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Abstract. This paper is concerned with the spectral approximatioredgftionally formulated eigenvalue prob-
lems posed on curved domains. As an example of the present/tltenvergence and optimal error estimates are
proved for the piecewise linear finite element approxintatbthe eigenvalues and eigenfunctions of a second order
elliptic differential operator on a general curved thréeensional domain.
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1. Introduction. In this paper we present an extension of the spectral appeatiaon
theory for non-compact operators in Hilbert spaces. Inipaldr, we consider the nume-
rical approximation of the eigenvalues and eigenvectoraaationally formulated problems
posed over general curved domains. There are not many nefes@bout error estimates for
this kind of problems. In particular, the finite element appmations of the spectrum of the
Laplace operator on non-convex domains with curved bouesl@iave been studied only in
a few papers.

The first proof of the convergence for a Laplace eigenprobfemsimple eigenvalues
and Dirichlet boundary conditions, was given by VanmaetéZamisek [L6] by using themin-
maxcharacterization; sed §|. The same authors generalized their results to includeipheil
eigenvalues7] and numerical integration effectd§]. Almost at the same time, Lebaud
[11] analyzed a similar problem posed on two-dimensional doasby using isoparametric
finite elements methods in the framework of the classicattspkapproximation theory; see
[1]. She also considered simple eigenvalues and Dirichlehtarty conditions but assuming
exact integration. In this case, the known results (46 pive only an ordeiO(h*+1) for
the eigenvalues, in contrast@(h2*) which would be achievable on the polygonal domains
if the eigenfunctions were smooth enough. Lebaud showedbdaoanstruct “a good approx-
imation” of the boundary in order to obtain the optimal ordéconvergence for eigenvalues.
However, no direct extension of this method to three-dir@ra domains seems to be pos-
sible.

More recently, Hernandez and Rodrigu8kdonsidered finite element approximation of
the spectral problem for the Laplace equation with Neumanmbdary conditions on curved
non-convex domains. By using the abstract spectral apmation theory, they proved op-
timal order error estimates for the eigenfunctions and abtioarder for eigenvalues. Later,
the same authors proved convergence results and errorassirfor the Raviart-Thomas ap-
proximations of the spectral acoustic problem on a curvedeanvex two-dimensional do-
main [9].

The goal of this paper is to prove some abstract results artrgphapproximation that can
be applied to a wide variety of eigenvalue problems definert ourved domains. These re-
sults are obtained by introducing suitable modificationth@atheory developed by Descloux,
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Nassif and Rappazi[ 5]. Our analysis adapts the theory presented there to thelfattve
are dealing with nonconforming discretizations becausthefapproximation of the given
domain by a polyhedral one.

The remainder of the paper is organized as follows. Se&isdevoted to introducing
the notation. In Sectiof3, we give a precise statement of the eigenvalue problemstand t
approximation methods we will consider. In Sectigrwe prove the abstract results. Finally,
in Section5, as an application of our results, we analyze the finite efgrapproximation
of the spectral problem for the Lamé equation with boundanyditions of Dirichlet type on
a general curved three-dimensional domain. We prove cgevee and optimal order error
estimates for standard piecewise linear continuous el&snen

Let us remark that our analysis is suitable for studying nicaé approximations of
operators with non-compact inverse. In particular, in dfooming paper we will apply this
theory to investigate the finite element approximation eftbaxwell eigenproblem on curved
Lipschitz polyhedral domains.

2. Notation. Throughout this papen denotes a bounded open domairikif, n = 2
or 3, in general non-convex, with a Lipschitz continuous boupd#). Let W(R") be a
complex Hilbert function space with norin- ||g-. Given an open sed C R", let W (O)
denote a generic complex Hilbert space of functions defin€dand|| - || its norm.

First, we define the restriction opera®iby

S:W(R") — W(O)
f = flo.

We restrict our attention to Hilbert spaces such that thempr ||z~ satisfies
1z =115 + 11 1m0

Then, as an immediate consequence of this assumption, w&im ohatS is a bounded opera-
tor.
We will need to provide extensions for functions@rio R™. Withu € W (0O), we extend
it by zero from its original domain t®™ and we denote this extended functioniyNow,
let W5 (O) be the space of all functions i (O) defined in such a way that the extension

operatorS, given by

S:Wo(0) — W(R™)

=

(2.1)

N

)

is well defined and bounded. Finally, we can define the fundtmcﬁ(R”) = S(Wy(0))
endowed with the nornj - ||g=. In what follows, to simplify notation, we will write
- llmn = 11 I-

3. Statement of the eigenvalue problemLet X (Q2) be a complex Hilbert function
space with norn - |o. Let V(€2) be a closed subspace &f(€2), with norm|| - ||, such
that the inclusiorV/ (Q2) — X (Q) is continuous. We denote By, () the subspace df (Q2)
defined as inZ.1).

