
Electronic Transactions on Numerical Analysis.
Volume 35, pp. 257-280, 2009.
Copyright  2009, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 

http://etna.math.kent.edu

BOUNDARY CONDITIONS IN APPROXIMATE COMMUTATOR
PRECONDITIONERS FOR THE NAVIER-STOKES EQUATIONS ∗

HOWARD C. ELMAN† AND RAY S. TUMINARO‡

Abstract. Boundary conditions are analyzed for a class of preconditioners used for the incompressible Navier-
Stokes equations. We consider pressure convection-diffusion preconditioners [SIAM J. Sci. Comput., 24 (2002),
pp. 237–256] and [J. Comput. Appl. Math., 128 (2001), pp. 261–279] as well as least-square commutator methods
[SIAM J. Sci. Comput., 30 (2007), pp. 290–311] and [SIAM J. Sci. Comput., 27 (2006), pp. 1651–1668], both of
which rely on commutators of certain differential operators. The effectiveness of these methods has been demon-
strated in various studies, but both methods also have some deficiencies. For example, the pressure convection-
diffusion preconditioner requires the construction of a Laplace and a convection–diffusion operator, together with
some choices of boundary conditions. These boundary conditions are not well understood, and a poor choice can
critically affect performance. This paper looks closely atproperties of commutators near domain boundaries. We
show that it is sometimes possible to choose boundary conditions to force the commutators of interest to be zero at
boundaries, and this leads to a new strategy for choosing boundary conditions for the purpose of specifying precondi-
tioning operators. With the new preconditioners, Krylov subspace methods display noticeably improved performance
for solving the Navier-Stokes equations; in particular, mesh-independent convergence rates are observed for some
problems for which previous versions of the methods did not exhibit this behavior.
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1. Introduction. Consider the Navier–Stokes equations

(1.1)
ηut − ν∇2

u + (u · grad)u + gradp = f ,
−div u = 0,

on Ω ⊂ R
d, d = 2 or 3. Here,u is thed-dimensional velocity field,p is the pressure, andν

is the kinematic viscosity, which is inversely proportional to the Reynolds number. The value
η = 0 corresponds to the steady-state problem andη = 1 to the case of unsteady flow. It is
assumed thatu satisfies suitable boundary conditions on∂Ω, which is subdivided as follows:

∂Ωi = {x ∈ ∂Ω |u · n < 0}, the inflow boundary,
∂Ωc = {x ∈ ∂Ω |u · n = 0}, thecharacteristic boundary,
∂Ωo = {x ∈ ∂Ω |u · n > 0}, theoutflow boundary.

Linearization and discretization of (1.1) by finite elements, finite differences or finite volumes
leads to a sequence of linear systems of equations of the form

(1.2)

[

F BT

B 0

] [

u

p

]

=

[

f

g

]

.

These systems, which are the focus of this paper, must be solved at each step of a nonlinear
(Picard or Newton) iteration, or at each time step. Here,B andBT are matrices correspond-
ing to discrete divergence and gradient operators, respectively andF operates on the discrete
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velocity space. In this paper, we focus only ondiv-stablediscretizations where the corre-
sponding(2, 2) block entry is identically zero.

In recent years, there has been considerable activity in thedevelopment of efficient iter-
ative methods for the numerical solution of the stationary and fully-implicit versions of this
problem. These are based on new preconditioning methods derived from the structure of the
linearized discrete problem given in (1.2). An overview of the ideas under consideration can
be found in the monograph of Elman, Silvester and Wathen [5]. A survey of solver algo-
rithms and issues associated with saddle point systems appears in [1]. The key to attaining
fast convergence lies with the effective approximation of the Schur complement operator

(1.3) S = BF−1BT ,

which is obtained by algebraically eliminating the velocities from the system.
Two approaches of interest are thepressure convection–diffusion(PCD) preconditioner

proposed by Kay, Loghin and Wathen [8] and Silvester et al. [12], and theleast squares
commutator(LSC) preconditioner developed by Elman et al. [3]. We will describe (vari-
ants of) these in Section2. They are derived using a certaincommutatorassociated with
convection-diffusion and divergence operators, which we introduce here. Consider the linear
convection-diffusion operator

(1.4) F = −ν∇2 + w · ∇,

where the convection coefficientw is a vector field inR
d. This operator is defined on the

velocity space (we will not be precise about function spaces) and derived from linearization
of the convection term in (1.1) via Picard iteration. We will also assume that there is an
analogous operatorF (p) defined on the pressure space. LetB denote the divergence operator
on the velocity space. For two-dimensional problems,

F =

[

F (u1)

F (u2)

]

,

where

F (u1) = F (u2) = −ν
(

∂2

∂x2 + ∂2

∂y2

)

+ w1
∂
∂x + w2

∂
∂y .

Now, define the commutator

(1.5) E = BF − F (p)B =
[

BxF
(u1) −F (p)Bx,ByF

(u2) −F (p)By

]

,

whereBx = ∂
∂x andBy = ∂

∂y . Whenw1 andw2 are constant and boundary effects are
ignored,E = 0 in (1.5). This observation leads to the PCD and LSC preconditioners, as
shown in Section2.

This discussion does not take into account any effects that boundary conditions may have
on the outcome. For example, the PCD preconditioner requires a discrete approximationFp

to the operatorF (p), and for this it is necessary that boundary conditions associated with
F (p) be specified. In previous work, decisions about defining boundary conditions within the
preconditioner have been made in an ad hoc manner. These decisions have been primarily
guided by experimentation and they lack a solid basis. A poorchoice of boundary conditions
can critically affect the performance of the preconditioners.

In this study, we systematically study the effects of boundary conditions on commuta-
tors of the form (1.5), and we use these observations to define new versions of the PCD and
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LSC preconditioners. We show that for one-dimensional problems, it is possible to specify
boundary conditions in such a way that the commutator is zeroeven at domain boundaries.
In particular, aRobinboundary condition is used at inflow boundaries for the convection-
diffusion operatorF (p). It is interesting to note that Robin conditions appear in several
somewhat related preconditioning contexts. In [15, Section 11.5.1, p. 329] (see also the
references therein), Robin conditions are discussed in terms of domain decomposition and
how they enhance coercivity. In our context, the Robin condition leads directly to discrete
(matrix) operators for which a corresponding discrete commutator is zero, and it results in
a perfect PCD preconditioner in a one-dimensional setting.This basic idea is then general-
ized to higher dimensions by splitting the differential operators into components based on
coordinate directions. This split leads to several equations associated with the commutator
that can be analyzed in a fashion similar to the one-dimensional case. Although not all the
commutator equations can be satisfied simultaneously, it ispossible to satisfy an important
subset of them. This again leads to an appropriate set of boundary conditions within the
PCD method for coordinate-aligned domains. The resulting new PCD preconditioner, when
combined with Krylov subspace solvers, displays significantly improved convergence prop-
erties for solving a problem with inflow and outflow boundary conditions. For enclosed flow
problems (containing only characteristic boundaries), our analysis shows that the Neumann
condition previously used [8] to define the convection-diffusion operatorF (p) is, in fact, the
right choice.

Our analysis also leads naturally to a modification of the LSCpreconditioner that empha-
sizes important relationships for components of the commutator associated with boundaries.
The convergence of the resulting LSC-preconditioned GMRESiteration appears to be inde-

pendent of the discretization mesh parameter. This contrasts with the (mild) mesh dependence
seen for the standard LSC method and it also helps explain that this dependence is caused by
boundary effects.

