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Abstract. Discrete maximum principles are established for finite element approximations of nonlinear parabolic

problems. The conditions on the space and time discretizations are similar to the usual conditions for linear problems.
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1. Introduction. The numerical approximations of solutions of models described by
partial differential equations are naturally required to mirror some basic qualitative properties
of the exact solutions. For parabolic equations, such a basic qualitative property is the (con-
tinuous) maximum principle (CMP). Several variants of CMPs exist; see, e.g., [16, 26]. Its
discrete analogues, the so-called discrete maximum principles (DMPs) were first presented
and analysed for the case of parabolic problems in the papers [17, 22]. If the finite element
method (FEM) is employed for the spatial discretization, then the corresponding DMPs are
normally ensured by imposing certain geometrical restrictions on the spatial meshes used;
see, e.g., [7, 8, 10, 12, 17, 18, 19, 20, 24, 25, 29, 30] and the references therein. For ellip-
tic problems, an extra requirement for the mesh is to provide irreducibility of the stiffness
matrix [6]. This property is not always easy to ensure [8, p.5]. In contrast, there is no such
requirement in the parabolic case, cf. [17, 12] and Theorem 4.1 below. For parabolic prob-
lems, the other most important condition to satisfy the DMP is that the time-steps often have
to be chosen between certain lower and upper bounds with respect to the space mesh. In
general,

�������
	���
��
must hold [10, 13]; this well-known requirement also appears for fi-

nite difference discretizations [11] and in the context of convergence in maximum norm [27].
A related important discrete qualitative property of the numerical solutions is the so-called
nonnegativity preservation, analysed in the context of DMPs, e.g., in [10, 12].

In this paper, we prove discrete maximum principles for nonlinear parabolic problems,
which has never been considered so far according to the authors’ knowledge.

The paper is organized as follows. In Section 2, we formulate the nonlinear parabolic
problem. The discretization scheme is given in detail in Section 3. Some preliminaries on
linear problems and the maximum principle are given in Section 4. The DMP and related
nonnegativity preservation, and the conditions for their validity are presented in Section 5:
we first consider two types of growth conditions for the reaction terms, then we discuss suffi-
cient geometric conditions on the FE meshes used, and finally we give two relevant real-life
examples.
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2. The problem. In the sequel, we consider the following mixed nonlinear parabolic
problem. Find a function � � � 	�������� , such that

(2.1)
� ����������! �"�# 	$�%���&� � �(' � ��' �*),+.- 	$�%���&� � �/�102	$�%����� in 35476 �18:97	�;<��=>�?�

where
8

is a bounded domain in @/A and
=CB�;

. The boundary and initial conditions are
given by

(2.2) � 	��������D�FEG	$�������IH$JLKM	��������ONQP%RS97T ;<��=VUW�
(2.3) # 	$�����&� � �X' � �LY[ZY�\ +^] 	$�����&� � �D�`_a	$�%�����bH$JcKd	$�%�����ONeP�fg9�T ;h��=VUi�
(2.4) � 	����X;c�D� �kj 	$�*�bH$JLKl�mNn8o�
respectively. We impose the following

ASSUMPTION 2.1.
(A1)

8
is a bounded polytopic domain in @/A with a Lipschitz continuous boundary

�*8
;P f ��P%Rqp`�G8

are open sets, such that
P f.r P�RF�:s

and
P fut P%R:�F�G8

.
(A2) The scalar functions # 6 3 4 9 @2A(vxw.yz@ , -u6 3 4 9 @Cyd@ and ].6 P f 9T ;h��={U%9 @|y}@ are measurable and bounded. Moreover, - and ] are continuously

differentiable with respect to their last variable ~ , on their domains of definition.
Further,

0gN����e	 354 � , _�N���
L	�P f 9`T ;h��=VU$� , EqN����e	�P�R�9FT ;h��=VU�� and � j N���e	i8V�
.

(A3) There exist positive constants � j and � w , such that

(2.5)
;
� � j�� # 	$�����&� ~ ����� � � w

for all
	$�%���&� ~ ���h�ONn8:97	�;<��=>��9 @ 9 @aA .

(A4) Let � �7� w if � � � , or � ��� w � 
 AA�� 
 if � B � . Further, let � �7� 
 � �h� � if � � �
or 3 and � 
 � � if � B^� . There exist constants � w � � 
 ��� w ��� 
5� ; , such that for any�nNm8

(or
�nNeP%f

, respectively),
�ON�	�;h��=>�

and ~ N @ ,

(2.6)
; � � - 	$�����&� ~ �� ~ � � w + � wL� ~ � �[� � 
 ��; � � ] 	$�%���&� ~ �� ~ � � 
 + � 
 � ~ � �?� � 
 �

We define weak solutions in the usual way as follows. Let ��wR 	�8V� 6 ��� � N ��w 	�8V� 6�2  ¡c¢ �:;h£ . A function �n6¤3�4¥y¦@ is called the weak solution of the problem (2.1)–(2.4) if� is continuously differentiable with respect to
�

and � 	 � �����>N � wR 	�8V� for all
�{Nu	�;h��=>�

and
satisfies the relation

(2.7) §¨
� ��k�k© � � +u§¨ " # 	������&� � �X' � ��' �«ª ' © +.- 	$�%���&� � � © ) � � +1§¡c¬ ] 	$�%���&� � � © �c­

� §¨ 0 © � � +1§¡c¬ _ © �c­ � ® © N � wR 	i8V�&�l��N�	�;h��=o� �
Further,

(2.8) � �`E JL¯ T ;<��=VU°9eP%R5� � � ±$² j � � j � ¯ 8 �
Here and in the sequel, equality of functions in Lebesgue or Sobolev spaces is understood
almost everywhere.
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3. Discretization scheme. The discretization of problem (2.1)–(2.4) is built up in a
standard way. The presentation below is an adoption of the discretization in [12] to the
nonlinear case.

3.1. Semidiscretization in space. Let ³�´ be a finite element mesh over the solution
domain

8qp @aA , where
�

stands for the discretization parameter. We choose basis functionsµ w � �¶�!� � µ¸·¹ , assumed to be continuous and to satisfy

(3.1)
µ*º � ; 	�»2��¼L� ���½� �%¾¿ �?� ·¹À º ²xw

µkº%Á ¼ �
Let there exist node points Â º N 8 ,

»2��¼c� ���½� ��¾¿ , such that

(3.2)
µ º 	 Â°Ã �D�FÄ º Ã �

where
Ä º Ã is the Kronecker symbol. (These conditions hold, e.g., for standard linear, bilinear

or prismatic FEM.) Let Å*´ denote the finite element subspace spanned by the above basis
functions:

Å ´ �:Æ�Ç<ÈÉ¯*� µ w � �!�!� � µ ·¹ £:p � w 	i8V� �
Now, let ¿ �Ê¾¿ be such that

(3.3) Â w � �¶�!� � Â ¹
are the vertices that lie in

8
or on

P%f
, and let

(3.4) Â ¹ v%w � �¶�!� � Â ·¹
be the vertices that lie on

P R
. Then the basis functions

µ w � �¶�!� � µ ¹ satisfy the homogeneous
Dirichlet boundary condition on

P R
, i.e.,

µ*º N ��wR 	i8V� . We define

Å j´ �qÆ�Ç�ÈÉ¯*� µ w � �!�¶� � µ ¹ £:p � wR 	i8V� �
Then the semidiscrete problem for (2.7) with initial-boundary conditions (2.8) reads as

follows: find a function �°´ � �G´ 	�������� , such that

� ´ 	$�%��;c�D� � ´j 	��k�&�l�¥Ne8o�
�G´ 	 � ����� � E ´ 	 � �����ON Å ´j �l��N7	�;h��=>�&�

and

§¨
� � ´�k�Ë© ´ � � +^§¨ " # 	$�%���&� � ´ �X' � ´ ��' � ´ ª ' © ´ +Ì- 	������&� � ´ � © ´L) � � +�§¡c¬ ] 	$�%���&� � ´ � © ´ �c­

(3.5)
� §¨ 0 © ´a� � + §¡ ¬ _ © �c­ � ® © ´ N Å ´j �l��N7	�;h��=>� �
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In the above formulae, the functions � ´j and
E ´ 	 � ����� (for any fixed

�
) are suitable approx-

imations of the given functions �*j and
EG	 � ����� , respectively. In particular, we will use the

following form to describe
E ´ :

(3.6)
E ´ 	���������� ¹VÍÀ º ²%w

E ´º 	$��� µ ¹ v º 	��k�?�
where ¿ Y 6 �¦¾¿ � ¿ �
We note that, based on the consistency of the initial and boundary conditions (

E*	 ] ��;c�m��kj 	 ] �?� ] Nm�G8 ), we obtainEG	 Â ¹ v º �X;c�D� � j 	 Â ¹ v º �?�l»2��¼L� ���½� � ¿ Y �
We seek the numerical solution of the form

(3.7) �G´ 	��������/� ¹À º ²%w �
´º 	���� µ º 	$�k� + E ´ 	$�%�����

and notice that it is sufficient that �°´ satisfies (3.5) for © ´ � µ º �h»a��¼c� � � �½��� � ¿ , only. Then,
introducing the notation

(3.8) Î ´ 	����/�|T � ´w 	$���?� ���½� � � ´¹ 	$���?�ÏE ´w 	����&� �½�½� �ÏE ´¹ Í 	����WU 4 �
we are led to the following Cauchy problem for the system of ordinary differential equations:

(3.9) Ð � Î ´� � +^Ñ 	 Î ´ 	$�����/�FÒÓ	$���?�
(3.10) Î ´ 	�;Ó�D� Î ´j �gT � j 	 Â w �&� �½�½� � � j 	 Â ¹ �&��E ´w 	�;Ó�&� ���½� ��E ´¹ Í 	�;Ó�WU 4 �
where

(3.11) Ð �gT Ô º Ã U ¹�Õ ·¹ �ÖÔ º Ã � § ¨ µ Ã 	��k� µkº 	$�*� � ���
Ñ 	 Î ´ 	������/�|T ×Ë	 Î ´ 	������ º U º ²xw(ØÚÙÚÙÚÙÚØ ¹ �

×Ë	 Î ´ 	������ º � §¨ "[# 	$�%���&� �*´ �X' �G´ ��' �G´<ª ' µ º +o- 	������&� �G´ � µ º )Û� � + § ¡ ¬ ] 	������&� �G´ � µ º �c­ 	��k�*�
Òc	����/�gT 0 º 	$���ÜU º ²%w&ØÚÙÚÙÚÙÚØ ¹ �Ý0 º 	$���/� § ¨ 02	�������� µ º 	��k� � � + § ¡ ¬ _2	�������� µ º 	��k� �Ó­ 	$�*� �

The solution Î ´ � Î ´ 	$��� of problem (3.9)–(3.10) is called the semidiscrete solution. Its
existence and uniqueness is ensured by Assumption 2.1, since then Ñ is locally Lipschitz
continuous.



ETNA
Kent State University 

http://etna.math.kent.edu

DISCRETE MAXIMUM PRINCIPLES 153

3.2. Full discretization. In order to get a fully discrete numerical scheme, we choose
a time-step

�Þ�
and denote the approximation to Î ´ 	$ß��Þ��� and

Òc	�ß������
by Îxà and

Ò à (forß��|;h��¼L� � � ���½� ��ß 4 , where
ß 4 �Þ�{��=>� , respectively. To discretize (3.9) in time, we apply

the so-called á -method with some given parameter á N7	�;<�°¼?U �
We note that the case á �F; , which is otherwise also acceptable, will be excluded later by

condition (5.16). This gives no strong difference, since the presence of Ð makes the scheme
not explicit even for á �q; .

We then obtain a system of nonlinear algebraic equations of the form

(3.12) Ð Î%à v%w � Îxà�Þ� +�á¤Ñ 	 Î à v%w � + 	�¼ � á � Ñ 	 Î à �L�âÒLã à Ø äXå 6 � á Ò à v%w + 	Ï¼ � á �ÏÒ à �ßm�:;h��¼L� ���½� ��ß 4 � ¼c� which can be rewritten as a recursion

(3.13) Ð Î à vxw +�á �Þ� Ñ 	 Î à vxw �/� Ð Î à � 	Ï¼ � á ����� Ñ 	 Î à � + �Þ�2Ò ã à Ø äXå �
with Î j � Î ´ 	�;Ó� . Furthermore, we will use the notation

(3.14) æ 	 Î à vxw � 6 � Ð Î à vxw +�á �Þ� Ñ 	 Î à vxw �?�açn	 Î à � 6 � Ð Î à � 	Ï¼ � á ����� Ñ 	 Î à � �
Then, the iteration procedure (3.13) can be also written as

(3.15) æ 	 Î à v%w �D�Sçm	 Î à � + �Þ�xÒ ã à Ø äXå �
We note that finding Îxà vxw in (3.15) requires the solution of a nonlinear algebraic system.

The mass matrix Ð is positive definite, and it follows from Assumption 2.1 that Î7èyéÑ 	 Î �
has positive semidefinite derivatives. Therefore, by the definition in (3.14), the functionÎuèyêæ 	 Î � has regular derivatives. This ensures the unique solvability of (3.15) and, under
standard local Lipschitz conditions on the coefficients, also the convergence of the damped
Newton iteration; see, e.g., [14].

4. Preliminaries: linear problems and the maximum principle. An important and
widely studied special case of (2.1)–(2.4) is the linear problem with Dirichlet boundary con-
ditions

(4.1)
� ��k� �7# � �,+.ë 	�������� � �102	$�������&�

(4.2) � �FE JL¯ T ;h��=VU°9Q�G8o� � � ±$² j � ��j � ¯ 8o�
where # Bg; is constant and ë � ; . If the data and solution are assumed to be sufficiently
smooth, then problem (4.1)–(4.2) is known to satisfy the continuous maximum principle, see
[12], which is a starting point for our study:

(4.3) ì �
¯G��;hí

ì �
¯¡Lî � �
£ + � w ì �

¯G�[;<í
ì �
¯ï î �
0%£ � � 	������ w � �

� ì
Èñð*��;hí

ì
ÈÉð¡cî � �

£ + � w ì
Èñðk�[;<í

ì
Èñðï î �
0%£

for all
��N�8

and any fixed
� w Nò	�;<��=>� , where 3 ± � 6 �Ê8ó9FT ;<��� w U , and

P ± � denotes the
parabolic boundary, i.e.,

P ± � 6 �g	��G8�9«T ;<��� w U$� t 	i8�9
�[;h£�� . A related property, which follows
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from the above [11], is the continuous nonnegativity preservation principle: relations
0 � ; ,E � ; and �kj � ; imply that

