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Abstract. The Nonnegative Matrix Factorization (NMF) technique has been used in many areas of science,
engineering, and technology. In this paper, we propose fouralgorithms for solving the nonsmooth nonnegative matrix
factorization (nsNMF) problems. The nsNMF uses a smoothing parameterθ ∈ [0, 1] to control the sparseness in its
matrix factors and it reduces to the original NMF ifθ = 0. Each of our algorithms alternately solves a nonnegative
linear least squares subproblem in matrix form using a projected Barzilai–Borwein method with a nonmonotone
line search or no line search. We have tested and compared our algorithms with the projected gradient method of
Lin on a variety of randomly generated NMF problems. Our numerical results show that three of our algorithms,
namely, APBB1, APBB2, and APBB3, are significantly faster than Lin’s algorithm for large-scale, difficult, or
exactly factorable NMF problems in terms of CPU time used. We have also tested and compared our APBB2
method with the multiplicative algorithm of Lee and Seung and Lin’s algorithm for solving the nsNMF problem
resulted from the ORL face database using bothθ = 0 andθ = 0.7. The experiments show that whenθ = 0.7 is
used, the APBB2 method can produce sparse basis images and reconstructed images which are comparable to the
ones by the Lin and Lee–Seung methods in considerably less time. They also show that the APBB2 method can
reconstruct better quality images and obtain sparser basis images than the methods of Lee–Seung and Lin when each
method is allowed to run for a short period of time. Finally, we provide a numerical comparison between the APBB2
method and the Hierarchical Alternating Least Squares (HALS)/Rank-one Residue Iteration (RRI) method, which
was recently proposed by Cichocki, Zdunek, and Amari and by Ho, Van Dooren, and Blondel independently.

Key words. nonnegative matrix factorization, smoothing matrix, nonnegative least squares problem, projected
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1. Introduction. Given a nonnegative matrixV , find nonnegative matrix factorsW and
H such that

(1.1) V ≈ WH.

This is the so–callednonnegative matrix factorization(NMF) which was first proposed by
Paatero and Tapper [28, 29] and Lee and Seung [21]. The NMF has become an enormously
useful tool in many areas of science, engineering, and technology since Lee and Seung pub-
lished their seminal paper [22]. For recent surveys on NMF, see [2, 5, 14].

As the exact factorizationV = WH usually does not exist, it is typical to reformulate
NMF as an optimization problem which minimizes some type of distance betweenV and
WH. A natural choice of such a distance is the Euclidean distance, which results in the
following optimization problem:

PROBLEM 1.1 (NMF). Suppose thatV ∈ R
m,n is nonnegative. FindW andH which
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solve

(1.2) min f(W,H) =
1

2
‖V − WH‖2

F s.t. W ≥ 0, H ≥ 0,

whereW ∈ R
m,r, H ∈ R

r,n, and‖ · ‖F is the Frobenius norm.
One of the main features of NMF is its ability to learn objectsby parts (see Lee and

Seung [22]). Mathematically this means that NMF generates sparse factors W andH. It
has been discovered in [24], however, that NMF does not always lead to sparseW andH.
To remedy this situation, several approaches have been proposed. For instance, Li, Hou,
and Zhang [24] and Hoyer [16, 17] introduce additional constraints in order to increase the
sparseness of the factorsW or H. In a more recent proposal by Pascual–Montano et al.
[30], the nonsmooth nonnegative matrix factorization(nsNMF) introduces a natural way of
controlling the sparseness. The nsNMF is defined as:

(1.3) V ≈ WSH,

whereS ∈ R
r,r is a “smoothing” matrix of the form

(1.4) S = (1 − θ)I +
θ

r
J,

whereI is ther × r identity matrix andJ ∈ R
r,r is the matrix of all 1’s. The variableθ is

called thesmoothing parameterand it satisfies0 ≤ θ ≤ 1. If θ = 0, thenS = I and the
nsNMF reduces to the original NMF. The value ofθ can control the sparseness ofW andH.
The largerθ is, the sparserW andH are.

In [30], Pascual–Montano et al. reformulate (1.3) as an optimization problem using the
Kullback–Liebler divergence as the objective function. Here we reformulate (1.3) as the
following optimization problem using the Euclidean distance:

PROBLEM 1.2 (nsNMF).Suppose thatV ∈ R
m,n is nonnegative. Choose the smoothing

parameterθ ∈ [0, 1] and defineS = (1 − θ)I +
θ

r
J . Find W andH which solve

(1.5) min hS(W,H) =
1

2
‖V − WSH‖2

F , s.t. W ≥ 0, H ≥ 0,

whereW ∈ R
m,r andH ∈ R

r,n.
REMARK 1.3. By the definitions of functionsf andhS , we have

(1.6) hS(W,H) = f(W,SH) = f(WS,H).

In [23], Lee and Seung proposed a multiplicative algorithm for solving the NMF problem
1.1. This algorithm starts with a positive pair(W 0,H0) and iteratively generates a sequence
of approximations(W k,Hk) to a solution of Problem1.1using the following updates:

(1.7) W k+1 = W k. ∗ (V (Hk)T )./(W kHk(Hk)T ),

(1.8) Hk+1 = Hk. ∗ ((W k+1)T V )./((W k+1)T W k+1Hk).

The Lee–Seung algorithm is easy to implement and has been used in some applica-
tions. It has also been extended to nonnegative matrix factorization problems with additional
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constraints [17, 24]. Under certain conditions, Lin [26] proves that a modified Lee-Seung
algorithm converges to a Karush-Kuhn-Tucker point of Problem1.1. It has been found that
the Lee–Seung algorithm can be slow [2, 25, 5]. A heuristic explanation why the Lee–Seung
algorithm has a slow rate of convergence can be found in [13].

Several new algorithms aimed at achieving better performance have been proposed re-
cently (see the survey papers [2, 5], the references therein, and [6, 20, 19, 14, 15]). In partic-
ular, the projected gradient method of Lin [25] is easy to implement and often significantly
faster than the Lee–Seung algorithm. Under mild conditions, it converges to a Karush–Kuhn–
Tucker point of Problem1.1.

The Lin algorithm starts with a nonnegative pair(W 0,H0) and generates a sequence
of approximations(W k,Hk) to a solution of Problem1.1 using the following alternating
nonnegative least squares (ANLS) approach:

(1.9) W k+1 = argminW≥0f(W,Hk) = argminW≥0

1

2
‖V T − (Hk)T WT ‖2

F

and

(1.10) Hk+1 = argminH≥0f(W k+1,H) = argminH≥0

1

2
‖V − W k+1H‖2

F .

The convergence of the ANLS approach to a Karush–Kuhn–Tucker point of the NMF prob-
lem1.1can be proved (see for example, [12, 25]).

We comment that there are several NMF algorithms which use the ANLS approach.
The Lin algorithm differs from the other algorithms in its strategy of solving Subproblems
(1.9) and (1.10). Lin uses a projected gradient method to solve each subproblem which is
a generalization of the steepest descent method for unconstrained optimization. As is well
known, the steepest descent method can be slow, even for quadratic objective functions. The
projected gradient method for constrained optimization often inherits this behavior (see [18,
27]).

Using Newton or quasi–Newton methods to solve the subproblems can give a faster
rate of convergence [20, 33]. However, these methods need to determine a suitable active
set for the constraints at each iteration (see, for example,[4, 18]). The computational cost
per iteration of these methods can be high for large-scale optimization problems and the
subproblems (1.10) and (1.9) resulting from real life applications are often of large size.
Another algorithm which also uses an active set strategy hasbeen proposed in [19].

Note that the NMF problem1.1can be decoupled into

(1.11) min
wi≥0,hi≥0

1

2
‖V −

r
∑

i=1

wihi‖
2
F ,

where thewi’s are the columns ofW andhi’s the rows ofH. Utilizing this special structure,
Ho, Van Doreen, and Blondel [14, 15] recently proposed the so-called Rank-one Residue
Iteration (RRI) algorithm for solving the NMF problem. Thisalgorithm was independently
proposed by Cichocki, Zdunek, and Amari in [6], where it is called the Hierarchical Alternat-
ing Least Squares (HALS) algorithm. In one loop, the HALS/RRI algorithm solves

(1.12) min
h≥0

1

2
‖Rt − wth‖

2
F
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and

(1.13) min
w≥0

1

2
‖Rt − wht‖

2
F

for t = 1, 2, . . . , r, whereRt = V −
∑

i6=t

wihi. A distinguished feature of this algorithm is

that the solution to (1.12) or (1.13) has an explicit formula which is easy to implement. Nu-
merical experiments in [6, 14, 15] show that the HALS/RRI algorithm is significantly faster
than the Lee–Seung method and some other methods based on ANLS approach. Under mild
conditions, it has been proved that this algorithm converges to a Karush-Kuhn-Tucker point
of Problem1.1(see [14, 15]). For detailed description and analysis of the RRI algorithm, we
refer to the thesis of Ho [14].

