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ALTERNATING PROJECTED BARZILAI-BORWEIN METHODS FOR
NONNEGATIVE MATRIX FACTORIZATION  *
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Dedicated to Richard S. Varga on the occasion of his 80tttay

Abstract. The Nonnegative Matrix Factorization (NMF) technique hasmused in many areas of science,
engineering, and technology. In this paper, we proposedigarithms for solving the nonsmooth nonnegative matrix
factorization (nsNMF) problems. The nsNMF uses a smoothimgmaterd € [0, 1] to control the sparseness in its
matrix factors and it reduces to the original NMR)if= 0. Each of our algorithms alternately solves a nonnegative
linear least squares subproblem in matrix form using a ptejeBarzilai-Borwein method with a nhonmonotone
line search or no line search. We have tested and comparedgauittams with the projected gradient method of
Lin on a variety of randomly generated NMF problems. Our nunaériesults show that three of our algorithms,
namely, APBB1, APBB2, and APBB3, are significantly fastemttan’s algorithm for large-scale, difficult, or
exactly factorable NMF problems in terms of CPU time used. Weshalso tested and compared our APBB2
method with the multiplicative algorithm of Lee and Seung aimisLalgorithm for solving the nsNMF problem
resulted from the ORL face database using l#bth 0 andd = 0.7. The experiments show that whén= 0.7 is
used, the APBB2 method can produce sparse basis images andtracted images which are comparable to the
ones by the Lin and Lee—Seung methods in considerably less fiilmey also show that the APBB2 method can
reconstruct better quality images and obtain sparser braagds than the methods of Lee—Seung and Lin when each
method is allowed to run for a short period of time. Finally, wevyide a numerical comparison between the APBB2
method and the Hierarchical Alternating Least Squares (HAR&hk-one Residue Iteration (RRI) method, which
was recently proposed by Cichocki, Zdunek, and Amari and byMda Dooren, and Blondel independently.
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Barzilai-Borwein method, nonmonotone line search.
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1. Introduction. Given a nonnegative matriX, find nonnegative matrix facto#$” and
H such that

(1.1) V ~ WH.

This is the so—calledonnegative matrix factorizatioNMF) which was first proposed by
Paatero and Tappe?, 29] and Lee and Seun@]]. The NMF has become an enormously
useful tool in many areas of science, engineering, and t#oby since Lee and Seung pub-
lished their seminal papek?]. For recent surveys on NMF, se2 b, 14].

As the exact factorizatio = W H usually does not exist, it is typical to reformulate
NMF as an optimization problem which minimizes some type isfathce betweef and
WH. A natural choice of such a distance is the Euclidean distamtich results in the
following optimization problem:

PROBLEM 1.1 (NMF). Suppose that’ € R™™ is nonnegative. FindV and H which
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solve
. 1
(1.2) min f(W, H) = §HV ~WH|% st. W>0, H>0,

wherelW € R™", H € R™", and|| - || ¢ is the Frobenius norm.

One of the main features of NMF is its ability to learn objebysparts (see Lee and
Seung P2]). Mathematically this means that NMF generates sparseratl” and H. It
has been discovered i24], however, that NMF does not always lead to spdiseand H.
To remedy this situation, several approaches have beemggdp For instance, Li, Hou,
and Zhang 24] and Hoyer [L6, 17] introduce additional constraints in order to increase the
sparseness of the factor8 or H. In a more recent proposal by Pascual-Montano et al.
[30], the nonsmooth nonnegative matrix factorizati@gsNMF) introduces a natural way of
controlling the sparseness. The nsNMF is defined as:

(1.3) V ~ WSH,

whereS € R™" is a “smoothing” matrix of the form
(1.4) S=01-0)I+ gJ,

where! is ther x r identity matrix and/ € R™" is the matrix of all 1's. The variablé is

called thesmoothing parameteand it satisfie$) < § < 1. If § = 0, thenS = I and the
nsNMF reduces to the original NMF. The valuefofan control the sparsenessibfand H.

The larger is, the sparsell” and H are.

In [30], Pascual-Montano et al. reformulated) as an optimization problem using the
Kullback-Liebler divergence as the objective function. rédeve reformulate1.3) as the
following optimization problem using the Euclidean distan

PrROBLEM 1.2 (nsNMF).Suppose thal’ € R™™ is nonnegative. Choose the smoothing

parameterd € [0, 1] and defineS = (1 — 6)I + gJ. Find W and H which solve

1
(1.5) min hg(W, H) = 5||V ~WSHI|%, st. W >0, H>0,

whereW € R™" and H € R™".
REMARK 1.3. By the definitions of functiong andh g, we have

(16) hs(W, H) = f(W,SH) = [(WS, H).

In[23], Lee and Seung proposed a multiplicative algorithm fovisg the NMF problem
1.1 This algorithm starts with a positive pdi’°, H°) and iteratively generates a sequence
of approximationgW*, H*) to a solution of Problem.1 using the following updates:

(1.7) Wkt = wk s (v(H™MT)./(WEHY (HMT),

(18) Hk+1 _ Hk. ” ((Wk:Jrl)TV)./((WkJrl)TWkJrlHk:).

The Lee—Seung algorithm is easy to implement and has beehinsome applica-
tions. It has also been extended to nonnegative matrixriaetmn problems with additional
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constraints 17, 24]. Under certain conditions, Lin2p] proves that a modified Lee-Seung
algorithm converges to a Karush-Kuhn-Tucker point of Peabl.1 It has been found that
the Lee—Seung algorithm can be sla®y 25, 5]. A heuristic explanation why the Lee—Seung
algorithm has a slow rate of convergence can be founddh [

Several new algorithms aimed at achieving better perfocmdrave been proposed re-
cently (see the survey pape8s p], the references therein, angl R0, 19, 14, 15]). In partic-
ular, the projected gradient method of Li?2H] is easy to implement and often significantly
faster than the Lee—Seung algorithm. Under mild conditie®nverges to a Karush—Kuhn—
Tucker point of Problem.. L

The Lin algorithm starts with a nonnegative péi#’°, H°) and generates a sequence
of approximationg W*, H*) to a solution of Probleni.1 using the following alternating
nonnegative least squares (ANLS) approach:

. : . 1 .
(1.9 Whtt = argmmwzof(W Hk) = argmlnw20§||VT - (Hk)TWT”%“
and
1
(1.10) HFL = argminHZOf(WkH, H) = argminH20§|\V — Wk |2,

The convergence of the ANLS approach to a Karush—Kuhn-Tymdiat of the NMF prob-
lem 1.1 can be proved (see for exampl&2] 25)]).