An outline of the paper is as follows. In Section2, we briefly review the derivation
of the PCD and LSC preconditioners. In Section3, we present some preliminary results
for a commutator associated with a one-dimensional model. In Section4, we show how to
split the differential commutator into components and examine the effects of directionality
on properties of the components and of discrete versions of them. In Section5, we analyze
the effects of satisfying different relationships associated with the commutator. Specifically,
we show that a component of the commutator corresponding to the directionorthogonalto a
Dirichlet boundary plays a special role in the qualities of the commutator. New versions of
the PCD and LSC method that take these considerations into account are derived in Section
6. In Section7, we demonstrate the improved performance of the new preconditioners on two
benchmark problems, the backward-facing step, whose boundary contains inflow, outflow,
and characteristic components, and the driven cavity problem, which has only characteristic
boundaries. Finally, in Section8, we make some concluding remarks.

2. Review: preconditioners derived from approximate commutators. If finite ele-
ment methods are used to discretize the component operatorsof E in (1.5), then a discrete
version of the commutator takes the form

(2.1) E = (Q−1
p B)(Q−1

v F ) − (Q−1
p Fp)(Q

−1
p B),

whereQv andQp are the velocity mass matrix and pressure mass matrix, respectively. As-
suming that this matrix version of the commutator is also small (i.e., E ≈ 0), a straightfor-
ward algebraic manipulation leads to the approximation

(BQ−1
v BT )−1 FpQ

−1
p BF−1BT ≈ I.



ETNA
Kent State University 

http://etna.math.kent.edu

260 H. ELMAN AND R. TUMINARO

That is, the inverse of the Schur complement can be approximated by

(2.2) (BF−1BT )−1 ≈ A−1
p FpQ

−1
p ,

where

(2.3) Ap = BQ−1
v BT

is a discrete Laplacian. If the commutator is small, we expect A−1
p FpQ

−1
p to be an effective

preconditioner for the Schur complement. In an implementation, a diagonal matrix (spectrally
equivalent toQp) can be used to approximate the action ofQ−1

p , and similarly,Q−1
v can be

replaced by a spectrally equivalent approximation in (2.3) [17]. In the following, we will
assume thatQp andQv represent these diagonal approximate mass matrices. Moreover, one
or two multigrid cycles applied to a Poisson equation can be used to approximate the action
of A−1

p . A complete specification of the PCD preconditioner (2.2) requires that the matrixFp

be defined as though it comes from a differential operator (a convection-diffusion operator)
having some boundary conditions associated with it; this isa primary focus of this paper.

For the LSC method,Fp is defined in an alternative fashion. The basic idea is to formally
solve a least squares problem designed to make a discrete version of the commutator small. In
particular, we solve a weighted least squares problem for the ith row of FpQ

−1
p (equivalently,

theith columnof Q−1
p FT

p ) via

(2.4) min ‖ [FT Q−1
v BT ]:,i − BT [XT ]:,i ‖H ,

whereMATLAB -style notation is used to refer to matrix columns. Here,H is a positive-
definite matrix defining an inner product and induced norm,

(2.5) 〈q, q〉H = (Hq, q), ‖q‖H = 〈q, q〉
1/2
H .

X is to be determined and produces an approximation toFpQ
−1
p . Note that (2.4) is derived

for the commutator withB; it is expressed in terms ofBT only so that it looks like a least
squares problem for a column vector.

The choice of the weighting matrixH and its relation to the commutator will be described
in Section6. Briefly here, the problem (2.4) is derived by multiplyingE of (2.1) by Qp,
transposing, and then attempting to make the result small inthe least squares sense with
respect to theH-inner product. The normal equations associated with this problem are

BHBT [XT ]:,i = [BHFT Q−1
v BT ]j .

This leads to the definition

(2.6) Fp = (BQ−1
v FHBT )(BHBT )−1Qp.

Substitution of this expression into (2.2) and using (2.3) then gives an approximation to the
inverse of the Schur complement matrix,

(2.7) (BQ−1
v BT )−1(BQ−1

v FHBT )(BHBT )−1.

It is important to recognize that the matrixFp is never explicitly computed. Moreover, as
above, (2.7) is used withQ−1

v approximated by a diagonal matrix, and for practical computa-
tions the actions of(BQ−1

v BT )−1 and(BHBT )−1 are approximated by one or two multigrid
cycles.



ETNA
Kent State University 

http://etna.math.kent.edu

BOUNDARY CONDITIONS IN APPROXIMATE COMMUTATOR PRECONDITIONERS 261

These (PCD and LSC) preconditioners differ in several ways from the “standard” ones
described, for example, in [5]. Most notably, previously the commutator was defined using
the gradient operator, asF∇−∇F (p). The difference from (1.5) appears innocuous since (for
constantw) the components of the composite differential operators are the same.However,
the commutator for the gradient leads to different requirements on boundary conditions than
that for the divergence operator, and there are advantages to using the divergence operator.
We will elaborate on this at the end of this section.

In addition to this essential difference, concerning boundary conditions, there are also a
few structural differences between the new variants derived here and those previously devel-
oped:

• PCD preconditioning. Previously, manipulation of the commutator that uses the
gradient operator led to the approximation

(2.8) (BF−1BT )−1 ≈ Q−1
p FpA

−1
p .

Thus the order in which the operators appear differs from (2.2).
• LSC preconditioning. The scaling matrixH has previously been taken to be the

same asQ−1
v , a diagonal approximation to the inverse velocity matrix in[3] and it

is taken as the reciprocal of the diagonal ofF in [9] for highly variable viscosity
Stokes problems. Here, we consider other diagonal forms ofH in (2.7) to allow
for different treatment of boundary effects. A derivation of (2.7) using the gradient
would also change the order in whichQv andH appear.

• Both new methods use (2.3) explicitly for the discrete pressure LaplacianAp, so that
no decision is needed for boundary conditions for this operator.

These differences are negligible from the point of view of computational requirements.

3. One-dimensional analysis.Consider the one-dimensional operators

(3.1) F = Fp = −ν
d2

dx2
+ w

d

dx
, B =

d

dx

applied on an interval, sayΩ = (0, 1), whereν andw are positive constants. We are interested
here in the impact of boundary conditions on differential and discrete commutators, and we
need not think of these operators as being associated with a problem such as (1.1)

It is easy to see that the commutatorBF − F (p)B is identically zero inΩ, with

(3.2) BF = F (p)B = −ν
d3

dx3
+ w

d2

dx2
.

Let us assume that a Dirichlet valueu(0) = 0 is specified at the inflow boundaryx = 0 for
functionsu defined onΩ, and that at the outflow boundaryx = 1 we have a condition in
which νu′ = 0; the latter requirement is intended to be consistent with a standard outflow
condition for (1.1); see (4.1). In addition, one boundary condition onB is required for the
first-order equationBu = 0 to have a unique solution. To be consistent with the left-to-right
nature of the flow, we also take this to be a Dirichlet condition at the left boundary.

Now, givenu, let v = Fu. Forv to be appropriate as an argument ofB on the left side
of (3.2), we requirev(0) = 0. Then

v = Fu =

(

−ν
d

dx
+ w

)

du

dx
=

(

−ν
d

dx
+ w

)

p, p =
du

dx
.

That is, specifying the inflow value ofv is the same as specifying the inflow value of
(

−ν d
dx + w

)

p.
But p is the argument of the operatorF (p) in the second term of the commutator,F (p) d

dx . So,
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to make the commutator0 at the inflow, we defineFp applied to (any)p to satisfy the Robin
boundary condition

(3.3) −νp′ + wp = 0

at x = 0. This boundary condition more closely resembles a Dirichlet or a Neumann condi-
tion depending on the size of convection relative to diffusion. This is fundamentally different
from what has been done previously [5], where either a Neumann or Dirichlet condition is
imposed on a boundary depending on whether it corresponds toinflow, outflow, or no slip.
The Robin condition is consistent with the analysis in [11] where it is shown that Dirichlet
conditions on inflow are preferred asν approaches 0. Also, notice that with our choice of
boundary condition forFp, the third-order operator in (3.2) has two inflow boundary condi-

tions specified atx = 0, u = 0 and−ν d2u
dx2 + w du

dx = 0.
A similar argument can be made at outflow, whereF is defined with a Neumann condi-

tion and no additional boundary conditions are needed forB. Thus, the composite differential
operatorBFu is only required to satisfy a Neumann condition at outflow, i.e.,ux = 0. For
the composite differential operatorF (p)Bu, we havep = Bu = ux. This implies thatF (p)p
must be equipped with a Dirichlet conditionp = 0 at the outflow in order for the composite
differential operatorF (p)Bu to satisfy the same Neumann condition asBFu.