It has been reported by many researchers in the optimizationcommunity that the Barzilai–
Borwein gradient method with a non–monotone line search is areliable and efficient algo-
rithm for large-scale optimization problems (see for instance [3, 10]).

In this paper, motivated by the success of Lin’s projected gradient method and good
performance of the Barzilai–Borwein method for optimization, we propose four projected
Barzilai–Borwein algorithms within the ANLS framework forthe nsNMF problem1.2. We
shall call these algorithmsAlternating Projected Barzilai–Borwein(APBB) algorithms for
nsNMF. They alternately solve the nonnegative least squares subproblems:

(1.14) W k+1 = argminW≥0f(W,SHk) = argminW≥0

1

2
‖V T − (SHk)T WT ‖2

F

and

(1.15) Hk+1 = argminH≥0f(W k+1S,H) = argminH≥0

1

2
‖V − (W k+1S)H‖2

F .

Each of these two subproblems is solved using a projected Barzilai–Borwein method.
Note that if the smoothing parameterθ = 0, then our algorithms solve the original

NMF problem1.1. We will test the APBB algorithms on various examples using randomly
generated data and the real life ORL database [36] and CBCL database [35] and compare
them with the Lee–Seung, Lin, and HALS/RRI algorithms. Our numerical results show that
three of the APBB algorithms, namely, APBB1, APBB2 and APBB3are faster than the Lin
algorithm, in particular, for large-scale, difficult, and exactly factorable problems in terms
of CPU time used. They also show that the APBB2 method can outperform the HALS/RRI
method on large-scale problems.

It is straightforward to extend the original Lee–Seung algorithm for NMF to a multiplica-
tive algorithm for nsNMF by replacingHk by SHk in (1.7) andW k+1 by W k+1S in (1.8).
The resulting Lee–Seung type multiplicative updates for nsNMF are:

(1.16) W k+1 = W k. ∗ (V (SHk)T )./(W kSHk(SHk)T )

and

(1.17) Hk+1 = Hk. ∗ ((W k+1S)T V )./((W k+1S)T W k+1SHk).

The Lin algorithm for NMF can also be extended to nsNMF by solving Subproblems (1.14)
and (1.15) using his projected gradient approach. We will also compare the APBB2, Lee–
Seung, and Lin methods on their abilities to generate sparseW andH factors when they are
applied to the nsNMF problem resulting from the ORL databasewith θ > 0.
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This paper is organized as follows. In Section2 we give a short introduction of the
Barzilai–Borwein gradient method for optimization. We also present two sets of first order
optimality conditions for the nsNMF problem which do not need the Lagrange multipliers
and can be used in the termination criteria of an algorithm for solving nsNMF. In Section3
we first propose four projected Barzilai–Borwein methods for solving the nonnegative least
squares problems. We then incorporate them into an ANLS framework and obtain four APBB
algorithms for nsNMF. In Section4 we present some numerical results to illustrate the per-
formance of these algorithms and compare them with the Lin and Lee–Seung methods. We
also provide numerical results comparing the APBB2 method with the HALS/RRI method.
In Section5 we give some final remarks.

This project was started in late 2005, after Lin published his manuscript [25] and cor-
responding MATLAB code online. It has come to our attention recently that Zdunek and
Cichocki [34] have independently considered using a projected Barzilai–Borwein approach
to the NMF problem. There are differences between their approach and ours which we will
discuss at the end of Subsection3.2. The performance of these two approaches will be dis-
cussed in Section5.

2. Preliminaries . As mentioned in the introduction, the APBB algorithms alternately
solve the subproblems for nsNMF using a projected Barzilai–Borwein method. In this section
we first give a short introduction to the Barzilai–Borwein gradient method for optimization.
We then present two sets of optimality conditions for the nsNMF problem (1.5) which do
not use the Lagrange multipliers. They can be used in the termination criteria for an nsNMF
algorithm.

2.1. The Barzilai-Borwein algorithm for optimization. The gradient methods for the
unconstrained optimization problem

(2.1) min
x∈Rn

f(x),

are iterative methods of the form

(2.2) xk+1 = xk + λkdk,

wheredk = −∇f(xk) is the search direction andλk is the stepsize. The classic steepest
descent method computes the stepsize using the exact line search

(2.3) λk
SD = argminλ∈R

f(xk + λdk).

This method is usually very slow and not recommended for solving (2.1) (see for example,
[18, 27]).

In 1988, Barzilai and Borwein [1] proposed a strategy of deriving the stepsizeλk from
a two–point approximation to the secant equation underlying quasi–Newton methods, which
leads to the following choice ofλk:

(2.4) λk
BB =

sT s

yT s
,

with s = xk − xk−1 andy = ∇f(xk) − ∇f(xk−1). We shall call the resulting gradient
method the Barzilai–Borwein (BB) method. In [1], the BB method is shown to converge
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R–superlinearly for 2-dimensional convex quadratic objective functions. For general strictly
convex quadratic objective functions, it has been shown that the BB method is globally con-
vergent in [31] and its convergence rate is R–linear in [7].

To ensure the global convergence of the BB method when the objective functionf is not
quadratic, Raydan [32] proposes a globalization strategy that uses a nonmonotoneline search
technique of [11]. This strategy is based on an Amijo-type nonmonotone line search: Find
α ∈ (0, 1] such that

(2.5) f(xk + αλk
BBdk) ≤ max

0≤j≤min(k,M)
f(xk−j) + γαλk

BB∇f(xk)T dk,

whereγ ∈ (0, 1/2), and define

(2.6) xk+1 = xk + αλk
BBdk.

In this line searchα = 1 is always tried first and used if it satisfies (2.5).
Under mild conditions, Raydan [32] shows that this globalized BB method is convergent.

He also provides extensive numerical results showing that it substantially outperforms the
steepest descent method. It is also comparable and sometimes preferable to a modified Polak–
Ribiere (PR+) conjugate gradient method and the well known CONMIN routine for large-
scale unconstrained optimization problems.

There have been several approaches to extend the BB method tooptimization problems
with simple constraints. In particular, Birgin, Martı́nez, and Raydan [3] propose two projected
BB (PBB) methods for the following optimization problem on aconvex set:

(2.7) min
x∈Ω

f(x),

whereΩ be a convex subset ofR
n. They call their methods SPG1 and SPG2. Thekth iteration

of the SPG2 method is of the form

(2.8) xk+1 = xk + αdk,

wheredk is the search direction of the form

(2.9) dk = PΩ[xk − λk
BB∇f(xk)] − xk,

whereλk
BB is the BB stepsize which is calculated using (2.4) andPΩ is the projection operator

that projects a vectorx ∈ R
n onto the convex regionΩ. The stepsizeα = 1 is always tried

first and used if it satisfies (2.5). Otherwiseα ∈ (0, 1) is computed using a backtracking
strategy until it satisfies the nonmonotone line search condition (2.5).

Thekth iteration of the SPG1 method is of the form

(2.10) xk+1 = PΩ[xk − αλk
BB∇f(xk)]

and it uses a backtracking nonmonotone line search similar to the SPG2 method.

2.2. Optimality conditions for nsNMF. For a general smooth constrained optimization
problem, its first order optimality conditions are expressed with the Lagrange multipliers (see,
for example, [27]). However, the nsNMF problem1.2has only nonnegativity constraints. We
can express its optimality conditions without using Lagrange multipliers.
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By the definition ofhS and remark1.3, the gradient ofhS in Problem1.2with respect to
W is given by

(2.11) ∇W hS(W,H) = ∇W f(W,SH) = WSHHT ST − V HT ST

and the gradient ofhS with respect toH is given by

(2.12) ∇HhS(W,H) = ∇Hf(WS,H) = ST WT WSH − ST WT V.

If (W,H) is a local minimizer of nsNMF1.2, then according to the Karush–Kuhn–
Tucker theorem for constrained optimization (see for example, [27]), there exist Lagrange
multipliers matricesµ andν such that

(2.13) WSHHT ST − V HT ST = µ, W. ∗ µ = 0, W ≥ 0, µ ≥ 0

and

(2.14) ST WT WSH − ST WT V = ν, H. ∗ ν = 0, H ≥ 0, ν ≥ 0.

We can rewrite these conditions without using the Lagrange multipliers. This results in
the following lemma.

