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Abstract. This paper is concerned with the spectral approximation of variationally formulated eigenvalue prob-
lems posed on curved domains. As an example of the present theory, convergence and optimal error estimates are
proved for the piecewise linear finite element approximation of the eigenvalues and eigenfunctions of a second order
elliptic differential operator on a general curved three-dimensional domain.
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1. Introduction. In this paper we present an extension of the spectral approximation
theory for non-compact operators in Hilbert spaces. In particular, we consider the nume-
rical approximation of the eigenvalues and eigenvectors ofvariationally formulated problems
posed over general curved domains. There are not many references about error estimates for
this kind of problems. In particular, the finite element approximations of the spectrum of the
Laplace operator on non-convex domains with curved boundaries have been studied only in
a few papers.

The first proof of the convergence for a Laplace eigenproblem, for simple eigenvalues
and Dirichlet boundary conditions, was given by Vanmaele and Ženı́šek [16] by using themin-
maxcharacterization; see [15]. The same authors generalized their results to include multiple
eigenvalues [17] and numerical integration effects [18]. Almost at the same time, Lebaud
[11] analyzed a similar problem posed on two-dimensional domains by using isoparametric
finite elements methods in the framework of the classical spectral approximation theory; see
[1]. She also considered simple eigenvalues and Dirichlet boundary conditions but assuming
exact integration. In this case, the known results (see [13]) give only an orderO(hk+1) for
the eigenvalues, in contrast toO(h2k) which would be achievable on the polygonal domains
if the eigenfunctions were smooth enough. Lebaud showed howto construct “a good approx-
imation” of the boundary in order to obtain the optimal orderof convergence for eigenvalues.
However, no direct extension of this method to three-dimensional domains seems to be pos-
sible.

More recently, Hernández and Rodrı́guez [8] considered finite element approximation of
the spectral problem for the Laplace equation with Neumann boundary conditions on curved
non-convex domains. By using the abstract spectral approximation theory, they proved op-
timal order error estimates for the eigenfunctions and a double order for eigenvalues. Later,
the same authors proved convergence results and error estimates for the Raviart-Thomas ap-
proximations of the spectral acoustic problem on a curved non-convex two-dimensional do-
main [9].

The goal of this paper is to prove some abstract results on spectral approximation that can
be applied to a wide variety of eigenvalue problems defined over curved domains. These re-
sults are obtained by introducing suitable modifications inthe theory developed by Descloux,
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Nassif and Rappaz [4, 5]. Our analysis adapts the theory presented there to the factthat we
are dealing with nonconforming discretizations because ofthe approximation of the given
domain by a polyhedral one.

The remainder of the paper is organized as follows. Section2 is devoted to introducing
the notation. In Section3, we give a precise statement of the eigenvalue problems and the
approximation methods we will consider. In Section4, we prove the abstract results. Finally,
in Section5, as an application of our results, we analyze the finite element approximation
of the spectral problem for the Lamé equation with boundaryconditions of Dirichlet type on
a general curved three-dimensional domain. We prove convergence and optimal order error
estimates for standard piecewise linear continuous elements.

Let us remark that our analysis is suitable for studying numerical approximations of
operators with non-compact inverse. In particular, in a forthcoming paper we will apply this
theory to investigate the finite element approximation of the Maxwell eigenproblem on curved
Lipschitz polyhedral domains.

2. Notation. Throughout this paperΩ denotes a bounded open domain inR
n, n = 2

or 3, in general non-convex, with a Lipschitz continuous boundary ∂Ω. Let W (Rn) be a
complex Hilbert function space with norm‖ · ‖Rn . Given an open setO ⊂ R

n, let W (O)
denote a generic complex Hilbert space of functions defined in O and‖ · ‖O its norm.

First, we define the restriction operatorŠ by

Š : W (Rn) → W (O)
f 7→ f |O.

We restrict our attention to Hilbert spaces such that the norm ‖ · ‖Rn satisfies

‖ · ‖2
Rn = ‖ · ‖2

O + ‖ · ‖2
Rn\O.

Then, as an immediate consequence of this assumption, we obtain thatŠ is a bounded opera-
tor.

We will need to provide extensions for functions onO toR
n. With u ∈ W (O), we extend

it by zero from its original domain toRn and we denote this extended function byū. Now,
let W0(O) be the space of all functions inW (O) defined in such a way that the extension
operator̂S, given by

Ŝ : W0(O) → W (Rn)
u 7→ ū,

(2.1)

is well defined and bounded. Finally, we can define the function spacẽW (Rn) := Ŝ(W0(O))
endowed with the norm‖ · ‖Rn . In what follows, to simplify notation, we will write
‖ · ‖Rn = ‖ · ‖.

3. Statement of the eigenvalue problem.Let X(Ω) be a complex Hilbert function
space with norm| · |Ω. Let V (Ω) be a closed subspace ofX(Ω), with norm‖ · ‖Ω, such
that the inclusionV (Ω) →֒ X(Ω) is continuous. We denote byV0(Ω) the subspace ofV (Ω)
defined as in (2.1).

Consider the eigenvalue problem:
Find µ ∈ C, u 6= 0, u ∈ V0(Ω), such that

a(u, v) = µb(u, v), ∀v ∈ V0(Ω),(3.1)

where a : V (Ω) × V (Ω) → C is a continuous and coercive sesquilinear form and
b : X(Ω) × X(Ω) → C is a continuous sesquilinear form.
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Let T be the linear operator defined by

T : X(Ω) → V0(Ω) →֒ X(Ω)
x 7→ u,

whereu ∈ V0(Ω) is the solution of

a(u, y) = b(x, y), ∀y ∈ V0(Ω).(3.2)

Sincea is elliptic, b is continuous, andV (Ω) →֒ X(Ω), The Lax-Milgram Lemma allows us
to conclude thatT is a bounded linear operator. It is simple to show thatµ is an eigenvalue
of (3.1) if and only if λ = 1/µ is an eigenvalue of the operatorT and the corresponding
associated eigenfunctionsu coincide.

Now, we define the linear operatorA by

A : X(Rn) → Ṽ (Rn)

x 7→ ū = ŜTŠx.

It is clear that̄u|Ω = u, whereu ∈ V0(Ω) is the solution of problem (3.2).
The curved domainΩ is approximated by a family of domainsΩh, h > 0, with polygonal

boundary∂Ωh. Let Th be a standard partition ofΩh into n-simplices such that each vertex
of ∂Ωh also lies on∂Ω. The indexh denotes, as usual, the mesh size ofTh. We assume that
the family{Th} is regular in the sense of the minimal angle condition, i.e.,there is a constant
C independent of the choice ofTh such thatvol(T ) ≥ Cdiamn(T ) for all T ∈ Th, where
vol(T ) denotes then-dimensional volume ofT ; see [2], for instance.