Consider the eigenvalue problem:

Find € C,u # 0, u € V5(Q2), such that

(3.1) a(u,v) = pb(u,v), Yo e Vp(Q),

wherea : V(Q) x V(Q) — C is a continuous and coercive sesquilinear form and
b: X(Q) x X(Q) — C isacontinuous sesquilinear form.
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Let T be the linear operator defined by
T: X(Q) — W) — X(Q)

T U,
whereu € V,(Q) is the solution of
(32) a(ua y) = b(l’,y), Vy € VO(Q)

Sincea is elliptic, b is continuous, and (©2) — X (), The Lax-Milgram Lemma allows us
to conclude thaf is a bounded linear operator. It is simple to show thét an eigenvalue
of (3.1) if and only if A\ = 1/u is an eigenvalue of the operat@r and the corresponding
associated eigenfunctionscoincide.

Now, we define the linear operatdr by

A: X(R"

T

V(R")
= STSx

—
—

|

Itis clear thati|q = u, whereu € V(1) is the solution of problem3(2).

The curved domaif® is approximated by a family of domaifs,, » > 0, with polygonal
boundaryo(;,. Let7;, be a standard partition &?;, into n-simplices such that each vertex
of 092, also lies orof). The indexk denotes, as usual, the mesh siz&pf We assume that
the family {7}, } is regular in the sense of the minimal angle condition, fhere is a constant
C' independent of the choice @, such thatvol(T") > Cdiam™(T') for all T € 7, where
vol(T') denotes the:-dimensional volume df’; see P], for instance.

Let Vi, (Q,) be a finite-dimensional space 6y, such thatV}, (2,) € V(Qy,), for all h.
We denote by, (2,,) the space of all the functions 3, (2, ) defined as inZ.1). Then, we
consider the following discretization of eigenvalue perhl(3.1):

Find pup, € C,up, # 0, up, € Vor (), such that

(3.3) an(un,v) = pnbp(un,v), Vv € Vor ().

In what follows we shall assume that the approximate sesgait formsa;, andb,;, are
continuous oV (£2;,) uniformly in  and that, is coercive oV (25) uniformly in k. We re-
mark that, sincés, (2,) ¢ V5 (£2), (3.3) represents a nonconforming approximation3dl.

Let us now define the function spatg(R™) := S(Vo,(Q4)). Then, the discrete ana-
logue of the operatoA can be define as follows:

Ay X(R™)  — Vi(R™)

T U, Upla, = un,
whereu,, € Vo, (€2,) is the solution of

an(un,y) = bu(x,y), Yy € Vor(Qn).

Once again, because of the Lax-Milgram Lemma, the operatois bounded uniformly in
h. As in the continuous case, it is simple to show thgis an eigenvalue of problen3 () if
and only if A\, = 1/, is an eigenvalue of the operatar,, and the corresponding associated
eigenfunctions are related by, = @y|q,, -

We end this section by making other assumptions for the da@sepr formsa anday,.
We assume that the fora{x, y) can be expressed as

(3.4) a(zr,y) = al(x|QﬂQhay|QﬁQh) + G2($C|sz\szh ) y|sz\szh),
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wherea; anday are continuous bilinear forms di(Q2 N Q) andV (Q \ Qy,), respectively.
We also assume that

(3.5) an(xn, yn) = a1n(@rlone,, Ynlona,) + a2n(Tnla,\o, Urlo.o)-

Finally, if z,y € V(R™), we assume that

(3.6) a1(zlona,, Ylona,) = ain(zlona, s Ylona,)
holds.

4. Spectral approximation. In this section, we present several abstract results on the
approximation of eigenvalues and eigenvectors of non-@atgperators defined over curved
domains. These results are obtained by suitable modifitatibthe theory presented id][
and p]. As a consequence of these modifications, consistencystarise in the error esti-
mates.

First, we introduce some notation that will be used in theuséd-or further information
on eigenvalue problems we refer the readerlio We denote by (A) the resolvent set of
A and byo(A) the spectrum ofA. For anyz € p(A), R.(A) = (z — A)~! defines the
resolvent operator.

Let A be a nonzero isolated eigenvalueAfwith algebraic multiplicitym. LetI be a
circle in the complex plane centered atvhich lies in p(A) and which encloses no other
points of(A). The continuous spectral projectd®,: V(R") — V(R"), relative to), is
defined by

1
E=— [ R.(A)d=.
27 Jp

We assume that the following properties are satisfied:

P1:

Lim [[(A = An)lg, @yl = 0.
P2:  For each function: of E(V (R™)),
lim ]|\, = 0.
P3:  Foreach function: of E(V (R™)),

lim ( inf ||:C—96hH) =0.
h=0 Xz, eV (k)

P4
Tim [[(A = Ap)leqy @)l = 0.

We are going to give an extension of the theory developediind deal with curved
domains. Most of the proofs of the results stated below aghtsiodifications of those
in [4]. From now on,C' denotes a constant, not necessarily the same at each aumirbeit
always independent df.

LEMMA 4.1. Let G be a closed subset @f A). Under assumptio1, there exist
positive constant§’ and b, independent of, such that

(= = Anlg, @n) I SC, ¥2€G, Vh<ho.



ETNA
Kent State University
http://etna.math.kent.edu

SPECTRAL APPROXIMATION OVER CURVED DOMAIN 73

Proof. The proofis identical to that offf Lemma 1]. O

THEOREM4.2. LetO € C be a compact set not intersectiagA ). There existy > 0
such that, ifh < hg, then© does not interseai(Ah|‘~,h(Rn)).