× × × × × × × ×
x0

x1

2

x1
x3

2

x2
x

n− 1

2

xn

FIG. 3.1. Grid points for MAC discretization of one-dimensional problems.

Now consider the discrete case, using the staggered mesh given in Figure3.1correspond-
ing to a one-dimensional version of a mesh that might be used for “marker-and-cell” (MAC)
finite differences [7]. Given a subdivision of(0, 1), by analogy with higher dimensions, take
the discrete “velocities” (arguments of the matrix approximationsF andB to F andB, re-
spectively) to be defined on interval endpoints, and the discrete “pressures” (arguments of
Fp andBT ) to be defined on interval centers. The discrete operators take the form ofn × n
matrices

(3.4) F =

















a + b −b
−a a + b −b

. . .
. . .

−a a + b −b
−c c

















, B =

















d
−d d

. .
. .
−d d

−d d

















,

(3.5) Fp =

















a −b
−a a + b −b

. . .
. . .

−a a + b −b
−a b + c

















.

We will explain in detail below how the first and last rows ofF are determined. We show
here how, givenF , the requirement that the commutatorBF − FpB be zero defines the first
and last diagonal entries ofFp. Suppose these entries are unknowns to be determined,

[Fp]11 = ξ1, [Fp]nn = ξn.
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It is easy to show that requiring the first row of the productsBF andFpB to be equal leads
to the condition on the(1, 1)-entries

[BF ]11 = d(a + b) = ξ1d + bd = [FpB]11,

giving ξ1 = a as in (3.5). The situation is slightly different for the right, outflow, boundary.
Here, the last rows ofBF andFpB are the same only iftwoconditions hold:

(3.6) (a + ξn)d = (a + b + c)d, ξnd = (b + c)d.

Fortuitously, these conditions are compatible and giveξn = b + c as in (3.5). Thus, it is
possible to constructFp so that the discrete commutatorBF − FpB is identically 0. It
follows from this that

BF−1BT = F−1
p BBT ,

i.e., the matrixFp can be used to produce a “perfect” preconditioner forBF−1BT .
The entries ofF , B and the interior rows ofFp are determined in a standard way. For

concreteness, we will describe the case where centered differences are used for all convection
terms. After scaling byh2, this givesa = ν + wh

2 andb = ν − wh
2 . The first row ofF

corresponds to an equation centered atx1 with a Dirichlet value forx0. In the last row of
F , the choicec = 2ν comes from using a central discretization to the PDE and eliminating
the ghost point via the outflow Neumann boundary condition. With d = 1, B corresponds
to a centered difference approximation, scaled byh2. The entries ofFp centered atx 1

2

are
determined using

(3.7) [Fpp] 1

2

= −
(

ν + wh
2

)

p− 1

2

+ 2ν p 1

2

−
(

ν − wh
2

)

p 3

2

.

Special treatment is needed for the valuep− 1

2

at the “ghost point”x− 1

2

= −h
2 . If we use the

Robin condition (3.3), approximated atx0 by

(3.8) (−νp′ + wp)|x=x0
≈ −ν

(

p 1

2

− p− 1

2

h

)

+ w

(

p 1

2

+ p− 1

2

2

)

,

then setting the difference operator on the right to zero leads to

(3.9) p− 1

2

=

(

ν − wh
2

ν + wh
2

)

p 1

2

.

Substitution into (3.7) gives

[Fpp] 1

2

=
(

ν + wh
2

)

p 1

2

−
(

ν − wh
2

)

p 3

2

= ap 1

2

− bp 3

2

.

That is, the discrete Robin condition (3.3) is exactly what is needed to make the discrete
commutator zero at the inflow boundary. It is also possible tointerpret the discrete outflow
condition as an approximation that incorporates a Dirichlet assumption. Specifically, the
entries ofFp centered atxn− 1

2

are

(3.10) [Fpp]n− 1

2

= −

(

ν +
wh

2

)

pn− 3

2

+

(

3ν −
wh

2

)

pn− 1

2

.

This can be obtained by assuming a standard interior stenciland eliminating the ghost point

using 1
2

(

pn− 1

2

+ pn+ 1

2

)

= 0 which is a discrete approximation to the Dirichlet condition
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p = 0. It should be noted that the MAC discretization is special inthat the pressure grid
contains no points on the boundary. Thus, each row ofFp is an approximation of the differ-
ential operator (making use of boundary conditions for the first and last row). However, most
discretizations have points on the boundary. Consider, forexample, the discretizationBF
of the composite differential operatorBF . The last row ofF can be written as an approxi-
mation toF in (3.1) where a ghost point is removed using the outflow conditionνu′ = 0.
Application ofB then entails finite difference approximation to the derivative operator, ap-
plied along this row. Thus,BF would effectively be an approximation to (3.2) where a ghost
point is removed using the outflow condition onF . It is not generally possible to exactly
satisfy a discrete commuting relationship by taking a Dirichlet approximation forFp (e.g.,
Fp(k, n) = 0 for k 6= n, Fp(n, n) = 1 wheren is the dimension ofFp). This Dirichlet condi-
tion implies that the last row ofFpB is simply the last row ofB which is an approximation to
ux. Further, the scaling of a simple Dirichlet condition (e.g., taking insteadFp(n, n) = α) has
an effect on how much the commuting relationship is violated, i.e., the size of||BF −FpB||2.
This follows from the fact thatBF is independent of this scaling whileFpB obviously de-
pends on the scaling. This scaling issue does not arise in a standard discretization context so
long as the right hand side is scaled appropriately. In our case, however, it is the scaling of
Fp which must be consistent withF . This will be discussed further in Section7.

To summarize this discussion: the discrete commutator equation is solved exactly for a
one-dimensional constant wind model problem with a MAC discretization by using a Robin
condition at inflow and a Dirichlet condition at outflow. Although exact commuting is not
always possible in other situations, the differential commuting relationships provide justifi-
cation for using these conditions as a guide for higher dimensional settings.

Before moving on to higher dimensional problems, we briefly discuss the commutator
with the gradient, which in the discrete one-dimensional setting has the formFBT −BT Fp.
With F as in (3.4), a derivation identical to that above produces a zero commutator at the
left boundary with the choice[Fp]11 = b. We can interpret this in terms of centered finite
differences. Starting from (3.7), let the ghost point be defined using a discrete approximation
to the boundary conditionp′(0) = 0,

p 1

2

−p
−

1

2

h = 0 or p− 1

2

= p 1

2

.

Substitution into (3.7) gives

[Fpp] 1

2

=
(

ν − wh
2

)

p 1

2

−
(

ν − wh
2

)

p 3

2

= b p 1

2

− b p 3

2

.

Thus, the discrete commutator with the gradient is zero at the left boundary ifFp is a discrete
version ofF (p) obtained using a Neumann condition at the inflow. In contrastto the case for
the divergence, however, it is not possible to also make the discrete commutator zero at the
outflow boundary. Moreover, with the Neumann inflow condition, the continuous operator
F (p) becomes degenerate in the case of pure convection; that is, in the limit ν → 0, F (p)

applied to any constant function is zero. No such difficulty occurs when the divergence is
used for the commutator, where the Robin condition (3.3) induces a Dirichlet condition at the
inflow.

