, bualhdéour. We note, however,
that for centered finite differences, in the limit— 0, a = —b = “g", so that the discrete
commutator is identically zero at the inflow in the hyperbdiinit.

We summarize these observations with the assertion thatisiceete operator®), (3,
and@® of (4.4) are “self-commuting,” in the sense that these commutat@sero when the
discrete pressure convection-diffusion matfi¥’) is defined from the same boundary con-
ditions used to specify the velocities. Furthermore, thepprty of self-commuting depends
only on the special matrix structures and not on values inptémticular stencils, a$b, d,

q, and/ are arbitrary. In fact, self-commuting does not even depanthe specific bound-
ary conditions per se; instead it is a consequence of thehatt2), (3, and® contain at
most one discrete difference operator associated withextitin orthogonal to the vertical
boundaries. In particula comes fromonly tangential differencing, which, in light of the
periodic boundary conditions at top and bottom, are repiteseby circulant matrices. It
is well known that circulant matrices commute, which makg®qual to zero. Commuta-
tors @ and (3 come from an orthogonal/tangential pair. The tangentifiédincing leads
to circulant matrices with scaled identity submatricedereas the orthogonal differencing
leads to a block diagonal matrix with the same submatrix chddock diagonal entry. Here,
self-commuting relies on the fact that scalar multiplioativith a matrix commutes. To sum-
marize, the order in which the individual operators appaa@i-@ is not important in the
discrete setting. If one views the continuous commutatérd @s approximations to the
discrete commutators, one can loosely make an argumenthiatrder of operators is not
important in a continuous setting either (though the cariirs commutators may not be iden-
tically zero). Further(D (corresponding to the one-dimensional problem) is uniquinat

it has an orthogonal-orthogonal characterization andtihésonly discrete commutator that
does not involve self-commuting.

°By takingd = 1,/ = —1,andg = 0, By can be viewed as a special case of the structure for
F{") F{"2) | and P
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This discussion has focused on boundaries assumed to béhef &iflow or outflow
type. We conclude this section with an observation for treeaghere the velocities satisfy a
characteristicDirichlet boundary condition. This holds along top and bottboundaries in a
simple channel flow application which is similar to the prinlunder discussion here, where
w = (1,0)T, and it also applies to the driven cavity problem. In thisssdsis condition@)
that is of (orthogonal,orthogonal) type with respect tohbthte top and bottom boundaries,
and a zero commutator is obtained using the Robin boundangitton analogous to4(.8) to

definer(p) along these boundaries. Fog = 0, this Robin condition is
(4.10) —I/g—z + wop = -2 =0,

at the bottom, a pure Neumann condition. (The top is the savitle,the opposite sign for
3—5-) This is what has been used previously for characterigtimbaries }, 8], and this ob-
servation provides justification for this choice. As abawes would not be compatible with
the Dirichlet condition needed to make the commut&pequal to zero. Our computational
experience, which we report in Secti@nis that the Robin condition is to be preferred.

To summarize, three out of four commutator equations caratisfied along the bound-
aries of(2, but there is a conflict between the commutators of “orth@dranthogonal” and
“tangential-orthogonal” types. When Dirichlet condit®are specified for the Navier-Stokes
equations, such as at an inflow boundary, Robin boundaryitons for #(») enables the
first of these commutator types to be zero. We will exploredffect of this choice in the
following sections.

We comment on the analogous question for three-dimensproblems, where there are
nine commutator equations due to three-way splittings @h liband F corresponding to
the three coordinate directions. Six commutator equat{emsilar to (2) and@ in 2D) are
satisfied, as they do not contain differentiation orthogaméhe inflow boundary within the
split 7 operator. Two of the remaining three conditions can be feadisising a Neumann
condition or, alternatively, one of the remaining three barsatisfied with a Robin condition.
Further study would be required to fully assess this choie;intuition is that the Robin
condition remains the most important.