(4.4) � 	�������� � ;
for all

	$�%�����ON 3 4 .
In the discrete case, the ODE system (3.9) now becomes a linear system

(4.5) Ð � Î ´� � +Ìô Î ´ 	����D�:Òc�
where ô º Ã �1õ¨ " # ' µkº ª ' µ Ã +.ë µkºiµ Ã�) . The full discretization is

(4.6) Ð Îxà v%w � Î%à�Þ� +ÌáLô Î à v%w + 	Ï¼ � á � ô Î à �FÒ ã à Ø äXå 6 � á Ò à v%w + 	Ï¼ � á �ÏÒ à �
Then (3.14)–(3.15) can be simplified: introducing the matrices

(4.7) ö�6 � Ðê+�á �Þ� ô � ÷ 6 � Ð � 	Ï¼ � á ���Þ� ô �
equation (4.6) now can be rewritten as

(4.8) ö Î à v%w �:÷ Î à + �Þ�2Ò ã à Ø äXå �
To formulate the discrete maximum principle, let us define the following values:

(4.9)
E à¹ º à � ì �

¯G��E àw � �½��� �ÏE à¹VÍ £Ó�bE à¹Oø?ù � ì
Èñð*�½E àw � ���½� ��E à¹VÍ £c�

(4.10) � à¹ º à � ì �
¯G�½E à¹ º à � � à w � �½��� � � à¹ £c� � à¹Vø&ù � ì

Èñðk�½E à¹Vø&ù � � à w � �½�½� � � à¹ £Ó�
for
ßm�:;<�½¼c� �½��� ��ß 4 , and

(4.11)
0 ã à Ø à v%w�å¹ º à 6 � � ¯hHú&û?üÓýþ½û�ÿ���� î ý ÿ���� � � � î � 02	������<�?� 0 ã à Ø à v%w�å¹Vø&ù 6 � Æ
	hÇú&û?üÓýþ?û�ÿ���� î ý ÿ���� � � � î � 02	������<�?�

for
ßm�q;h��¼L� ���½� ��ß 4 � ¼ . If

0
is only in

���e	�8V�
, then the above infima and suprema will mean

essential infima and suprema, respectively. Then the discrete analogue of the continuous
maximum principle (4.3) can be formulated as follows:

(4.12) ì �
¯G�[;<�ÏE ã à v%w�å¹ º à � � ã à å¹ º à £ + ��� ì �

¯G�[;<�X0 ã à Ø à v%wÏå¹ º à £ �� à v%wº � ì
ÈÉð*�[;h��E ã à v%w�å¹Vø&ù � � ã à å¹Vø&ù £ + �Þ� ì

Èñðk�[;h�(0 ã à Ø à vxwÏå¹Vø&ù £ �
This will be denoted by DMP and it corresponds to the continuous maximum principle for
one time-level, i.e., when

� w N�T ß��Þ�&��	�ß + ¼[���Þ�WU .
It was proved that the full discretization of the linear problem satisfies the DMP (4.12)

in the following case:
THEOREM 4.1. [17, 12] Let the basis functions satisfy (3.1)–(3.2), and let the following

conditions hold for the matrices (4.7):
(i)
� º Ã � ; (

»
����
,
»2��¼L� �!�!� � ¿ ,

�,��¼c� �!�¶� �°¾¿ );
(ii) � º¶º � ; (

»x��¼c� �!�¶� � ¿ ).
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Then the Galerkin solution of the problem (4.1)–(4.2), combined with the á -method in the
time discretization, satisfies the discrete maximum principle (4.12).

We note that in the original form (see, e.g., [12, Theorem 6]) it is also assumed that� º Ã � ; (
»�����

,
»Þ�Ê¼c� �!�¶� � ¿ ,

��� ¼L� �¶�!� ��¾¿ ). However, now by our assumption á B�; ,
using (3.1) and (3.11) we have

Ô º Ã � ; . Hence it follows from assumption (i) and (4.7) that� º Ã �g	Ï¼�� á �Þ���?	�� º Ã � Ô º Ã � � ; .
The above result has been extended recently to mixed boundary value problems [13]. Let

the boundary conditions in (4.2) be replaced by

(4.13) � �uE Jc¯ T ;<��=VU°9eP R � # ' ��ª�� � - JL¯ T ;h��=VU°9QP jf �
# ' ��ª���+.­*� ��� JL¯ T ;<��=VU°9eP wf �

where ­ Bu; is constant. If the conditions of Theorem 4.1 hold and - � ; , then

(4.14) � à v%wº � ì
ÈÉð���;h� E�ã à v%wÏå¹Oø?ù � � ã à å¹Vø&ù £ + �Þ� ì

Èñðk�[;<� 0%ã à Ø à v%w�å¹Vø&ù £ + ¼á ì
Èñðk�[;<� " �­ ) ã à Ø à v%w�å¹Vø&ù £ �

In [13] a constant ­ is considered for simplicity, in which case ­ is simply a constant factor
above and

� ã à Ø à vxwÏå¹Vø&ù is defined analogously to (4.11). However, their proof can be rewritten
exactly in the same way for a variable coefficient ­ � ­ 	$���
�<� , simply by estimating

��� ­ by
its suprema, in which case we have the DMP (4.14) with

(4.15) " �­ ) ã à Ø à v%w�å¹Oø?ù 6 � Æ
	hÇú?û�� �¬ ýþ?û�ÿ���� î ý ÿ���� � � � î �
��	$���
�<�­ 	������<� �

REMARK 4.2. The indices
¼L� �¶�!� � ¿ that arise in (4.10) now correspond to node points

in the interior of
8

or on
P%f

, as in (3.3), and accordingly, the other ¿ Y indices involved inE ã à v%w�å¹Vø&ù in (4.14) correspond to the values on
PxR

. That is, whereas the DMP (4.12) involves
the values of

E
on
�G8

, the DMP (4.14) involves the values of
E

on
PxR

only.
REMARK 4.3. Before we turn from linear problems to the nonlinear case, we note that

the above-mentioned CMP results directly imply the same form of the CMP for some non-
linear problems as well. Namely, since the solution � is fixed, first we can replace ë 	�������� byë 	$�%���&� � 	��k��� which just means that we have another fixed variable coefficient of � . There-
fore, if ë 	������&� � 	$�k��� � ; then the same CMP (4.3) holds. More generally, monotone nonlinear
lower order terms can be rewritten as a nonlinear coefficient multiplied by the solution � , and
we can then use the above result. Details of this technique are given below, since it will be
used as well in our study of the DMP in the sequel.