Proof. The proof is a direct consequence of assumpkdn as it is shown in4, Theo-
rem 1]. d

Therefore, by virtue of the previous theorempiis small enoughl” C P(Ah|x7h(Rn))

and the discrete spectral projecthy, : V(R") — V;,(R"), can be defined by

1
Eh = — FRZ(AHV}L(R"))CZ'Z'

2w

Let us recall the definition of the ga% between two closed subspacés,and Z, of
V(R™). We define

~

oY, Z) :=max{d(Y,Z),6(Z,Y)},
where

oY, Z) = sup. (;gg lly — ZH)-
lyll =1

The following theorem implies uniform convergencelbﬂ;,h(w) to E|‘7h(Rn) ash goes
to 0.
THEOREM4.3. Under assumptioR1,

limn [[(B — By)l5; oy | = 0.

Proof. It follows combining Lemma.1with assumptiofPland it is essentially identical
to that of 4, Lemma 2]. d
THEOREM4.4. Under the assumptioR1, for all 2 € E;,(V(R™)) there holds

%ir% O(z, E(V(R™))) = 0.

Proof. It is a direct consequence of Theordn3. O

THEOREM4.5. Under the assumptior31 andP3, for all z € E(V(R™)) holds
}1111% 0(z, Ep(V(R™))) = 0.

Proof. The proofis identical to that offf Theorem 3]. O

THEOREMA4.6. Under the assumptior3l andP3,

lim (B(V (R")), Ex(V (R"))) =0

Proof. It is direct consequence of Theorendand Theoremd.5. O
As a consequence of the previous theorems, isolated pattseea$pectrum ofA are
approximated by isolated parts of the spectruniAgf, see [LO] and [4]. More precisely, for
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any eigenvalue of A of finite multiplicity m, there exist exactlyn eigenvalued s, -+, Amn

of A, repeated according to their respective multiplicities)erging to\ ash goes to zero.
Next we are going to give estimates which show how the eigaegafT are approxi-

mated by those df’;,. To attain this goal, we extend the theory develope&jisf that it can

be applied to more general situations where the originataediscrete domains do not coin-

cide. By so doing, consistency terms arise in the error e These consistency terms are

associated with the variational crime committed by apprating the curved boundary with

a polyhedral one. We shall give general expressions foethdditional consistency terms.
We begin considering the bounded operaiqrdefined by

A, : X([R") — V(R")

x —u o alg =wu,
whereu € V5(€2) is the solution of
a(y,u) =b(y,x), Vy € Vo(Q).

It is known that)\ is an eigenvalue oA, with the same multiplicityn as that of\. We also
consider the bounded operatdr,;, defined by

A X(R™)  — Viu(R™)

T U, ot Upla, = un,
whereuy, € Vo, (€25) is the solution of
an(y,un) = bu(y, ), Yy € Vor(Qn).

Here, A1z, - - -, Amn are the eigenvalues €., which converge to\ ash goes to zero.

Let E, be the spectral projector oA, relative toA. We also assume the following
properties forA . andA.,j,:
P5:

Timn /(A = Aun)lg, oo | = 0.

P6.  For each function: of E.(V (R™)),
lim [[z]lo\q, =0
P7.  For each function: of E..(V (R™)),

lim ( inf ||x—xh|\) =0.
h=0 X apeVi (R)

P8:
}yi% [(As = Asn)le(v @) |l = 0.

We now need to introduce other operators. gt: V(R™) — V(R™) be the projector
defined by the relations

ap(r —pz,y) =0, Yy € Von(Q)

4.1
( ) (Hhx)hR"\Qh, =0.
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Becausely, (€2y,) is a closed subset df (), (IIpz)|q, € Von(Qn). Hence, we have
I,z € V5 (R™). Analogously, we define the projecthr;, : V(R™) — V(R™) with range
Vi (R™) by the relations:

ap(y,x —epz) =0, Yy € Vor(Q4)

4.2
( ) (H*hx”R"\Qh =0.

Sinceay, is continuous and coercive dn(2y), both uniformly inh, the operator$l;, and
I1,;, are bounded uniformly ith. Let us remark that for conforming methods, = 11, A.
This is assumed in the spectral approximation theorys]rahd used in the proofs therein.
When variational crimes in the discretization of the dorsane allowedA,; andII;, A do
not coincide.

Let B, := ATl : V(R™) — V(R™). Notice thato(A}) = o(By) and that, for any
non-null eigenvalue, the corresponding invariant subspawoincide. LeF, : V(R") —
V(R™) be the spectral projector d,, relative to its eigenvalues,, - - -, \,,5. It can be
proved that| R, (B,)|| is bounded uniformly irk for z € T'; see b, Lemma 1]. Consequently,
the spectral projectoi®;, are bounded uniformly oh.

Finally, letB.;, := A,;ILy, : V(R") — V(R™) and letF ., be the spectral projector
of B, relative toly,, - - -, A It is easy to show thdB,, is the actual adjoint aB;, with
respect tay,. In fact, for allz andy € V(R™), we have

an(Brr,y) = an(Apllpz,y) = an(Apllyz, agy) = by (Mp2, Tagy).
Similarly, we get
ah(x, B*hy) = bh(Hh:Z?, H*hy).