4. Analysis for higher dimensions. Commuting ideas are now extended to problems
in higher dimensions. We consider a two-dimensional rectangular domainΩ aligned with the
coordinate axes (see Figure4.1), where inflow and outflow conditions hold on the left and
right vertical boundaries ofΩ, respectively. This corresponds to Dirichlet values foru on the
left that satisfyu1 > 0, and the solution satisfies

(4.1) ν
∂u1

∂x
− p = 0,

∂u2

dx
= 0,
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× Velocity u1

⊗ Velocity u2

• Pressurep

⊗ ⊗ ⊗ ⊗ ⊗

× ×1 ×2 × × ×5•1 •2 • • •

⊗1 ⊗2 ⊗ ⊗ ⊗

× ×6 ×7 × × ×10•6 •7 • • •

⊗6 ⊗7 ⊗ ⊗ ⊗

× ×11 ×12 × × ×15•11 •12 • • •

⊗11 ⊗12 ⊗ ⊗ ⊗

× ×16 ×17 × × ×20•16 •17 • • •

⊗ ⊗ ⊗ ⊗ ⊗

FIG. 4.1. A two-dimensional rectangular domain with grid points for MAC discretization.

on the right boundary withu1 > 0. To simplify the discussion, we use periodic boundary
conditions on the top and bottom.

Consider a splitting of the convection-diffusion operatorsF andF (p) into components
associated with coordinate directions,

F = Fx + Fy, F (p) = F (p)
x + F (p)

y ,

where

(4.2) Fx = −ν ∂2

∂x2 + w1
∂
∂x , Fy = −ν ∂2

∂y2 + w2
∂
∂y ,

andF (p) is split analogously. We can use these to split the commutator (1.5) into four com-
ponents,

(4.3)
1©BxF

(u1)
x −F

(p)
x Bx, 2© BxF

(u1)
y −F

(p)
y Bx,

3©ByF
(u2)
x −F

(p)
x By, 4© ByF

(u2)
y −F

(p)
y By,

where the first pair comes from a splitting of the first block of(1.5), and the second pair
comes from the second block. In particular,E = [ 1©+ 2©, 3©+ 4©]. The expressions in (4.3)
can be categorized by component orientations in relation tothe vertical boundaries:

1© orthogonal-orthogonal, 2© orthogonal-tangential,
3© tangential-orthogonal, 4© tangential-tangential .

The first direction is associated with a component ofB, and the second is associated with a
component ofF . For example,2© contains the horizontal-oriented part ofB (∂/∂x) which
is orthogonalto the left and right boundaries, together with the vertical-oriented part ofF ,
tangentto the left and right boundaries.

Our aim is to understand how the choice of boundary conditions forF (p) affects these
commutators, and ultimately, to understand the impact thischoice has on discrete versions of
the commutators and the preconditioners. Indeed, although(4.2)–(4.3) correspond to differ-
ential operators, we are primarily interested in the discrete ones, andF , B andF (p) can be
thought of as continuous approximations to their discrete analogues.

We begin with the discrete setting. The discrete analogue of(4.3) is

(4.4)
1© BxF

(u1)
x − F

(p)
x Bx, 2© BxF

(u1)
y − F

(p)
y Bx,

3© ByF
(u2)
x − F

(p)
x By, 4© ByF

(u2)
y − F

(p)
y By.

For marker-and-cell finite differences, assumeΩ is subdivided into anm×n grid; an example
is shown in Figure4.1for m = 5 andn = 4. The component matrices are then structured as
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follows:

(4.5)
F

(u1)
x = diag(F1, · · · , F1), F

(u2)
x = diag(F2, · · · , F2),

F
(p)
x = diag(F3, · · · , F3), Bx = diag(B1, · · · , B1),

and

(4.6) F (u1)
y = F (u2)

y = F (p)
y =













dI qI ℓI

ℓI dI
. . .

. . .
. . . qI

qI ℓI dI













, By =











I −I
−I I

. . .
. . .
−I I











.

F
(u1)
x , F

(u2)
x andF

(p)
x are finite difference discretizations ofFx. F1, F2 andF3 are tridiago-

nal matrices corresponding to discretization along a single horizontal grid line.F1 is identical
to F of (3.4). F2 is somewhat different due to the location with respect to theboundaries of
the grid points labeled “⊗.” F3 near the boundaries is to be determined.B1 also corresponds
to discretization along a single horizontal grid line and isidentical toB of (3.4). F

(u1)
y , F (u2)

y

andF
(p)
y are finite difference approximations toFy. They are identical to each other because

of the periodic boundary conditions. All the approximations toFx andFy are block matrices
where the block order isn and each of the individual blocks is of orderm. It is easy to see
that the entries of the commutators in (4.4) corresponding to interior points ofΩ are zero
whenw is constant in (4.2).

Let us examine in detail what happens along boundaries. The discrete commutator1© is
the block-diagonal matrix

(4.7) diag(B1F1 − F3B1, . . . , B1F1 − F3B1).

As F1 and B1 are identical to the matrices in the one-dimensional scenario described in
Section3, it follows that this expression is zero whenF3 at inflow includes a discrete version
of the Robin condition

(4.8) −ν ∂p
∂x + w1p = 0.

Specifically,[F3]11 = a and[F3]12 = −b. Similarly,F3 should include a Dirichlet condition
at outflow. The complication not seen in the one-dimensionalcase is thatF3 also appears in
the commutator3©. In particular, this discrete commutator is

(4.9)











F2 − F3 −(F2 − F3)
−(F2 − F3) F2 − F3

. . .
. . .

−(F2 − F3) F2 − F3











,

which is only zero ifF3 = F2. This implies thatF3 should include a Dirichlet condition at
inflow and a Neumann condition at outflow, as these are the boundary conditions forFx (and
so consequently forF2). For example, at inflow[F2]11 = 2a + b and[F2]12 = −b, and so
taking [F3]11 = 2a + b and[F3]12 = −b makes 3© equal zero along the inflow boundary.1

Thus, the conditions required to make3© equal to zero are incompatible with the conditions

1The(1, 1)-entry ofF2 is larger than the(1, 1)-entry ofF1 due to the fact that the leftmost grid point “⊗” is
closer to the boundary than the leftmost grid point “×.”
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required to make1© equal zero.F3 can be chosen to make either1© or 3© in (4.4) equal to
zero at the inflow boundary. However, they cannot both be zerosimultaneously.

Now consider the commutators2© and 4© of (4.4). Observe that for2©,

BxF (u1)
y =













B1d B1q B1ℓ

B1ℓ B1d
. . .

. . .
. . . B1q

B1q B1ℓ B1d













=













dB1 qB1 ℓB1

ℓB1 dB1
. . .

. . .
. . . qB1

qB1 ℓB1 dB1













= F (p)
y Bx.

Similarly, for 4©,

ByF (u2)
y =

















(d − q)I q (−d + ℓ)I
(−d + ℓ)I (d − q)I q I −ℓI

−ℓI
. . .

. . .
. ..

. . . (−d + ℓ)I (d − q)I qI
qI −ℓI (−d + ℓ)I (d − q)I

















= F (p)
y By.

Thus, no special requirements are needed along the verticalboundaries in order for2© and
4© to be zero; they are compatible with each other and they do notaffect 1© and 3© as they

do not depend onF3. This implies that it is possible for three of the four commutators in
(4.4) to be zero simultaneously at each vertical boundary, but not all four. We note, however,
that for centered finite differences, in the limitν → 0, a = −b = w1h

2 , so that the discrete
commutator is identically zero at the inflow in the hyperbolic limit.