We comment that there are several NMF algorithms which useARLS approach.
The Lin algorithm differs from the other algorithms in itsagegy of solving Subproblems
(1.9 and (.10. Lin uses a projected gradient method to solve each sulgmothich is
a generalization of the steepest descent method for umeoret optimization. As is well
known, the steepest descent method can be slow, even foragicasbjective functions. The
projected gradient method for constrained optimizatiderofnherits this behavior (se#&§,
27).

Using Newton or quasi—-Newton methods to solve the subpmablean give a faster
rate of convergence2], 33]. However, these methods need to determine a suitablesactiv
set for the constraints at each iteration (see, for exanjip)€,8]). The computational cost
per iteration of these methods can be high for large-scaliengation problems and the
subproblems 1.10 and (L.9) resulting from real life applications are often of largeesi
Another algorithm which also uses an active set strategypbas proposed irLp)].

Note that the NMF probleri.1 can be decoupled into

(1.11) w1>0 m>0 2||V Zw’h I

where thew;’s are the columns dfi” andh;’s the rows ofH. Utilizing this special structure,
Ho, Van Doreen, and Blondellf,, 15] recently proposed the so-called Rank-one Residue
Iteration (RRI) algorithm for solving the NMF problem. Thaggorithm was independently
proposed by Cichocki, Zdunek, and Amari #,[where it is called the Hierarchical Alternat-
ing Least Squares (HALS) algorithm. In one loop, the HALSIRRorithm solves

1
(1.12) min o || R — weh|[%
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and
(1.19) in 2[R, — wh|
. min — —w
w>0 2 t HiE

fort =1,2,...,r, whereR, =V — Zwihi' A distinguished feature of this algorithm is
1#£t
that the solution toX.12) or (1.13 hasian explicit formula which is easy to implement. Nu-
merical experiments ing[ 14, 15] show that the HALS/RRI algorithm is significantly faster
than the Lee—Seung method and some other methods based d @yroach. Under mild
conditions, it has been proved that this algorithm conwetgea Karush-Kuhn-Tucker point
of Probleml.1 (see [L4, 15]). For detailed description and analysis of the RRI aldyonit we
refer to the thesis of HalH].

It has been reported by many researchers in the optimizediomunity that the Barzilai—
Borwein gradient method with a non—monotone line searchreiable and efficient algo-
rithm for large-scale optimization problems (see for ins&[3, 10)).

In this paper, motivated by the success of Lin’s projecteatiggnt method and good
performance of the Barzilai-Borwein method for optiminati we propose four projected
Barzilai-Borwein algorithms within the ANLS framework ftte nsSNMF probleni.2. We
shall call these algorithmAlternating Projected Barzilai-Borwei(APBB) algorithms for
nsNMF. They alternately solve the nonnegative least sguareproblems:

1
(1.14) Whtt = argminy, o f(W, SH*) = argminwzo§\|VT — (SHMTWT|2,
and
1
(1.15) HM = argminHZOf(Wk“S, H) = argminHZOiHV — (WFS H|%.

Each of these two subproblems is solved using a projectezli&aBorwein method.

Note that if the smoothing parametér= 0, then our algorithms solve the original
NMF problem1.1. We will test the APBB algorithms on various examples usi@gdomly
generated data and the real life ORL datab&s$ §nd CBCL database3p] and compare
them with the Lee—Seung, Lin, and HALS/RRI algorithms. Oumerical results show that
three of the APBB algorithms, namely, APBB1, APBB2 and APBE#8 faster than the Lin
algorithm, in particular, for large-scale, difficult, angaetly factorable problems in terms
of CPU time used. They also show that the APBB2 method carediotpn the HALS/RRI
method on large-scale problems.

It is straightforward to extend the original Lee—Seung gt for NMF to a multiplica-
tive algorithm for nsNMF by replacing’* by SH* in (1.7) andW*+1 by W*+1S in (1.8).
The resulting Lee—Seung type multiplicative updates foiME are:

(1.16) WL = Wk s« (V(SH™MT)./(WFSH*(SH*)T)
and
(1.17) HM = gY 5 (WRHS)TV)./(WEHLSTWhH s ih)y.

The Lin algorithm for NMF can also be extended to nsNMF by sw\Subproblems1(14)
and (.15 using his projected gradient approach. We will also comphe APBB2, Lee—
Seung, and Lin methods on their abilities to generate spérsed H factors when they are
applied to the nsNMF problem resulting from the ORL datalveisie 6 > 0.
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This paper is organized as follows. In Sectidnwe give a short introduction of the
Barzilai-Borwein gradient method for optimization. WeaJgresent two sets of first order
optimality conditions for the nsNMF problem which do not debe Lagrange multipliers
and can be used in the termination criteria of an algorithnmsédving nsNMF. In Sectiord
we first propose four projected Barzilai—-Borwein methodssfaving the nonnegative least
squares problems. We then incorporate them into an ANLSdvark and obtain four APBB
algorithms for nsNMF. In SectioA we present some numerical results to illustrate the per-
formance of these algorithms and compare them with the Lihlase—Seung methods. We
also provide numerical results comparing the APBB2 methitd the HALS/RRI method.

In Section5 we give some final remarks.

This project was started in late 2005, after Lin publishexirhenuscriptZ5] and cor-
responding MATLAB code online. It has come to our attentienently that Zdunek and
Cichocki [34] have independently considered using a projected BarBlaiwein approach
to the NMF problem. There are differences between theiraggr and ours which we will
discuss at the end of Subsecti®2. The performance of these two approaches will be dis-
cussed in Sectioh.

2. Preliminaries . As mentioned in the introduction, the APBB algorithms altely
solve the subproblems for nsNMF using a projected Bar&laiwein method. In this section
we first give a short introduction to the Barzilai—-Borweiradient method for optimization.
We then present two sets of optimality conditions for the M&Nproblem (1.5 which do
not use the Lagrange multipliers. They can be used in thenation criteria for an nsNMF
algorithm.

2.1. The Barzilai-Borwein algorithm for optimization. The gradient methods for the
unconstrained optimization problem

(2.1) min f(z),

are iterative methods of the form
(2.2) aF Tl = ok 4 ARdF,

whered® = —V f(z*) is the search direction ankf’ is the stepsize. The classic steepest
descent method computes the stepsize using the exact éirehse

(2.3) Mp = argmin, o f (¥ + Ad¥).

This method is usually very slow and not recommended forisgl2.1) (see for example,
[18, 27)).