Therefore, the spectral projectBt,, is also the adjoint oF';, with respect ta,.
Let

= SEVEY, GE) + syl
y EHE‘(‘V(ﬂf"))
yll =

Propertie2 andP3imply that+;, — 0 ash — 0. Analogously, let

Yo = (B (V(RM), Vi (R™)) + sup 1yllovay-
ve B (V@)
vl =

Here, becausB6 andP7, ., — 0 ash — 0.
LEMMA 4.7.

(X = I0n) (v ey | < C,

(I = ILp)

E. (V&) < Cyen

Proof. For az € E(V(R")), we have
(4.3) (T = Tp)z)|* = [|(T - )|, + [2]E\0,-
Using thata,, is coercive orl/(€2;,) uniformly in i, we have

I(X—1p)z|3, < Can(X—10p)z, X—11x)x) = Cap(T—p)z, 2 —ya), Yyn € Vor(Qn),
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where the last equality results from the definitionlhf. Now, taking into account that, is
continuous orV/ (€2,) uniformly in &, we obtain

[(I—Mp)z|o, <C  inf |z —yul,
y}LGVh(Rn)

which together 4.3) allows us to conclude the proof of the first estimation. Amlagous
proof is valid for the second one. [
LEMMA 4.8.

|(E—Fun)lewveyll < ClIA = By)leweyll,

[(Ex — Fan)le, (ven) |l < Cll(Ax — Bun)

E. (V&) |-

Proof. The proofis identical to that o] Lemma 3]. d
Let

Sh = n + [[(A — An)|Bv @)l

From propertie®2, P3andP4 it is easily seen thaf;, — 0 ash — 0. Analogously, let

Gun = Ve + [|(As = Asn) (v (R -

GivenP6, P7andP8 4,;, — 0 ash — 0.
LEMMA 4.9.

(A = Bp)leweyll < Con,
[(As = Bun) gy @y | < Coan.

Proof. Letz € E(V(R™)) with ||z|| = 1. We have
(A —=Bp)z| <[[(A—Ap)z|+ ||AxT—1I1,)z|

< (A = Ap)lew @l + AR T = k) @)

< (A = Ap) e @)l + Ths

where the last inequality follows from Lemm&7 and the fact that| A, || is uniformly
bounded with respect th. An analogous proof is valid for the second estimate of the
Lemma. O

Let

Ap = Filpw @) : E(VR")) — Fa(V(R")).

LEMMA 4.10. For i small enoughj;, is a bijection and|A; || is bounded uniformly
in h.

Proof. See the proof off, Theorem 1]. d

THEOREM4.11.

o~

0(Fn(V(R™)),E(V(R™))) < Cb.
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Proof. The proofis identical to that of] Theorem 1]. O

Let us now define the operatos := Algwy () : E(V(R")) — E(V(R")) and
By, := A, 'BAy, : E(V(R")) — E(V(R™)). From these definitions, it follows that has a
unique eigenvalug of algebraic multiplicitym and thaiB;, has the eigenvalués,, -+, Ama.

Let us consider the following consistency terms:

M, = sup sup lan(Az, Wy —y) — bn(z, Iy — y)l,
z € E(V(R™)) y€E.(V(R"))
flefl =1 lyll =1
M.y = sup sup lan(Ipz — 2, Ayy) — bp(Ilpz — 2, y)|,
z € E(V(R™)) ye€E(VR"))
llzll =1 lyll =1
Ny = sup sup lan(Az,y) = bu(z,y)l.
x GHE‘(‘V(HY)) Y€ ITJ»«”(V(F"))
z|| = yll =

THEOREM4.12.

|A - By < C((Shé*h + My, + M., +Nh).

Proof. We have

JA-By| = sup (A - Bp)z| = sup (A = Bp)z|q
z € B(V(R™)) z € E(V(R™))
Jall =1 el =1
<C  sup sup  a((A —By)z,y)
z € E(VR™) ye V(R")
lzl=1 " “lyi=1 o
=C sup sup  a(E(A —By)z,y)
(4.4) z € E(V(R™)) e V(R
el =17 Ci=1
=C sup sup  a((A —By)z,E.y)
z € E(VR™) ye V(R
el =1 " V=1 o
<C sup sup a((A —Bp)z,y).
@ eHE‘(‘V(Df")) y eﬁ(vq%"))
z|| = yll =

Since(A — By)z, y € V(R™), we can used.4) and (3.6) to get

a((A —Bp)z,y)= a1n((A — Br)zlona,  ylena,) + a2(A — Ba)zlo\a,, ylore,)
(4.5) - o
=an((A = Bp)z,y) + az((A - Bh)$|52\szh,7y|9\szh,)-

Now, using that(A; 'F), — I)A|gv &) = 0 and thatB;, commutes with its spectral
projectorF;,, we obtain

(4.6) A-B)=(A-By)lgye + A, 'Fr—D)(A - Byl @)
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Letz € E(V(R")) andy € E.(V(R")), with ||z|| = ||ly|| = 1. SinceF (A, 'F;, —1) =0
andF ., is the adjoint off", with respect ta;,, we have
lan((A, " Fr = I)(A = By)z,y)|

= lan (A, "Fr = )(A = Bp)z,y)| — |an(Fr(A,'Fr — I)(A = Bz, y)|

= lan((A,"Frn = I)(A = Bp)z,y)| — Iah(( th —D(A —Bp)z,Fany)

= lan (A} 'Fr, = D)(A = Bp)a, (I - Fup)y)|
47) < ClAFr T (A - Bh)|E(V(JR"))|| [T =Fsn)le. (v@n) | < Condsn.
The last inequality in4.7) follows from Lemmast.8 4.9, and4.10 the fact that, is con-

tinuous onV (Q;,) independently of. and thatF';, is bounded uniformly irh. On the other
hand,

(4.8) an((A —Bp)x,y) = an((A — Bp)z, apy) + an((A — Bp)zx, (I — ILy,)y).