LEMMA 2.1. If (W,H) is a local minimizer for Problem nsNMF1.2, then we have

(2.15) min{WSHHT ST − V HT ST ,W} = 0

and

(2.16) min{ST WT WSH − ST WT V,H} = 0,

wheremin is the entry-wise operation on matrices.
In order to obtain the second set of optimality conditions, we need the concept of pro-

jected gradient. Let the feasible region of Problem1.2beC = {(W,H) : W ≥ 0, H ≥ 0}.
Then for any(W,H) ∈ C, the projected gradient ofhS is defined as

(2.17) [∇P
W hS(W,H)]ij =







[∇W hS(W,H)]ij if Wij > 0,

min{0, [∇W hS(W,H)]ij} if Wij = 0,

(2.18) [∇P
HhS(W,H)]ij =







[∇HhS(W,H)]ij if Hij > 0,

min{0, [∇HhS(W,H)]ij} if Hij = 0.

From this definition, ifW is a positive matrix, then∇P
W hS(W,H) = ∇W hS(W,H). Simi-

larly, ∇P
HhS(W,H) = ∇HhS(W,H) if H is positive.

We are now ready to state the second set of optimality conditions.
LEMMA 2.2. If (W,H) ∈ C is a local minimizer for Problem nsNMF1.2, then we have

that

(2.19) ∇P
W hS(W,H) = 0
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and

(2.20) ∇P
HhS(W,H) = 0.

Each of the two sets of optimality conditions can be used in the termination conditions
for an algorithm solving the nsNMF problem. In this paper, wewill use the second set, that is,
conditions (2.19) and (2.20) to terminate our APBB algorithms. We shall call a pair(W,H)

satisfying (2.19) and (2.20) a stationary point of the nsNMF problem1.2.

3. Alternating Projected Barzilai-Borwein algorithms for nsNMF .

3.1. Nonnegative least squares problem.As mentioned earlier, each of our APBB al-
gorithms for the nsNMF problem1.2 is based on a PBB method for solving Subproblems
(1.14) and (1.15), alternately. Both subproblems are a nonnegative least squares (NLS) prob-
lem in matrix form which can be uniformly defined as in the following:

PROBLEM 3.1 (NLS).Suppose thatB ∈ R
m,n andA ∈ R

m,r are nonnegative. Find a
matrixX ∈ R

r,n which solves

(3.1) min
X≥0

Q(X) =
1

2
‖B − AX‖2

F .

The quadratic objective functionQ can be rewritten as

Q(X) =
1

2
〈B − AX,B − AX〉 =

1

2
〈B,B〉 − 〈AT B,X〉 +

1

2
〈X, (AT A)X〉,

where〈·, ·〉 is the matrix inner product which is defined by

(3.2) 〈S, T 〉 =
∑

i,j

SijTij

for two matricesS, T ∈ R
m,n.

The gradient ofQ is of the form:

(3.3) ∇Q(X) = AT AX − AT B

and the projected gradient ofQ for X in the feasible regionRr,n
+ = {X ∈ R

r,n : X ≥ 0} is
of the form

(3.4) [∇P Q(X)]ij =







[∇Q(X)]ij if Xij > 0,

min{0, [∇Q(X)]ij} if Xij = 0.

The NLS problem is a convex optimization problem. Therefore, each of its local mini-
mizers is also a global minimizer. Moreover, the Karush–Kuhn–Tucker conditions are both
necessary and sufficient forX to be a minimizer of (3.1). We give a necessary and sufficient
condition for a minimizer of NLS Problem3.1 using the projected gradient∇P Q(X) here,
which can be used in the termination criterion for an algorithm for the NLS problem.

LEMMA 3.2. The matrixX ∈ R
r,n
+ is a minimizer of the NLS problem3.1 if and only if

(3.5) ∇P Q(X) = 0.
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The solution of NLS Problem3.1 can be categorized into three approaches. The first
approach is to reformulate it in vector form using vectorization:

(3.6) min
X≥0

1

2
‖B − AX‖2

F = min
vec(X)≥0

1

2
‖vec(B) − (I ⊗ A)vec(X)‖2

2,

where⊗ is the Kronecker product andvec(·) is the vectorization operation. However, this
approach is not very practical in the context of NMF due to thelarge size of the matrix
I ⊗A. In addition, this approach does not use a nice property of the NMF problem: It can be
decoupled as in (1.11).

The second approach is to decouple the problem into the sum ofNLS problems in vector
form as

(3.7) min
X≥0

1

2
‖B − AX‖2

F =
n

∑

j=1

min
Xj≥0

1

2
‖Bj − AXj‖

2
2

and then solve for each individual columnXj .
The third approach is to solve Problem3.1in matrix form directly. For instance, Lin uses

this approach to solve (3.1) by a projected gradient method. He calls his methodnlssubprob
in [25]. Our solution of (3.1) also uses this approach.

We comment that the second and third approaches have a similar theoretical complex-
ity. In implementation, however, the third approach is preferred. This is particularly true if
MATLAB is used since using loops in MATLAB is time consuming.

3.2. Projected Barzilai-Borwein algorithms for NLS . We present four projected Bar–
zilai-Borwein algorithms for the NLS problem which will be called PBBNLS algorithms. We
first notice that solving the optimization problem3.1 is equivalent to solving the following
convex NLS problem:

(3.8) min
X≥0

Q̃(X) = −〈AT B,X〉 +
1

2
〈X,AT AX〉.

The PBBNLS algorithms solve Problem (3.8). This strategy can avoid the computation of
〈B,B〉 and save time ifB is of large size. The gradient of̃Q and projected gradient of̃Q in
R

r,n
+ are the same as those ofQ, defined in (3.3) and (3.4), respectively.

Our first algorithm PBBNLS1 uses a backtracking strategy in the nonmonotone line
search which is similar to the one suggested by Birgin, Martinez, and Raydan [3] in their
algorithms SPG1. In PBBNLS1, if the next iteration generated by the projected BB method
P [Xk − λk∇Q̃(Xk)] does not satisfy the nonmontone line search condition (3.10), then a
stepsizeα ∈ (0, 1) is computed using a backtracking approach withP [Xk − αλk∇Q̃(Xk)]

satisfying (3.10). This algorithm is given below:
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ALGORITHM 3.3 (PBBNLS1).
Set the parameters:

γ = 10−4,M = 10, λmax = 1020, λmin = 10−20.

Step 1.Initialization: Choose the initial approximationX0 ∈ R
r,n
+ and the toleranceρ > 0.

Compute

λ0 = 1/(max
(i,j)

∇Q̃(X0)).

Setk = 0.
Step 2.Check Termination: If the projected gradient norm satisfies

(3.9) ‖∇P Q̃(Xk)‖F < ρ,

stop. Otherwise,
Step 3.Line Search:
3.1. SetDk = P [Xk − λk∇Q̃(Xk)] − Xk andα = 1.
3.2. If

(3.10) Q̃(P [Xk − αλk∇Q̃(Xk)]) ≤ max
0≤j≤min (k,M)

Q̃(Xk−j) + γα〈∇Q̃(Xk),Dk〉,

set

(3.11) Xk+1 = P [Xk − αλk∇Q̃(Xk)]

and go to Step 4. Otherwise set

(3.12) α = α/4

and repeat Step 3.2.
Step 4.Computing the Barzilai–Borwein Stepsize:
Compute

sk = Xk+1 − Xk and yk = ∇Q̃(Xk+1) −∇Q̃(Xk).

If 〈sk, yk〉 ≤ 0, setλk+1 = λmax, else set

(3.13) λk+1 = min (λmax,max (λmin, 〈sk, sk〉/〈sk, yk〉)).

Step 5. Set k = k+1 and go to Step 2.

Our second and third NLS solvers PBBNLS21 and PBBNLS3 differ from PBBNLS1 in
their use of line search. The steps of PBBNLS2 and PBBNLS3 arethe same as the ones in
PBBNLS1, except Step 3. Therefore we will only state Step 3 inPBBNLS2 and PBBNLS3.

1The code for PBBNLS2 is available at:http://www.math.uconn.edu/ ˜ neumann/nmf/PBBNLS2.m

http://www.math.uconn.edu/~neumann/nmf/PBBNLS2.m
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In PBBNLS2, the step sizeα by the line search is computed along the projected BB gradient
directionDk = P [Xk − λk∇Q̃(Xk)] − Xk using the backtracking strategy.

ALGORITHM 3.4 (PBBNLS2).
Step 3.Line Search:
3.1. SetDk = P [Xk − λk∇Q̃(Xk)] − Xk andα = 1.
3.2. If

(3.14) Q̃(Xk + αDk) ≤ max
0≤j≤min (k,M)

Q̃(Xk−j) + γα〈∇Q̃(Xk),Dk〉,

set

(3.15) Xk+1 = Xk + αDk

and go to Step 4.
Otherwise setα = α/4 and repeat Step 3.2.

In PBBNLS3, ifα = 1 does not satisfy condition (3.10), then an exact type line search
along the projected BB gradient directionDk is used. Since the objective functioñQ is
quadratic, the stepsize can be obtained by

(3.16) α = −
〈∇Q̃(Xk),Dk〉

〈Dk, AT ADk〉
.