In 1988, Barzilai and Borweinl] proposed a strategy of deriving the stepsiZefrom
a two—point approximation to the secant equation undeglgmasi—Newton methods, which
leads to the following choice of*:

T

Va)
V2]

(2.4) Npp =

)

yT's

with s = 2% — 2*~t andy = Vf(z*) — Vf(z*~1). We shall call the resulting gradient
method the Barzilai-Borwein (BB) method. Id]] the BB method is shown to converge
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R—superlinearly for 2-dimensional convex quadratic afijedunctions. For general strictly
convex quadratic objective functions, it has been shownttieaBB method is globally con-
vergent in B1] and its convergence rate is R—linear .|

To ensure the global convergence of the BB method when tleetilg functionf is not
quadratic, RaydarBp] proposes a globalization strategy that uses a nonmonditansearch
technique of {1]. This strategy is based on an Amijo-type nonmonotone lgerch: Find
a € (0,1] such that

. K ko aky < k—j k ENT gk
(2.5) f(@" +aNgpd™) < og,jg?rllil}zk,z\/[)f(l ) +yaAppV f(a¥)" d",

wherevy € (0,1/2), and define
(2.6) 2R = 2P o .

In this line searchy = 1 is always tried first and used if it satisfies ).

Under mild conditions, Rayda®f] shows that this globalized BB method is convergent.
He also provides extensive numerical results showing theuibstantially outperforms the
steepest descent method. Itis also comparable and sorsgtieferable to a modified Polak—
Ribiere (PRt) conjugate gradient method and the well known CONMIN reaifior large-
scale unconstrained optimization problems.

There have been several approaches to extend the BB metbptirtization problems
with simple constraints. In particular, Birgin, Marez, and Raydar3] propose two projected
BB (PBB) methods for the following optimization problem oc@nvex set:

(2.7) min f(z),
wheref2 be a convex subset &"*. They call their methods SPG1 and SPG2. Etieiteration
of the SPG2 method is of the form

(2.8) o = 2% + adk,
whered” is the search direction of the form
(2.9) d* = Polz® — N5 pV F(a®)] — 2F,

where)%,  is the BB stepsize which is calculated usi@iglf and P, is the projection operator
that projects a vector € R™ onto the convex regiof. The stepsizex = 1 is always tried
first and used if it satisfie2(5). Otherwisea € (0,1) is computed using a backtracking
strategy until it satisfies the nonmonotone line searchitiond2.5).

The kth iteration of the SPG1 method is of the form

(2.10) of T = Pola® — aNgpV [ (2b)]

and it uses a backtracking nonmonotone line search simildwet SPG2 method.

2.2. Optimality conditions for nsNMF. For a general smooth constrained optimization
problem, its first order optimality conditions are exprebaéth the Lagrange multipliers (see,
for example, 7). However, the nsNMF problerh.2 has only nonnegativity constraints. We
can express its optimality conditions without using Lagamultipliers.
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By the definition ofhs and remark..3, the gradient of. s in Problem1.2with respect to
W is given by

(2.11) Viwhs(W,H) =Vywf(W,SH) =WSHH"ST - vHTST
and the gradient at s with respect taH is given by
(2.12) Vihs(W,H) =V f(WS H)=STWIWSH - STWTvV.

If (W, H) is a local minimizer of nsNMFL.2, then according to the Karush—Kuhn-
Tucker theorem for constrained optimization (see for eXam27]), there exist Lagrange
multipliers matriceg: andv such that

(2.13) WSHHTST —vHTST =y, W. s pu =0, W >0, pw>0
and
(2.14) STWTWSH — STwWTv = v, H.xv=0, H >0, v >0.

We can rewrite these conditions without using the Lagrangkipfiers. This results in
the following lemma.
LEMMA 2.1.If (W, H) is a local minimizer for Problem nsNME.2, then we have

(2.15) min{WSHH'ST —vH"ST W} =0
and
(2.16) min{STWITWSH — STWTV,H} =0,

wheremin is the entry-wise operation on matrices.

In order to obtain the second set of optimality conditions, weed the concept of pro-
jected gradient. Let the feasible region of Proble@beC = {(W,H) : W > 0, H > 0}.
Then for any(W, H) € C, the projected gradient dfs is defined as

[ths(vv, H)]” if Wij > 0,
2.17)  [Viphs(W,H));; =
min{0, [Vwhs(W, H)|;;}  if Wy =0,

(2.18) [Viths(W, H))i; =

(Vahs(W, H)|i; if Hyj; >0,
min{0, [Vghs(W, H)|;;} if Hi; = 0.

From this definition, ifiV" is a positive matrix, theW ¥, hs(W, H) = Vyhs(W, H). Simi-
larly, VEhg(W, H) = Vyhs(W, H) if H is positive.

We are now ready to state the second set of optimality camditi

LEMMA 2.2.1f (W, H) € C'is alocal minimizer for Problem nsNME.2, then we have
that

(2.19) Vihs(W,H) =0
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and

(2.20) Vihs(W,H) = 0.

Each of the two sets of optimality conditions can be used énténmination conditions
for an algorithm solving the nsNMF problem. In this paperwiuse the second set, that is,
conditions 2.19 and .20 to terminate our APBB algorithms. We shall call a p@ir, H)
satisfying .19 and @.20 a stationary point of the nsSNMF probleti2.

3. Alternating Projected Barzilai-Borwein algorithms for nsNMF .

3.1. Nonnegative least squares problemAs mentioned earlier, each of our APBB al-
gorithms for the nsNMF probleria.2 is based on a PBB method for solving Subproblems
(1.149 and (L.15), alternately. Both subproblems are a nonnegative leastreg (NLS) prob-
lem in matrix form which can be uniformly defined as in the daling:

PROBLEM 3.1 (NLS).Suppose thaB € R™™ and A € R™" are nonnegative. Find a
matrix X € R™" which solves

. 1 9
(3.1) win Q(X) = 5l|B - AX|[p.

The quadratic objective functia@ can be rewritten as
Q(X) = (B~ AX, B~ AX) = (B, B) — {A7B, X) + (X, (AT A)X),

where(-, -) is the matrix inner product which is defined by

(3.2) (S,T) =" ST
]

for two matricesS, T € R™",
The gradient ofy is of the form:

(3.3) VQ(X)=ATAX - A"B

and the projected gradient of for X in the feasible regioRR’," = {X € R"" : X > 0} is
of the form

[VQ(X)]” if Xij > O,
(3.4) VEQX)]iy =
II’liIl{O, [VQ(X)]”} if Xij =0.