5. Perturbation analysis. As not all commutators in4(.4) can be zero simultaneously,
we now seek to understand the impact of nonzero commutatsirgy a combination of anal-
ysis and empirical results for the MAC discretization. Oagain, we consider a rectangular
domain where the velocities satisfy periodic boundary dworts on the top and bottom, a
Dirichlet inflow condition on the left boundary, and an outflaondition @.1) on the right
boundary. The PCD preconditionér.p) approximates the inverse of the Schur complement
S = BF~'BT. For MAC discretization on uniform grids, the mass matri€gsand(,, are
both diagonal of the form21, and they cancel each other ia#). Hence, the inverse of the
preconditioning operator is

M~' = (BB")"'F, = (B,Bf + B,BI')(F\") + F{").

The convergence of a preconditioned iterative method is“(fight-oriented” precondi-
tioning) governed by properties 6fA/ ~'. We explore the variant obtained from a similarity
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transformation,
Y = F,SM7'F!
= (B + FP) (B (F))"LBT + B, (F()~1BT)(BBT) ™!

(5.1) = (Fé”’B(w + FZSP)BZC))(F(ul))—le(BBT)‘l—i—
(FP B, + FY B,)(F)~ B (BBT)

= (Epp + Eay + Bo ") + B, F{"))(F(1))=1BT(BBT)~14
(Bye + Eyy + ByFS") + B, F{"*))(F(2)) "1 BT (BBT)~1,

where

E,, = F"B,—B,F", Euy Fy"' B, — B, F\"",
B, = F"B,-B,F"), E,, = F"B,—B,F",

are the commutator errors. The similarity transformatiak &llow us to decouple the anal-
ysis of different components of the boundary.
Further simplification of %.1) yields

(5.2) Y = I+(Eyo+Eay)(F“)) ' BI(BBT) ' +(Eyp + By, ) (F“2)) "' Bl (BBT) ™"

If £, = Eyy = Eyy = Eyy = 0, thenY = I andM is an ideal preconditioner. We will
explore the size of the perturbations from the identity aseasare of the effectiveness bf
as an approximation t§, i.e., as a preconditioning operator.

As shown in Sectiod, we can choosé}fp) so thatt,,, and £, are zero near the inflow
boundary. LeiFm(’”” be the version oFm(”) determined from Robin boundary conditions that
makesFE,, (i.e.,®) equal zero along the inflow, gt similarly be the operator obtained
from Dirichlet inflow conditions, for whichE,,. (®) is zero, and lef P = pet) _ peh,

Let Y+ be the version o¥ obtained WhengE”) = Fé”’“, and letY’! be the version obtained
whenF ) = D It follows that

Yt o= I+ (F")B,(Ft)" BT (BBT) ™,
Yl = I—(§FP)B,(Fu))~1BT(BBT)~1,

Notice that only the factos .7 is tied directly to the size of errors in the commutators.
Furthermore, each row of the perturbations is associatéd aicommutator error at one
pressure grid point. That is, the commutator error at a paldr pressure point only affects
the row in the perturbed matrix associated with that poitiisTheans that we can explore the
effect of each boundary in isolation. For example, errorancommutator associated with
points adjacent to the inflow (outflow) boundary do not haweeffect on entries in rows of
the perturbation associated with points adjacent to outfioflow) boundaries.

To examine these perturbations, we considéy a 40 MAC mesh withw; = 1, we = 0,
v = .25, and centered finite differences for both the convection diffdsion terms. The
computed condition numbers of the preconditioned Schumdement using the orthogonal
commutator (fromFm(p’“) and the tangential commutator (froﬁip’l)) are 45.2 and 4404.1
respectively. Thus, the system is much better conditiorsauuthe orthogonal commutator.
This correlates well with the size of the inflow perturbasamssociated with using each of
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Orthgonal Inflow Perturbation ‘Tangential Inflow Perturbation

FiG. 5.1. Perturbation terms (as grid functionsp (k, :) (left) and P! (k, :) (right) wherek is the row
associated with the1st vertical pressure grid point adjacent to the inflow boundary

the two perturbation formulas:

Pt = (OF")B,(F()"'BI(BBT)™",

(5.3)
Pl = (§FP)B,(F))~1BT(BBT)~L,
Specifically, Figuré. Lillustrates a single row oP- and P! associated with th21 ¢ vertical
pressure point adjacent to the inflow boundary. In this anersé other figures below, this
matrix row is displayed as a grid function on the underlylfig 40 grid 2 It is obvious that the
perturbation associated with the orthogonal commutatemiall and localized. In addition,
the Euclidean norm of the row vector frol* depicted in the left side of Figurg.1 is
approximatelyl /2. In contrast, the perturbations associated with the taiijerommutator,
shown on the right side of the figure, are much larger and dalecay quickly to zero. The
Euclidean norm of the row vector fro! is 7.34.

Comparison of the two perturbation formulas reveals thatdhly differences are the
appearance of eithef (1) or F(v2), the appearance of eithét, or B,, and the sign of
the perturbation termF (1) and F(“2) are almost identical as they correspond to the same
convection-diffusion operator and bath andu, satisfy Neumann conditions on outflow and
Dirichlet conditions on all other boundariésThus, the difference in magnitude of the two
perturbations?- and P! must be due to the presence of one or the othé?,06r B,.

We can get a clear understandingff. Using the fact thaB3, anng commute with

F(2) and BBT due to the periodic boundary conditions on the top and botioomdaries,
we can rewrite this perturbation as

(5.4) Pt = (sFP)(BBTF"“))"'B,BI.

SAll perturbation rows associated with points adjacent ®itiflow boundary have the same values due to the
periodic boundary conditions. The only difference is thad functions associated with different rows are shifted so
that their peak corresponds to the row location.

4The only differences come from specific aspects of the MAG@rdiization, asF'(“1) is defined on vertical
edges whereag (“2) is defined on horizontal edges.
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Function subset at Inflow

FIG. 5.2. Grid function for(éF,Jg”)(k, ))(BBT F(u2))=1 wherek is the row associated with th21s?
vertical pressure grid point adjacent to the inflow boundary

Each inflow row o F{*) is nonzero in precisely one entry, corresponding to a gridtpaext
to the inflow boundary; this difference comes from the défece in boundary conditions. Let
T denote one such row, so that the corresponding roR-bis given by (the transpose of)

(5.5) B,BI(BBT)"1(F2))~ Ty,

wherer can now be interpreted as a discrete point source. Figirplots the intermediate
quantitys = (BBT)~!(F(“2))~Tr as a grid function, where comes from th&1°* vertical
point adjacent to the inflow boundary. It can be seen thatfftinistion has a large variation
in the z-direction, and variations in thg-direction that are small everywhere, largest near
the inflow boundary, and becoming smoother as one moves awaaythe inflow boundary.
Consequently, application of the vertical discrete LaiaimByByT to s (see 6.9) largely
eliminates the variation in the-direction, and the resulting row d?- is small. Our spec-
ulation is that the shape of the function depicted in Figugas tied directly to the fact that
an inflow row of 6.7 is a point source (centered adjacent to the inflow boundamy)that
(BBT F(»2))T enforces a Neumann condition on the left boundary and at@icondition
on the right boundary.

An expression analogous t6.¢) for P! is

(5.6) (6FPYBBYF))~1B, BT,

Because the horizontal variation (J&‘FQEZ’))(BBTF(“”)*1 is large, application of the hor-

izontal discrete Laplaciaf, B! is not likely to produce a small result. It should be noted

however that the “commuting trick” used to obta4) cannot be used in this case, so that

Pl is not in fact equal to the expression &), and this is merely a heuristic observation.
The conclusion reached from this discussion is that Robimdary conditions fofF(»)

at the inflow make the preconditioned operator more reserhiglddentity than Dirichlet

conditions, suggesting that Robin conditions are to preter

One can also compare perturbations for outflow by chooﬁﬁ’g} to make either®
(Dirichlet conditions) or3) (Neumann) zero at the outflow boundary. Fig6r8 illustrates
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Orthgonal Outflow Perturbation ‘Tangential Outflow Perturbation