ALGORITHM 3.5 (PBBNLS3).
Step 3.Line Search:
3.1. SetDk = P [Xk − λk∇Q̃(Xk)] − Xk.
3.2. If

(3.17) Q̃(Xk + Dk) ≤ max
0≤j≤min (k,M)

Q̃(Xk−j) + γ〈∇Q̃(Xk),Dk〉,

setXk+1 = Xk + Dk and go to Step 4.
Otherwise computeα using (3.16). SetXk+1 = P [Xk + αDk] and go to Step 4.

Our fourth NLS solver PBBNLS4 is a projected BB method without using a line search.
This method is closest to the original BB method. The reason we include this method here
is that Raydan [31] has proved that the original BB method is convergent for unconstrained
optimization problems with strictly quadratic objective functions and it often performs well
for quadratic unconstrained optimization problems (see [10] and the references therein). Note
that the NLS problem (3.1) has a convex quadratic objective function.
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ALGORITHM 3.6 (PBBNLS4).
No Step 3: line search.

In the four PBBNLS methods we employ the following strategies to save computational
time:

• To avoid repetition, the constant matricesAT A andAT B are calculated once and
used throughout.

• The function value ofQ̃(Xk + αDk) in (3.10) may need to be evaluated several
times in each iteration. We rewrite this function in the following form:

Q̃(Xk + αDk) = −〈AT B,Xk + αDk〉 +
1

2
〈Xk + αDk, AT A(Xk + αDk)〉

= Q̃(Xk) + α〈∇Q̃(Xk),Dk〉 +
1

2
α2〈Dk, AT ADk〉.(3.18)

In this form, only one calculation of〈∇Q̃(Xk),Dk〉 and〈Dk, AT ADk〉 is needed
in the backtracking line search, which brings down the cost of the computation.

REMARK 3.7. In [34], Zdunek and Cichocki have also considered to use a projected
Barzilai-Borwein method to solve the NLS problem (3.1). Here are differences between their
approach and ours:

1). In the use of BB stepsizes: our approach considersX as one long vector, i.e., the
columns ofX are stitched into a long vector, although in real computation, this is not imple-
mented explicitly. As a result, we have a scalar BB stepsize.

On the other hand, their approach uses the decoupling strategy as illustrated in (3.7). For
each such problem

min
1

2
‖Bj − AXj‖

2
2,

they use a BB stepsize. Therefore, they use a vector ofn BB stepsizes.
2). In the use of line search: our method uses a nonmonotone line search and we have a

scalar steplengthα due to the use of line search. Our strategy always uses the BB stepsize if
it satisfies the nonmonotone line search condition, that is,usingα = 1.

The preference of using the BB stepsize whenever possible has been discussed in the
literature in optimization, see, for example, [10].

The line search of Zdunek and Cichocki [34] is not a nonmonotone line search and it
does not always prefer a BB steplength. Again, their method generates a vector of line search
steplengths.

3.3. Alternating Projected Barzilai-Borwein algorithms for nsNMF. We are now
ready to present the APBB algorithms for nsNMF which are based on the four PBBNLS
methods respectively. We denote these methods by APBBi, fori = 1, 2, 3, or 4. In APBBi,
the solver PBBNLSi is used to solve the NLS Subproblems (3.20) and (3.21) alternately2.

2The code for APBB2 is available at:http://www.math.uconn.edu/ ˜ neumann/nmf/APBB2.m

http://www.math.uconn.edu/~neumann/nmf/APBB2.m
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ALGORITHM 3.8 (APBBi,i = 1, 2, 3, or 4).
Step 1.Initialization. Choose the smoothing parameterθ ∈ [0, 1], the toleranceǫ > 0, and
the initial nonnegative matricesW 0 andH0. Setk = 0.
Step 2.Check Termination: If projected gradient norm satisfies

(3.19) PGNk < ǫ ∗ PGN0,

wherePGNk = ‖[∇C
W hS(W k,Hk), (∇C

HhS(W k,Hk))T ]‖F , stop. Otherwise
Step 3.Main Iteration:

3.1. UpdateW : Use PBBNLSi to solve

(3.20) min
W≥0

f(W,SHk),

for W k+1.
3.2. UpdateH: Use PBBNLSi to solve

(3.21) min
H≥0

f(W k+1S,H),

for Hk+1.
Step 4. Setk = k + 1 and go to Step 2.

REMARK 3.9. At early stages of the APBB methods, it is not cost effective to solve
Subproblems (3.20) and (3.21) very accurately. In the implementation of APBBi we use an
efficient strategy which was first introduced by Lin [25]. Let ρW andρH be the tolerances
for (3.20) and (3.21) by PBBNLSi, respectively. This strategy initially sets

ρW = ρH = max(0.001, ǫ)‖[∇W hS(W 0,H0), (∇HhS(W 0,H0))T ]‖F .

If PBBNLSi solves (3.20) in one step, then we reduceρW by settingρW = 0.1ρW . A similar
method is used forρH .

4. Numerical results . We have tested the APBB methods and compared them with the
Lee–Seung method and the Lin method on both randomly generated problems and a real life
problem using the ORL database [36]. We have also compared the APBB2 method with the
HALS/RRI method. The numerical tests were done on a Dell XPS 420 desktop with 3 GB
of RAM and a 2.4 GHz Core Quad CPU running Windows Vista. All the algorithms were
implemented in MATLAB, where the code of Lin’s method can be found in [25]. In this
section, we report the numerical results.

4.1. Comparison of PBBNLSi methods and Lin’s nlssubprob method on NLS prob-
lems. The overall performance of our APBBi methods (i = 1, 2, 3, 4) and Lin’s method
depends on the efficiency of the NLS solvers PBBNLSi andnlssubprobrespectively.

We tested the PBBNLSi methods and Lin’snlssubprobmethod on a variety of randomly
generated NLS problems. For each problem, we tested each algorithm using same randomly
generated starting pointX0, with toleranceρ = 10−4. We also used 1000 as the maximal
number of iterations allowed for each algorithm.
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The numerical results are given in Table4.1. In this table, the first column lists how the
test problems and the initial pointsX0 were generated. The integernit denotes the number
of iterations needed when the termination criterion (3.9) was met. The notation≥ 1000 is
used to indicate that the algorithm was terminated because the number of iterations reached
1000 but (3.9) had not been met. The numbers, PGN, RN, and CPUTIME denote the final
projected gradient norm‖∇P Q(Xk)‖F , the final value of‖B − AXk‖F , and the CPU time
used at the termination of each algorithm, respectively.

TABLE 4.1
Comparison of PBBNLSi and nlssubprob on randomly generatedNLS problems.

Problem Algorithm nit CPU Time PGN RN
nlssubprob 631 0.390 0.000089 39.341092

A = rand(100,15) PBBNLS1 103 0.062 0.000066 39.341092
B = rand(100,200) PBBNLS2 93 0.047 0.000098 39.341092
X0=rand(15,200) PBBNLS3 150 0.078 0.000097 39.341092

PBBNLS4 129 0.047 0.000070 39.341092
nlssubprob ≥ 1000 7.535 0.023547 107.023210

A = rand(300,50) PBBNLS1 196 1.108 0.000080 107.023210
B = rand(300,500) PBBNLS2 177 0.952 0.000098 107.023210
X0=rand(50,500) PBBNLS3 210 1.154 0.000099 107.023210

PBBNLS4 195 0.733 0.000033 107.023210
nlssubprob ≥ 1000 7.472 0.321130 288.299174

A = rand(2000,50) PBBNLS1 138 0.780 0.000012 288.299174
B = rand(2000,500) PBBNLS2 162 0.905 0.000080 288.299174
X0=rand(50,500) PBBNLS3 143 0.827 0.000032 288.299174

PBBNLS4 ≥ 1000 3.526 565.334391 293.426207
nlssubprob ≥ 1000 168.044 2.666440 487.457979

A = rand(3000,100) PBBNLS1 278 37.440 0.000097 487.457908
B = rand(1000,3000) PBBNLS2 308 37.674 0.000083 487.457908
X0=rand(100,3000) PBBNLS3 373 49.234 0.000095 487.457908

PBBNLS4 388 30.483 0.000052 487.457908
nlssubprob ≥ 1000 169.479 5.569313 698.384960

A = rand(2000,100) PBBNLS1 368 49.983 0.000028 698.384923
B = rand(2000,3000) PBBNLS2 298 37.035 0.000096 698.384923
X0=rand(100,3000) PBBNLS3 311 41.044 0.000036 698.384923

PBBNLS4 275 22.215 0.000028 698.384923
Exactly Solvable nlssubprob 817 0.468 0.000089 0.000037
A = rand(100,15) PBBNLS1 37 0.016 0.000008 0.000003
B = A * rand(15,200) PBBNLS2 44 0.016 0.000006 0.000003
X0=rand(15,200) PBBNLS3 44 0.016 0.000041 0.000012