The NLS problem is a convex optimization problem. Therefesch of its local mini-
mizers is also a global minimizer. Moreover, the Karush-dfucker conditions are both
necessary and sufficient fof to be a minimizer of§.1). We give a necessary and sufficient
condition for a minimizer of NLS Probler.1 using the projected gradieRt” Q(X) here,
which can be used in the termination criterion for an aldgponifor the NLS problem.

LEMMA 3.2.The matrixX e R;" is a minimizer of the NLS probleflif and only if

(3.5) vPQ(X) =o.
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The solution of NLS Problen3.1 can be categorized into three approaches. The first
approach is to reformulate it in vector form using vectdiaa

(3.6) gg% %HB — AX % = vecr(%?)lzo %Hvec(B) — (I ® A)vec(X)|3,
where® is the Kronecker product andkc(-) is the vectorization operation. However, this
approach is not very practical in the context of NMF due to ltrge size of the matrix
I ® A. In addition, this approach does not use a nice propertyeoNtidF problem: It can be
decoupled as inl(17).

The second approach is to decouple the problem into the sith®froblems in vector
form as

1 2 N~ ] )
3.7) &né% §||B — AX |l = Zl)lgjnzno §HBJ‘ — AX;lz
j=

and then solve for each individual colunify.

The third approach is to solve Problémi in matrix form directly. For instance, Lin uses
this approach to solve3(1) by a projected gradient method. He calls his methlsdubprob
in [25]. Our solution of 8.1) also uses this approach.

We comment that the second and third approaches have arsihgtaretical complex-
ity. In implementation, however, the third approach is prefd. This is particularly true if
MATLAB is used since using loops in MATLAB is time consuming.

3.2. Projected Barzilai-Borwein algorithms for NLS . We present four projected Bar—
zilai-Borwein algorithms for the NLS problem which will balked PBBNLS algorithms. We
first notice that solving the optimization probledril is equivalent to solving the following
convex NLS problem:

A T 1 T
(3.8) g{né%Q(X)—f@A B,X>+§<X,A AX).
The PBBNLS algorithms solve Probler.8). This strategy can avoid the computation of
(B, B) and save time i3 is of large size. The gradient ¢f and projected gradient @ in
R’"™ are the same as those@f defined in 8.3) and (3.4), respectively.

Our first algorithm PBBNLS1 uses a backtracking strategyhe monmonotone line
search which is similar to the one suggested by Birgin, Ma#j and Raydan3] in their
algorithms SPG1. In PBBNLS1I, if the next iteration genetdig the projected BB method
P[Xk — A’“V@(Xk)] does not satisfy the nonmontone line search conditioh(, then a
stepsizex € (0, 1) is computed using a backtracking approach Witk * — a\*VQ(X*))
satisfying 8.10. This algorithm is given below:
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ALGORITHM 3.3 (PBBNLS1).
Set the parameters:

v =10"% M =10, \pae = 10%°, X\pin = 10720,

Step L1.Initialization: Choose the initial approximatiok® ¢ R’ and the tolerance > 0.
Compute

N0 = 1/(I(na§<VQ(X°))-
i.j

Setk = 0.
Step 2.Check Termination: If the projected gradient norm satisfies

(3.9) IV"QXM)F < p,

stop. Otherwise,

Step 3.Line Search:

3.1. SetD* = P[X* — \*VQ(XF*)] — X* anda = 1.
3.2.If

(310)  QPIX"-aX'VQEXN) < | max | QX"T)+ya(VQXY), DY),
set

(3.11) Xk = PIX* — aXFVQ(XH)]

and go to Step 4. Otherwise set

(3.12) a=a/4

and repeat Step 3.2.
Step 4.Computing the Barzilai-Borwein Stepsize:
Compute

sF = XM X and oF = VQ(XFT) — vQ(XF).
If (s*,yF) <0, setA\kF 1 = \,,.., else set
(3.13) AL = min (Amazs max (Amin, (sk, sk>/<sk, yk>))

Step 5. Set k = k+1 and go to Step 2.

Our second and third NLS solvers PBBNL'Sthd PBBNLS3 differ from PBBNLSL in
their use of line search. The steps of PBBNLS2 and PBBNLS3reraame as the ones in
PBBNLS1, except Step 3. Therefore we will only state Step BBBNLS2 and PBBNLSS3.

1The code for PBBNLS2 is available dtttp://www.math.uconn.edu/ ~neumann/nmf/PBBNLS2.m
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In PBBNLS2, the step size by the line search is computed along the projected BB gradien
directionD* = P[X* — MV(Q(XF)] — X* using the backtracking strategy.

ALGORITHM 3.4 (PBBNLS2).
Step 3.Line Search: )
3.1. SetD* = P[Xk — \VQ(X*)] — X* anda = 1.
3.2.If

A vk ky < A0 vk—j S vk k
@14) QUM taDh) < max  Q(XFT) +a(VQIXH), DY),

set
(3.15) Xkl = Xk 4 aD¥

and go to Step 4.
Otherwise setv = «/4 and repeat Step 3.2.

In PBBNLS3, ifa = 1 does not satisfy conditior8(10), then an exact type line search
along the projected BB gradient directid* is used. Since the objective functi@p is
guadratic, the stepsize can be obtained by

(VQ(X*), D¥)

(3.16) O = =Dk, ATADF)

ALGORITHM 3.5 (PBBNLS3).
Step 3.Line Search: )
3.1. SetD* = P[Xk — \vQ(XF*)] — X*.
3.2.1If

5 vk ky < A0 vk—j A vk k
(3.17) QX+ DM < max QXY +(VQUXY), DY),

setX*+1 = X* 1 D* and go to Step 4.
Otherwise compute using @.16). SetX*+! = P[X* + aD*] and go to Step 4.

Our fourth NLS solver PBBNLS4 is a projected BB method withesing a line search.
This method is closest to the original BB method. The reaserneiude this method here
is that Raydan31] has proved that the original BB method is convergent foromstrained
optimization problems with strictly quadratic objectiwnttions and it often performs well
for quadratic unconstrained optimization problems (4€gdnd the references therein). Note
that the NLS problem3 1) has a convex quadratic objective function.
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ALGORITHM 3.6 (PBBNLS4).
No Step 3: line search.

In the four PBBNLS methods we employ the following stratedi®save computational
time:
¢ To avoid repetition, the constant matricd$ A and A” B are calculated once and
used throughout.
e The function value of)(X* + aD¥) in (3.10 may need to be evaluated several
times in each iteration. We rewrite this function in the daling form:

Q(X* +aDy) = —(ATB, X* + aDy) + %(X’“ + aDy, ATA(X* 4 aDy,))
(3.18) = Q(X*) + a(VQ(X*), DF) + %a2<Dk, ATADy).