Let Vh(Ωh) be a finite-dimensional space onΩh such thatVh(Ωh) ⊂ V (Ωh), for all h.
We denote byV0h(Ωh) the space of all the functions inVh(Ωh) defined as in (2.1). Then, we
consider the following discretization of eigenvalue problem (3.1):

Find µh ∈ C, uh 6= 0, uh ∈ V0h(Ωh), such that

ah(uh, v) = µhbh(uh, v), ∀v ∈ V0h(Ωh).(3.3)

In what follows we shall assume that the approximate sesquilinear formsah andbh are
continuous onV (Ωh) uniformly in h and thatah is coercive onV (Ωh) uniformly in h. We re-
mark that, sinceV0h(Ωh) 6⊂ V0(Ω), (3.3) represents a nonconforming approximation to (3.1).

Let us now define the function spacẽVh(Rn) := Ŝ(V0h(Ωh)). Then, the discrete ana-
logue of the operatorA can be define as follows:

Ah : X(Rn) → Ṽh(Rn)
x 7→ ūh : ūh|Ωh

= uh,

whereuh ∈ V0h(Ωh) is the solution of

ah(uh, y) = bh(x, y), ∀y ∈ V0h(Ωh).

Once again, because of the Lax-Milgram Lemma, the operatorAh is bounded uniformly in
h. As in the continuous case, it is simple to show thatµh is an eigenvalue of problem (3.3) if
and only ifλh = 1/µh is an eigenvalue of the operatorAh, and the corresponding associated
eigenfunctions are related byuh = ūh|Ωh

.
We end this section by making other assumptions for the sesquilinear formsa andah.

We assume that the forma(x, y) can be expressed as

a(x, y) = a1(x|Ω∩Ωh
, y|Ω∩Ωh

) + a2(x|Ω\Ωh
, y|Ω\Ωh

),(3.4)
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wherea1 anda2 are continuous bilinear forms onV (Ω ∩ Ωh) andV (Ω \ Ωh), respectively.
We also assume that

ah(xh, yh) = a1h(xh|Ω∩Ωh
, yh|Ω∩Ωh

) + a2h(xh|Ωh\Ω, yh|Ωh\Ω).(3.5)

Finally, if x, y ∈ V (Rn), we assume that

a1(x|Ω∩Ωh
, y|Ω∩Ωh

) = a1h(x|Ω∩Ωh
, y|Ω∩Ωh

)(3.6)

holds.

4. Spectral approximation. In this section, we present several abstract results on the
approximation of eigenvalues and eigenvectors of non-compact operators defined over curved
domains. These results are obtained by suitable modifications of the theory presented in [4]
and [5]. As a consequence of these modifications, consistency terms arise in the error esti-
mates.

First, we introduce some notation that will be used in the sequel. For further information
on eigenvalue problems we refer the reader to [1]. We denote byρ(A) the resolvent set of
A and byσ(A) the spectrum ofA. For anyz ∈ ρ(A), Rz(A) = (z − A)−1 defines the
resolvent operator.

Let λ be a nonzero isolated eigenvalue ofA with algebraic multiplicitym. Let Γ be a
circle in the complex plane centered atλ which lies inρ(A) and which encloses no other
points ofσ(A). The continuous spectral projector,E : V (Rn) → Ṽ (Rn), relative toλ, is
defined by

E =
1

2πi

∫

Γ

Rz(A) dz.

We assume that the following properties are satisfied:
P1:

lim
h→0

‖(A− Ah)|eVh(Rn)‖ = 0.

P2: For each functionx of E(V (Rn)),

lim
h→0

‖x‖Ω\Ωh
= 0.

P3: For each functionx of E(V (Rn)),

lim
h→0

(
inf

xh∈eVh(Rn)
‖x − xh‖

)
= 0.

P4:

lim
h→0

‖(A− Ah)|E(V (Rn))‖ = 0.

We are going to give an extension of the theory developed in [4] to deal with curved
domains. Most of the proofs of the results stated below are slight modifications of those
in [4]. From now on,C denotes a constant, not necessarily the same at each occurrence, but
always independent ofh.

LEMMA 4.1. Let G be a closed subset ofρ(A). Under assumptionP1, there exist
positive constantsC andh0, independent ofh, such that

‖(z − Ah|eVh(Rn))
−1‖ ≤ C, ∀z ∈ G, ∀h < h0.
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Proof. The proof is identical to that of [4, Lemma 1].
THEOREM 4.2. LetO ∈ C be a compact set not intersectingσ(A). There existh0 > 0

such that, ifh < h0, thenO does not intersectσ(Ah|eVh(Rn)).
Proof. The proof is a direct consequence of assumptionP1, as it is shown in [4, Theo-

rem 1].
Therefore, by virtue of the previous theorem, ifh is small enough,Γ ⊂ ρ(Ah|eVh(Rn))

and the discrete spectral projector,Eh : V (Rn) → Ṽh(Rn), can be defined by

Eh =
1

2πi

∫

Γ

Rz(Ah|eVh(Rn)) dz.

Let us recall the definition of the gap̂δ between two closed subspaces,Y andZ, of
V (Rn). We define

δ̂(Y, Z) := max{δ(Y, Z), δ(Z, Y )},

where

δ(Y, Z) := sup
y ∈ Y
‖y‖ = 1

(
inf
z∈Z

‖y − z‖
)
.

The following theorem implies uniform convergence ofEh|eVh(Rn) to E|eVh(Rn) ash goes
to 0.

THEOREM 4.3. Under assumptionP1,

lim
h→0

‖(E− Eh)|eVh(Rn)‖ = 0.

Proof. It follows combining Lemma4.1with assumptionP1and it is essentially identical
to that of [4, Lemma 2].

THEOREM 4.4. Under the assumptionP1, for all x ∈ Eh(V (Rn)) there holds

lim
h→0

δ(x,E(V (Rn))) = 0.

Proof. It is a direct consequence of Theorem4.3.
THEOREM 4.5. Under the assumptionsP1andP3, for all x ∈ E(V (Rn)) holds

lim
h→0

δ(x,Eh(V (Rn))) = 0.