5. The discrete maximum principle for the nonlinear problem.

5.1. Reformulation of the problem. We can rewrite problem (2.7) as follows. Let

(5.1) � 	$�����&� ~ � 6 � § wj � -� ~ 	$�%���&� �%~ � �Ó� � ��	������&� ~ � 6 � § wj � ]� ~ 	$�����&� �%~ � �Ó� �
for any

�mNn8o����B`;h� ~ N @ , and!0%	�������� 6 �102	$�%����� � - 	$�%���&�X;c�&� !_a	$�%����� 6 �F_2	�������� � ] 	$�%���&�X;c�&�
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for any
�nNn8o�

or respectively,
�nNmP%f��%�OB`; � Then the Newton-Leibniz formula yields for

all
�����&� ~ that- 	$�%���&� ~ � � - 	������&��;c�D� � 	$�%���&� ~ � ~ � ] 	������&� ~ � � ] 	$�����&��;Ó�D�"�k	$�%���&� ~ � ~��

Subtracting - 	������&�X;c� and ] 	$�����&��;Ó� from (2.1) and (2.3), respectively, we thus obtain that
problem (2.7) is equivalent to

(5.2) §¨
� ��k�k© � � +#� 	 � í � � © �D� §¨ !0 © � � +�§¡c¬ !_ © �Ó­ � ® © N � wR 	�8V�&�l��N�	�;<��=>�?�

where

(5.3) � 	%$�í � � © � 6 � §¨ "�# 	������&�
$��X'&$>��' �Dª ' © +'� 	$�%���&��$o� � © ),� � + §¡ ¬ ��	������&��$>� � © �c­ �
for any

$�� � � © N ��wR 	i8V� . The semidiscretization of the problem reads as follows: find a
function � ´ � � ´ 	$�%����� , such that�*´ 	$�%��;Ó�D� � ´j 	��k�?�Ö�mNn8o�

� ´ 	 � ����� � E ´ 	 � �����VN Å ´j �l��N�	�;h��=>�&�
and§¨

� � ´��� © ´/� � +(� 	 �G´ í �*´ � © ´ �/� §¨ !0 © ´D� � + §¡ ¬ !_ © ´D�Ó­ � ® © ´ N Å ´j �l��N�	�;h��=>� �
Proceeding as in (3.7)–(3.9), the Cauchy problem for the system of ordinary differential

equations (3.9) takes the following form:

(5.4) Ð � Î ´� � +.ô 	 Î ´ � Î ´ � !Òc�
(5.5) Î ´ 	�;Ó�D� Î ´j �gT � j 	 Â w �&� �½�½� � � j 	 Â ¹ �&��E ´w 	�;Ó�&� ���½� ��E ´¹ Í 	�;Ó�WU 4 �
where Ð is as in (3.9),ô 	 Î ´ �D�gT � 	 Î ´ � º Ã U ¹�Õ ·¹ � � 	 Î ´ � º Ã � � 	 � ´ í µ Ã � µkº �?�
(5.6)

!Òc	����D�|T !0 º 	$���WU º ²%w&ØÚÙÚÙÚÙÚØ ¹ � !0 º 	$���/� § ¨ !02	$�%����� µ º 	��k� � � + § ¡c¬ !_a	$�%����� µ º 	��k� �Ó­ 	$�*� �
The full discretization reads as

(5.7) Ð Î à v%w +�á ��� ô 	 Î à v%w � Î à v%w � Ð Î à � 	�¼ � á ���Þ� ô 	 Î à � Î à + ��� !ÒLã à Ø äXå �
Since we have set Ñ 	 Î ´ �D� ô 	 Î ´ � Î ´ in (3.9), the expressions (3.14)–(3.15) becomeæ 	 Î à v%w ���*) Ð +Ìá �Þ� ô 	 Î à v%w ��+ Î à v%w � çm	 Î à �D�,) Ð � 	Ï¼ � á ����� ô 	 Î à �
+ Î à �
respectively. Letting

(5.8) ö 	 Î ´ � 6 � ÐÊ+âá �Þ� ô 	 Î ´ �&�°÷Q	 Î ´ � 6 � Ð � 	Ï¼ � á ���Þ� ô 	 Î ´ �&� ® Î ´ N @ ·¹ �
the iteration procedure (5.7) takes the form

(5.9) ö 	 Î à vxw � Î à vxw �F÷Q	 Î à � Î à + �Þ� !Ò ã à Ø äXå �
which is similar to (4.8), but now the coefficient matrices depend on Îaà v%w or on Îxà .
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5.2. The DMP: problems with sublinear growth. Let us consider Assumption 2.1,
where we let � w � � 
 � � in (A4), i.e., we have instead

(A4 - ) There exist constants � w � � 
 � ; such that for any
�nNm8

(or
�mNmP f

),
��N�	�;<��=>�

and ~ N @ ,

(5.10)
; � � - 	������&� ~ �� ~ � � w � ; � � ] 	������&� ~ �� ~ � � 
 �

In what follows, we will need the standard notion of (patch-)regularity of the considered
meshes, cf. [3].

DEFINITION 5.1. Let
8Êp @aA and let us consider a family of FEM subspaces . �� Åk´ £ ´0/ j . The corresponding family of FE meshes will be called regular if there exist con-

stants ë j � ë w B`; , such that for any
�eBu;

and basis function
µ � ,

(5.11) ë w � A � meas
	�Æ
	hÇhÇ µ � �&� diam

	�Æ�	hÇ<Ç µ � � � ë j �°�
where ¿2103 ] denotes � -dimensional measure and ]�� �L� denotes the support, i.e., the closure
of the set where the function does not vanish, and

(5.12) meas
	�� ) Æ
	hÇhÇ µ � � + � ë 
 � A��Gw �

where ¿41�3 ] denotes
	 � � ¼[� -dimensional measure of the boundary of

Æ
	hÇhÇ µ � .Note that (5.11) also implies

(5.13) meas
	�Æ
	hÇhÇ µ � � � ë65 � A �

In fact, (5.12) also follows from (5.11) under certain natural but additional assumptions, e.g.,
if
Æ
	hÇhÇ µ � is convex, as is the case for linear, bilinear or prismatic elements.

THEOREM 5.2. Let problem (2.1)–(2.4) satisfy Assumption 2.1, such that we let � w �� 
 � � in (2.6), i.e., (A4) reduces to (A4 - ) above. Let us consider a family of finite element
subspaces . �é� Åk´ £ ´0/ j , where the basis functions satisfy (3.1)–(3.2) and the family of
associated FE meshes is regular as in Definition 5.1. Let the following assumptions hold:

(i) for any
»2��¼L� �¶�!� � ¿ �7�Þ�|¼L� �¶�!� ��¾¿ 	�»8����¤� , if meas

	�Æ�	<ÇhÇ µ º r Æ
	hÇhÇ µ Ã ��B`; , then

(5.14)
' µ º ª ' µ Ã � ; on

8
and § ¨ ' µ º ª ' µ Ã � � � j � A�� 
 �

with some constant
� j B`; independent of

»(�9�
and

�
;

(ii) the mesh parameter
�

satisfies

(5.15)
�Q�`� j 6 � �ñ�Gj � jë 
 � 
 +": ë 

 � 

 +(;L� j � j ë 
 � w í

(iii) we have

(5.16)
��� � ë 
 ��
á ) �Gj � j � � w ë 
 � 
 � � 
 ë 
 � + í

(iv) if á �1¼ , then

(5.17)
�Þ� � ¼	Ï¼ � á �=<,	i��� �
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where

(5.18)
<
	��k� 6 � � w6> 	��k� +Ì� 
 ×Ë	i��� +Ì� w �

using the notation

(5.19) > 	��k� 6 � ì
Èñðº ²%w&ØÚÙÚÙÚÙÚØ ¹

õ ¨ � ' µ º � 
õ ¨ µ 
º � ×Ë	i��� 6 � ì
ÈÉðº ²%w&ØÚÙÚÙÚÙÚØ ¹

õ ¡ ¬ µ 
ºõ ¨ µ 
º �
Then for all Î ´ N @ ·¹ , the matrices ö 	 Î ´ � and

÷â	 Î ´ � , defined in (5.8), have the following
properties:

(1)
��	 Î ´ � º Ã � ; (

»
����
,
»2�|¼L� �¶�!� � ¿ ,

�Þ�|¼L� �!�!� ��¾¿ );
(2) � 	 Î ´ � º¶º � ; (

»x�|¼L� �!�!� � ¿ ).
Proof. (1) We have

(5.20)
�Þ	 Î ´ � º Ã56 �1Ô º Ã�+Ìá �Þ� � 	 Î ´ � º Ã � § ¨ µ Ã µ º + á �Þ� � 	 �*´ í µ Ã � µ º �

� § ¨ µ Ã µkº + á �Þ�@?A §¨ " # 	$�%���&� � ´ �X' � ´ ��' µ Ã ª ' µkº +(� 	������&� � ´ � µ Ã µkº ) +�§¡c¬ �k	$�����&� � ´ � µ Ã µ�ºCBD �
Let

8 º Ã�6 �qÆ�	<ÇhÇ µ º r Æ�	hÇ<Ç µ Ã and
P º ÃÛ6 �q�*8 º Ã . Here, by (3.1) and (5.12)-(5.13),

(5.21) § ¨ µ Ã µkº � meas
	i8 º Ã � � ë 
 � A and § ¡ ¬ µ Ã µkº � meas

	�P º Ã � � ë 
 � A��Gw
and, similarly,

(5.22) § ¨ � 	$�%���&� �*´ � µ Ã µ º � � w ë 
 � A and §¡ ¬ �k	$�%���&� �*´ � µ Ã µ º � � 
 ë 
 � A��Gw �
since by (5.1), � and

�
inherit (5.10). By (2.5) and (5.14),

(5.23) § ¨ # 	$�%���&� � ´ �X' � ´ ��' µ Ã ª ' µkº � � �Gj � j � A�� 
 �
Altogether, we obtain�Þ	 Î ´ � º Ã � ë 
 � AFE ¼ + á �Þ�
G � � j � jë 
 ¼� 
 +.� w + � 
�IH8J �
Since

�Q�`� j for
� j defined in (5.15), it readily follows that we have a negative coefficient ofá �Þ� above, and from (5.16) we obtain that the expression in the large brackets is nonpositive.

Hence
�Þ	 Î ´ � º Ã � ; .

(2) Analogously to (5.20), we have� 	 Î ´ � º!º 6 �qÔ º¶º � 	Ï¼ � á ����� � 	 Î ´ � º¶º � ;<�
if and only if
(5.24)

§ ¨ µ 
º � 	Ï¼ � á ���Þ� ?A §¨ "�# 	������&� �*´ �X' �G´ � � ' µ º � 
 +&� 	������&� �G´ � µ 
º )D+ §¡ ¬ ��	������&� �G´ � µ 
º BD �



ETNA
Kent State University 

http://etna.math.kent.edu

DISCRETE MAXIMUM PRINCIPLES 159

The latter holds for all
�Þ�

if á � ¼ (i.e. the scheme is implicit). If á �ò¼ , we estimate the
expression in brackets in (5.24) by

§¨ " � w � ' µkº � 
 +Ì� w µ 
º )
+�§¡c¬ � 
 µ

º � <
	��k� ª�§ ¨ µ 
º �

It readily follows that (5.24) holds for all
�Þ�

that satisfies (5.18).
Now we can derive the corresponding discrete maximum principle:
COROLLARY 5.3. Let the conditions of Theorem 5.2 hold, and let

!_2	�������� 6 ��_2	�������� �] 	$�����&��;Ó� � ; . Then

(5.25) � à v%wº � ì
ÈÉð���;h��E ã à v%wÏå¹Oø?ù � � ã à å¹Vø&ù £ + �Þ� ì

ÈÉð���;h� !0 ã à Ø à v%w�å¹Vø&ù £ �
Proof. Our reformulated problem has the right-hand side

!0x	$�%����� 6 �S02	$�%����� � - 	������&�X;c� ,
which is in

���e	 3 4 � by Assumption 2.1 (A2). Further, by (5.2)–(5.3), we have the Neumann
boundary condition# 	������&� � �X' � �<' ��ª��5+ ��	������&� � � � � !_a	$�%����� on

P%fÞ�
where
� � ;

and
!_ � ;

. We can rewrite our boundary conditions to match (4.13): letP j f and
P wf be the portions where

� Á ;
and
�`B ;

, respectively. Then, by assumption,-�6 � !_   ¡LK ¬ � ; and
� 6 � !_   ¡ �¬ � ; . Therefore (4.14) can be applied (with

!0
) and its last term

can be dropped, whence we obtain (5.25).
REMARK 5.4. Note that the DMP (5.25) involves the values of

E
on
P R

; see also Re-
mark 4.2. Besides that, (5.25) is formally identical to the upper part of (4.12), and could in
fact be derived from it directly as an alternate proof. Namely, one can apply Theorem 4.1 as
an algebraic result for the ODE system (5.4). Here

Ò
is replaced by

!Ò
, which also involves the

values of
!_
; see (5.6). However, by our assumption

!_ � ; . Therefore, we obtain a further
upper bound by dropping the integrals with

!_
, and we are thus led to (5.25).

REMARK 5.5. For various popular finite elements one has > 	��k�/�:�
	i� � 
�� and
×Ë	��k�D��
	�� �Gw � in (5.19). Therefore, <
	��k�/�:�
	i� � 
 �

in (5.18). Let us first consider > 	��k� . Exact formulae for
õ 4 � ' µ º � 
 and

õ 4 µ 
º on elements
=

have been derived for simplicial elements in any dimension ([2], [5, p. 201]) bilinear elements
in 2D [12] and prismatic elements in 3D [28] showing that

(5.26) § 4 � ' µ º � 
 �:�
	i� A�� 
 � and § 4 µ 
º �q�
	�� A � �
This immediately yields > 	��k�Ì�ê�
	i� � 
[� , since the integral over

8
equals the integral

over the support which consists of a bounded number of elements. For
×Ë	��k�

, we haveõ ¡c¬ µ 
º � õ Y ãNMCOQPQPSRUT å µ 
º . The latter is an integral over the finite union of
	 � � ¼�� -dimensional

elements of the above types. Hence we can apply the
	 � � ¼[� -dimensional formula to obtainõ ¡ ¬ µ 
º � �
	�� A��Gw � . This implies

×Ë	i���D�1�
	�� �Gw � .
REMARK 5.6. (Discussion of the assumptions in Theorem 5.2.)
(i) Assumption (i) can be ensured by suitable geometric properties of the space mesh;

see subsection 5.4 below.
(ii) The value of

� j contains given or computable constants from the assumptions on the
coefficients, the mesh regularity and geometry.
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(iii) The lower bound in (5.16) is asymptotically

(5.27)
�Þ� � �
	i� 
 �?�

as
� y ;

, and the constants are similarly computable.
(iv) If á � ¼

, i.e., the scheme is implicit, then there is no upper restriction on
�Þ�

. Ifá �Ê¼
, then Remark 5.5 shows that for many popular elements one has

<
	��k�«� �
	i� � 
��
in (5.18). This has been proved so far for simplicial elements in any dimension, bilinear
elements in 2D and prismatic elements in 3D. Hence,

��� � �
	��*
�� as
� y ;

, which yields
with (5.27) the usual condition

(5.28)
���D�1�
	�� 
 �

as
� y ;

, for the space and time discretizations. In addition, the lower bound in (5.16) must
be smaller than the upper bound in (5.17): in view of the factor

¼ � á in the latter, this gives
a restriction on á to be close enough to 1.