In this form, only one calculation afVQ(X*), D¥) and(D*, AT AD,,) is needed
in the backtracking line search, which brings down the cbgt@computation.

REMARK 3.7. In [34], Zdunek and Cichocki have also considered to use a prajecte
Barzilai-Borwein method to solve the NLS probletX). Here are differences between their
approach and ours:

1). In the use of BB stepsizes: our approach considéms one long vector, i.e., the
columns ofX are stitched into a long vector, although in real computatibis is not imple-
mented explicitly. As a result, we have a scalar BB stepsize.

On the other hand, their approach uses the decouplinggyrateillustrated in%.7). For
each such problem

1
min §||Bj — AX;|3,

they use a BB stepsize. Therefore, they use a vectorBB stepsizes.

2). In the use of line search: our method uses a honmonotoasdiarch and we have a
scalar steplength due to the use of line search. Our strategy always uses thedpBize if
it satisfies the nonmonotone line search condition, thaisiega = 1.

The preference of using the BB stepsize whenever possilsidéan discussed in the
literature in optimization, see, for examplé.

The line search of Zdunek and CichocBd] is nhot a nonmonotone line search and it
does not always prefer a BB steplength. Again, their metleoettates a vector of line search
steplengths.

3.3. Alternating Projected Barzilai-Borwein algorithms for nsNMF. We are now
ready to present the APBB algorithms for nsNMF which are dase the four PBBNLS
methods respectively. We denote these methods by APBBi,#oii, 2, 3, or 4. In APBBI,
the solver PBBNLS: is used to solve the NLS Subproble@ad and @.21) alternately.

2The code for APBB2 is available atttp://www.math.uconn.edu/ ~ neumann/nmf/APBB2.m
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ALGORITHM 3.8 (APBBI,i = 1,2, 3, or4).
Step 1.Initialization. Choose the smoothing parametee [0, 1], the tolerance > 0, and
the initial nonnegative matricé¥® and H°. Setk = 0.
Step 2.Check Termination: If projected gradient norm satisfies

(3.19) PGN* < ex PGN°,

wherePGN* = ||[[V§, hs(WE, H*), (VS hg(WF, H*))T]|| F, stop. Otherwise
Step 3.Main Iteration:
3.1.Update W: Use PBBNLS:I to solve

: k
(3.20) min, FW,SHT),

for Whk+1,
3.2.Update H: Use PBBNLSI to solve

. k+1
(3.21) glgéf(W S, H),

for H++1,
Step 4. Sek = k + 1 and go to Step 2.

REMARK 3.9. At early stages of the APBB methods, it is not cost eiffecto solve
Subproblems3.20 and @3.21) very accurately. In the implementation of APBBi we use an
efficient strategy which was first introduced by Li25]. Let py andpgy be the tolerances
for (3.20 and @.21) by PBBNLSI, respectively. This strategy initially sets

pw = pu = max(0.00L, ¢)[|[Vwhs(W®, H®), (Virhs(W°, H))T]| p-

If PBBNLS:I solves 8.20 in one step, then we redupg, by settingoy, = 0.1py. A similar
method is used fopy .

4. Numerical results . We have tested the APBB methods and compared them with the
Lee—Seung method and the Lin method on both randomly gextkepadblems and a real life
problem using the ORL databas#f]. We have also compared the APBB2 method with the
HALS/RRI method. The numerical tests were done on a Dell XB&desktop with 3 GB
of RAM and a 2.4 GHz Core Quad CPU running Windows Vista. A# #igorithms were
implemented in MATLAB, where the code of Lin's method can lberfd in R5]. In this
section, we report the numerical results.

4.1. Comparison of PBBNLSi methods and Lin’s nlssubprob méiod on NLS prob-
lems. The overall performance of our APBBi methods=£ 1,2,3,4) and Lin's method
depends on the efficiency of the NLS solvers PBBNLSI alsdubprolrespectively.

We tested the PBBNLSI methods and Linlssubprobmethod on a variety of randomly
generated NLS problems. For each problem, we tested eaatithig using same randomly
generated starting point°, with tolerancep = 10~%. We also used 1000 as the maximal
number of iterations allowed for each algorithm.
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The numerical results are given in Taldle. In this table, the first column lists how the
test problems and the initial poinf§® were generated. The integeit denotes the number
of iterations needed when the termination criteri@rd was met. The notatiosr 1000 is
used to indicate that the algorithm was terminated becdgesaumber of iterations reached
1000 but (3.9 had not been met. The numbers, PGN, RN, and CPUTIME denetértal
projected gradient nortiv?” Q(X*) ||, the final value of| B — AX* |, and the CPU time
used at the termination of each algorithm, respectively.

TABLE 4.1
Comparison of PBBNLSi and nissubprob on randomly generdtesi problems.

Problem Algorithm nit CPU Time PGN RN
nissubprob 631 0.390 0.000089 39.341092
A =rand(100,15) PBBNLS1 103 0.062 0.000066 39.341092
B = rand(100,200) PBBNLS2 93 0.047 0.000098 39.341092
X Y=rand(15,200) PBBNLS3 150 0.078 0.000097 39.341092
PBBNLS4 129 0.047 0.000070 39.341092
nissubprob > 1000 7.535 0.023547 107.023210
A =rand(300,50) PBBNLS1 196 1.108 0.000080 107.023210
B =rand(300,500) PBBNLS2 177 0.952 0.000098 107.023210
X %=rand(50,500) PBBNLS3 210 1.154 0.000099 107.023210
PBBNLS4 195 0.733 0.000033 107.023210
nissubprob > 1000 7.472 0.321130 288.299174
A =rand(2000,50) PBBNLS1 138 0.780 0.000012 288.299174
B =rand(2000,500) | PBBNLS2 162 0.905 0.000080 288.299174
X %=rand(50,500) PBBNLS3 143 0.827 0.000032 288.299174

PBBNLS4 > 1000 3.526 565.334391  293.426207
nissubprob > 1000 168.044 2.666440 487.457979