PBBNLS4 40 0.016 0.000090 0.000016
Exactly Solvable nlssubprob ≥ 1000 6.942 6.906346 1.303933
A = rand(300,50) PBBNLS1 57 0.312 0.000022 0.000005
B = A * rand(50,500) PBBNLS2 64 0.328 0.000070 0.000017
X0=rand(50,500) PBBNLS3 63 0.328 0.000084 0.000024

PBBNLS4 61 0.234 0.000018 0.000006
Exactly Solvable nlssubprob ≥ 1000 7.129 29.389267 0.997834
A = rand(2000,50) PBBNLS1 34 0.218 0.000095 0.000007
B = A * rand(50,500) PBBNLS2 33 0.218 0.000031 0.000003
X0=rand(50,500) PBBNLS3 38 0.250 0.000051 0.000004

PBBNLS4 33 0.172 0.000002 0.000000

We observe from Table4.1that the PBBNLS1, PBBNLS2, and PBBNLS3 methods per-
form similarly. Each of them is significantly faster than thenlssubprobmethod. The perfor-
mance of PBBNLS4 is somewhat inconsistent: If it works, it isthe fastest method. However,
we notice that it does not always perform well which can be seen from the results of problem
# 3 of the table.
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We also tested the same set of problems using other initial pointsX0 and other tolerance
levels ranging fromρ = 10−1 to ρ = 10−8. The relative performance of the PBBNLSi
methods and thenlssubprobmethod is similar to the one illustrated in Table4.1.

As the APBBi methods and Lin’s method use PBBNLSi ornlssubprobto solve the Sub-
problems (3.20) and (3.21) alternately, we expect the APBBi methods to be fatser than Lin’s
method. We will illustrate this in the remaining subsections.

4.2. Comparison of the APBBi methods and Lin’s method on randomly generated
NMF problems. In order to assess the performance of the APBBi (i = 1, 2, 3, 4) methods
for solving the NMF problem we tested them on four types of randomly generated NMF
problems: small and medium size, large size, exactly factorable, and difficult. We also tested
the multiplicative method of Lee–Seung and Lin’s method anddiscovered that the Lee–Seung
method is outperformed by Lin’s method substantially. Therefore, we only report the com-
parison of the APBBi methods with Lin’s method in this subsection.

In the implementation of APBBi methods, we allowed PBBNLSi to iterate at most 1000
iterations for solving each Subproblem (3.20) or (3.21). The same maximum number of
iterations was used in Lin’s subproblem solvernlssubprob.

The stopping criteria we used for all algorithms were the same. The algorithm was ter-
minated when one of the following two conditions was met:

(i). The approximate projected gradient norm satisfies:

(4.1) ‖[∇C
W hS(W k,Hk−1), (∇C

HhS(W k,Hk))T ]‖F < ǫ · PGN0,

whereǫ is the tolerance andPGN0 is the initial projected gradient norm. The recommended
tolerance value isǫ = 10−7 or ǫ = 10−8 for general use of the APBBi methods. If high
precision in the NMF factorization is needed, we suggest to use even smaller tolerance such
asǫ = 10−10.

(ii). The maximum allowed CPU time is reached.
The numerical results with toleranceǫ = 10−7 and maximum allowed CPU time of 600
seconds are reported in Tables4.2–4.5. In these tables, the first column lists how the the test
problems and the initial pair(W 0,H0) were generated. The value CPUTIME denotes the
CPU time used when the termination criterion (4.1) was met. The notation≥ 600 is used
to indicate that the algorithm was terminated because the CPU time reached600 but (4.1)
had not been met. The numbers PGN, RN, ITER, and NITER denote the final approximate
projected gradient norm‖[∇C

W hS(W k,Hk−1), (∇C
HhS(W k,Hk))T ]‖F , the final value of

‖V − W kHk‖F , the number of iterations, and the total number of sub–iterations for solving
(3.20) and (3.21) at the termination of each algorithm, respectively.

Table4.2 illustrates the performance of APBBi methods and Lin’s method for small and
medium size NMF problems. From this table we observe that forsmall size NMF problems,
the APBBi methods are competitive to Lin’s method. However,as the problem size grows,
the APBBi methods converge significantly faster than Lin’s method in terms of CPUTIME.

Table 4.3 demonstrates the behavior of the five algorithms on large size NMF prob-
lems. We observe from this table that clearly APBB4 is ratherslow comparing to the APBBi
(i = 1, 2, 3) and Lin methods for large problems. This can be explained bythe inconsis-
tent performance of PBBNLS4 for solving NLS problems. We also observe that APBB2 is
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TABLE 4.2
Comparison of APBBi and Lin on small and medium size NMF problems.

Problem Algorithm iter niter CPUTime PGN RN
Lin 359 6117 1.248 0.00028 15.925579

V = rand(100,50) APBB1 646 9818 1.716 0.000108 15.927577
W 0 = rand(100,10) APBB2 439 5961 1.014 0.000207 15.934012
H0 =rand(10,50) APBB3 475 5660 1.076 0.000278 15.934005

APBB4 562 12256 1.591 0.000181 15.910972
Lin 576 15996 6.708 0.001299 33.885342

V = rand(100,200) APBB1 375 6455 2.683 0.000905 33.901354
W 0 = rand(100,15) APBB2 631 10561 4.274 0.001 33.890555
H0 =rand(15,200) APBB3 499 8784 3.588 0.00157 33.902192

APBB4 430 13751 3.775 0.001386 33.883501
Lin 1150 85874 302.736 0.03136 94.856419

V = rand(300,500) APBB1 101 2156 7.878 0.020744 95.092793
W 0 = rand(300,40) APBB2 110 2429 8.362 0.028711 95.070843
H0 =rand(40,500) APBB3 103 2133 7.722 0.028945 95.102193

APBB4 118 7770 16.084 0.031105 95.011186
Lin 2651 81560 169.292 0.010645 77.82193

V = rand(1000,100) APBB1 543 7613 17.94 0.009247 77.815999
W 0 = rand(1000,20) APBB2 488 6953 15.444 0.010538 77.82096
H0 =rand(20,100) APBB3 425 5252 13.088 0.005955 77.822524

APBB4 351 10229 16.224 0.005741 77.830637
Lin 177 7729 10.624 0.032641 161.578261

V = abs(randn(300,300)) APBB1 183 3350 4.508 0.016747 161.647472
W 0 = abs(randn(300,20)) APBB2 176 3215 4.15 0.017717 161.690957
H0 =abs(randn(20,300)) APBB3 194 2996 4.118 0.024201 161.686909

APBB4 209 6351 6.068 0.032873 161.621572
Lin 934 13155 62.182 0.127067 199.116691

V = abs(randn(300,500)) APBB1 646 7874 36.379 0.138395 199.168636
W 0 = abs(randn(300,40)) APBB2 577 8068 33.353 0.08876 199.069136
H0 =abs(randn(40,500)) APBB3 792 9768 43.805 0.100362 199.123688

APBB4 438 14787 35.256 0.075076 199.163277
Lin 1438 24112 64.99 0.04327 162.820691

V = abs(randn(1000,100)) APBB1 235 2822 7.254 0.044061 162.845427
W 0 = abs(randn(1000,20)) APBB2 247 2929 7.176 0.036261 162.845179
H0 =abs(randn(20,100)) APBB3 258 2809 7.472 0.046555 162.841468

APBB4 247 5193 9.516 0.043423 162.901371

slightly faster than APBB1 and APBB3 for this set of problemsand all these three methods
are significantly faster than Lin’s method.

Table4.4compares the APBBi methods and Lin’s method on some difficultNMF prob-
lems. We observe that the APBBi methods substantially outperform Lin’s method on this set
of problems.

In Table4.5we compare the five algorithms on some exactly factorable NMFproblems.
We observe that in this case, APBB1, APBB2, and APBB3 methodsare substantially faster
than Lin’s method and APBB4.

In summary, based on the performance of the APBBi methods andLin’s method on the
four types of randomly generated NMF problems using the aforementioned stopping criteria,
we conclude that APBB1, APBB2, and APBB3 methods converge significantly faster than
Lin’s method for large size, difficult, and exactly factorable problems in terms of CPU time
used. They are also competitive with Lin’s method on small size problems and faster than
Lin’s method on medium size problems. Based on the overall performance, it seems that
APBB1 and APBB2 perform similarly and both of them are a little better than APBB3. The
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TABLE 4.3
Comparison of APBBi and Lin on large size NMF problems.