To bound the second term in the right-hand side of this eqoatie use Lemmas.7and4.9.
We thus obtain

4o lan((A = Bp)z, (I = ILa)y)|< C (A = Bh)lgw @) [|(T—ILa)
( . ) < Cah'}/*h-

E. (V&)

For the first term, we have
(4.20) an((A — Bp)x, [Lpy) = ap((A — Ap)x, Ly y) + ap((Ap — Bp)z, i y).
Now,
(4.11) Jan((A — Ap)x, ILpy)| = |an(Az, apy) — b (2, Ipy)| < My 4+ Np,
and

an((An — Bp)z, Iapy)= an(Ap(I — g )z, Mapy) = bp (T~ 1Ix)2, Tapy)
@12 — (T~ M), ) = (T~ M), (1= Ty,
The first term in the right-hand side of.(L9 can be written as

bn(I=T0p)z, y) = lan((n =Dz, Awy) = bp((In =D, y)] —an (Hp Dz, (I-1Lx) Asy).
(4.13)
Now, the last term of the right-hand side above can be easiybed by

(lla}igf()nh —Da, (I —1La)Asy)| < C[(TTh — D]gv @l 1T = 1La) g, (v@ny [ A

Then, Lemmat.7, (4.13, and @.14) immediately yield
(4.15) bn (X — p)z, y)| < C(Min + Ynysn)-

Finally, we estimate the last term in.6). Using that(A,leh —1I) is bounded uniformly
in h, we obtain from 4.6) and Lemmat.9

laz((A = Bi)zlova,- ¥love,)l < CIA =Byl @yl ylowa,
(4.16) < Cop sup lyllove, < Conven-
y € IF*II(V(FH))
y =
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Now, the theorem is a consequence of formulaé)(to (4.19. O

By using the previous theorem, we deduce the following tesubut the approximation
of the eigenvalue:

THEOREMA4.13.

. 1 —
) \A—E;m

1/a
ii) _max A= Ain| < C(5h5*h+Mh+M*h+Nh)

< C(5h Osn + My, + My, + Nh)

whereq is the ascent of the eigenvallgla)fA.
Proof. Taking into accountthat(A) = X and that\,, - - -, A\,,p, are the eigenvalues of
B/, we haveir(A) = mA andér(By,) = >_7" | Aix. Then, from the continuity of the traces

— |tr A) —tr(By)| < C||A - By

‘/\——Z A | =

On the other hand, it is known that,

A= Ain|* < C||A = By,

foranyl < i < m. Therefore, we can concludeandii) directly from Theoren.12 d
REMARK 4.14. In many applications, the operathris self-adjoint. In this case, jf

is a nonzero eigenvalue &, the ascentv of (1 — A) is one. So, the space of generalized

eigenvectordZ(R™) coincide with the space of the actual eigenvectors cormdipg to /;

see [L].

5. Example. Let{2 be a bounded three-dimensional domain with a Lipschitzioontis
boundaryd2. We assume thad(2 is piecewise smooth, more precisely, is piecewise of class
C?. To avoid additional technical difficulties, we will assuthat the set of points where the
condition ofC2- smoothness a2 is not satisfied consists of a finite number of straight lines
and single points.

Let (-,-) be the scalar product if?(2) and let| - | denote the correspondirg? norm.
Further,H° () denotes the standard Sobolev spaces with the usual Horfiasand H} ()
denotes the subspace of functiongif(2) satisfying a zero Dirichlet boundary conditions.

We consider the spectral problem:

Givens > 0, find A € R andu # 0 such that

(5.1) sgrad (divu) — curl curlu = \u in €,
' u=0 on 99).

Let X (Q) := (L*(Q))3, V(Q) := (H*(Q))? and 1, (Q2) := (H(Q))3. Letag andb be
the symmetric bilinear forms defined by

ap(u,v) ::/ curlu- curlv + sdivudivv, VYu,ve V(Q),
Q

b(u,v) ::/u-v, Yu,v € X(Q).
Q
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The bilinear formuy is coercive ori4(§2) but is not coercive ol (€2). However, a := ag+b
can be used in our problem and it turns out to be coercivd’¢f1). Furthermoreg is
continuous o/ (2).

As + 2

REMARK 5.1. Whens = , the bilinear formu (u, v) is associated to the elas-

7]
ticity system for a material of Lameé coefficiemts andp;. Denoting the material density by

As
Ps
neous and isotropic three-dimensional body fixed alongatsidary.
The variational formulation of problen® (1) associated with is given by:
Find A € Randu € V,(©2), u # 0, such that

ps, problem 6.1) gives the vibration eigenfrequencies= of an elastic, homoge-

(5.2) a(u,v) = (A+1)b(u,v), Vv e Q).