A =rand(3000,100) | PBBNLS1 278 37.440 0.000097 487.457908
B =rand(1000,3000)| PBBNLS2 308 37.674 0.000083 487.457908
X%=rand(100,3000) | PBBNLS3 373 49.234 0.000095 487.457908
PBBNLS4 388 30.483 0.000052 487.457908
nissubprob > 1000 169.479 5.569313 698.384960
A =rand(2000,100) | PBBNLS1 368 49.983 0.000028 698.384923
B =rand(2000,3000)| PBBNLS2 298 37.035 0.000096 698.384923
X%=rand(100,3000) | PBBNLS3 311 41.044 0.000036 698.384923
PBBNLS4 275 22.215 0.000028 698.384923
Exactly Solvable nlssubprob 817 0.468 0.000089 0.000037
A =rand(100,15) PBBNLS1 37 0.016 0.000008 0.000003
B = A *rand(15,200) | PBBNLS2 44 0.016 0.000006 0.000003
XY=rand(15,200) PBBNLS3 44 0.016 0.000041 0.000012
PBBNLS4 40 0.016 0.000090 0.000016
Exactly Solvable nissubprob > 1000 6.942 6.906346 1.303933
A =rand(300,50) PBBNLS1 57 0.312 0.000022 0.000005
B = A *rand(50,500) | PBBNLS2 64 0.328 0.000070 0.000017
X%=rand(50,500) PBBNLS3 63 0.328 0.000084 0.000024
PBBNLS4 61 0.234 0.000018 0.000006
Exactly Solvable nlssubprob > 1000 7.129 29.389267 0.997834
A =rand(2000,50) PBBNLS1 34 0.218 0.000095 0.000007
B = A *rand(50,500) | PBBNLS2 33 0.218 0.000031 0.000003
X%=rand(50,500) PBBNLS3 38 0.250 0.000051 0.000004
PBBNLS4 33 0.172 0.000002 0.000000

We observe from Tablé.1that the PBBNLS1, PBBNLS2, and PBBNLS3 methods per-
form similarly. Each of them is significantly faster than tilesubprobmethod. The perfor-
mance of PBBNLS4 is somewhat inconsistent: If it works, this fastest method. However,
we notice that it does not always perform well which can be&$e®m the results of problem
# 3 of the table.
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We also tested the same set of problems using other initinta& ° and other tolerance
levels ranging fromp = 107! to p = 10~%. The relative performance of the PBBNLS:I
methods and thelssubprotmethod is similar to the one illustrated in Talle.

As the APBBI methods and Lin’s method use PBBNLShtssubprolto solve the Sub-
problems 8.20 and @.21) alternately, we expect the APBBi methods to be fatser thails L
method. We will illustrate this in the remaining subsecsion

4.2. Comparison of the APBBi methods and Lin’s method on randmly generated
NMF problems. In order to assess the performance of the APBBE(1,2, 3,4) methods
for solving the NMF problem we tested them on four types ofdanly generated NMF
problems: small and medium size, large size, exactly fabler and difficult. We also tested
the multiplicative method of Lee—Seung and Lin’s methoddisdovered that the Lee—Seung
method is outperformed by Lin’s method substantially. Efiere, we only report the com-
parison of the APBBi methods with Lin’s method in this sulizet

In the implementation of APBBi methods, we allowed PBBNL&iterate at most 1000
iterations for solving each Subprobler®.Z0 or (3.21). The same maximum number of
iterations was used in Lin’s subproblem solwssubprob

The stopping criteria we used for all algorithms were theesaithe algorithm was ter-
minated when one of the following two conditions was met:

(). The approximate projected gradient norm satisfies:
(4.) IV hs(WH HEY), (Vihs(WE H))|[p < e- PGNC,

wheree is the tolerance anBG' N is the initial projected gradient norm. The recommended
tolerance value is = 10~7 or e = 10~® for general use of the APBBi methods. If high
precision in the NMF factorization is needed, we suggesstayen smaller tolerance such
ase = 10710,

(ii). The maximum allowed CPU time is reached.

The numerical results with toleranee= 10~7 and maximum allowed CPU time of 600
seconds are reported in Tableg-4.5. In these tables, the first column lists how the the test
problems and the initial paifiv®, H°) were generated. The value CPUTIME denotes the
CPU time used when the termination criterighl) was met. The notatioxr 600 is used

to indicate that the algorithm was terminated because tHé tiRe reached00 but (4.1)

had not been met. The numbers PGN, RN, ITER, and NITER dehetértal approximate
projected gradient normi[V$, hs (W, H*=1), (VG hg(WE, H*))T]| , the final value of
|V — Wk HP| , the number of iterations, and the total number of sub-titera for solving
(3.20 and @.21) at the termination of each algorithm, respectively.

Table4.2illustrates the performance of APBBiI methods and Lin’s rodtfor small and
medium size NMF problems. From this table we observe thadrfmall size NMF problems,
the APBBI methods are competitive to Lin’s method. Howewasrthe problem size grows,
the APBBI methods converge significantly faster than Lin&tiod in terms of CPUTIME.

Table 4.3 demonstrates the behavior of the five algorithms on large NillF prob-
lems. We observe from this table that clearly APBB4 is ratiiew comparing to the APBBI
(z = 1,2,3) and Lin methods for large problems. This can be explainethbyinconsis-
tent performance of PBBNLS4 for solving NLS problems. Wealbserve that APBB2 is
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TABLE 4.2
Comparison of APBBI and Lin on small and medium size NMF eroisl

Problem Algorithm iter niter CPUTime PGN RN
Lin 359 6117 1.248 0.00028 15.925579
V =rand(100,50) APBB1 646 9818 1.716 0.000108  15.927577
WO = rand(100,10) APBB2 439 5961 1.014 0.000207  15.934012
H° =rand(10,50) APBB3 475 5660 1.076 0.000278  15.934005
APBB4 562 12256 1.591 0.000181  15.910972
Lin 576 15996 6.708 0.001299  33.885342
V =rand(100,200) APBB1 375 6455 2.683 0.000905  33.901354
WO = rand(100,15) APBB2 631 10561 4.274 0.001 33.890555
HY =rand(15,200) APBB3 499 8784 3.588 0.00157 33.902192
APBB4 430 13751 3.775 0.001386  33.883501
Lin 1150 85874  302.736 0.03136 94.856419
V =rand(300,500) APBB1 101 2156 7.878 0.020744  95.092793
WO = rand(300,40) APBB2 110 2429 8.362 0.028711  95.070843
HY =rand(40,500) APBB3 103 2133 7.722 0.028945  95.102193
APBB4 118 7770 16.084 0.031105  95.011186
Lin 2651 81560 169.292  0.010645 77.82193
V =rand(1000,100) APBB1 543 7613 17.94 0.009247  77.815999
W0 = rand(1000,20) APBB2 488 6953 15.444 0.010538 77.82096
HY =rand(20,100) APBB3 425 5252 13.088 0.005955  77.822524
APBB4 351 10229 16.224 0.005741  77.830637
Lin 177 7729 10.624 0.032641 161.578261
V = abs(randn(300,300)) APBB1 183 3350 4.508 0.016747  161.647472
WO = abs(randn(300,20)) | APBB2 176 3215 4.15 0.017717  161.690957
HY =abs(randn(20,300)) APBB3 194 2996 4.118 0.024201 161.686909
APBB4 209 6351 6.068 0.032873  161.621572
Lin 934 13155 62.182 0.127067  199.116691
V = abs(randn(300,500)) APBB1 646 7874 36.379 0.138395  199.168636
W0 = abs(randn(300,40)) | APBB2 577 8068 33.353 0.08876  199.069136
H° =abs(randn(40,500)) APBB3 792 9768 43.805 0.100362  199.123688
APBB4 438 14787 35.256 0.075076  199.163277
Lin 1438 24112 64.99 0.04327  162.820691
V = abs(randn(1000,100)) | APBB1 235 2822 7.254 0.044061  162.845427
WO = abs(randn(1000,20)) APBB2 247 2929 7.176 0.036261 162.845179
H° =abs(randn(20,100)) APBB3 258 2809 7.472 0.046555 162.841468
APBB4 247 5193 9.516 0.043423 162.901371