Problem Algorithm iter niter CPUTime PGN RN
Lin 542 25420 ≥ 600 0.293784 388.404591

V = rand(2000,1000) APBB1 63 1789 48.36 0.169287 388.753789
W 0 = rand(2000,40) APBB2 60 1732 43.93 0.176915 388.788783
H0 =rand(40,1000) APBB3 70 1708 45.989 0.215956 388.755657

APBB4 337 46797 ≥ 600 1.625634 388.389849
Lin 40 3960 ≥ 600 21.122063 665.880519

V = rand(3000,2000) APBB1 95 2049 367.148 1.648503 665.212812
W 0 = rand(3000,100) APBB2 80 1936 308.664 1.67074 665.233771
H0 =rand(100,2000) APBB3 94 1993 343.53 1.623925 665.20267

APBB4 10 10020 ≥ 600 32322.8139 711.14501
Lin 11 1659 ≥ 600 84.633034 848.130974

V = rand(2000,5000) APBB1 29 1194 469.36 7.132444 839.962863
W 0 = rand(2000,200) APBB2 30 1267 457.395 9.070003 839.917857
H0 =rand(200,5000) APBB3 32 1470 535.473 6.558566 839.754882

APBB4 11 3458 ≥ 600 631245.173 898.640696
Lin 45 1925 292.892 5.742485 1394.828534

V = abs(randn(2000,3000)) APBB1 52 1243 185.704 7.227765 1394.594862
W 0 = abs(randn(2000,100)) APBB2 51 1418 187.513 8.661069 1394.68873
H0 =abs(randn(100,3000)) APBB3 55 1267 186.156 8.624533 1394.694934

APBB4 22 11117 ≥ 600 17712.80413 1421.28342

TABLE 4.4
Comparison of APBBi and Lin on difficult NMF problems.

Problem Algorithm iter niter CPUTime PGN RN
Lin 6195 198110 26.255 0.00181 718.456033

V = csc(rand(50,50)) APBB1 2669 32219 4.103 0.001332 718.456035
W 0 = rand(50,10) APBB2 2749 32679 3.994 0.001183 718.456035
H0 =rand(10,50) APBB3 2644 31259 3.853 0.001061 718.456035

APBB4 3048 30851 2.98 0.001445 718.456034
Lin 22093 1717514 243.861 0.003822 1165.453591

V = csc(rand(100,50)) APBB1 21991 135041 26.115 0.002869 1165.453605
W 0 = rand(100,10) APBB2 22410 136280 24.898 0.002869 1165.453605
H0 =rand(10,50) APBB3 22401 118545 23.338 0.001773 1165.453605

APBB4 21483 172171 22.729 0.002435 1165.453604
Lin 26370 645478 291.067 0.004951 3525.44525

V = csc(rand(100,200)) APBB1 6905 105236 47.471 0.004517 3525.445263
W 0 = rand(100,15) APBB2 7541 117095 51.309 0.004901 3525.445263
H0 =rand(15,200) APBB3 9636 156118 72.587 0.004927 3525.445262

APBB4 9761 100586 38.704 0.004854 3525.445261
Lin 25868 509206 ≥ 600 0.032144 9990.273219

V = csc(rand(200,300)) APBB1 6226 97030 99.185 0.024480 9990.273226
W 0 = rand(200,20) APBB2 6178 97649 97.298 0.021796 9990.273226
H0 =rand(20,300) APBB3 6185 122773 121.447 0.024276 9990.273225

APBB4 7683 102010 85.645 0.023077 9990.273222

performance of APBB4 is inconsistent: Sometimes it works well and sometimes it does not
perform well. Therefore APBB4 is not recommended for solving NMF problems.

As a final remark in this subsection, it can be seen that Lin’s method can sometimes give a
slightly smaller final value of‖V −W kHk‖F than the APBBi methods when each algorithm
terminates due to condition (4.1) being met. Several factors can attribute to this phenomenon.
First, these algorithms can converge to different stationary points (W ∗,H∗) of the NMF
problem. The values of‖V − W ∗H∗‖F at these points can be slightly different. Second,
even if each of them converges to a stationary point(W ∗,H∗) with the same‖V −W ∗H∗‖F
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TABLE 4.5
Comparison of APBBi and Lin on exactly factorable NMF problems.

Problem Algorithm iter niter CPUTime PGN RN
Exactly Factorable Lin 761 143759 9.781 0.00002 0.000146
V = rand(20,5)*rand(5,50) APBB1 837 17861 1.232 0.000014 0.001601
W 0 = rand(20,5) APBB2 869 18722 1.17 0.000014 0.001395
H0 =rand(5,50) APBB3 1045 20461 1.295 0.000011 0.001514

APBB4 215 55065 2.387 0.000013 0.000385
Exactly Factorable Lin 837 115740 15.709 0.000078 0.000573
V = rand(100,10)*rand(10,50) APBB1 524 13180 2.122 0.000076 0.005784
W 0 = rand(100,10) APBB2 560 13633 1.981 0.000075 0.005586
H0 =rand(10,50) APBB3 597 14917 2.246 0.000075 0.00545

APBB4 304 76860 6.958 0.000082 0.000877
Exactly Factorable Lin 2735 243572 122.586 0.000366 0.003565
V = rand(100,15)*rand(15,200) APBB1 1926 54640 23.837 0.000371 0.04548
W 0 = rand(100,15) APBB2 2217 65976 25.381 0.000357 0.045799
H0 =rand(15,200) APBB3 1879 49998 19.906 0.000333 0.045776

APBB4 2065 279023 75.972 0.000368 0.016646
Exactly Factorable Lin 1790 320943 ≥ 600 0.032549 0.34627
V = rand(200,30) *rand(30,500) APBB1 1687 67167 148.763 0.00209 0.24903
W 0 = rand(200,30) APBB2 1640 64987 125.971 0.002076 0.250934
H0 =rand(30,500) APBB3 1985 108521 208.87 0.002295 0.257472

APBB4 682 632573 ≥ 600 1.283378 0.409974

value (for example, when each converges to a global minimizer of the NMF problem), they
can still have different final‖V − W kHk‖F values because the termination condition (4.1)
measures how close(W k,Hk) gets to a stationary point. It is possible that a pair of(W k,Hk)

is closer to a stationary point than another pair but has a slightly larger‖V −W kHk‖F value
as the function‖V −WH‖F is nonlinear. Third, Lin’s method is a monotonically decreasing
method and the APBBi methods are nonmonotone methods. As Lin’s method often takes
significantly longer time to satisfy termination condition(4.1) than APBBi methods do, Lin’s
method may result in slightly smaller objective function value than the other methods at the
given tolerance level.

4.3. Comparison of the APBB2, Lee-Seung, and Lin methods on the ORL database.
As APBB1, APBB2, and APBB3 have similar performance based onthe results in Subsection
4.2, we chose APBB2 to test and compare it with the Lee–Seung and Lin methods on a real
life problem: the reduced size ORL face database (see [36, 17]). In this subsection, we report
these experiments.

The reduced size ORL database consists of400 facial images of40 people, each person
with 10 different orientation, expressions and brightness/contrast levels. The image dimen-
sions are56× 46. The matrixV whose columns represent these images has56× 46 = 2576

rows and400 columns. The original NMF or the nsNMF is applied to reconstruct images
from this database by using a small rankr. In our experiments, we usedr = 49. When NMF
or nsNMF is used,W ∈ R

2576,49 gives the basis images andH ∈ R
49,400 is the encoding

matrix.
In our first experiment, we used the APBB2, Lin, and Lee–Seungmethods to solve the

NMF problem resulting from the ORL database. We set the toleranceǫ = 10−8 and let each
algorithm run for8 seconds. The facial images were then reconstructed using the finalW k

andHk obtained by each algorithm at its termination.
In Figure4.1, some sample original images are given. In Figure4.2, the reconstructed
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FIGURE 4.1. Sample original images from ORL database.

FIGURE 4.2. Reconstruction of images withr = 49 and time = 8 seconds: From top to bottom by Lee-Seung,
Lin and APBB2.

images by running each of Lee–Seung, Lin, and APBB2 for 8 seconds are given. From
Figures4.1 and4.2, it is clear that APBB2 gives better quality reconstructed images than
Lin and Lee–Seung do. We can also observe that Lin obtains better reconstruction than
Lee–Seung does. These observations can be explained by the fact that APBB2 converges
faster than Lin and Lin faster than Lee–Seung. In Figure4.3, we plot the residual norm
RN = ‖V − WH‖F versus CPU time for each algorithm for this experiment usinga range
of CPU time between0 and100 seconds. Note that APBB2 terminated after about 11 seconds
for the toleranceǫ = 10−8. From Figure4.3, we can see that for this database, to attain a
similar level of reconstruction quality to APBB2 using 8 seconds, Lin needs about 40 seconds
and Lee–Seung needs much longer time.