It is well known that problem&.2) has an increasing sequence of finite multiplicity eigen-
values), > 0, n € N. There is no finite accumulation point. The correspondif¢?)-
orthonormal eigenfunctiona,, belong toV;(£2). Now, as in Sectior?, we consider the
bounded linear operatdr : X (Q2) — X (2) defined byI'f =u € V4(Q) and

(5.3) a(u,y) =b(f,y), Vy € V().
By virtue of the Lax-Milgram Lemma, we have
[alle < Cifflo.0-

As a consequence of the classical a priori estimates, fof anyX (2), u = Tf is known to
satisfy some further regularity. In faat, € (H**7(Q2))3 for r € (1/2,1] (see B]) and there
holds

(5.4) lulli4re < Clf]og.

Now, we consider the bounded linear operator: X(R3) — V(R?) defined by
Af = STSf, whereS and$ are the extension and the restriction operators, respgtiv
defined in Sectiog. Sincea andb are symmetricT is self-adjoint with respect te. Clearly,
A is also self-adjoint with respect ta Notice that(\, u) is a solution of problem&.2) if
and only if(%ﬂ, u) is an eigenpair off" which, in its turn, is equivalent t@%ﬂ, u) being
an eigenpair ofA, wherea = S(u).
Let the curved domaif® be approximated by a polyhedrén, with vertices oro2. Let
7, be a partition of2;,, i.e., a set of a finite number of closed tetrahetiravhich has the
following properties:
e each vertex of)), is a vertex of al’ € 7y,
e eachT € 7, has at least one vertex in the interior(of,
e any two tetrahedrdl, T € 75, share at most a vertex, a whole side, or a whole face.
Let AV, and&;, denote the set of all vertices and the set of all edgés, jimespectively.
We assume that
° Nh C Q,
o N}, N, C o9,
e &), contains all the points where the bound&fy is notC?,
e forall T' € 7;, at most one face df lies ono$2y,.
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We also assume that the fam{l{, } is regular.

In what follows we will use some notation and definitionsaauced in §]. Consider a
T € 7T, which has afacé’}f C 09y, called a boundary tetrahedra. We enumerate the vertices
of T such that the vertices ¢! are numbered first and we denote themiyy, PJ, PY, and
PF', in local notation. Let:T" be the part ob$2 which is approximated by the fac®’. We
denote byl the closed tetrahedra with three plane sides, haings a common vertex, and
with one curved side, coinciding with/ , and we call it the ideal tetrahedra associated with
T € 7;. For the sake of simplicity, we assume that the partitidpsre such that for each
boundary tetrahedr@, eitherT ¢ T or T O T'?. If we replace all boundary tetrahedra in
75, by their associated ideal tetrahedié, we obtain the so-called ideal partitidij? of the
domain(.

With the triangulatior;,, we consider the finite element spaces

X(Qn) = (L2 ())*,  V(Qn) = (H'())°,

Vh(Qh) = {Vh e V() : Vth S (Pl(T))S VT € %},
and
Vorn(Qp) := {Vh S Vh(Qh) : Vhlth = O}.

Letay, andb;, be the symmetric bilinear forms defined by

ap(u,v) ::/ curlu- curlv+sdivudivv+/ u-v, vYu,veV(Q,),
Qh Qh,

bp(u,v) == / u-v, Yu,vexX(Q).
Qp

Notice that the bilinear form, is coercive and continuous dn(2;,) uniformly in 4. Then,
the discretization of the spectral problem?) is given by
Find Ay, € Randuy, € Vo (1), uy # 0, such that

ah(uh,vh) = (/\h + 1) bh(uh,vh), Yvy, € VOh(Qh)-

Now, we can define a discrete analogueAof Let A, : X (R3) — V,(R?) be the
bounded linear operator defined By,f € V},(R?) and

ah(Ahf, Vh) = bh(f, Vh)7 VVh S Vbh(Qh)-

It remains to show that the bilinear formsanda,, satisfy the assumption8.4), (3.5),
and (3.6). To that end, letv be a closed subset 6fU 2;, and consider the bilinear form

a,(u,v) := / curlu- curlv + sdivudivv + / u-v, Vu,ve(H'(w))?,
Thus, noting that,, is continuous ofH! (w))? uniformly in A, it suffices to take

a1 (ulon,, Vlane,) = a1n(ulana,, Vienae, ) = aona, (1, v),

Gz(“kz\szh s V|sz\szh) = ag\Q, (11, V),
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a2h(u|§zh\§z, v Qh\Q) = th\Q(m V)-

In order to prove propertigdl, P2, P3, andP4 for this problem, we establish the follow-
ing lemmas and definitions.
LEMMA 5.2. There exists a positive constaritsuch that:

Ivllo.ong, < CholIvllen Vv e (HT(Q)?, 0<0<1,
Ivllo.ma < Ch([Vlog, Vv e (H(Qm)?, 0<o<1.