Proof. The proof is identical to that of [4, Theorem 3].
THEOREM 4.6. Under the assumptionsP1andP3,

lim
h→0

δ̂(E(V (Rn)),Eh(V (Rn))) = 0.

Proof. It is direct consequence of Theorem4.4and Theorem4.5.
As a consequence of the previous theorems, isolated parts ofthe spectrum ofA are

approximated by isolated parts of the spectrum ofAh; see [10] and [4]. More precisely, for
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any eigenvalueλ of A of finite multiplicity m, there exist exactlym eigenvaluesλ1h, ···, λmh

of Ah, repeated according to their respective multiplicities, converging toλ ash goes to zero.
Next we are going to give estimates which show how the eigenvalues ofT are approxi-

mated by those ofTh. To attain this goal, we extend the theory developed in [5] so that it can
be applied to more general situations where the original andthe discrete domains do not coin-
cide. By so doing, consistency terms arise in the error estimates. These consistency terms are
associated with the variational crime committed by approximating the curved boundary with
a polyhedral one. We shall give general expressions for these additional consistency terms.

We begin considering the bounded operatorA∗ defined by

A∗ : X(Rn) → Ṽ (Rn)
x 7→ ū : ū|Ω = u,

whereu ∈ V0(Ω) is the solution of

a(y, u) = b(y, x), ∀y ∈ V0(Ω).

It is known thatλ̄ is an eigenvalue ofA∗ with the same multiplicitym as that ofλ. We also
consider the bounded operatorA∗h defined by

A∗h : X(Rn) → Ṽh(Rn)
x 7→ ūh : ūh|Ωh

= uh,

whereuh ∈ V0h(Ωh) is the solution of

ah(y, uh) = bh(y, x), ∀y ∈ V0h(Ωh).

Here,λ̄1h, · · ·, λ̄mh are the eigenvalues ofA∗h which converge tōλ ash goes to zero.
Let E∗ be the spectral projector ofA∗ relative to λ̄. We also assume the following

properties forA∗ andA∗h:
P5:

lim
h→0

‖(A∗ − A∗h)|eVh(Rn)‖ = 0.

P6: For each functionx of E∗(V (Rn)),

lim
h→0

‖x‖Ω\Ωh
= 0.

P7: For each functionx of E∗(V (Rn)),

lim
h→0

(
inf

xh∈eVh(Rn)
‖x − xh‖

)
= 0.

P8:

lim
h→0

‖(A∗ − A∗h)|E(V (Rn))‖ = 0.

We now need to introduce other operators. LetΠh : V (Rn) → V (Rn) be the projector
defined by the relations

ah(x − Πhx, y) = 0, ∀y ∈ V0h(Ωh)
(Πhx)|Rn\Ωh

= 0.
(4.1)
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BecauseV0h(Ωh) is a closed subset ofV (Ωh), (Πhx)|Ωh
∈ V0h(Ωh). Hence, we have

Πhx ∈ Ṽh(Rn). Analogously, we define the projectorΠ∗h : V (Rn) → V (Rn) with range
Ṽh(Rn) by the relations:

ah(y, x − Π∗hx) = 0, ∀y ∈ V0h(Ωh)
(Π∗hx)|Rn\Ωh

= 0.
(4.2)

Sinceah is continuous and coercive onV (Ωh), both uniformly inh, the operatorsΠh and
Π∗h are bounded uniformly inh. Let us remark that for conforming methodsAh = ΠhA.
This is assumed in the spectral approximation theory in [5] and used in the proofs therein.
When variational crimes in the discretization of the domains are allowed,Ah andΠhA do
not coincide.

Let Bh := AhΠh : V (Rn) → V (Rn). Notice thatσ(Ah) = σ(Bh) and that, for any
non-null eigenvalue, the corresponding invariant subspaces coincide. LetFh : V (Rn) →
V (Rn) be the spectral projector ofBh relative to its eigenvaluesλ1h, · · ·, λmh. It can be
proved that‖Rz(Bh)‖ is bounded uniformly inh for z ∈ Γ; see [5, Lemma 1]. Consequently,
the spectral projectorsFh are bounded uniformly onh.

Finally, letB∗h := A∗hΠ∗h : V (Rn) → V (Rn) and letF∗h be the spectral projector
of B∗h relative toλ̄1h, · · ·, λ̄mh. It is easy to show thatB∗h is the actual adjoint ofBh with
respect toah. In fact, for allx andy ∈ V (Rn), we have

ah(Bhx, y) = ah(AhΠhx, y) = ah(AhΠhx, Π∗hy) = bh(Πhx, Π∗hy).

Similarly, we get

ah(x,B∗hy) = bh(Πhx, Π∗hy).

Therefore, the spectral projectorF∗h is also the adjoint ofFh with respect toah.
Let

γh := δ(E(V (Rn)), Ṽh(Rn)) + sup
y ∈ E(V (Rn))

‖y‖ = 1

‖y‖Ω\Ωh
.

PropertiesP2andP3 imply thatγh → 0 ash → 0. Analogously, let

γ∗h := δ(E∗(V (Rn)), Ṽh(Rn)) + sup
y ∈ E∗(V (Rn))

‖y‖ = 1

‖y‖Ω\Ωh
.

Here, becauseP6andP7, γ∗h → 0 ash → 0.
LEMMA 4.7.

‖(I − Πh)|E(V (Rn))‖ ≤ Cγh,

‖(I − Π∗h)|E∗(V (Rn))‖ ≤ Cγ∗h.

Proof. For ax ∈ E(V (Rn)), we have

‖(I − Πh)x‖2 = ‖(I − Πh)x‖2
Ωh

+ ‖x‖2
Ω\Ωh

.(4.3)

Using thatah is coercive onV (Ωh) uniformly in h, we have

‖(I−Πh)x‖2
Ωh

≤ Cah((I−Πh)x, (I−Πh)x) = Cah((I−Πh)x, x−yh), ∀yh ∈ V0h(Ωh),
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where the last equality results from the definition ofΠh. Now, taking into account thatah is
continuous onV (Ωh) uniformly in h, we obtain

‖(I− Πh)x‖Ωh
≤ C inf

yh∈eVh(Rn)
‖x − yh‖,

which together (4.3) allows us to conclude the proof of the first estimation. An analogous
proof is valid for the second one.

LEMMA 4.8.

‖(E− Fh)|E(V (Rn))‖ ≤ C‖(A − Bh)|E(V (Rn))‖,

‖(E∗ − F∗h)|E∗(V (Rn))‖ ≤ C‖(A∗ − B∗h)|E∗(V (Rn))‖.