We tried to answer four questions when we carried out the second experiment on the ORL
database. The first two questions are: Can the APBB2, Lin, andLee–Seung methods produce
sparser basis images when they are applied to the nsNMF problem with a positive smoothing
parameterθ if they are allowed to run sufficient amount of computationaltime? Can the
APBB2 method generate sparse basis images and reconstruct images which are comparable
to the ones by the Lin and Lee–Seung but use significantly lesstime? We will use Figures
4.4, 4.5, 4.6, and Table4.6to answer these questions. The next two questions are: How good
and sparse are the basis images generated by each of the threemethods when they are allowed
to run a relatively short period of time? How good are the images reconstructed by each of
the three methods when they are allowed to run a relatively short period of time? Figures4.7,
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FIGURE 4.3. Residual Norm versus CPU Time for Lee-Seung, Lin and APBB2 using ǫ = 10−8.

4.8, and Table4.7answer these questions.
In Figures4.4, 4.5, 4.6, and Table4.6, we report the results of applying the Lee–Seung,

Lin, and APBB2 methods to solve the nsNMF problem resulted from the ORL database.
These figures and the table were constructed by setting the toleranceǫ = 10−10, running
the Lee-Seung and the Lin algorithms for600 seconds and the APBB2 algorithm for150

seconds, and using the smoothing parameterθ = 0 andθ = 0.7 respectively. Note that when
θ = 0, the nsNMF reduces to the original NMF.

Figure4.4gives the basis images generated by Lee–Seung, Lin, and APBB2 for solving
the nsNMF problem withθ = 0 (i.e., the original NMF). Figure4.5 gives the basis images
generated by Lee–Seung, Lin, and APBB2 for solving the nsNMFproblem withθ = 0.7.
Figure4.6gives the reconstructed sample images by Lee–Seung, Lin, and APBB2 for solving
the nsNMF problem withθ = 0.7.

We observe from Figures4.4and4.5that whenθ = 0.7 is used, all three algorithms can
produce much sparser basis images than they do withθ = 0. This confirms that the nsNMF
can increase the ability of learning by parts of the originalNMF (see [30]). If we examine this
example more carefully, however, we can see that both APBB2 and Lin methods give sparser
basis images than the Lee–Seung method. We also observe fromFigure4.6 that the APBB2
method obtains reconstructed images which are comparable to the ones by the Lin method and
by the Lee-Seung method. In summary, these figures show that in this example, the APBB2
method can reconstruct images and generate sparse basis images which are comparable to the
Lin and Lee–Seung methods but uses considerably less time.

These observations can be explained by the numerical results in Table4.6. In this table,
the sparseness of a matrixA is measured by

(4.2) spA =
Number of Zero Entries in A

Total Number of Entries in A
,

whereAij is considered a zero entry if|Aij | < 10−6 in our experiment. From this table, we
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FIGURE 4.4. Basis images generated by three algorithms for solving original NMF (i.e. θ = 0 in nsNMF)
from ORL database usingǫ = 10−10.

(a) Lee-Seung (600 seconds) (b) Lin (600 seconds) (c) APBB2 (150 seconds)

FIGURE 4.5.Basis images generated by three algorithms for solving nsNMF from ORL database withθ = 0.7
and usingǫ = 10−10.

(a) Lee-Seung (600 seconds) (b) Lin (600 seconds) (c) APBB2 (150 seconds)

can see that whenθ = 0.7 is used, each of the three algorithms can increase the sparseness
of W (andH) substantially comparing toθ = 0. We also observe that both the Lin and the
APBB2 methods give sparserW and sparserH than the Lee-Seung method does. In addition,
the APBB2 method obtains slightly smaller residual norm‖V − WSH‖F than the Lin and
Lee–Seung methods. Here we would like to emphasize that these numerical results were
obtained by running APBB2 method for150 seconds and the Lin and Lee–Seung methods
for 600 seconds.

In Figure4.7, we give the basis images generated by the Lee–Seung, Lin, and APBB2
methods for solving the nsNMF withθ = 0.7 and using30 seconds of maximum allowed
CPU time. We can see that the APBB2 method can produce sparserbasis images than Lin’s
method in this case. Moreover, the Lee–Seung method can not produce any sparseness in the
basis matrixW within 30 seconds of CPU time, as illustrated in Table4.7.

Finally, Figure4.8gives the reconstructed sample images by Lee–Seung, Lin, and APBB2
using the nsNMF withθ = 0.7 and 30 seconds of maximum allowed CPU time. We observe
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FIGURE 4.6. Reconstructed images by three algorithms for solving nsNMFfrom ORL database withθ = 0.7
and usingǫ = 10−10: From top to bottom by Lee-Seung (600 seconds), Lin (600 Seconds), and APBB2 (150
seconds).

TABLE 4.6
Comparison of APBB2 (150 seconds), Lin (600 seconds), and Lee-Seung (600 seconds) for solving nsNMF

from ORL database using toleranceǫ = 10−10.

θ Algorithm PGN RN Sparseness in W Spareness in H
0 APBB2 0.021793 2.189993 39 35

Lin 0.021746 2.211365 40 35
Lee-Seung 10.838066 2.247042 34 20

0.7 APBB2 0.002024 2.859032 81 56
Lin 0.022953 2.877591 81 55

Lee-Seung 16.703386 2.928300 60 32

FIGURE 4.7. Basis images generated by three algorithms for solving nsNMF from ORL database withθ =
0.70, usingǫ = 10−10 and Maximum Allowed CPU Time= 30 seconds.

(a) Lee-Seung (b) Lin (c) APBB2

that the APBB2 method produces better reconstruction than Lin’s method. It seems that
when this relatively short period of time is used, the Lee–Seung method has not been able to
generate identifiable reconstructed images.
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TABLE 4.7
Comparison of three algorithms for solving nsNMF from ORL database withθ = 0.70, usingǫ = 10−10 and

Maximum Allowed CPU Time = 30 seconds.

Algorithm PGN RN Sparseness in W Sparseness in H
APBB2 0.023983 2.979195 82 50
Lin 2.296475 3.497314 71 32
Lee–Seung 10.894495 4.698601 0 0

FIGURE 4.8.Reconstructed images by three algorithms for solving nsNMFfrom ORL database withθ = 0.70,
usingǫ = 10−10 and Maximum Allowed CPU Time = 30 seconds: From top to bottom by Lee–Seung, Lin, and
APBB2.

4.4. Comparison of the APBB2 and HALS/RRI methods.We implemented the HA–
LS/RRI method in MATLAB. In our implementation, we followedAlgorithm 7 of Ho [14,
page 69]. The original Algorithm 7 of Ho may result in zero vectors ht or wt. To avoid
this type of rank-deficient approximation, we used a strategy introduced in Ho’s thesis [14,
expression (4.5) on page 72].

For both APBB2 and HALS/RRI, we used similar stopping criteria described in Sub-
section4.2, except for that the approximate gradient in condition (4.1) was changed to the
gradient:

(4.3) ‖[∇C
W hS(W k,Hk), (∇C

HhS(W k,Hk))T ]‖F < ǫ · PGN0.

Since both the APBB2 and HALS/RRI methods are reasonably fast, we set the maximum
allowed CPU time to be100 seconds.

We first tested the APBB2 and HALS/RRI methods on three groupsof randomly gener-
ated NMF problems:

• Group 1 (ProblemsP1–P11):
V = rand(m,n), W0 = rand(m, r), H0 = rand(r, n).

• Group 2 (ProblemsP12–P16):
V = csc(rand(m,n)), W0 = rand(m, r), H0 = rand(r, n).

• Group 3 (ProblemsP17–P23):
V = rand(m, r) ∗ rand(r, n), W0 = rand(m, r), H0 = rand(r, n).

The numerical results of these experiments are reported in Table4.8. From this table
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TABLE 4.8
Comparison of APBB2 and HALS/RRI on Randomly Generated NMF Problems usingǫ = 10−6.