We summarize these observations with the assertion that thediscrete operators2©, 3©,
and 4© of (4.4) are “self-commuting,” in the sense that these commutatorsare zero when the
discrete pressure convection-diffusion matrixF (p) is defined from the same boundary con-
ditions used to specify the velocities. Furthermore, the property of self-commuting depends
only on the special matrix structures and not on values in theparticular stencils, asF2, d,
q, andℓ are arbitrary. In fact, self-commuting does not even dependon the specific bound-
ary conditions per se; instead it is a consequence of the factthat 2©, 3©, and 4© contain at
most one discrete difference operator associated with a direction orthogonal to the vertical
boundaries. In particular,4© comes fromonly tangential differencing, which, in light of the
periodic boundary conditions at top and bottom, are represented by circulant matrices. It
is well known that circulant matrices commute, which makes4© equal to zero. Commuta-
tors 2© and 3© come from an orthogonal/tangential pair. The tangential differencing leads
to circulant matrices with scaled identity submatrices2 whereas the orthogonal differencing
leads to a block diagonal matrix with the same submatrix in each block diagonal entry. Here,
self-commuting relies on the fact that scalar multiplication with a matrix commutes. To sum-
marize, the order in which the individual operators appear in 2©- 4© is not important in the
discrete setting. If one views the continuous commutators (4.3) as approximations to the
discrete commutators, one can loosely make an argument thatthe order of operators is not
important in a continuous setting either (though the continuous commutators may not be iden-
tically zero). Further,1© (corresponding to the one-dimensional problem) is unique in that
it has an orthogonal-orthogonal characterization and it isthe only discrete commutator that
does not involve self-commuting.

2By taking d = 1, ℓ = −1, andq = 0, By can be viewed as a special case of the structure for

F
(u1)
y , F

(u2)
y , andF

(p)
y .
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This discussion has focused on boundaries assumed to be of either inflow or outflow
type. We conclude this section with an observation for the case where the velocities satisfy a
characteristicDirichlet boundary condition. This holds along top and bottom boundaries in a
simple channel flow application which is similar to the problem under discussion here, where
w = (1, 0)T , and it also applies to the driven cavity problem. In this case, it is condition 4©
that is of (orthogonal,orthogonal) type with respect to both the top and bottom boundaries,
and a zero commutator is obtained using the Robin boundary condition analogous to (4.8) to
defineF

(p)
y along these boundaries. Forw2 = 0, this Robin condition is

(4.10) −ν ∂p
∂y + w2p = −ν ∂p

∂y = 0,

at the bottom, a pure Neumann condition. (The top is the same,with the opposite sign for
∂p
∂y .) This is what has been used previously for characteristic boundaries [5, 8], and this ob-
servation provides justification for this choice. As above,this would not be compatible with
the Dirichlet condition needed to make the commutator2© equal to zero. Our computational
experience, which we report in Section7, is that the Robin condition is to be preferred.

To summarize, three out of four commutator equations can be satisfied along the bound-
aries ofΩ, but there is a conflict between the commutators of “orthogonal-orthogonal” and
“tangential-orthogonal” types. When Dirichlet conditions are specified for the Navier-Stokes
equations, such as at an inflow boundary, Robin boundary conditions for F (p) enables the
first of these commutator types to be zero. We will explore theeffect of this choice in the
following sections.

We comment on the analogous question for three-dimensionalproblems, where there are
nine commutator equations due to three-way splittings of both B andF corresponding to
the three coordinate directions. Six commutator equations(similar to 2© and 4© in 2D) are
satisfied, as they do not contain differentiation orthogonal to the inflow boundary within the
split F operator. Two of the remaining three conditions can be satisfied using a Neumann
condition or, alternatively, one of the remaining three canbe satisfied with a Robin condition.
Further study would be required to fully assess this choice;our intuition is that the Robin
condition remains the most important.

5. Perturbation analysis. As not all commutators in (4.4) can be zero simultaneously,
we now seek to understand the impact of nonzero commutators,using a combination of anal-
ysis and empirical results for the MAC discretization. Onceagain, we consider a rectangular
domain where the velocities satisfy periodic boundary conditions on the top and bottom, a
Dirichlet inflow condition on the left boundary, and an outflow condition (4.1) on the right
boundary. The PCD preconditioner (2.2) approximates the inverse of the Schur complement
S = BF−1BT . For MAC discretization on uniform grids, the mass matricesQv andQp are
both diagonal of the formh2I, and they cancel each other in (2.2). Hence, the inverse of the
preconditioning operator is

M−1 = (BBT )−1Fp = (BxBT
x + ByB

T
y )(F (p)

x + F (p)
y ).

The convergence of a preconditioned iterative method is (for “right-oriented” precondi-
tioning) governed by properties ofSM−1. We explore the variant obtained from a similarity
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transformation,

(5.1)

Y = FpSM−1F−1
p

= (F
(p)
x + F

(p)
y )(Bx(F (u1))−1BT

x + By(F (u2))−1BT
y )(BBT )−1

= (F
(p)
x Bx + F

(p)
y Bx)(F (u1))−1BT

x (BBT )−1+

(F
(p)
x By + F

(p)
y By)(F (u2))−1BT

y (BBT )−1

= (Exx + Exy + BxF
(u1)
x + BxF

(u1)
y )(F (u1))−1BT

x (BBT )−1+

(Eyx + Eyy + ByF
(u2)
x + ByF

(u2)
y )(F (u2))−1BT

y (BBT )−1,

where

Exx = F
(p)
x Bx − BxF

(u1)
x , Exy = F

(p)
y Bx − BxF

(u1)
y ,

Eyx = F
(p)
x By − ByF

(u2)
x , Eyy = F

(p)
y By − ByF

(u2)
y ,

are the commutator errors. The similarity transformation will allow us to decouple the anal-
ysis of different components of the boundary.

Further simplification of (5.1) yields

(5.2) Y = I+(Exx+Exy)(F (u1))−1BT
x (BBT )−1+(Eyx+Eyy)(F (u2))−1BT

y (BBT )−1.

If Exx = Eyy = Exy = Eyx = 0, thenY = I andM is an ideal preconditioner. We will
explore the size of the perturbations from the identity as a measure of the effectiveness ofM
as an approximation toS, i.e., as a preconditioning operator.

As shown in Section4, we can chooseF (p)
y so thatExy andEyy are zero near the inflow

boundary. LetF (p,⊥)
x be the version ofF (p)

x determined from Robin boundary conditions that
makesExx (i.e., 1©) equal zero along the inflow, letF (p,|)

x similarly be the operator obtained
from Dirichlet inflow conditions, for whichEyx ( 3©) is zero, and letδF (p)

x = F
(p,⊥)
x −F

(p,|)
x .

Let Y ⊥ be the version ofY obtained whenF (p)
x = F

(p,⊥)
x , and letY | be the version obtained

whenF
(p)
x = F

(p,|)
x . It follows that

Y ⊥ = I + (δF
(p)
x )By(F (u2))−1BT

y (BBT )−1,

Y | = I − (δF
(p)
x )Bx(F (u1))−1BT

x (BBT )−1.

Notice that only the factorδF (p)
x is tied directly to the size of errors in the commutators.

Furthermore, each row of the perturbations is associated with a commutator error at one
pressure grid point. That is, the commutator error at a particular pressure point only affects
the row in the perturbed matrix associated with that point. This means that we can explore the
effect of each boundary in isolation. For example, errors inthe commutator associated with
points adjacent to the inflow (outflow) boundary do not have any effect on entries in rows of
the perturbation associated with points adjacent to outflow(inflow) boundaries.