REMARK 5.7. Let us consider problem (2.1)–(2.4) with principal parts only, i.e., when- Á ] Á ; : � ��k� �7���! " # 	$�����&� � �X' � ��' � ) �q02	�������� in 3 4 6 �q8q9�	�;h��=>�&�
� 	$�������D�`EG	$�%�����IH$JcKM	$�%�����ONeP�RS97T ;<��=VUW�

# 	$�%���&� � �(' � � Y[ZY�\ �u_a	$�������bH$JLKd	��������ONmP�f�97T ;<��=VUW�
and

� 	$�%��;c�D� �kj 	$�*�bH$JLKl�mNn8 �
Then Assumptions (ii)-(iv) of Theorem 5.2 become much simplified, since � w � � 
 � ; .
Namely, assumption (ii) is dropped since formally

� j �WV , i.e., there is no upper bound
on
�

. Assumptions (iii)-(iv) read as follows:

(5.29)
�Þ� � ë 
áÉ� j � j � 
 í if á �q¼c� then

�Þ� � ¼� w 	Ï¼ � á � ì �
¯º ²%w(ØÚÙÚÙÚÙÚØ ¹

õ ¨ µ 
ºõ¨ � ' µ º � 
 �
Let us now return to the statement (5.25). By reversing signs in Corollary 5.3, we obtain

the corresponding discrete minimum principle:
COROLLARY 5.8. Let the conditions of Theorem 5.2 hold, and let

!_a	$������� 6 ��_a	$������� �] 	$�%���&��;Ó� � ; . Then

(5.30) � à v%wº � ì �
¯��[;h��E ã à v%w�å¹ º à � � ã à å¹ º à £ + �Þ� ì �

¯��[;h� !0 ã à Ø à vxwÏå¹ º à £ �
An important special case is the discrete nonnegativity preservation principle, the dis-

crete analogue of (4.4):
THEOREM 5.9. Let the conditions of Theorem 5.2 hold, and let

!0 � ; , E � ; , !_ � ; and� j � ; . Then the discrete solution satisfies

� àº � ;<� ®*ße�q;h��¼L� �!�!� ��ß 4 �%»2��¼c� �!�¶� � ¿ �
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Proof. Assumptions
!0 � ; , E � ; and

!_ � ; imply
E ã à v%wÏå¹ º à � ; and

!0 ã à Ø à v%w�å¹ º à for all
ß

and
»
. Hence (5.30) becomes

� à vxwº � ì �
¯G�[;<� � ã à å¹ º à £ �

Here assumption �kj � ; implies � ã j å¹ º à � ; . Hence we obtain by induction that � ã à å¹ º à � ; for
all
ß

.
By Theorem 5.9, � ´ is nonnegative at each node point. Properties (3.1)–(3.2) of the basis

functions imply that the FEM solution � ´ 	 � ��ß������ is also nonnegative for all time levels
ß��Þ�

.
If, in addition, we extend the solutions to 3 4 with values between those on the neighbouring
time levels, e.g., with the method of lines, then we obtain that the discrete solution satisfies

� ´ � ; on 3 4 �
5.3. The DMP: problems with superlinear growth. In this subsection we allow stronger

growth of the nonlinearities - and ] than above, i.e., we return to Assumption 2.1 (A4). For
this we need some extra technical assumptions and results. Let us first summarize the addi-
tional conditions.

ASSUMPTION 5.10.
(B1) We restrict ourselves to the case of an implicit scheme:

á �|¼ �
(B2) Å�´ is made up by linear, bilinear or prismatic elements.
(B3) The coefficient on

P f
satisfies

!_2	�������� 6 �F_2	�������� � ] 	������&��;c� Á ; . Further,
P%RX��qs

.
(B4) The exact solution satisfies � 	 � ������N�Y w&Ø Z 	i8V� for some - B � (if � � � ) or some- � �É� ��	 � � 	 � � � �½	 � w � � ��� (if � � � ) for all

�ON7T ;<��=VU
.

(B5) The discretization satisfies
Ô �[� 6 �:Æ
	hÇ ±\[^] j Ø 4=_U` � 	 � ����� � �G´ 	 � ����� `Qacb � ã ¨ å �dV .

Now, by [1], under Assumption 2.1 (A4), we recall the Sobolev embedding estimates

(5.31) ` © `Qacb � ã ¨ å �fe ¨ Ø ��� ` © `6g �¢ � ` © `Qacb � ã ¡c¬ å �de ¡c¬ Ø �½� ` © `6g �¢ �b® © N � wR 	i8V�&�
with some constants e ¨ Ø � � � e ¡ ¬ Ø � � Bu; independent of © .

LEMMA 5.11. Let Å ´ be made up by linear, bilinear or prismatic elements. Then there
exists a constant ë � � Bu; , such that

(5.32) ` © `Qa b � ã ¡Ó¬ å � ë � � � �°w ` © `6a � ã ¨ å � ® © N Å ´ �
Proof. We have

` © ` 
g �¢ 6 � §¨ � ' © � 
 � § ¨ © 
 ì
Èñðh [Ui�j õ¨ � ' © � 
õ ¨ © 
 � ë � � ª <
	i��� § ¨ © 
 �

where
<
	��k�

comes from (5.18) and, as seen before, satisfies
<,	i����� �
	�� � 
[� . This, com-

bined with (5.31), yields the required estimate.
Now we consider the full discretization (5.7) for á ��¼ :

(5.33) Ð Î à vxw + �Þ� ô 	 Î à v%w � Î à v%w � Ð Î à + �Þ� !Ò ã à å �
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Let � à v%w N Å ´ denote the function with coefficient vector Îaà v%w , and let
0 à 	��k� 6 �q02	�����ß������ .

Then, by the definition of the mass and stiffness matrices, (5.33) implies

(5.34) § ¨ � à v%w © + �Þ� � 	 � à v%w í � à v%w � © �L� § ¨ � à © + ��� " § ¨ !0 à © + § ¡c¬ !_ à © ) ��® © N Åk´<�
Here, from Assumption 5.10 (B3), the integral on

P f
vanishes. Furthermore, recall that!0¥NQ���e	 3 4 � by Assumption 2.1 (A2).