Proof. The proof is identical to that of [5, Lemma 3].
Let

δh := γh + ‖(A − Ah)|E(V (Rn))‖.

From propertiesP2, P3andP4 it is easily seen thatδh → 0 ash → 0. Analogously, let

δ∗h := γ∗h + ‖(A∗ − A∗h)|E(V (Rn))‖.

GivenP6, P7andP8 δ∗h → 0 ash → 0.
LEMMA 4.9.

‖(A− Bh)|E(V (Rn))‖ ≤ Cδh,

‖(A∗ − B∗h)|E(V (Rn))‖ ≤ Cδ∗h.

Proof. Let x ∈ E(V (Rn)) with ‖x‖ = 1. We have

‖(A− Bh)x‖ ≤ ‖(A − Ah)x‖ + ‖Ah(I − Πh)x‖
≤ ‖(A − Ah)|E(V (Rn))‖ + ‖Ah‖ ‖(I− Πh)|E(V (Rn))‖
≤ (‖(A − Ah)|E(V (Rn))‖ + γh,

where the last inequality follows from Lemma4.7 and the fact that‖Ah‖ is uniformly
bounded with respect toh. An analogous proof is valid for the second estimate of the
Lemma.

Let

Λh := Fh|E(V (Rn)) : E(V (Rn)) → Fh(V (Rn)).

LEMMA 4.10. For h small enough,Λh is a bijection and‖Λ−1
h ‖ is bounded uniformly

in h.
Proof. See the proof of [5, Theorem 1].
THEOREM 4.11.

δ̂(Fh(V (Rn)),E(V (Rn))) ≤ Cδh.
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Proof. The proof is identical to that of [5, Theorem 1].
Let us now define the operatorŝA := A|E(V (Rn)) : E(V (Rn)) → E(V (Rn)) and

B̂h := Λ−1
h BhΛh : E(V (Rn)) → E(V (Rn)). From these definitions, it follows that̂A has a

unique eigenvalueλ of algebraic multiplicitym and that̂Bh has the eigenvaluesλ1h, ···, λmh.
Let us consider the following consistency terms:

Mh = sup
x ∈ E(V (Rn))

‖x‖ = 1

sup
y ∈ E∗(V (Rn))

‖y‖ = 1

|ah(Ax, Π∗hy − y) − bh(x, Π∗hy − y)|,

M∗h = sup
x ∈ E(V (Rn))

‖x‖ = 1

sup
y ∈ E∗(V (Rn))

‖y‖ = 1

|ah(Πhx − x,A∗y) − bh(Πhx − x, y)|,

Nh = sup
x ∈ E(V (Rn))

‖x‖ = 1

sup
y ∈ E∗(V (Rn))

‖y‖ = 1

|ah(Ax, y) − bh(x, y)|.

THEOREM 4.12.

‖Â− B̂h‖ ≤ C
(
δh δ∗h + Mh + M∗h + Nh

)
.

Proof. We have

‖Â− B̂h‖ = sup
x ∈ E(V (Rn))

‖x‖ = 1

‖(Â− B̂h)x‖ = sup
x ∈ E(V (Rn))

‖x‖ = 1

‖(Â − B̂h)x‖Ω

≤ C sup
x ∈ E(V (Rn))

‖x‖ = 1

sup
y ∈ eV (Rn)
‖y‖ = 1

a((Â − B̂h)x, y)

= C sup
x ∈ E(V (Rn))

‖x‖ = 1

sup
y ∈ eV (Rn)
‖y‖ = 1

a(E(Â − B̂h)x, y)

= C sup
x ∈ E(V (Rn))

‖x‖ = 1

sup
y ∈ eV (Rn)
‖y‖ = 1

a((Â − B̂h)x,E∗y)

≤ C sup
x ∈ E(V (Rn))

‖x‖ = 1

sup
y ∈ E∗(V (Rn))

‖y‖ = 1

a((Â − B̂h)x, y).

(4.4)

Since(Â − B̂h)x, y ∈ Ṽ (Rn), we can use (3.4) and (3.6) to get

a((Â − B̂h)x, y)= a1h((Â − B̂h)x|Ω∩Ωh
, y|Ω∩Ωh

) + a2((Â − B̂h)x|Ω\Ωh
, y|Ω\Ωh

)
(4.5)

= ah((Â − B̂h)x, y) + a2((Â − B̂h)x|Ω\Ωh
, y|Ω\Ωh

).

Now, using that(Λ−1
h Fh − I)A|E(V (Rn)) = 0 and thatBh commutes with its spectral

projectorFh, we obtain

Â − B̂h = (A − Bh)|E(V (Rn)) + (Λ−1
h Fh − I)(A − Bh)|E(V (Rn)).(4.6)
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Let x ∈ E(V (Rn)) andy ∈ E∗(V (Rn)), with ‖x‖ = ‖y‖ = 1. SinceFh(Λ−1
h Fh − I) = 0

andF∗h is the adjoint ofFh with respect toah, we have

|ah((Λ−1
h Fh − I)(A − Bh)x, y)|

= |ah((Λ−1
h Fh − I)(A − Bh)x, y)| − |ah(Fh(Λ−1

h Fh − I)(A − Bh)x, y)|

= |ah((Λ−1
h Fh − I)(A − Bh)x, y)| − |ah((Λ−1

h Fh − I)(A − Bh)x,F∗hy)|

= |ah((Λ−1
h Fh − I)(A − Bh)x, (I − F∗h)y)|

≤ C ‖Λ−1
h Fh − I‖ ‖(A− Bh)|E(V (Rn))‖ ‖(I− F∗h)|E∗(V (Rn))‖ ≤ Cδhδ∗h.(4.7)

The last inequality in (4.7) follows from Lemmas4.8, 4.9, and4.10, the fact thatah is con-
tinuous onV (Ωh) independently ofh and thatFh is bounded uniformly inh. On the other
hand,

ah((A − Bh)x, y) = ah((A − Bh)x, Π∗hy) + ah((A − Bh)x, (I − Π∗h)y).(4.8)

To bound the second term in the right-hand side of this equation, we use Lemmas4.7and4.9.
We thus obtain

|ah((A − Bh)x, (I − Π∗h)y)|≤ C ‖(A − Bh)|E(V (Rn))‖ ‖(I− Π∗h)|E∗(V (Rn))‖
(4.9)

≤ C δhγ∗h.