To examine these perturbations, we consider a40×40 MAC mesh withw1 = 1, w2 = 0,
ν = .25, and centered finite differences for both the convection anddiffusion terms. The
computed condition numbers of the preconditioned Schur complement using the orthogonal
commutator (fromF

(p,⊥)
x ) and the tangential commutator (fromF (p,|)

x ) are 45.2 and 4404.1
respectively. Thus, the system is much better conditioned using the orthogonal commutator.
This correlates well with the size of the inflow perturbations associated with using each of
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FIG. 5.1. Perturbation terms (as grid functions)P⊥(k, :) (left) and P |(k, :) (right) wherek is the row
associated with the21st vertical pressure grid point adjacent to the inflow boundary.

the two perturbation formulas:

(5.3)
P⊥ = (δF

(p)
x )By(F (u2))−1BT

y (BBT )−1,

P | = (δF
(p)
x )Bx(F (u1))−1BT

x (BBT )−1.

Specifically, Figure5.1illustrates a single row ofP⊥ andP | associated with the21st vertical
pressure point adjacent to the inflow boundary. In this and several other figures below, this
matrix row is displayed as a grid function on the underlying40×40 grid.3 It is obvious that the
perturbation associated with the orthogonal commutator issmall and localized. In addition,
the Euclidean norm of the row vector fromP⊥ depicted in the left side of Figure5.1 is
approximately1/2. In contrast, the perturbations associated with the tangential commutator,
shown on the right side of the figure, are much larger and do notdecay quickly to zero. The
Euclidean norm of the row vector fromP | is 7.34.

Comparison of the two perturbation formulas reveals that the only differences are the
appearance of eitherF (u1) or F (u2), the appearance of eitherBx or By, and the sign of
the perturbation term.F (u1) andF (u2) are almost identical as they correspond to the same
convection-diffusion operator and bothu1 andu2 satisfy Neumann conditions on outflow and
Dirichlet conditions on all other boundaries.4 Thus, the difference in magnitude of the two
perturbationsP⊥ andP | must be due to the presence of one or the other ofBx or By.

We can get a clear understanding ofP⊥. Using the fact thatBy andBT
y commute with

F (u2) andBBT due to the periodic boundary conditions on the top and bottomboundaries,
we can rewrite this perturbation as

(5.4) P⊥ = (δF (p)
x )(BBT F (u2))−1ByBT

y .

3All perturbation rows associated with points adjacent to the inflow boundary have the same values due to the
periodic boundary conditions. The only difference is that grid functions associated with different rows are shifted so
that their peak corresponds to the row location.

4The only differences come from specific aspects of the MAC discretization, asF (u1) is defined on vertical
edges whereasF (u2) is defined on horizontal edges.
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FIG. 5.2. Grid function for (δF (p)
x (k, :))(BBT F (u2))−1 wherek is the row associated with the21st

vertical pressure grid point adjacent to the inflow boundary.

Each inflow row ofδF (p)
x is nonzero in precisely one entry, corresponding to a grid point next

to the inflow boundary; this difference comes from the difference in boundary conditions. Let
rT denote one such row, so that the corresponding row ofP⊥ is given by (the transpose of)

(5.5) ByBT
y (BBT )−1(F (u2))−T r,

wherer can now be interpreted as a discrete point source. Figure5.2plots the intermediate
quantitys ≡ (BBT )−1(F (u2))−T r as a grid function, wherer comes from the21st vertical
point adjacent to the inflow boundary. It can be seen that thisfunction has a large variation
in the x-direction, and variations in they-direction that are small everywhere, largest near
the inflow boundary, and becoming smoother as one moves away from the inflow boundary.
Consequently, application of the vertical discrete Laplacian ByBT

y to s (see (5.5)) largely
eliminates the variation in thex-direction, and the resulting row ofP⊥ is small. Our spec-
ulation is that the shape of the function depicted in Figure5.2 is tied directly to the fact that
an inflow row ofδF (p)

x is a point source (centered adjacent to the inflow boundary) and that
(BBT F (u2))T enforces a Neumann condition on the left boundary and a Dirichlet condition
on the right boundary.

An expression analogous to (5.4) for P | is

(5.6) (δF (p)
x )(BBT F (u1))−1BxBT

x .

Because the horizontal variation of(δF
(p)
x )(BBT F (u1))−1 is large, application of the hor-

izontal discrete LaplacianBxBT
x is not likely to produce a small result. It should be noted

however that the “commuting trick” used to obtain (5.4) cannot be used in this case, so that
P | is not in fact equal to the expression of (5.6), and this is merely a heuristic observation.

The conclusion reached from this discussion is that Robin boundary conditions forF (p)

at the inflow make the preconditioned operator more resemblethe identity than Dirichlet
conditions, suggesting that Robin conditions are to preferred.

One can also compare perturbations for outflow by choosingF
(p)
x to make either1©

(Dirichlet conditions) or 3© (Neumann) zero at the outflow boundary. Figure5.3 illustrates
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FIG. 5.3. Perturbation terms (as grid functions) Values ofP⊥(k, :) (left) andP |(k, :) (right) next to the
inflow or outflow boundaries, wherek is the row associated with the21st vertical pressure grid point adjacent to
the corresponding boundary.

perturbations for a single outflow row. There is no clear sense as to which perturbation is
superior to the other. The Euclidean norm of the orthogonal perturbation is a little larger
(2.16 vs. 1.05 for the tangential perturbation), the signs of the perturbations are different,
andP⊥ extends somewhat further into the domain away from the outflow boundary thanP |.
This suggests that there might be a slight advantage for Neumann conditions at the outflow
boundary, although the differences here are less conclusive.

In the figures discussed above,ν was fixed at14 . Figure5.4 showsP⊥ and−P | along
the single vertical lines next to either the inflow or outflow boundaries in the two-dimensional
grid, for different values ofν. Specifically, rows adjacent to the inflow (or outflow) bound-
aries are considered, and to compress the presentation, only the values along the leftmost (for
inflow) or rightmost (for outflow) grid line are plotted. One can see that asν decreases, the
difference between the orthogonal and tangential inflow perturbations also decreases. This
is most likely due to the fact that the Robin condition (from the orthogonal commutator) ap-
proaches a Dirichlet boundary condition (which is obtainedwith the tangential commutator)
asν is decreased.

In summary, we conclude that at inflow boundaries, the orthogonal commutator (coming
from Robin conditions) gives rise to smaller perturbationsthan the tangential commutator.
The difference between these two commutators becomes less significant as the Reynolds
number increases (i.e., asν decreases). The perturbations at outflow boundaries are roughly
of equal size. Numerical experiments that augment these observations are presented in Sec-
tion 7.

6. New variants of the PCD and LSC preconditioners.We use the results of Sec-
tions4 and5 to develop new variants of the pressure convection-diffusion and least squares
commutator preconditioners. Both the PCD and LSC preconditioners are defined by the pre-
conditioning matrix

(6.1) M =

[

F BT

0 −Ŝ

]

.
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FIG. 5.4. Perturbation termsP⊥(k, :) and P |(k, :), wherek is the row associated with the21st vertical
pressure grid point adjacent to the inflow boundary (left figure) and the outflow boundary (right figure).

WhenŜ is the true Schur complement, the preconditioned GMRES method converges in two
iterations [10]. For the PCD method we approximatêS−1 via (2.2)– (2.3), whereFp is a
discrete convection-diffusion operator on the pressure space, together with the specification
of boundary conditions forFp. The results above identify new criteria for these conditions.
If the Navier-Stokes equations (1.1) are posed with Dirichlet conditions of either inflow or
characteristic type, then we will defineFp with Robin conditions

(6.2) −ν
∂p

∂n
+ (w · n)p,

as in (4.8) and (4.10). This reflects a decision to favor the commutator of (orthogonal-
orthogonal) type,1© in (4.4), as suggested by the results of Section4. It constitutes a new
strategy at inflows, where previously a Dirichlet conditionwas used forFp, and which can
now be seen to favor the commutator of tangential-orthogonal type, 3© in (4.4)). We will give
additional evidence of the superiority of the new approach in Section7. For characteristic
boundaries, the new approach (Neumann conditions forFp) is the same as what was done
previously. We also note that although the discrete operators discussed above were obtained
for MAC finite differences, in the following we will use the new guidelines in a finite element
setting. Details for specifyingFp in this setting are given in [5, Ch. 8].