FiG. 5.3. Perturbation terms (as grid functions) Values Bf-(k, :) (left) and P! (k, :) (right) next to the
inflow or outflow boundaries, wheteis the row associated with th&1 5t vertical pressure grid point adjacent to
the corresponding boundary.

perturbations for a single outflow row. There is no clear seas to which perturbation is
superior to the other. The Euclidean norm of the orthogoraiuysbation is a little larger
(2.16 vs. 1.05 for the tangential perturbation), the sighthe perturbations are different,
and P+ extends somewhat further into the domain away from the outfioundary tharP!.
This suggests that there might be a slight advantage for Idanmonditions at the outflow
boundary, although the differences here are less conelusiv

In the figures discussed abovewas fixed at%. Figure5.4 showsP+ and—P! along
the single vertical lines next to either the inflow or outfloaundaries in the two-dimensional
grid, for different values of.. Specifically, rows adjacent to the inflow (or outflow) bound-
aries are considered, and to compress the presentatigrthenalues along the leftmost (for
inflow) or rightmost (for outflow) grid line are plotted. Onart see that ag decreases, the
difference between the orthogonal and tangential infloviyskeations also decreases. This
is most likely due to the fact that the Robin condition (frdme brthogonal commutator) ap-
proaches a Dirichlet boundary condition (which is obtaingtth the tangential commutator)
asv is decreased.

In summary, we conclude that at inflow boundaries, the othatjicommutator (coming
from Robin conditions) gives rise to smaller perturbatitimsn the tangential commutator.
The difference between these two commutators becomes ipsficant as the Reynolds
number increases (i.e., adecreases). The perturbations at outflow boundaries aghlypu
of equal size. Numerical experiments that augment theseradisons are presented in Sec-
tion 7.

6. New variants of the PCD and LSC preconditioners.We use the results of Sec-
tions4 and5 to develop new variants of the pressure convection-diffiusind least squares
commutator preconditioners. Both the PCD and LSC precindits are defined by the pre-
conditioning matrix

F BT
(6.1) M_[O —S}'
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FiG. 5.4. Perturbation termsP-(k,:) and P! (k,:), wherek is the row associated with th1s¢ vertical
pressure grid point adjacent to the inflow boundary (left f@wand the outflow boundary (right figure).

When§ is the true Schur complement, the preconditioned GMRES oaktbnverges in two
iterations [L0]. For the PCD method we approxima$e! via (2.2— (2.3, whereF), is a
discrete convection-diffusion operator on the pressueesptogether with the specification
of boundary conditions foF},. The results above identify new criteria for these condio

If the Navier-Stokes equationg.() are posed with Dirichlet conditions of either inflow or
characteristic type, then we will defirfg, with Robin conditions

(6.2) —y% + (w - n)p,

as in @.8) and @.10. This reflects a decision to favor the commutator of (ortoa-
orthogonal) type(D in (4.4), as suggested by the results of Sectiorit constitutes a new
strategy at inflows, where previously a Dirichlet conditiwas used for#},, and which can
now be seen to favor the commutator of tangential-ortholigpa, 3) in (4.4)). We will give
additional evidence of the superiority of the new approacBéction7. For characteristic
boundaries, the new approach (Neumann conditiong§gris the same as what was done
previously. We also note that although the discrete opesatiscussed above were obtained
for MAC finite differences, in the following we will use the weguidelines in a finite element
setting. Details for specifying, in this setting are given irg| Ch. 8].

The new variant of the LSC preconditioner is defined Byl where S~ is given by
(2.7) and the scaling matri¥/ is chosen in a such a way that the discrete commutatan
(4.4) is given appropriate emphasis. To motivate this strategybegin with a version of the
commutator of 2.1), scaled byQ,:

(6.3) BQ,'F - F,Q,'B=[B.Q,'F") — F,Q,'B., B,Q, ) F") — F,Q,'B,],

where the two terms on the right here could be further sptid BUms of the form®+@2)
and®+@. This scaling is used to make the derivation similar to whaswone for finite
differences in the previous two sections. We seek an apmation X to F,,szl. For each
row ¢ of X', we will attempt to minimize the difference

[BQ, ' Fli — X B
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in a least squares sense using a weighted norm that f@adesbe more heavily emphasized

than® in (6.3).