For the first term, we have

ah((A − Bh)x, Π∗hy) = ah((A − Ah)x, Π∗hy) + ah((Ah − Bh)x, Π∗hy).(4.10)

Now,

|ah((A − Ah)x, Π∗hy)| = |ah(Ax, Π∗hy) − bh(x, Π∗hy)| ≤ Mh + Nh,(4.11)

and

ah((Ah − Bh)x, Π∗hy)= ah(Ah(I − Πh)x, Π∗hy) = bh((I − Πh)x, Π∗hy)
(4.12)

= bh((I − Πh)x, y) − bh((I − Πh)x, (I − Π∗h)y).

The first term in the right-hand side of (4.12) can be written as

bh((I−Πh)x, y) = [ah((Πh−I)x,A∗y)−bh((Πh−I)x, y)]−ah((Πh−I)x, (I−Π∗h)A∗y).
(4.13)
Now, the last term of the right-hand side above can be easily bounded by

|ah((Πh − I)x, (I − Π∗h)A∗y)| ≤ C ‖(Πh − I)|E(V (Rn))‖ ‖(I− Π∗h)|E∗(V (Rn))‖ ‖A∗‖.
(4.14)

Then, Lemma4.7, (4.13), and (4.14) immediately yield

|bh((I − Πh)x, y)| ≤ C(M∗h + γhγ∗h).(4.15)

Finally, we estimate the last term in (4.5). Using that(Λ−1
h Fh − I) is bounded uniformly

in h, we obtain from (4.6) and Lemma4.9

|a2((Â − B̂h)x|Ω\Ωh
, y|Ω\Ωh

)| ≤ C‖(A− Bh)|E(V (Rn))‖ ‖y‖Ω\Ωh

≤ Cδh sup
y ∈ E∗(V (Rn))

‖y‖ = 1

‖y‖Ω\Ωh
≤ Cδhγ∗h.(4.16)
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Now, the theorem is a consequence of formulae (4.4) to (4.16).
By using the previous theorem, we deduce the following result about the approximation

of the eigenvalueλ:
THEOREM 4.13.

i)
∣∣∣λ −

1

m

m∑

i=1

λih

∣∣∣ ≤ C
(
δh δ∗h + Mh + M∗h + Nh

)

ii) max
i=1,···,m

|λ − λih| ≤ C
(
δh δ∗h + Mh + M∗h + Nh

)1/α

whereα is the ascent of the eigenvalueλ of Â.
Proof. Taking into account thatσ(Â) = λ and thatλ1h, · · ·, λmh are the eigenvalues of

B̂h, we havetr(Â) = mλ andtr(B̂h) =
∑m

i=1 λih. Then, from the continuity of the traces

∣∣∣λ −
1

m

m∑

i=1

λih

∣∣∣ =
1

m
|tr(Â) − tr(B̂h)| ≤ C‖Â − B̂h‖.

On the other hand, it is known that,

|λ − λih|
α ≤ C‖Â− B̂h‖,

for any1 ≤ i ≤ m. Therefore, we can concludei) andii) directly from Theorem4.12.
REMARK 4.14. In many applications, the operatorA is self-adjoint. In this case, ifµ

is a nonzero eigenvalue ofA, the ascentα of (µ − A) is one. So, the space of generalized
eigenvectorsE(Rn) coincide with the space of the actual eigenvectors corresponding toµ;
see [1].

5. Example. LetΩ be a bounded three-dimensional domain with a Lipschitz continuous
boundary∂Ω. We assume that∂Ω is piecewise smooth, more precisely, is piecewise of class
C2. To avoid additional technical difficulties, we will assumethat the set of points where the
condition ofC2- smoothness of∂Ω is not satisfied consists of a finite number of straight lines
and single points.

Let (·, ·) be the scalar product inL2(Ω) and let| · | denote the correspondingL2 norm.
Further,Hσ(Ω) denotes the standard Sobolev spaces with the usual norms‖ · ‖σ andH1

0 (Ω)
denotes the subspace of functions inH1(Ω) satisfying a zero Dirichlet boundary conditions.

We consider the spectral problem:
Givens > 0, findλ ∈ R andu 6= 0 such that

{
sgrad ( div u) − curl curl u = λu in Ω,

u = 0 on ∂Ω.
(5.1)

Let X(Ω) := (L2(Ω))3, V (Ω) := (H1(Ω))3 andV0(Ω) := (H1
0 (Ω))3. Let a0 andb be

the symmetric bilinear forms defined by

a0(u,v) :=

∫

Ω

curl u · curl v + s div u div v, ∀u,v ∈ V (Ω),

b(u,v) :=

∫

Ω

u · v, ∀u,v ∈ X(Ω).
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The bilinear forma0 is coercive onV0(Ω) but is not coercive onV (Ω). However, a := a0+b
can be used in our problem and it turns out to be coercive onV (Ω). Furthermore,a is
continuous onV (Ω).

REMARK 5.1. Whens =
λs + 2µs

µs
, the bilinear forma0(u,v) is associated to the elas-

ticity system for a material of Lamé coefficientsλs andµs. Denoting the material density by

ρs, problem (5.1) gives the vibration eigenfrequenciesω =

√
λµs

ρs
of an elastic, homoge-

neous and isotropic three-dimensional body fixed along its boundary.
The variational formulation of problem (5.1) associated witha is given by:
Find λ ∈ R andu ∈ V0(Ω), u 6= 0, such that

a(u,v) = (λ + 1) b(u,v), ∀v ∈ V0(Ω).(5.2)

It is well known that problem (5.2) has an increasing sequence of finite multiplicity eigen-
valuesλn > 0, n ∈ N . There is no finite accumulation point. The correspondingL2(Ω)-
orthonormal eigenfunctionsun belong toV0(Ω). Now, as in Section2, we consider the
bounded linear operatorT : X(Ω) → X(Ω) defined byTf = u ∈ V0(Ω) and

a(u,y) = b(f ,y), ∀y ∈ V0(Ω).(5.3)

By virtue of the Lax-Milgram Lemma, we have

‖u‖Ω ≤ C ‖f‖0,Ω.