The new variant of the LSC preconditioner is defined by (6.1) whereŜ−1 is given by
(2.7) and the scaling matrixH is chosen in a such a way that the discrete commutator1© in
(4.4) is given appropriate emphasis. To motivate this strategy,we begin with a version of the
commutator of (2.1), scaled byQp:

(6.3) BQ−1
v F − FpQ

−1
p B = [BxQ−1

u1
F (u1) − FpQ

−1
p Bx, ByQ−1

u2
F (u2) − FpQ

−1
p By],

where the two terms on the right here could be further split into sums of the form1©+ 2©
and 3©+ 4©. This scaling is used to make the derivation similar to what was done for finite
differences in the previous two sections. We seek an approximationX to FpQ

−1
p . For each

row i of X , we will attempt to minimize the difference

[BQ−1
v F ]i,: − Xi,:B
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in a least squares sense using a weighted norm that forces1© to be more heavily emphasized
than 3© in (6.3).

This will be achieved using a weighting matrix. We have

(6.4)
∥

∥

∥

(

[BQ−1
v F ]i,: − Xi,:B

)

H1/2
∥

∥

∥
= ‖BT X:,i − FQ−1

v BT
i,:‖H ,

where the norm in the expression on the left is the vector Euclidean norm, andH is a symmet-
ric positive-definite matrix that induces anH-norm as in (2.5). We chooseH = W

1

2 Q−1
v W

1

2

where, as above,Q−1
v is a diagonal approximation to the velocity mass matrix andW is a di-

agonal weighting matrix. Note that that thejth column of the commutator on the left of (6.4)
is scaled by thejth diagonal entry ofW . When the domain boundaries are aligned with the
coordinate axis, we takeWjj = 1 for all j except those corresponding to velocity components
that are near the boundary (i.e., defined on a node contained in an element adjacent to∂Ω)
and oriented in a direction tangent to the boundary. For those indices, we takeWjj = ǫ, a
small parameter. Specifically,

Wjj =



























ǫ, if j corresponds to a vertical velocity term (u2) andBij 6= 0 for
somei corresponding to a pressure unknown on a vertical boundary,

ǫ, if j corresponds to a horizontal velocity term (u1) andBij 6= 0 for
somei corresponding to a pressure unknown on a horizontal boundary,

1, otherwise.

The effect of this is that for each rowi corresponding to a pressure unknown on a boundary,
the weight is small in all columnsj corresponding to the velocity component tangent to that
boundary, and the associated component3© is deemphasized in the least squares problem
(6.4).5

This strategy is intended to mimic the treatment of boundaryconditions used for the PCD
preconditioner. We also point out its impact in the Stokes limit. For Stokes problems, a good
approximation to the inverse of the Schur complement isQ−1

p which gives rise to iterative
solvers with convergence rates independent of discretization mesh size [16, 13]. In light of
(2.2), this suggests thatFp should be the same asAp (including boundary conditions) in the
Stokes case. The boundary conditions ofAp of (2.3) are completely determined by those
associated withB. It is easy to show that Dirichlet conditions in the originalsystem give
rise to Neumann conditions forAp. Emphasis on3© makes LSC’s version inFp of (2.6)
more like a Dirichlet condition (which obviously does not match the Neumann condition for
Ap). Emphasis on1© in the new LSC preconditioner has the effect of forcingFp to more
closely correspond to an operator defined with Neumann conditions (which properly matches
the Neumann condition forAp).

Finally, we note thatAp specified by (2.3) is non-degenerate only when the underlying
discretization of (1.1) is div-stable[5, 6], so thatB is of full rank (or rank-deficient by one
in the case of enclosed flows). Techniques for definingAp and other operators arising in the
LSC preconditioning for finite element discretizations that requirestabilizationare discussed
in [2]. We expect these ideas to carry over to the techniques discussed in this study, although
we do not consider this issue here.

7. Numerical results. We now show the results of numerical experiments with the new
variants of the PCD and LSC preconditioners, addressing thefollowing issues:

5From this discussion, one might conclude thatǫ = 0 is an appropriate choice, although it is evident that in this
caseH is singular. We have not found performance to be overly sensitive to ǫ and we have fixed it to beǫ = .1 in
experiments described below.
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• For the PCD preconditioner, different choices of boundary conditions in the defini-
tion of F (p) enable different components of the commutators (4.3) and (for MAC
discretization) (4.4) to be zero. We compare the different variants of the new PCD
preconditioner defined using various choices of boundary conditions at inflow and
outflow boundaries.

• We compare the new versions of both the PCD and LSC preconditioners with the
original versions of them discussed, for example, in [5].

• We compare the new versions of the PCD and LSC preconditioners.

FIG. 7.1.Depictions of streamlines for benchmark problems.

Two benchmark problems were used, abackward facing step, which is an example of
an inflow/outflow problem, and aregularized driven cavity, which contains an enclosed flow
with only characteristic boundaries. Figure7.1shows examples of the streamlines for the two
problems. For the step, the inflow is atx = −1 and the outflow is atx = 5 for Reynolds
numbers10 and100, and atx = 10 andx = 20 for Reynolds numbers200 and400, respec-
tively. The examples were generated using theIFISS software package [14] and discretized
with with a div-stableQ2-Q1 finite element discretization (biquadratic velocities, bilinear
pressures) on a uniform mesh of velocity element width2/2ℓ−1 (giving velocity nodal mesh
width 2/2ℓ). The new algorithms were also tested with the same benchmark problems and a
Q2-P−1 element (which contains discontinuous pressures); the results were qualitatively the
same as those shown below.Additional details concerning these problems are given in [5,
Ch. 8].

The nonlinear discrete systems were solved using either a Picard or Newton iteration,
which was stopped when the relative accuracy in the nonlinear residual satisfied a tolerance
of 10−5. Each step of the nonlinear iteration requires a linear system solve, where the coeffi-
cient matrix is a discrete Oseen operator for Picard iteration or a Jacobian matrix for Newton
iteration. The results reported below show the performanceof preconditioned GMRES for
solving the last system arising during the course of the nonlinear iteration.

Consider the performance of the new PCD preconditioner. At inflow and outflow bound-
aries, the matrixFp used by the PCD preconditioner can be defined from four possible com-
binations of boundary conditions, corresponding to eitherRobin or Dirichlet conditions at
inflow boundaries and Neumann or Dirichlet conditions at outflow boundaries. Figure7.2
shows the performance of these four variants for four systems arising from the backward fac-
ing step. Neumann conditions are used along the top and bottom characteristic boundaries.

For comparison, the figure also contains results for the “original PCD” method of (2.8),
which uses Dirichlet conditions forFp andAp at the inflow and Neumann conditions on all
other boundaries [5, p. 348]. In these tests, the discretization parameter wasℓ = 6, giving
nodal velocity grids of size64×96 for Re ≤ 100 (top of figure),64×192 (Re = 200, bottom
left) and64 × 384 (Re = 400, bottom right). It can be seen that a choice ofFp with Robin
conditions at the inflow boundary is more effective than whenDirichlet conditions are used.
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FIG. 7.2.GMRES iterations with PCD preconditioning for four combinations of boundary conditions on inflow
and outflow boundaries, plus original PCD preconditioning.Top left: discrete Oseen matrix,Re = 10. Top right:
discrete Jacobian,Re = 100. Bottom left: discrete Oseen matrix,Re = 200. Bottom right: discrete Jacobian,
Re = 400.