Problem Algorithm iter niter CPUTime PGN RN
P1, m = 20 HALS/RRI 1157 0.655 0.000282 6.704077
n = 50, r = 5 APBB2 186 2323 0.156 0.000285 6.704077
P2, m = 100 HALS/RRI 1925 4.165 0.003081 15.965216
n = 50, r = 10 APBB2 450 6664 1.201 0.003079 15.964402
P3, m = 50 HALS/RRI 652 1.373 0.003241 15.907085
n = 100, r = 10 APBB2 689 11946 1.872 0.003263 15.911952
P4, m = 100 HALS/RRI 3888 36.301 0.025348 31.949834
n = 200, r = 20 APBB2 616 12077 6.583 0.020062 31.945314
P5, m = 300 HALS/RRI 2322 100.028 0.793530 98.254061
n = 500, r = 30 APBB2 1186 23309 65.442 0.185916 98.218000
P6, m = 300 HALS/RRI 1019 100.059 0.627775 91.692878
n = 500, r = 50 APBB2 945 19856 100.059 1.305468 91.719337
P7, m = 100 HALS/RRI 4493 100.012 0.212449 77.953204
n = 1000, r = 20 APBB2 942 19239 25.491 0.063113 77.958453
P8, m = 2000 HALS/RRI 141 100.199 230.102735 388.743544
n = 1000, r = 40 APBB2 136 3510 100.667 8.724113 388.426680
P9, m = 3000 HALS/RRI 3 180.462 2444.874883 700.382102
n = 2000, r = 100 APBB2 22 588 104.318 347.053280 667.647866
P10, m = 2000 HALS/RRI 3 181.273 2608.736609 696.220345
n = 3000, r = 100 APBB2 21 734 103.585 272.621912 666.717715
P11, m = 2000 HALS/RRI 2 497.253 32270.733529 968.339290
n = 5000, r = 200 APBB2 9 270 125.690 2110.725410 855.042449
P12, m = 20 HALS/RRI 33167 18.377 0.005618 275.408370
n = 50, r = 5 APBB2 17906 234816 16.536 0.004837 275.408370
P13, m = 100 HALS/RRI 30164 64.475 0.031324 1672.570769
n = 50, r = 10 APBB2 844 15720 2.356 0.033597 1672.570786
P14, m = 50 HALS/RRI 21451 45.568 0.019479 1575.266873
n = 100, r = 10 APBB2 1656 22326 4.009 0.012779 1575.266875
P15, m = 100 HALS/RRI 4841 27.675 0.052223 4351.003826
n = 200, r = 15 APBB2 4978 67865 34.039 0.046538 4351.003826
P16, m = 200 HALS/RRI 7323 100.012 0.625107 10736.711898
n = 300, r = 20 APBB2 5210 98518 100.012 0.339669 10736.711903
P17, m = 20 HALS/RRI 1596 0.952 0.000163 0.000454
n = 50, r = 5 APBB2 565 9100 0.577 0.000163 0.000420
P18, m = 100 HALS/RRI 2570 5.538 0.000971 0.002506
n = 50, r = 10 APBB2 947 22529 3.432 0.000949 0.001882
P19, m = 50 HALS/RRI 4324 9.656 0.000878 0.002886
n = 100, r = 10 APBB2 957 27701 4.165 0.000868 0.002168
P20, m = 100 HALS/RRI 5008 46.535 0.004903 0.007428
n = 200, r = 20 APBB2 927 32966 17.893 0.004786 0.009190
P21, m = 300 HALS/RRI 2340 100.043 3.766695 4.606791
n = 500, r = 30 APBB2 920 41285 100.075 0.746586 2.755773
P22, m = 300 HALS/RRI 1044 100.075 42.645934 25.055011
n = 500, r = 50 APBB2 374 21068 100.184 1.750924 1.555805
P23, m = 2000 HALS/RRI 155 100.745 1004.622468 244.083901
n = 100, r = 40 APBB2 110 5340 100.496 49.765120 69.009367

we can see that the APBB2 method has a comparable performancewith the HALS/RRI
method for small or medium scale problems and the APBB2 method becomes faster than
the HALS/RRI method as the the size of the NMF problem increases. We also observe that
the APBB2 method outperforms the HALS/RRI method on large-scale problems.

A natural question is, can the APBB2, Lin, and HALS/RRI methods produce a sparse
nonnegative factorization if the matrix V has sparse nonnegative factorizations? To answer
this, we tested the APBB2, Lin, and HALS/RRI methods on the CBCL face database (see
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[35]). The CBCL database consists of 2429 facial images of dimensions19× 19. The matrix
V representing this database has361 rows and2429 columns. In our experiments, we used
r = 49.

As shown by Lee and Seung [22], the data matrixV of the CBCL database has sparse
nonnegative factorizations whenr = 49. Moreover, it has been observed that the Lee–Seung
algorithm (1.7) and (1.8) can produce a sparse factorization if it is allowed to run a sufficient
amount of time.

We report our experiments of the APBB2, Lin, and HALS/RRI methods on the CBCL
database in Figures4.9, 4.10, and4.11. In Figure4.9, we plot the residual normRN =

‖V − WH‖F versus CPU time for each algorithm using a range of CPU time between 0
and 100 seconds. In Figure4.10and Figure4.11, we plot the sparseness ofW of H versus
CPU time respectively. We used the sparseness measurement given in (4.2), whereAij is
considered a zero if|Aij | < 10−6.

We can see from Figures4.10and4.11that all the three algorithms can generate a sparse
nonnegative factorization in this example. We comment thatthe huge sparseness inW andH

given by the HALS/RRI method at early stages is due to the factthat this method generates
some zero vectorsht or wt initially. The large residual norm of the HALS/RRI method at
early stages confirms this. The rank-deficient problem of theHALS/RRI method is remedied
after the strategy of Ho [14, page 72] is in full play.

We also observe from these three figures that the APBB2 methodcan obtain fairly
good residual norm and sparseness inW andH using less CPU time than both the Lin and
HALS/RRI methods.

FIGURE 4.9. Residual Norm versus CPU Time for HALS/RRI, Lin and APBB2 using ǫ = 10−7.

5. Final remarks . We have proposed four algorithms for solving the nonsmooth non-
negative matrix factorization (nsNMF) problems. Each of our algorithms alternately solves
a nonnegative linear least squares subproblem in matrix form using a projected Barzilai–
Borwein method with a nonmonotone line search or no line search. These methods can also
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FIGURE 4.10. Sparseness ofW versus CPU Time for HALS/RRI, Lin and APBB2 usingǫ = 10−7.

FIGURE 4.11. Sparseness ofH versus CPU Time for HALS/RRI, Lin and APBB2 usingǫ = 10−7.

be used to solve the original NMF problem by setting the smoothing parameterθ = 0 in
nsNMF. We have tested and compared our algorithms with the projected gradient method of
Lin on a variety of randomly generated NMF problems. Our numerical results show that three
of our algorithms, namely, APBB1, APBB2, and APBB3, are significantly faster than Lin’s
algorithm for large-scale, difficult, or exactly factorable NMF problems in terms of CPU time
used. We have also tested and compared our APBB2 method with the multiplicative algo-
rithm of Lee and Seung and Lin’s algorithm for solving the nsNMF problem that resulted
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from the ORL face database using bothθ = 0 andθ = 0.7. The experiments show that
whenθ = 0.7 is used, the APBB2 method can produce sparse basis images andreconstructed
images which are comparable to the ones by the Lin and Lee–Seung methods but in consider-
ably less time. They also show that the APBB2 method can reconstruct better quality images
and obtain sparser basis images than the methods of Lee–Seung and Lin when each method
is allowed to run for a short period of time. We have also tested the APBB2 method and
the HALS/RRI method and the comparison shows that the APBB2 method can outperform
the HALS/RRI method on large-scale problems. These numerical tests show that the APBBi
(i = 1, 2, 3) methods, especially APBB1 and APBB2, are suitable for solving large-scale
NMF or nsNMF problems and in particular, if only a short period of computational time is
available.

So far we have emphasized the computational efficiency of NMFalgorithms. If high
accuracy rather than computational time is a priority, we can run an APBBi (i = 1, 2, 3)
method by setting toleranceǫ = 0 and using relatively large values of maximum allowed CPU
time and maximum allowed number of iterations to terminate the algorithm. Alternatively,
taking the APBB2 method as an example, this can be done in the MATLAB code APBB2.m
by choosingtol = 0, replacing the command line

tolW = max(0.001,tol) * initgrad_norm; tolH = tolW;

with the following

tolW=10ˆ-8; tolH=tolW;

and using suitable MaxTime and MaxIter values. We comment that 10−8 is only a reference
which can be replaced by smaller values. This implementation solves the NLS subproblems
(3.20) and (3.21) very accurately from the beginning.

An interesting question is: How well our APBBi (i = 1, 2, 3) methods perform when
compared to an algorithm resulting from the projected Barzilai–Borwein approach of Zdunek
and Cichocki [34] (It is called GPRS–BB in [33]) to solve the NLS subproblem (3.1). We
coded the GPRS-BB method in MATLAB and incorporated it in theANLS framework as
we did for PBBNLSi methods. Our preliminary numerical testson some randomly generated
medium size NMF problems show that the APBBi methods are considerably faster in terms
of CPU time used. More experiments are needed to make a comprehensive comparison.

Another interesting question is to extend the projected BB idea to other variants of NMF
problems, such as the symmetric–NMF (see [8]) and semi-NMF (see [9]). Our preliminary
results show that the projected BB approach is very promising when applied to these two
classes of NMF problems.

Acknowledgments.The authors wish to express their gratitude to the referees for their very
helpful comments and suggestions.
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