As a consequence of the classical a priori estimates, for anyf ∈ X(Ω), u = Tf is known to
satisfy some further regularity. In fact,u ∈ (H1+r(Ω))3 for r ∈ (1/2, 1] (see [3]) and there
holds

‖u‖1+r,Ω ≤ C ‖f‖0,Ω.(5.4)

Now, we consider the bounded linear operatorA : X(R3) → Ṽ (R3) defined by
Af = ŜTŠf , whereŜ and Š are the extension and the restriction operators, respectively,
defined in Section2. Sincea andb are symmetric,T is self-adjoint with respect toa. Clearly,
A is also self-adjoint with respect toa. Notice that(λ,u) is a solution of problem (5.2) if
and only if ( 1

λ+1 ,u) is an eigenpair ofT which, in its turn, is equivalent to( 1
λ+1 , ū) being

an eigenpair ofA, whereū = Ŝ(u).
Let the curved domainΩ be approximated by a polyhedronΩh with vertices on∂Ω. Let

Th be a partition ofΩh, i.e., a set of a finite number of closed tetrahedraT , which has the
following properties:

• each vertex ofΩh is a vertex of aT ∈ Th,
• eachT ∈ Th has at least one vertex in the interior ofΩh,
• any two tetrahedra,T, T

′

∈ Th share at most a vertex, a whole side, or a whole face.
Let Nh andEh denote the set of all vertices and the set of all edges inTh, respectively.

We assume that
• Nh ⊂ Ω̄,
• Nh ∩ ∂Ωh ⊂ ∂Ω,
• Eh contains all the points where the boundary∂Ω is notC2,
• for all T ∈ Th, at most one face ofT lies on∂Ωh.
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We also assume that the family{Th} is regular.
In what follows we will use some notation and definitions introduced in [6]. Consider a

T ∈ Th which has a faceST
h ⊂ ∂Ωh, called a boundary tetrahedra. We enumerate the vertices

of T such that the vertices ofST
h are numbered first and we denote them byPT

1 , PT
2 , PT

3 , and
PT

4 , in local notation. LetΣT
h be the part of∂Ω which is approximated by the faceST

h . We
denote byT id the closed tetrahedra with three plane sides, havingP4 as a common vertex, and
with one curved side, coinciding withΣT

h , and we call it the ideal tetrahedra associated with
T ∈ Th. For the sake of simplicity, we assume that the partitionsTh are such that for each
boundary tetrahedraT , eitherT ⊂ T id or T ⊃ T id. If we replace all boundary tetrahedra in
Th by their associated ideal tetrahedraT id, we obtain the so-called ideal partitionT id

h of the
domainΩ.

With the triangulationTh, we consider the finite element spaces

X(Ωh) := (L2(Ωh))3, V (Ωh) := (H1(Ωh))3,

Vh(Ωh) := {vh ∈ V (Ωh) : vh|T ∈ (P1(T ))3 ∀T ∈ Th},

and

V0h(Ωh) := {vh ∈ Vh(Ωh) : vh|∂Ωh
= 0}.

Let ah andbh be the symmetric bilinear forms defined by

ah(u,v) :=

∫

Ωh

curl u · curl v + s div u div v +

∫

Ωh

u · v, ∀u,v ∈ V (Ωh),

bh(u,v) :=

∫

Ωh

u · v, ∀u,v ∈ X(Ωh).

Notice that the bilinear formah is coercive and continuous onV (Ωh) uniformly in h. Then,
the discretization of the spectral problem (5.2) is given by

Find λh ∈ R anduh ∈ V0h(Ωh), uh 6= 0, such that

ah(uh,vh) = (λh + 1) bh(uh,vh), ∀vh ∈ V0h(Ωh).

Now, we can define a discrete analogue ofA. Let Ah : X(R3) → Ṽh(R3) be the
bounded linear operator defined byAhf ∈ Ṽh(R3) and

ah(Ahf ,vh) = bh(f ,vh), ∀vh ∈ V0h(Ωh).

It remains to show that the bilinear formsa andah satisfy the assumptions (3.4), (3.5),
and (3.6). To that end, letω be a closed subset ofΩ ∪ Ωh and consider the bilinear form

aω(u,v) :=

∫

ω

curl u · curl v + s divu div v +

∫

ω

u · v, ∀u,v ∈ (H1(ω))3,

Thus, noting thataω is continuous on(H1(ω))3 uniformly in h, it suffices to take

a1(u|Ω∩Ωh
,v|Ω∩Ωh

) = a1h(u|Ω∩Ωh
,v|Ω∩Ωh

) = aΩ∩Ωh
(u,v),

a2(u|Ω\Ωh
,v|Ω\Ωh

) = aΩ\Ωh
(u,v),
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a2h(u|Ωh\Ω,v|Ωh\Ω) = aΩh\Ω(u,v).

In order to prove propertiesP1, P2, P3, andP4 for this problem, we establish the follow-
ing lemmas and definitions.

LEMMA 5.2. There exists a positive constantC such that:

‖v‖0,Ω\Ω̄h
≤ Chσ‖v‖σ,Ω ∀v ∈ (Hσ(Ω))3, 0 ≤ σ ≤ 1,

‖v‖0,Ωh\Ω̄ ≤ Chσ‖v‖σ,Ωh
∀v ∈ (Hσ(Ωh))3, 0 ≤ σ ≤ 1.

Proof. By adapting the arguments used in the proof of [6, Lemma 3.3.11] for the three-
dimensional case, the inequalities can be proved forσ = 1. Since the two inequalities are
clearly true forσ = 0, they follow for0 < σ < 1 from standard results on interpolation in
Sobolev spaces.

DEFINITION 5.3. Let wh ∈ V0h(Ωh). A functionŵ ∈ V0(Ω) is called associated with
wh if it has the following properties:

• ŵ ∈ C0(Ω̄),
• ŵ(Pi) = wh(Pi), ∀Pi ∈ Nh,
• ŵ is linear on each tetrahedraT ∈ Th ∩ T id

h ,
• if T ⊂ T id, ŵ = 0 onT id \ T andŵ = wh onT ,
• if T id ⊂ T , ŵ|∂T id⊂∂Ω = 0.

The definition above is due to Feistauer andŽenı́šek; see [6]. The construction of such
a function follows basically from the interpolation theorydeveloped to Zlámal [19] for two-
dimensional curved finite elements. The extension of his ideas to the three-dimensional case
is relatively straightforward so we do not include the details here.