This means that we are favoring commutator1© at the inflow. The situation at the outflow is
less clear, and for smallRe, a Dirichlet condition at the outflow (which favors commutator
3©) appears to offer some advantage; we will return to this point in a moment. The difference

between the two choices becomes negligible asRe increases. This can be attributed to the
fact that asν → 0, the Robin condition (6.2) is close to a Dirichlet condition. For largeRe,
the new variants are more efficient than the original versionof the PCD preconditioner, in
large part also because of a significantly shorter transientperiod of slow convergence.

Returning to the question of Dirichlet conditions forFp at the outflow, we note that
implementation of Dirichlet conditions in a boundary valueproblem entails adjusting the
coefficient matrix so that the known boundary values are obtained. A typical strategy is
to force appropriate rows of the coefficient matrix to contain only diagonal entries, with
values equal to1. Of course, the value1 is arbitrary and other values can be chosen for
solving discrete PDEs, as long as the right-hand side is alsoproperly adjusted. Here, we are
interested in commuting and there is no right-hand side, so the choice for this value is less



ETNA
Kent State University 

http://etna.math.kent.edu

BOUNDARY CONDITIONS IN APPROXIMATE COMMUTATOR PRECONDITIONERS 277

clear. We have found that with a strategy of this type for specifyingFp, the performance
of the PCD preconditioner is sensitive to the scale of these diagonal entries. The results of
Figure7.2come from taking these entries to be the average of the diagonal values ofFp from
all rows not corresponding to inflow and outflow boundaries. Intuitively, choosing scalings
that are roughly comparable with diagonal entries ofF (or of Fp) is consistent with trying
to make discrete commutators small. Figure7.3 shows what happens when other scalings
are used at the outflow, for one example from Figure7.2 (discrete Jacobian,Re = 100).
It is evident that performance is sensitive to this choice, and with other scalings, it is not
better than when a Neumann condition are used at the outflow. Since the latter strategy does
not entail a parameter, we use that in subsequent tests. Thus, for problems with inflow and
outflow boundaries, we defineFp with Robin conditions at the inflow (favoring commutator
1© of (orthogonal,orthogonal) type), and Neumann conditionsat the outflow (favoring3©

of (tangential,orthogonal) type). These choices are consistent with the conclusions about
perturbations reached in Section5.

FIG. 7.3. GMRES iterations with PCD preconditioning for four scalings of Dirichlet boundary conditions at
the inflow, discrete Jacobian,Re = 100.

TABLE 7.1
Iteration counts for different combinations of operator orderings and boundary conditions. Backward facing

step,Re = 200.

PCD LSC
Old order Old order New order Old order Old order New order

ℓ Old b.c. New b.c. New b.c. Old b.c. New b.c New b.c.
4 46 53 30 29 34 34
5 42 56 25 22 25 25
6 47 72 28 22 22 17
7 63 96 32 32 20 15

We have seen that with the new ordering of operators in the preconditioner (contrast (2.2)
and (2.8)), it is important to also use the new Robin boundary conditions forFp at inflow
boundaries. (Dirichlet conditions are the “old” choice.) One could ask the opposite question,
how the new boundary conditions would work with the originalordering. To explore this, we
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show in Table7.1the iteration counts for three versions of each of the preconditioners, for the
backward facing step andRe = 200; the stopping criterion was‖rk‖2/‖b‖2 < 10−6 where
rk andb are the residual and right-hand side vectors, respectively. The results for the new
ordering of operators and the new treatment of boundaries are in the right column for each
preconditioner. The middle column (for each) uses the old ordering with the new boundary
conditions. For LSC, this means the inverse of the preconditioner is

(BHBT )−1(BHFQ−1
v BT )(BQ−1

v BT )−1,

which is derived using weighted least squares and commutingwith the gradient operator
(compare with (2.7). The results here are mixed: for the PCD preconditioner with the old
ordering, the (new) Robin boundary condition is less effective than the (old) Dirichlet con-
dition, whereas the opposite conclusion holds for the LSC preconditioner. However, the best
combination is the new methodology. We note, however, that for the driven cavity problem,
which has only characteristic boundaries, the old and new boundary conditions are the same,
and we have also found that performance is not sensitive to operator ordering.

In general we have found the Jacobian systems arising from a Newton iteration to be
slightly more costly than the Oseen systems, and this trend holds here as well. For the re-
mainder of this section, we restrict our attention to the Oseen problem.

FIG. 7.4.GMRES iterations with PCD preconditioning for fixed Reynolds number and four successively refined
meshes. Left: cavity withRe = 100 and mesh parametersℓ = 5, 6, 7, 8. Right: step withRe = 200 and mesh
parametersℓ = 4, 5, 6, 7.

Figure 7.4 shows the performance of the PCD preconditioner for fixed values of the
Reynolds number (denotedRe) and various grid refinements. The two graphs each show the
results for both the new and original versions of the preconditioner. The graph on the left is for
the driven cavity problem, where the original PCD preconditioner is known to exhibit mesh
independent behavior [5]. Here, the eight curves (four for the new preconditioner and four
for the original) are largely indistinguishable. The graphon the right is for the step problem.
Here, the convergence behavior of GMRES with the new method is essentially independent
of the the mesh, whereas the initial transient exhibited by the original method increases as the
mesh is refined.

This issue was previously not well understood. The results shown in Figures7.2and7.4
clearly demonstrate that boundary conditions are responsible for the difference between the
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original and new methods. For the cavity problem, with characteristic boundaries, Neumann
boundary conditions are the right choice for definingFp. For the inflow/outflow (step) prob-
lem, with the wrong choice of boundary conditions forFp, GMRES exhibits a long period
of slow convergence in its initial steps. The new method produces mesh-independent conver-
gence for both types of problems; in contrast, previously, only the asymptotic convergence
rate was known to be independent of the mesh [4].

FIG. 7.5.GMRES iterations with LSC preconditioning for fixed Reynolds number and four successively refined
meshes. Left: cavity withRe = 100 and mesh parametersℓ = 5, 6, 7, 8. Right: step withRe = 200 and mesh
parametersℓ = 4, 5, 6, 7.

Figure7.5 shows analogous performance results for the LSC preconditioner. It can be
seen that with the new version of this method, GMRES also exhibits mesh-independent per-
formance. (Note that for the step, performance improves as the grid is refined, until the
convergence rate appears to settle to a constant for grid parametersℓ = 6 and7.) In con-
trast, for previous versions, the asymptotic convergence factor degrades slightly as the grid is
refined.

Finally, Figure7.6 compares the performance of both the new preconditioners for two
sets of problems with fixed grid parameterℓ = 6 and a variety of Reynolds numbers. The
iteration counts for the LSC preconditioner are somewhat lower than those for the PCD pre-
conditioner (although the former requires one more Poissonsolve). The trends with respect
to Reynolds number are largely the same for the two methods.

8. Conclusions.We have analyzed the role of boundary conditions within the pressure
convection-diffusion preconditioner for saddle point systems arising from the incompressible
Navier–Stokes equations. This examination has led to alternative formulations for the pres-
sure convection-diffusion preconditioner and the LSC preconditioner that in effect emphasize
certain commuting relationships near the boundary. Computationally, the number of required
GMRES iterations is noticeably better than with the original versions of these preconditioners
on two model benchmark problems. Further, the measured GMRES convergence rate with
the new preconditioners now appears to be independent of themesh resolution.

Acknowledgment. We thank David Silvester for a careful reading of this paper and
several helpful remarks.
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FIG. 7.6. GMRES iterations with new PCD and LSC preconditioners for fixed mesh parameterℓ = 6 and
various Reynolds numbers. Left: cavity. Right: step.
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