This will be achieved using a weighting matrix. We have
(6.4) |(BQ Py — X0y B2 = BT X~ FQ, BT

where the norm in the expression on the left is the vectorifeah norm, and/ is a symmet-

ric positive-definite matrix that induces @htnorm as in 2.5). We choose? = W%Q;1W%
where, as above) lis a diagonal approximation to the velocity mass matrix Hnds a di-
agonal weighting matrix. Note that that t¢ column of the commutator on the left o5.¢)

is scaled by thg*" diagonal entry of¥”. When the domain boundaries are aligned with the
coordinate axis, we také’;; = 1 for all j exceptthose corresponding to velocity components
that are near the boundary (i.e., defined on a node containaad element adjacent tx2)

and oriented in a direction tangent to the boundary. Forehodices, we takél;; = ¢, a
small parameter. Specifically,

e, if j corresponds to a vertical velocity termay) andB;; # 0 for
some; corresponding to a pressure unknown on a vertical boundary,

W;; =< ¢, if j corresponds to a horizontal velocity termy | andB;; # 0 for
somei corresponding to a pressure unknown on a horizontal boyndar

otherwise.

The effect of this is that for each roixcorresponding to a pressure unknown on a boundary,
the weight is small in all columngcorresponding to the velocity component tangent to that
boundary, and the associated compor@nis deemphasized in the least squares problem
(6.4).°

This strategy is intended to mimic the treatment of boundanditions used for the PCD
preconditioner. We also point out its impact in the Stokestli For Stokes problems, a good
approximation to the inverse of the Schur complemen@]jﬁ which gives rise to iterative
solvers with convergence rates independent of discr@izanesh size16, 13. In light of
(2.2, this suggests thdt, should be the same &, (including boundary conditions) in the
Stokes case. The boundary conditions4yf of (2.3) are completely determined by those
associated withB. It is easy to show that Dirichlet conditions in the origirsgstem give
rise to Neumann conditions fo4,. Emphasis or3 makes LSC’s version i}, of (2.6)
more like a Dirichlet condition (which obviously does nottetathe Neumann condition for
Ap). Emphasis orD) in the new LSC preconditioner has the effect of forcifigto more
closely correspond to an operator defined with Neumann tiondi(which properly matches
the Neumann condition fad,,).

Finally, we note that4,, specified by 2.3) is non-degenerate only when the underlying
discretization of {.1) is div-stable[5, 6], so thatB is of full rank (or rank-deficient by one
in the case of enclosed flows). Techniques for defimipgand other operators arising in the
LSC preconditioning for finite element discretizationstttegjuirestabilizationare discussed
in [2]. We expect these ideas to carry over to the techniquessbsclin this study, although
we do not consider this issue here.

7. Numerical results. We now show the results of numerical experiments with the new
variants of the PCD and LSC preconditioners, addressinfptlmving issues:

5From this discussion, one might conclude that 0 is an appropriate choice, although it is evident that in this
caseH is singular. We have not found performance to be overly sgagb ¢ and we have fixed it to be = .1 in
experiments described below.
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e For the PCD preconditioner, different choices of boundanyditions in the defini-
tion of () enable different components of the commutatér§)(and (for MAC
discretization) 4.4) to be zero. We compare the different variants of the new PCD
preconditioner defined using various choices of boundanditmns at inflow and
outflow boundaries.

e \We compare the new versions of both the PCD and LSC precondit with the
original versions of them discussed, for exampleSh [

e We compare the new versions of the PCD and LSC precondisoner

FIG. 7.1.Depictions of streamlines for benchmark problems.