LEMMA 5.4. Let ŵ ∈ V0(Ω) be associated withwh ∈ V0h(Ωh). Let T id ∈ T id
h lie

along∂Ω and letT ∈ Th be its approximation. IfT id ⊂ T , then

‖ŵ − wh‖T id ≤ C h‖wh‖T ,

whereC is a constant independent ofh.
Proof. The proof is a consequence of Definition5.3 and a suitable extension of [19,

Theorem 2].
In what follows, we will use smooth extensions of functions originally defined inΩ. We

denote byϕe an extension ofϕ from Hσ(Ω), σ > 0, into Hσ(R3) satisfyingϕe ∈ Hσ(R3)
and

‖ϕe‖σ,R3 ≤ C‖ϕ‖σ,Ω;(5.5)

see [7], for instance.
Let f ∈ Ṽh(R3) and definēu := Af andūh := Ahf .
LEMMA 5.5. There exists a positive constantC such that

‖ū− ūh‖ ≤ C
(

inf
vh∈V0h(Ωh)

‖vh − ue‖Ωh

+ sup
wh∈V0h(Ωh)

|ah(ue − uh,wh)|

‖wh‖Ωh

+ ‖u‖Ω\Ωh
+ ‖ue‖Ωh\Ω

)
.

Proof. We have

‖ū− ūh‖
2 = ‖ū− ūh‖

2
Ω∪Ωh

= ‖u− uh‖
2
Ω∩Ωh

+ ‖u‖2
Ω\Ωh

+ ‖uh‖
2
Ωh\Ω

.
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Now, letvh be an arbitrary element in the spaceV0h(Ωh). We can write

‖u− uh‖
2
Ω∩Ωh

≤ 2 (‖u− vh‖
2
Ω∩Ωh

+ ‖vh − uh‖
2
Ω∩Ωh

),

and

‖uh‖Ωh\Ω ≤ ‖vh − uh‖Ωh\Ω + ‖vh‖Ωh\Ω.

By using the uniform coerciveness and continuity of the bilinear formah, we obtain

α‖vh − uh‖
2
Ωh

≤

∫

Ωh

| curl (vh − uh)|2 + s| div (vh − uh)|2 +

∫

Ωh

|vh − uh|
2

≤

∫

Ωh

curl (vh − ue) · curl (vh − uh) + s div (vh − ue) div (vh − uh)

+

∫

Ωh

curl (ue − uh) · curl (vh − uh) + s div (ue − uh) div (vh − uh)

+

∫

Ωh

(vh − ue)(vh − uh) +

∫

Ωh

(ue − uh)(vh − uh)

≤ C
(
‖vh − ue‖Ωh

‖vh − uh‖Ωh
+ ah((ue − uh), (vh − uh))

)
,

from which we deduce

‖vh − uh‖Ωh
≤ C

(
‖vh − ue‖Ωh

+ sup
wh∈V0h(Ωh)

|ah(ue − uh,wh)|

‖wh‖Ωh

)
.

On the other hand,

‖u− vh‖Ω∩Ωh
= ‖ue − vh‖Ω∩Ωh

,

and

‖vh‖Ωh\Ω ≤ ‖vh − ue‖Ωh\Ω + ‖ue‖Ωh\Ω.

Combining the above inequalities, we conclude the proof.
We now estimate the terms appearing in the right-hand side ofthe inequality in Lemma5.5.

In the sequel, we shall assume thatr is the constant appearing in equation (5.4).
LEMMA 5.6. There exists a positive constantC such that

inf
vh∈V0h(Ωh)

‖ue − vh‖Ωh
≤ C hr‖u‖1+r,Ω.

Proof. Sinceue ∈ (H1+r(R3))3, ue ∈ (C0(R3))3. Therefore,Lue, the Lagrange linear
interpolant ofue|Ωh

, is well defined; see [2], for instance. By using standard interpolation
results, we have

‖ue − Lue‖Ωh
≤ Chr‖ue‖1+r,Ωh

.

Observe thatLue ∈ V0h(Ωh) althoughue|∂Ωh
6= 0. Then, using the estimate (5.5), we

conclude the proof.
LEMMA 5.7. There exists a positive constantC such that

sup
wh∈V0h(Ωh)

|ah(ue − uh,wh)|

‖wh‖Ωh

≤ C hr‖f‖.
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Proof. For any functionwh ∈ V0h(Ωh), we have

ah(ue − uh,wh) =

∫

Ωh

curl (ue − uh) · curlwh + s div (ue − uh) div wh

+

∫

Ωh

(ue − uh) ·wh

=

∫

Ω∪Ωh

curl ue · curl w̄h + s div ue div w̄h + ue · w̄h −

∫

Ωh

f · wh

=

∫

Ω

curl u · curl w̄h + s divu div w̄h + u · w̄h

+

∫

Ωh\Ω

curl ue · curlwh + s div ue div wh + ue · wh −

∫

Ωh

f ·wh.

The last three terms can be easily bounded. In fact, by using the Cauchy-Schwarz inequality,
Lemma5.2and estimate (5.5), we obtain

∣∣∣∣∣

∫

Ωh\Ω

curl ue · curlwh

∣∣∣∣∣ ≤ C ‖ curl ue‖0,Ωh\Ω‖ curlwh‖0,Ωh\Ω

≤ C hr‖ue‖1+r,Ωh
‖wh‖Ωh

≤ C hr‖u‖1+r,Ω‖wh‖Ωh
,(5.6)∣∣∣∣∣

∫

Ωh\Ω

div ue div wh

∣∣∣∣∣ ≤ C ‖ div ue‖0,Ωh\Ω‖ divwh‖0,Ωh\Ω ≤ C hr‖ue‖1+r,Ωh
‖wh‖Ωh

≤ C hr‖u‖1+r,Ω‖wh‖Ωh
,(5.7) ∣∣∣∣∣

∫

Ωh\Ω

ue · wh

∣∣∣∣∣ ≤ C ‖ue‖0,Ωh\Ω‖wh‖0,Ωh\Ω ≤ C h2‖ue‖1+r,Ωh
‖wh‖Ωh

≤ C h2‖u‖1+r,Ω‖wh‖Ωh
.(5.8)

We are going to estimate the remainder terms. To this end, we need to introduce some nota-
tion. We denote byωT the domain bounded byΣT

h andST
h , with ΣT

h ⊂ ∂Ω being the curved
side of an ideal tetrahedra and withST

h ⊂ ∂Ωh being the corresponding side of the associated
tetrahedraT ∈ Th. Now, we consider a function̂w = (ŵ1, ŵ2, ŵ3), with ŵi, i = 1, 2, 3, as
defined in Definition5.3. Sinceŵ ∈ V0(Ω), we may take it as a test function in (5.3). Then,
we can obtain

∣∣∣
∫

Ω

fŵ −

∫

Ω

curl u · curl (ŵ − w̄h) + s div u div (ŵ − w̄h) + u · (ŵ − w̄h)