slightly faster than APBB1 and APBB3 for this set of probleams! all these three methods
are significantly faster than Lin’s method.

Table4.4 compares the APBBi methods and Lin's method on some diffidME prob-
lems. We observe that the APBBiI methods substantially efgdpa Lin’s method on this set
of problems.

In Table4.5we compare the five algorithms on some exactly factorable gktBlems.
We observe that in this case, APBB1, APBB2, and APBB3 metlanesubstantially faster
than Lin’s method and APBBA4.

In summary, based on the performance of the APBBi method4 erglmethod on the
four types of randomly generated NMF problems using thesafi@ntioned stopping criteria,
we conclude that APBB1, APBB2, and APBB3 methods convergeifitantly faster than
Lin’s method for large size, difficult, and exactly factol@alproblems in terms of CPU time
used. They are also competitive with Lin’'s method on smak giroblems and faster than
Lin's method on medium size problems. Based on the overafbpeance, it seems that
APBB1 and APBB2 perform similarly and both of them are adittletter than APBB3. The
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TABLE 4.3
Comparison of APBBI and Lin on large size NMF problems.
Problem Algorithm iter niter CPUTime PGN RN
Lin 542 25420 > 600 0.293784 388.404591
V =rand(2000,1000) APBB1 63 1789 48.36 0.169287 388.753789
WO = rand(2000,40) APBB2 60 1732 43.93 0.176915 388.788783
H° =rand(40,1000) APBB3 70 1708 45.989 0.215956 388.755657
APBB4 337 46797 > 600 1.625634 388.389849
Lin 40 3960 > 600 21.122063 665.880519
V =rand(3000,2000) APBB1 95 2049 367.148 1.648503 665.212812
W0 = rand(3000,100) APBB2 80 1936 308.664 1.67074 665.233771
H° =rand(100,2000) APBB3 94 1993 343.53 1.623925 665.20267
APBB4 10 10020 > 600 32322.8139 711.14501
Lin 11 1659 > 600 84.633034 848.130974
V =rand(2000,5000) APBB1 29 1194 469.36 7.132444 839.962863
WO = rand(2000,200) APBB2 30 1267 457.395 9.070003 839.917857
HY =rand(200,5000) APBB3 32 1470 535.473 6.558566 839.754882
APBB4 11 3458 > 600 631245.173 898.640696
Lin 45 1925 292.892 5.742485 1394.828534
V = abs(randn(2000,3000)) | APBB1 52 1243 185.704 7.227765 1394.594862
WO = abs(randn(2000,100)) APBB2 51 1418 187.513 8.661069 1394.68873
H° =abs(randn(100,3000))| APBB3 55 1267 186.156 8.624533 1394.694934
APBB4 22 11117 > 600 17712.80413  1421.28342
TABLE 4.4
Comparison of APBBI and Lin on difficult NMF problems.
Problem Algorithm iter niter CPUTime PGN RN
Lin 6195 198110 26.255 0.00181 718.456033
V = csc(rand(50,50)) APBB1 2669 32219 4.103 0.001332  718.456035
WO = rand(50,10) APBB2 2749 32679 3.994 0.001183  718.456035
H° =rand(10,50) APBB3 2644 31259 3.853 0.001061  718.456035
APBB4 3048 30851 2.98 0.001445  718.456034
Lin 22093 1717514 243.861 0.003822  1165.453591
V = csc(rand(100,50)) | APBB1 21991 135041 26.115 0.002869 1165.453605
WO = rand(100,10) APBB2 22410 136280 24.898 0.002869  1165.453605
H° =rand(10,50) APBB3 22401 118545 23.338 0.001773  1165.453605
APBB4 21483 172171 22.729 0.002435 1165.453604
Lin 26370 645478 291.067 0.004951  3525.44525
V = csc(rand(100,200)) APBB1 6905 105236 47.471 0.004517  3525.445263
WO = rand(100,15) APBB2 7541 117095 51.309 0.004901  3525.445263
H° =rand(15,200) APBB3 9636 156118 72.587 0.004927  3525.445262
APBB4 9761 100586 38.704 0.004854  3525.445261
Lin 25868 509206 > 600 0.032144  9990.273219
V = csc(rand(200,300)) APBB1 6226 97030 99.185 0.024480 9990.273226
WO = rand(200,20) APBB2 6178 97649 97.298 0.021796  9990.273226
H° =rand(20,300) APBB3 6185 122773 121.447 0.024276  9990.273225
APBB4 7683 102010 85.645 0.023077  9990.273222

performance of APBB4 is inconsistent: Sometimes it work amed sometimes it does not
perform well. Therefore APBB4 is not recommended for saNMF problems.