Two benchmark problems were usedhackward facing stepwhich is an example of
an inflow/outflow problem, and eegularized driven cavitywhich contains an enclosed flow
with only characteristic boundaries. Figutel shows examples of the streamlines for the two
problems. For the step, the inflow isaat= —1 and the outflow is at = 5 for Reynolds
numbersl0 and100, and atz = 10 andz = 20 for Reynolds number200 and400, respec-
tively. The examples were generated using Ithes software packagell] and discretized
with with a div-stable@»-Q; finite element discretization (biquadratic velocitiedjr@ar
pressures) on a uniform mesh of velocity element witjth’—! (giving velocity nodal mesh
width 2/2¢). The new algorithms were also tested with the same benchrmabkgms and a
Q2-P_, element (which contains discontinuous pressures); thdtsesere qualitatively the
same as those shown belovdditional details concerning these problems are giverbjn [
Ch. 8].

The nonlinear discrete systems were solved using eithecardPbr Newton iteration,
which was stopped when the relative accuracy in the nonlirestdual satisfied a tolerance
of 10~°. Each step of the nonlinear iteration requires a linearesystolve, where the coeffi-
cient matrix is a discrete Oseen operator for Picard iteratir a Jacobian matrix for Newton
iteration. The results reported below show the performarfqareconditioned GMRES for
solving the last system arising during the course of theineal iteration.

Consider the performance of the new PCD preconditionem#aiv and outflow bound-
aries, the matrix’, used by the PCD preconditioner can be defined from four plessdm-
binations of boundary conditions, corresponding to eitRebin or Dirichlet conditions at
inflow boundaries and Neumann or Dirichlet conditions afflout boundaries. Figur&.2
shows the performance of these four variants for four systansing from the backward fac-
ing step. Neumann conditions are used along the top andrbath@racteristic boundaries.

For comparison, the figure also contains results for thegioal PCD” method of .8),
which uses Dirichlet conditions fa¥,, and A4, at the inflow and Neumann conditions on all
other boundariesy, p. 348]. In these tests, the discretization parameter fvas6, giving
nodal velocity grids of sizé4 x 96 for Re < 100 (top of figure),64 x 192 (Re = 200, bottom
left) and64 x 384 (Re = 400, bottom right). It can be seen that a choice/gfwith Robin
conditions at the inflow boundary is more effective than wBénichlet conditions are used.
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Comparison of boundary conditions in PCD, Re=10, Picard Comparison of boundary conditions in PCD, Re=100, Newton
T T

10y —Robin in / Neumann out —Robin in/ Neumann out
e |- Dirichletin/Neumannout ! [ 4% T e Dirichlet in / Neumann out
il ==sRobin in / Dirichlet out »==Robin in / Dirichlet out
: i Dirichlet in / Dirichlet out wi Dirichlet in / Dirichlet out
L W%, ™, s ‘OrignalPCO ¢ % | Original PCD
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Comparison of boundary conditions in PCD, Re=200, Picard
T T

Comparison of boundary conditions in PCD, Re=400, Newton
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FIG. 7.2.GMRES iterations with PCD preconditioning for four comkinas of boundary conditions on inflow
and outflow boundaries, plus original PCD preconditionirignp left: discrete Oseen matriRe = 10. Top right:
discrete JacobianRe = 100. Bottom left: discrete Oseen matriRe = 200. Bottom right: discrete Jacobian,
Re = 400.

This means that we are favoring commutairmat the inflow. The situation at the outflow is
less clear, and for smalke, a Dirichlet condition at the outflow (which favors commutat
(d) appears to offer some advantage; we will return to thisfdoia moment. The difference
between the two choices becomes negligiblézasncreases. This can be attributed to the
fact that ag» — 0, the Robin condition®.2) is close to a Dirichlet condition. For largee,
the new variants are more efficient than the original versibthe PCD preconditioner, in
large part also because of a significantly shorter trangieriod of slow convergence.
Returning to the question of Dirichlet conditions fé}, at the outflow, we note that
implementation of Dirichlet conditions in a boundary valpeblem entails adjusting the
coefficient matrix so that the known boundary values areinbth A typical strategy is
to force appropriate rows of the coefficient matrix to contanly diagonal entries, with
values equal ta. Of course, the valué is arbitrary and other values can be chosen for
solving discrete PDEs, as long as the right-hand side ispatgoerly adjusted. Here, we are
interested in commuting and there is no right-hand sidehecchoice for this value is less
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clear. We have found that with a strategy of this type for specifyiig the performance
of the PCD preconditioner is sensitive to the scale of thésgathal entries. The results of
Figure7.2come from taking these entries to be the average of the di#gafues off, from