−

∫

Ωh

f · wh

∣∣∣

=
∣∣∣

∑

T ∈ T id

h

∂T ∩ ∂Ω 6= ∅

∫

T

fŵ −

∫

T

curl u · curl (ŵ − w̄h) + s div u div (ŵ − w̄h)

+

∫

T

u · (ŵ − w̄h) −
∑

T ∈ Th

∂T ∩ ∂Ωh 6= ∅

∫

T

f · wh

∣∣∣
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=
∣∣∣

∑

T ∈ T id

h

∂T ∩ ∂Ω 6= ∅

(∫

T

f · (ŵ − wh) −

∫

T

curl u · curl (ŵ − w̄h)

+

∫

T

s div u div (ŵ − w̄h) −

∫

T

u · (ŵ − w̄h)
)
−

∑

T ∈ Th

∂T ∩ ∂Ωh 6= ∅

∫

ωT

f · wh

∣∣∣

≤ C
[ ∑

T ∈ T id

h

∂T ∩ ∂Ω 6= ∅

(
‖f‖0,T ‖ŵ − w̄h‖0,T + ‖u‖T‖ŵ − w̄h‖T

)
+ ‖f‖0,Ωh\Ω‖wh‖0,Ωh\Ω

]

≤ C
[ ∑

T ∈ Th

∂T ∩ ∂Ωh 6= ∅

(
h‖f‖0,T‖wh‖T + h‖u‖T‖wh‖T

)
+ h2‖f‖1,Ωh

‖wh‖1,Ωh

]

≤ C
[
h
(
‖f‖ + ‖u‖Ω

)
+ h2‖f‖

]
‖wh‖Ωh

,

where we have used Lemmas5.2 and5.4. We conclude the proof combining the previous
inequality with (5.6), (5.7), (5.8), and the estimate (5.4).

THEOREM 5.8. (P1)There exists a positive constantC such that

‖(A− Ah)f‖ ≤ C hr‖f‖ ∀f ∈ Ṽh(R3).

Proof. It is an immediate consequence of the previous lemmas.
THEOREM5.9. (P2)For each eigenfunction̄u ofA associated toλ, there exists a strictly

positive constantC such that

‖ū‖Ω\Ωh
= ‖u‖Ω\Ωh

≤ C hr‖u‖1+r,Ω.

Proof. It is an immediate consequence of the regularity of the eigenfunctionsu of the
operatorT and Lemma5.2.

THEOREM 5.10. (P3) For each eigenfunction̄u of A associated toλ, there exists a
strictly positive constantC such that

inf
vh∈V0h(Ωh)

‖ū− v̄h‖ ≤ C hr‖u‖1+r,Ω.

Proof. We have

‖ū− v̄h‖
2 = ‖ū− vh‖

2
Ωh

+ ‖u‖2
Ω\Ωh

≤ ‖ū− ue‖2
Ωh

+ ‖ue − vh‖
2
Ωh

+ ‖u‖2
Ω\Ωh

≤ ‖ue‖2
Ωh\Ω

+ ‖ue − vh‖
2
Ωh

+ ‖u‖2
Ω\Ωh

≤ h2r‖u‖2
1+r,Ω,

which follows because the regularity of the eigenfunctionsu of the operatorT, estimate (5.5)
and Lemma5.6. Then, taking the infimum with respect tovh ∈ V0h(Ωh), we can conclude
the proof.

By virtue of the previous theorems, the spectrum ofAh furnishes the approximations of
the spectrum ofA as we stated in Section3.

THEOREM 5.11.(P4)There exists a positive constantC such that

‖(A − Ah)|E(V (R3))‖ ≤ C hr.

Proof. Forx ∈ E(V (R3)), ū = Ax ∈ H1+r(R3). Then, the proof runs identically to
that of Theorem5.8.

Observe that, sinceA andAh are self-adjoint, propertiesP5, P6, P7andP8are equally
valid.
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Now, we are going to estimate the consistency terms appearing in Theorem4.13. Notice
thatMh andM∗h also coincide because of the symmetry ofah andbh.

LEMMA 5.12.There exists a positive constantC such that

Mh = sup
x ∈ E(V (R3))

‖x‖ = 1

sup
y ∈ E(V (R3))

‖y‖ = 1

|ah(Ax, Πhy − y) − bh(x, Πhy − y)| ≤ C h2r,

with Πh being the projection ontõVh(R3) with respect toah, defined by equation (4.1).
Proof. Let x ∈ E(V (R3)), with ‖x‖ = 1, and putw = ŠAx. According to the

definition ofA, we havew = ŠŜTŠx = TŠx. From (5.4) we know thatw ∈ (H1+r(Ω))3

and

‖w‖1+r,Ω ≤ C ‖x‖ = C.

Now, takingv ∈ D(Ω) as test functions in (5.3), it can be shown thatw is the solution of the
following strong problem

{
sgrad ( div w) − curl curlw + w = x in Ω,

w = 0 on ∂Ω.

Let us denote bȳw the extension ofw by zero fromΩ to R
3. Let y ∈ E(V (R3)) with

‖y‖ = 1, and takevh = Πhy − y. Integrating by parts, we obtain

|ah(w̄,vh) − bh(x,vh)| =
∣∣∣
∫

Ω\Ωh

curlw · curl vh + s div w div vh + w · vh

+

∫

Ω\Ωh

x · vh

∣∣∣

≤ C
(
|w|1,Ω\Ωh

|vh|1,Ω\Ωh
+ ‖w‖0,Ω\Ωh

‖vh‖0,Ω\Ωh

+‖x‖0,Ω\Ωh
‖vh‖0,Ω\Ωh

)

≤ C
(
h2r ‖w‖1+r,Ω‖y‖1+r,Ω + h2r‖w‖r,Ω‖y‖r,Ω

+h2r‖x‖r,Ω‖y‖r,Ω

)
.

In the last inequality, we have used thatvh|Ω\Ωh
= −y|Ω\Ωh

and the estimate in Lemma5.2.
Finally, we can conclude the proof using estimate (5.4).

LEMMA 5.13.There exists a positive constantC such that

Nh = sup
x ∈ E(V (R3))

‖x‖ = 1

sup
y ∈ E(V (R3))

‖y‖ = 1

|ah(Ax,y) − bh(x,y)| ≤ C h2r.

Proof. It is identical to that of the previous lemma by substituting vh by y.
THEOREM 5.14.There exists a positive constantC such that

max
i=1,···,m

|λ − λih| ≤ Ch2r.

Proof. It is a immediate consequence of the propertiesP2, P3, P4, and the previous
lemmas.
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