LEMMA 5.12. If Assumption 5.10 holds, then for all
��N�T ;h��=VU

,` � 	 � ����� `6acb � ã ¨ å � ` � j `6acb � ã ¨ å + =�	 meas
	�8V��� �b � ` !0 `Qalk ã ïnm å �

Proof. Let © � � � � � � � 
 � , which satisfies
' © �¦	 � w � ¼[� � � � � � � 
�' � . By assumption

(B4), � ' � � N:� Z 	i8V� , and it is easy to see from the condition on - that � � � � � � 
mN:� Z�o 	�8V� ,
where

	Ï¼�� - � + 	�¼0� -�- �{�ò¼0� � . This implies by Hölder’s inequality that � ' © � N��O
L	�8V� . That
is, for all fixed

�
we have © 	 � ������N ��wR 	�8V� . Hence, we can set it in (5.2):

(5.35)§¨
� ��k� � � � �[� � 
 �o� � +p� 	 � í � � � � � ��� � 
 � �D� §¨ !0 � � � ��� � 
 �>� ��� ® © N � wR 	�8V�&�l��N�	�;<��=>�?�

where we have used that
!_ Á ;

. Let> 	$��� 6 � ` � 	 � ����� ` �[�acb � ã ¨ å � §¨ � � 	$������� � �[� � � �
Then > - 	������ õ¨ � wa� � � � � � 
 � Y[ZY ± � � . Further, using (5.3) and that

' © ��	 � w � ¼[� � � � � � � 
�' � ,

we obtain � 	 � í � � � � � � � � 
 � �D� §¨ " # 	$�%���&� � �X' � �?	 � w � ¼[� � � � � � � 
 � ' � � 

+q� 	������&� � � � � � �[� ) � � +S§¡c¬ ��	������&� � � � � � �[� �c­ � ; �

Hence, the left-hand side of (5.35) is estimated below by > - 	$���r� � w . Using Hölder’s inequality
for the right-hand side of (5.35), we obtain¼� w > - 	���� � ` !0%	 � ����� `Qa b � ã ¨ å ` � 	 � ����� ` �[� �°wacb � ã ¨ å � 	 meas

	�8V��� �b � ` !0 `6a k ã ïnm å > 	���� b �ts �b � �
Excluding the trivial case � Á ; , we can divide by > 	$���Lb � s �b � and integrate from 0 to

�
to

obtain > 	$��� �b � � > 	�;c� �b � � =�	 meas
	i8V��� �b � ` !0 `6alk ã ïum å �

which is the desired estimate.
LEMMA 5.13. (1) If Assumptions 5.10 (B1) and (B3) hold, then the norms ` � à `Qa � ã ¨ åare bounded independently of

ß
and Å*´ :` � à `6a � ã ¨ å � ` � j `6a � ã ¨ å + =�	 meas

	�8V��� �� ` !0 `Qa k ã ï m å � 6 � a � �
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(2) If all assumptions in Assumption 5.10 hold, then the norms ` � à `6a^b � ã ¨ å are bounded
independently of

ß
and Å ´ :` � à `Qa b � ã ¨ å � Ô � � + ` � j `6a b � ã ¨ å + =Þ	 meas

	�8V��� �b � ` !0 `6a k ã ïnm å � 6 � � � Ø ¨ �
Proof. (1) Setting © � � à vxw in (5.34), we obtain

(5.36) § ¨ 	 � à v%w � 
 + �Þ� � 	 � à v%w í � à vxw � � à v%w �/� § ¨ � à � à v%w + �Þ� § ¨ !0 à � à vxw �
To estimate below, the bilinear form can be dropped from the left-hand side since it is coer-
cive. Using Cauchy-Schwarz inequalities, we have` � à v%w ` 
a � ã ¨ å � ` � à `6a � ã ¨ å ` � à v%w `Qa � ã ¨ å + �Þ� ` !0 à `Qa � ã ¨ å ` � à v%w `6a � ã ¨ å �
Dividing by ` � à v%w `6a � ã ¨ å and repeating the argument

ß
times, we obtain` � à vxw `6a � ã ¨ å � ` � j `6a � ã ¨ å + 	$ß + ¼����Þ� ` !0 à `Qa � ã ¨ å �

where the r.h.s. is bounded since
	$ß + ¼����Þ� � = and ` !0 à `6a � ã ¨ å � 	 meas

	�8V��� �� ` !0 `Qa k ã ï m å .(2) It follows directly from Lemma 5.12 and assumption (B5).
Lemmas 5.11 and 5.13 imply
COROLLARY 5.14. We have` � à `6acb � ã ¡ ¬ å � � �½� Ø ¡c¬ � �°w �

where the constant
� �½� Ø ¡c¬ B`; is bounded independently of

ß
and Å*´ .

THEOREM 5.15. Let problem (2.1)–(2.4) satisfy Assumption 2.1 and Assumption 5.10.
Let us consider a family of finite element subspaces . �é� ÅG´ £ ´�/ j , where the family of
associated FE meshes is regular as in Definition 5.1. Let the following assumptions hold:

(i) for any
»2��¼L� �¶�!� � ¿ �7�Þ�|¼L� �¶�!� ��¾¿ 	�»8����¤� , if meas

	�Æ�	<ÇhÇ µ º r Æ
	hÇhÇ µ Ã ��B`; , then

(5.37)
' µ º ª ' µ Ã � ; on

8
and § ¨ ' µ º ª ' µ Ã � � � j � A�� 


with some constant
� j B`; independent of

»(�9�
and

�
;

(ii) the mesh parameter
�

satisfies
�n�`� j , where

� j B`; is the first positive root of the
equation

(5.38) � �Gj � jë 
 ¼� 
 +.� w + � 
� + � w � � � � 
� � Ø ¨�wv � + � 
 � � � � 
� � Ø ¡ ¬�wv � �:;<�
where the numbers

;Þ�^_ w �Ï_ 
 � � are defined below in (5.40), (5.41), respectively;
(iii) we have

(5.39) �Þ� � ë 
 �<
á ) �Gj � j � ë 
 � w � 
 � ë 
 � 
 � � ë 
 � w � ��� � 
�[� Ø ¨ � 
 � v � � ë 
 � 
 � �½� � 
�½� Ø ¡c¬ � 
 � v � + �
Then the matrices ö 	 Îxà v%w � and

÷â	 Îxà � , defined in (5.8)–(5.9), have the following properties:
(1)
��	 Î%à v%w � º Ã � ; , »8��#�

,
»2�|¼L� �!�!� � ¿ ,

�,��¼c� �!�¶� �°¾¿ ;
(2) � 	 Î%à � º¶º � ; , »a��¼c� �!�¶� � ¿ .
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Proof. We follow the proof of Theorem 5.2. As a first difference, instead of � ´ in
the arguments, we must consider the functions � à v%w (for ö ) and � à (for

÷
) that have the

coefficient vectors Îxà vxw and Îxà , respectively.
(1) Since we now have (2.6) instead of (5.10), the first estimate in (5.22) is replaced by

§ ¨ � 	������&� � à v%w � µ Ã µ�º � § ¨ ) � w + � w � � à vxw � ��� � 
 + µ Ã µkº � � w meas
	�8 º Ã � + � w § ¨ T�x � � à v%w � �[� � 
 �

Here the first term is bounded by � w ë 
 � A as before. To estimate the second term, we use
Hölder’s inequality:

§ ¨ TNx � � à v%w � �[� � 
 � ` � à vxw ` � � � 
a b � ã ¨ TNx å ` ¼ ` 
a b � ã ¨ TNx å �
For the first factor, we use Lemma 5.13 (2) to find that` � à v%w ` � � � 
a b � ã ¨ T�x å � ` � à v%w ` � � � 
a b � ã ¨ å � � � � � 
� � Ø ¨ �
The second factor satisfies, by (5.21),` ¼ ` 
a b � ã ¨ TNx å � ) meas