Proof. By adapting the arguments used in the prooféfijlemma 3.3.11] for the three-
dimensional case, the inequalities can be provedrfer 1. Since the two inequalities are
clearly true forc = 0, they follow for0 < ¢ < 1 from standard results on interpolation in
Sobolev spaces. [

DEFINITION 5.3. Letwy, € Vo, (21). A functionw € V,(Q) is called associated with
wy, if it has the following properties:

w e CO(Q),

’LZ)(PZ) = wh(Pi), VP, € Nh,

w is linear on each tetrahedr@d € 7;, N T,jd,

if T c T w=00onT"\Tandw = wy, onT,
if Tid cT, ’UA}|3TMCQQ =0.

The definition above is due to Feistauer atehisek; seef]. The construction of such
a function follows basically from the interpolation theatgveloped to Zlamall[9] for two-
dimensional curved finite elements. The extension of hiasde the three-dimensional case
is relatively straightforward so we do not include the dsthere.

LEMMA 5.4, Letw € V() be associated with, € Vo, (). LetT™ € 7,/ lie
alongof and letT € T, be its approximation. I c T, then

[0 = wh|[gia < Chljwn|r,

where(' is a constant independent bf

Proof. The proof is a consequence of Definitibr8 and a suitable extension o,
Theorem 2]. d

In what follows, we will use smooth extensions of functiomgimally defined inQ2. We
denote byy® an extension op from H°(Q), o > 0, into H7 (R?) satisfyingy® € H? (R?)
and

(5.5) [l

see [], for instance.
Letf € V;,(R3) and definai := Af andiy, := A.f.
LEMMA 5.5. There exists a positive constaritsuch that

ok < Cllollo0;

la-wl < o inf flvi—ucle,
vrne€Von (Qh) | ( )|
ap(u® —up, wp,
+ sup ’ + ||uHQ\Qh + HueHQh,\Q)'
wp€Von(Q) ”WhHQh’

Proof. We have

[a—u,)? = [lu—nlldua, = lu—urltng, + ||U-H?z\szh + Huh”?zh\sz-
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Now, letv,, be an arbitrary element in the spadg, (21,). We can write

[u— uhH?mszh, <2(|lu— VhH?zrmh, + (v — U-h”?mszh)a

and

[unllone < IV —unllone + [[Vallo\o-

By using the uniform coerciveness and continuity of thenleiéir forma;,, we obtain

aflvi —wlg, < /Q | curl (vj, — up)|* + 5| div (v, —up)|? —i—/Q [vi, —up|?
h h

< curl (v, — u®) - curl (v, — up) + sdiv (v, — u®) div (vj, — uy)
Qn
+ curl (u® —uy) - curl (v, —up) + sdiv (u® — up) div (v, — up)

h

+

(vh —u) (v, —up) +/Q (u® —up)(vip —up)

< O (Ivi =l Iva = willa, +an((a® = ). (vie —un)) ).

N

from which we deduce

ap(u® —up, w
[vi —unlle, <C | |[lvh —u®|q, + sup lan( hs Wi )
Wh€Von () [Wnlle,

On the other hand,

lu—villona, = llu® —villana,,

and

IVillone < v —u®lla,ne + [0l

Combining the above inequalities, we conclude the proof. [

We now estimate the terms appearing in the right-hand sitteedhequality in Lemma&.5.
In the sequel, we shall assume thas the constant appearing in equatiéndj.

LEMMA 5.6. There exists a positive constaritsuch that

inf fu®— < W fufligro
vh,exl/?h,(szh,) I Vhlla, < lall14r.0

Proof. Sinceu® € (H'*"(R?))3, u® € (C°(R?))3. ThereforeLu®, the Lagrange linear
interpolant ofu®|q, , is well defined; see?], for instance. By using standard interpolation
results, we have

[u® — Lu®(|g, < CR"[[0®[|14r.q,-

Observe thallu® € V() althoughu®|sq, # 0. Then, using the estimat&.f), we
conclude the proof. O
LEMMA 5.7. There exists a positive constaritsuch that

lan(u® —up, wp)|

sup

< Ch"|f]l.
Wi EVon () [whllo,
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Proof. For any functionw, € Vy,(21,), we have

ap(u® —up, wp) = / curl (u® —uy,) - curlwy, + sdiv (u® — uy) div wy,
Qp

+ (u® —up) - wy

Qn
= curlu®- curlwy, + sdivu®divwy, +u® - wy, — f-wy
QU Qp
= curlu- curlwy, + sdivudivwy +u-wy,
p)
—l—/ curlu®- curlwy, + sdivu®divwy, +u® - wy, — f wy.
Q\Q Qn

The last three terms can be easily bounded. In fact, by usm@auchy-Schwarz inequality,
Lemmab.2and estimateq.5), we obtain