all rows not corresponding to inflow and outflow boundarietguitively, choosing scalings
that are roughly comparable with diagonal entriegdfor of £},) is consistent with trying
to make discrete commutators small. Figur8& shows what happens when other scalings
are used at the outflow, for one example from Figur2 (discrete Jacobianke = 100).

It is evident that performance is sensitive to this choigg] with other scalings, it is not
better than when a Neumann condition are used at the outflowe $he latter strategy does
not entail a parameter, we use that in subsequent tests., fthygoblems with inflow and
outflow boundaries, we defing, with Robin conditions at the inflow (favoring commutator
@ of (orthogonal,orthogonal) type), and Neumann conditiahthe outflow (favoringd

of (tangential,orthogonal) type). These choices are stasi with the conclusions about
perturbations reached in Sectibn

Comparison of Dirichlet scalings in PCD, Re=100, Newton
T

—Scaling = .0514 ~ diag(Fp)
. -===8caling 1

. |===~Scaling .1
“““““ Scaling .01

sidual [gl/b]

Relative re:

Iterations

FiG. 7.3. GMRES iterations with PCD preconditioning for four scakngf Dirichlet boundary conditions at
the inflow, discrete JacobiatiRe = 100.

TABLE 7.1
Iteration counts for different combinations of operatoderings and boundary conditions. Backward facing
step,Re = 200.

PCD LSC
Old order Old order New order Old order Old order New order

¢ | Oldb.c. New b.c. New b.c.| Old b.c. New b.c New b.c.
4 46 53 30 29 34 34
5 42 56 25 22 25 25
6 47 72 28 22 22 17
7 63 96 32 32 20 15

We have seen that with the new ordering of operators in thegmditioner (contrastA.2)
and @.9)), it is important to also use the new Robin boundary coadgifor £}, at inflow
boundaries. (Dirichlet conditions are the “old” choicenéxould ask the opposite question,
how the new boundary conditions would work with the origiaedering. To explore this, we
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show in Table7.1the iteration counts for three versions of each of the prditmmers, for the
backward facing step anie = 200; the stopping criterion wagr||2/||bll2 < 10~° where
r, andb are the residual and right-hand side vectors, respectivighe results for the new
ordering of operators and the new treatment of boundaresnathe right column for each
preconditioner. The middle column (for each) uses the otteong with the new boundary
conditions. For LSC, this means the inverse of the precadt is

(BHB")"Y(BHFQ,'B")(BQ,'B")™",

which is derived using weighted least squares and commutitly the gradient operator
(compare with 2.7). The results here are mixed: for the PCD preconditioneh wie old
ordering, the (new) Robin boundary condition is less effecthan the (old) Dirichlet con-
dition, whereas the opposite conclusion holds for the LS @nditioner. However, the best
combination is the new methodology. We note, however, thatife driven cavity problem,
which has only characteristic boundaries, the old and namdbary conditions are the same,
and we have also found that performance is not sensitivedoatpr ordering.

In general we have found the Jacobian systems arising froravetdv iteration to be
slightly more costly than the Oseen systems, and this tretdstere as well. For the re-
mainder of this section, we restrict our attention to theédsgroblem.

Cavity, fixed R=100, PCD Step, fixed Re=200, PCD
T T T T

New PCD
QOriginal

New PCD:
---------------- Original

Relative residual |5 |/|b]|
Relative residual [il/|b|

I I I I E I k)
0 5 10 15 20 2 30 80 70
Iterations lterations.