	�8 º Ã � + 
ty �[� � ë 
 � �\zb � Á ë 
 � A�� v � �
with

(5.40)
_ w 6 � � � �L�� w � � �

since from Assumption 2.1 (A4), we have

 A� � B � � � . Hence,

§ ¨ TNx � � à v%w � � � � 
 � � �[� � 
��� Ø ¨ ë 
 � A�� v � �
and, altogether,

§ ¨ � 	$�����&� � à v%w � µ Ã µkº � � w ë 
 � A + � w � �[� � 
�[� Ø ¨ ë 
 � A�� v � �
Similarly,

§¡c¬ �k	$�%���&� � à v%w � µ Ã µ º � � 
 ë 
 � A��Gw + � 
 § ¡ T�x � � à v%w � �½� � 
 �
and here, for � � � ��� we use Corollary 5.14 and (5.13) to obtain

§ ¡ T�x � � à vxw � �?� � 
 � ` � à v%w ` �½� � 
a b � ã ¡ T�x å ` ¼ ` 
acb � ã ¡ TNx å � ` � à vxw ` �½� � 
a b � ã ¡ ¬ å ) meas
	�P º Ã � + 
ty �½�

� � �½� � 
�?� Ø ¡c¬ ë 
 � 
 � � � v �
ÿ z s � �b � Á � �½� � 
�½� Ø ¡c¬ ë 
 � A�� v � �

where

(5.41)
_ 
 6 � � � �{+ � 
 � � 	 � � ¼[�� 
 � � �
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from assumption � 
 � ���Ú� . Summing up, using the above and (5.23), we obtain��	 Î ´ � º Ã � ë 
 � A|{ ¼ + á �Þ�~} � � j � jë 
 ¼� 
 +.� w + � 
� + � w � �[� � 
��� Ø ¨�wv � + � 
 � �½� � 
�½� Ø ¡Ó¬�wv � �p� �
Since

�Ì��� j for
� j defined in (5.38), it follows that we have a negative coefficient of á ���

above, and from (5.39) we obtain that the expression in the large brackets is nonpositive.
Hence
��	 Î ´ � º Ã � ; .

(2) For the implicit scheme,
÷â	 Îxà � coincides with the mass matrix Ð , whose diagonal

entries are positive.
Similarly to the sublinear case, we can derive the corresponding discrete maximum, min-

imum and nonnegativity preservation principles. We only formulate here the latter:
COROLLARY 5.16. Let the conditions of Theorem 5.15 hold, and let

!0 � ; , E � ; , !_ � ;
and � j � ; . Then the discrete solution satisfies � àº � ; , for

ßn�q;h�½¼c� �!�¶� ��ß 4 ��»a��¼c� �!�¶� � ¿ �
5.4. Geometric properties of the space mesh. In order to satisfy condition (5.37), the

most direct way is to require

(5.42)
' µ*º ª ' µ Ã � � � j � � 


pointwise on the common support of these basis functions. In view of well-known formulae
(see, e.g., [2, 7, 25, 30]), the above condition has a nice geometric interpretation: in the case
of simplicial meshes, it is sufficient if the employed mesh is uniformly acute [4, 25]. In the
case of bilinear elements, condition (5.42) is equivalent to the so-called strict non-narrowness
of the meshes; see [12, 19]. The case of prismatic finite elements is treated in [18].

These conditions are sufficient but not necessary. For instance, for linear elements, some
obtuse interior angles may occur in the simplices of the meshes, just as for linear problems
(see, e.g., [24]), or one can require (5.42) only on a proper subpart of each intersection of
supports with asymptotically nonvanishing measure, see more details in [21]. These weaker
conditions may allow in general easier mesh adaptive procedures that preserve the DMP.

5.5. Examples. We give two real-life examples where discrete nonnegativity can be
derived for suitable discretizations.

(a) Nonlinear heat conduction.
Heat conduction in a body

8:p @ 5 with nonlinear diffusion coefficient is often described
by the model

(5.43)
� ��k���7���! «"�# 	$�����&� � ��' �*) �102	$�������

in 354�6 �S8:9�	�;h��=o� , where
=SBF;

is the time interval considered; see, e.g., [15]. The usual
boundary and initial conditions are

(5.44) � 	$�%�����D�FE*	��������IH$JLKM	��������VNQP%RS9�T ;h��=VUW�
(5.45) # 	$�%���&� � � Y�ZY�\ �u_a	$�%�����bH$JcKd	$�%�����ONmP�f|9�T ;h��=VUi�
and

(5.46) � 	�����;Ó�D� � j 	$�k� H$JLKÖ�mNn8o�
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where all coefficients are bounded nonnegative measurable functions and # has a positive
lower bound. The function � describes the temperature. Hence � � ; .

(b) Reaction-diffusion problems.
A reaction-diffusion process in a body

8 p @ A , � � � or 3, is often described by the
model

(5.47)
� ��k�«�7���¶ " # 	���������' � ) +^- 	$�%� � �D�q02	��������

in 35476 �q8q97	�;h��=>� . The boundary and initial conditions are

(5.48) � 	��������D�FEG	$�������IH$JLKM	��������ONQP R 97T ;<��=VUW�

(5.49) # 	$�%����� Y�ZY�\ +^] 	$��� � �D�F_a	$�������IH$JLKM	���������NeP f 97T ;<��=VUW�
and

(5.50) � 	����X;c�D� �kj 	$�*�bH$JLKl�mNn8o�
The function � describes the concentration. Hence � � ; � Here the coefficients # , 0 ,

E
,
_

and� j are bounded nonnegative measurable functions and # has a positive lower bound. Further,- and ] desribe the rate of reaction in the body and on the transmission boundary, respectively.
Hence - 	$���X;c�V� ] 	$�%��;Ó�O��; for all

�
. In various examples the reaction process is such that- and ] grow along with � . Further, the rate is at most polynomial, i.e., we may assume

that the growth conditions (2.6) are satisfied. For instance, - 	$�%� � �{� �S� for some ­ Bó¼ in
some autocatalytic chemical reactions, or - 	$�%� � �5� w� ZZ v'� describes the Michaelis-Menten
reaction in enzyme kynetics [9, 23].

In both examples, we have
!0.��0 � ; , E � ; , !_^�ó_ � ; and � j � ; . Therefore

we can use Theorem 5.9 and Corollary 5.16, respectively, to derive the discrete nonnegativity
principle:

THEOREM 5.17. Let the full discretization satisfy the conditions of Theorem 5.2 for
problem (5.43)–(5.46), or the conditions of Theorem 5.15 for problem (5.47)–(5.50). Then
the discrete solution satisfies � àº � ; , for

ßm�:;h�½¼c� �!�¶� ��ß 4 �%»a��¼c� �!�¶� � ¿ .
In particular, for problem (5.43)–(5.46) we can use the simplified assumptions (5.29) for

Theorem 5.2, as given in Remark 5.7.
Consequently, as pointed out after Theorem 5.9, if we extend the solutions to 3 4 with

values between those on the neighbouring time levels, e.g., by the method of lines, then the
discrete solution satisfies � ´ � ; , on 3 4 .
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[24] S. KOROTOV, M. KŘ ÍŽEK, AND P. NEITTAANMÄKI, Weakened acute type condition for tetrahedral triangu-
lations and the discrete maximum principle, Math. Comp., 70 (2001), pp. 107–119.
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