/ curlu® - curlwy| < C| curlu®||y o, \al curl wi||o.0,\0
Q,\Q

(5.6) < CR[ul1gr0, [Walle, < CR"ulliyrollwalla,,

/ divu® divwy| < O divucfo.gal divwillogma < C 70 1ron [Walos
Q\Q

(5.7) < Ch[ulliyrollwhlla,,

/ u®-w
Q\Q

(5.8) < Ch*|[ull14rollwhll, -

< Cu’lloonellwhllo.one < CR01ir0, [Whlla,

=

We are going to estimate the remainder terms. To this end,eed to introduce some nota-
tion. We denote by the domain bounded by} andS, with X" 99 being the curved
side of an ideal tetrahedra and wiff C 92, being the corresponding side of the associated
tetrahedrdl” € 7,,. Now, we consider a functiow = (wy, we, ws), with w;,i = 1,2, 3, as
defined in Definitiorb.3. Sincew € 14(Q2), we may take it as a test function i6.9). Then,

we can obtain

‘ fW—/ curlu- curl (W — wy) 4+ sdivadiv(w — W) +u- (W — wp,)
Q Q

— f-Wh‘
Qp
:‘ Z /f\if—/ curlu- curl (W — wy,) + sdivudiv (W — wy,)
e T T T
AT MO # 0
+/U'(VAV—‘7Vh)— /fwh‘
' 2

T €Ty,
T NoQy, £ 0
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:‘ Z (/f-(vi/—wh)—/curlu-curl(W—Wh)
e 7 T T
AT NOYF#D

+/Tsd1vudiv(w—€vh)—/Tu-(W—Wh))— T;h /wf'wh‘
<c[ Y (i

AT NoQy, #0
T e 7,4

o0+ [allzll¥ = Wallz ) + l£llo.00 0l Wallo2,e]
aT N th';& 0

<c|[ > (m

T €Ty
T NoQy, #0

< C [n(I€) + lulle) + R2IEN ] Iwalle,

0.7 W — wh|

orliwnllz + hlallzwlz ) + A2 £l Wl |

where we have used Lemm&s and5.4. We conclude the proof combining the previous
inequality with 6.6), (5.7), (5.8), and the estimates(4). d
THEOREM5.8. (P1) There exists a positive constatitsuch that

I(A — Ap)E|| < CR7|If]| VE € Vi(R?).

Proof. Itis an immediate consequence of the previous lemmas.O
THEOREMS5.9. (P2)For each eigenfunction of A associated td, there exists a strictly
positive constant’ such that

lallove, = llullove, < CR|[ulli1ra.

Proof. It is an immediate consequence of the regularity of therdigectionsu of the
operatorT and Lemmé&.2 O

THEOREM 5.10. (P3) For each eigenfunctiom of A associated to\, there exists a
strictly positive constanf’ such that

inf |la—v| < Ch|[ulli4r,0.
Vi EVon (2n)
Proof. We have
[a—vnl? = [a—vuld, +lluldg, <la-uld, +I[u®—vald, +Iuldq,

< uellg, \q + 10 = vallg, +I[uldq, < Il o

which follows because the regularity of the eigenfunctiarts the operato’, estimate %.5
and Lemmégb.6. Then, taking the infimum with respecttg, € Vo, (Q2;,), we can conclude
the proof. O

By virtue of the previous theorems, the spectrungf furnishes the approximations of
the spectrum ofA as we stated in Sectidh

THEOREM5.11.(P4) There exists a positive constatitsuch that

(A — Ap)levm@syll < Ch"

Proof. Forx € E(V(R?)), u = Ax € H*"(R3). Then, the proof runs identically to
that of Theoren®.8. 0

Observe that, sincA andA, are self-adjoint, propertieR5, P6, P7andP8 are equally
valid.
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Now, we are going to estimate the consistency terms appeisritheorem?.13 Notice
that M}, and M., also coincide because of the symmetry:gfandb, .

LEMMA 5.12.There exists a positive constatitsuch that

My, = sup sup an(Ax, Iy —y) — bu(x, Iy — y)| < Ch*",
x EHEITV(R‘%)) y EHE”(V(R‘%))
x| =1 yl|l=1

with I1;, being the projection onto}, (R?) with respect taz;,, defined by equationt(1).
Proof. Letx € E(V(R?)), with |x|| = 1, and putw = SAx. According to the

definition of A, we havew = SSTSx = TSx. From (5.4) we know thatw € (H'*"(Q))?
and

[Wllitro < Clx| = C.

Now, takingv € D(Q2) as test functions in5(3), it can be shown that is the solution of the
following strong problem

sgrad (divw) — curl curlw + w = x in €,
w =0 on 0f).

Let us denote byv the extension ofv by zero fromQ to R3. Lety € E(V(R?)) with
|ly|]| =1, and takev,, = II,;y — y. Integrating by parts, we obtain

lan (W, vp) = bp(x,vi)| = ’ / curlw - curlvy, + sdivwdivvy, +w- vy,
A\Qp
+ X - vh’
Q\Qp
< C(Iwliova, valiove, + [Wlloove, Vallo,ova,
+xllo.o\0, IValloo\a,
< C (B Wl virallyliere + h wlalylo
+2 xlrallyle).
In the last inequality, we have used that o\ o, = —y|o\q, and the estimate in Lemnia2.
Finally, we can conclude the proof using estimatef), d
LEMMA 5.13.There exists a positive constatitsuch that
Ny = sup sup  an(Ax,y) = bu(x,y)| < Ch*".
x € E(V(R*) yeE(V(R?)
x| =1 lyll =1

Proof. It is identical to that of the previous lemma by substitgtin, by y. O
THEOREMS5.14.There exists a positive constatitsuch that

_max A= Ain| < Ch?".

Proof. It is a immediate consequence of the properB@sP3, P4, and the previous
lemmas. O
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