FIG. 7.4.GMRES iterations with PCD preconditioning for fixed Reysaldmber and four successively refined
meshes. Left: cavity witliRe = 100 and mesh parametels= 5, 6, 7, 8. Right: step withRe = 200 and mesh
parameterd =4, 5,6, 7.

Figure 7.4 shows the performance of the PCD preconditioner for fixediemlof the
Reynolds number (denotde¢e) and various grid refinements. The two graphs each show the
results for both the new and original versions of the preddsmer. The graph on the left is for
the driven cavity problem, where the original PCD precaodir is known to exhibit mesh
independent behaviob]. Here, the eight curves (four for the new preconditioned &our
for the original) are largely indistinguishable. The graphthe right is for the step problem.
Here, the convergence behavior of GMRES with the new meth@dsentially independent
of the the mesh, whereas the initial transient exhibitechieyariginal method increases as the
mesh is refined.

This issue was previously not well understood. The resthlsve in Figures’.2and7.4
clearly demonstrate that boundary conditions are resptagr the difference between the
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original and new methods. For the cavity problem, with chaastic boundaries, Neumann
boundary conditions are the right choice for definifig For the inflow/outflow (step) prob-
lem, with the wrong choice of boundary conditions 6y, GMRES exhibits a long period
of slow convergence in its initial steps. The new method poes$ mesh-independent conver-
gence for both types of problems; in contrast, previoustyy the asymptotic convergence
rate was known to be independent of the megh [

Cauity, fixed Re=100, LSC Step, fixed Re=200, LSC
T T T T

New LSG wl LN —————— NewlsC
Original T N Original

Relative residual [il/|b|
Relative residual [gl/[b]

3% 40 0 5 10 15 20 2% 30 ¥ 40
lterations. Iterations

FiG. 7.5.GMRES iterations with LSC preconditioning for fixed Reysoldmber and four successively refined
meshes. Left: cavity witike = 100 and mesh parameters = 5, 6,7, 8. Right: step withRe = 200 and mesh
parameterd = 4,5,6,7.

Figure 7.5 shows analogous performance results for the LSC preconeiti It can be
seen that with the new version of this method, GMRES alsobitshinesh-independent per-
formance. (Note that for the step, performance improveshasgtid is refined, until the
convergence rate appears to settle to a constant for grahpmersy = 6 and?7.) In con-
trast, for previous versions, the asymptotic convergeactwf degrades slightly as the grid is
refined.

Finally, Figure7.6 compares the performance of both the new preconditionersvio
sets of problems with fixed grid parameter= 6 and a variety of Reynolds numbers. The
iteration counts for the LSC preconditioner are somewhatlathan those for the PCD pre-
conditioner (although the former requires one more Poissive). The trends with respect
to Reynolds number are largely the same for the two methods.

8. Conclusions. We have analyzed the role of boundary conditions within tlesgure
convection-diffusion preconditioner for saddle pointtgyss arising from the incompressible
Navier—Stokes equations. This examination has led torelt®e formulations for the pres-
sure convection-diffusion preconditioner and the LSC pratitioner that in effect emphasize
certain commuting relationships near the boundary. Coatpmurtally, the number of required
GMRES iterations is noticeably better than with the origirasions of these preconditioners
on two model benchmark problems. Further, the measured G3/&Hvergence rate with
the new preconditioners now appears to be independent ofitisé resolution.

Acknowledgment. We thank David Silvester for a careful reading of this papad a
several helpful remarks.



ETNA

Kent State University
http://etna.math.kent.edu

280 H. ELMAN AND R. TUMINARO

Cavity, fixed grid parameter =6 Step, fixed grid parameter I=6
T T T

Relative residual |5 }/b]
Relative residual [gl/lb|

ot

Iterations lterations

FIG. 7.6. GMRES iterations with new PCD and LSC preconditioners fadfimesh parametet = 6 and
various Reynolds numbers. Left: cavity. Right: step.
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