As a final remark in this subsection, it can be seen that Lithod can sometimes give a
slightly smaller final value of V — W* H*|| - than the APBBi methods when each algorithm
terminates due to conditiod (1) being met. Several factors can attribute to this phenomeno
First, these algorithms can converge to different statipmmints (WW*, H*) of the NMF
problem. The values dfV — W*H*||r at these points can be slightly different. Second,
even if each of them converges to a stationary p@ivit, H*) with the samé|V —W*H*||p
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TABLE 4.5
Comparison of APBBI and Lin on exactly factorable NMF proide
Problem Algorithm iter niter CPUTime PGN RN
Exactly Factorable Lin 761 143759 9.781 0.00002  0.000146
V =rand(20,5)*rand(5,50) APBB1 837 17861 1.232 0.000014 0.001601
WO = rand(20,5) APBB2 869 18722 1.17 0.000014 0.001395
HY =rand(5,50) APBB3 1045 20461 1.295 0.000011 0.001514
APBB4 215 55065 2.387 0.000013  0.000385
Exactly Factorable Lin 837 115740 15.709 0.000078  0.000573
V =rand(100,10)*rand(10,50) APBB1 524 13180 2.122 0.000076  0.005784
WO = rand(100,10) APBB2 560 13633 1.981 0.000075  0.005586
HY =rand(10,50) APBB3 597 14917 2.246 0.000075  0.00545
APBB4 304 76860 6.958 0.000082  0.000877
Exactly Factorable Lin 2735 243572 122.586 0.000366  0.003565
V =rand(100,15)*rand(15,200) APBB1 1926 54640 23.837 0.000371  0.04548
WO = rand(100,15) APBB2 2217 65976 25.381 0.000357  0.045799
H° =rand(15,200) APBB3 1879 49998 19.906 0.000333  0.045776
APBB4 2065 279023 75.972 0.000368 0.016646
Exactly Factorable Lin 1790 320943 > 600 0.032549  0.34627
V =rand(200,30) *rand(30,500) APBB1 1687 67167 148.763 0.00209 0.24903
WO = rand(200,30) APBB2 1640 64987 125.971 0.002076  0.250934
H° =rand(30,500) APBB3 1985 108521 208.87 0.002295 0.257472
APBB4 682 632573 > 600 1.283378  0.409974

value (for example, when each converges to a global minintkzéhe NMF problem), they
can still have different final V' — W* H* || values because the termination conditigri)
measures how clogél’*, [/*) gets to a stationary point. Itis possible that a paiflé¥, H*)

is closer to a stationary point than another pair but hagyatyilarger||V — W* H*|| » value
as the functior|V — W H |  is nonlinear. Third, Lin’s method is a monotonically dewieg
method and the APBBIi methods are nonmonotone methods. As inethod often takes
significantly longer time to satisfy termination conditi¢hl) than APBBi methods do, Lin’s
method may result in slightly smaller objective functiodueathan the other methods at the
given tolerance level.

4.3. Comparison of the APBB2, Lee-Seung, and Lin methods oh¢ ORL database.
As APBB1, APBB2, and APBB3 have similar performance basetthemesults in Subsection
4.2, we chose APBB2 to test and compare it with the Lee—Seung anchéthods on a real
life problem: the reduced size ORL face database (3&€l[/]). In this subsection, we report
these experiments.

The reduced size ORL database consist#)offacial images ofl0 people, each person
with 10 different orientation, expressions and bright/mmstrast levels. The image dimen-
sions ares6 x 46. The matrixV” whose columns represent these imagesihias 46 = 2576
rows and400 columns. The original NMF or the nsNMF is applied to recomstimages
from this database by using a small rankn our experiments, we used= 49. When NMF
or nsNMF is used}V € R2?°76:49 gives the basis images atfl ¢ R*%4% s the encoding
matrix.

In our first experiment, we used the APBB2, Lin, and Lee—Seuethods to solve the
NMF problem resulting from the ORL database. We set thedolegc = 10~° and let each
algorithm run for8 seconds. The facial images were then reconstructed usénfintd 17~
andH"* obtained by each algorithm at its termination.

In Figure4.1, some sample original images are given. In Figlu the reconstructed
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FIGURE 4.1. Sample original images from ORL database.

FIGURE 4.2. Reconstruction of images with= 49 and time = 8 seconds: From top to bottom by Lee-Seung,
Lin and APBB2.

images by running each of Lee—Seung, Lin, and APBB2 for 8 m#x@re given. From
Figures4.1 and4.2, it is clear that APBB2 gives better quality reconstructethges than

Lin and Lee—-Seung do. We can also observe that Lin obtairterbeficonstruction than
Lee—Seung does. These observations can be explained bacthehdt APBB2 converges
faster than Lin and Lin faster than Lee—Seung. In Figlu® we plot the residual norm
RN = ||V — WH]|r versus CPU time for each algorithm for this experiment usimgnge

of CPU time betweefl and100 seconds. Note that APBB2 terminated after about 11 seconds
for the tolerance = 10~%. From Figure4.3, we can see that for this database, to attain a
similar level of reconstruction quality to APBB2 using 8 sads, Lin needs about 40 seconds
and Lee—Seung needs much longer time.

We tried to answer four questions when we carried out thergkerperiment on the ORL
database. The first two questions are: Can the APBB2, LinLardSeung methods produce
sparser basis images when they are applied to the nsNMFepnakith a positive smoothing
parameter if they are allowed to run sufficient amount of computatiotiade? Can the
APBB2 method generate sparse basis images and reconstages which are comparable
to the ones by the Lin and Lee—Seung but use significantlytie®s? We will use Figures
4.4, 4.5, 4.6, and Tablet.6to answer these questions. The next two questions are: Hod/ go
and sparse are the basis images generated by each of them#trexls when they are allowed
to run a relatively short period of time? How good are the igsageconstructed by each of
the three methods when they are allowed to run a relativelyt gieriod of time? Figure$.7,
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FIGURE 4.3. Residual Norm versus CPU Time for Lee-Seung, Lin and APBBg ts= 10~8.
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4.8 and Tablet.7 answer these questions.

In Figures4.4, 4.5, 4.6, and Table4.6, we report the results of applying the Lee—Seung,
Lin, and APBB2 methods to solve the nsNMF problem resultednfthe ORL database.
These figures and the table were constructed by setting @ncee = 10719, running
the Lee-Seung and the Lin algorithms %0 seconds and the APBB2 algorithm 50
seconds, and using the smoothing paraméter0 andd = 0.7 respectively. Note that when
0 = 0, the nsNMF reduces to the original NMF.

Figure4.4 gives the basis images generated by Lee—Seung, Lin, and ARBBolving
the nsNMF problem witl# = 0 (i.e., the original NMF). Figurél.5 gives the basis images
generated by Lee—Seung, Lin, and APBB2 for solving the nsNiviblem withd = 0.7.
Figure4.6gives the reconstructed sample images by Lee—Seung, ldrARBB?2 for solving
the nsNMF problem witl) = 0.7.

We observe from Figure$.4and4.5that wherd = 0.7 is used, all three algorithms can
produce much sparser basis images than they dofwith0. This confirms that the nsNMF
can increase the ability of learning by parts of the origh&lF (see B0Q]). If we examine this
example more carefully, however, we can see that both APBBZ & methods give sparser
basis images than the Lee—Seung method. We also observé-fgone4.6 that the APBB2
method obtains reconstructed images which are compamthie bnes by the Lin method and
by the Lee-Seung method. In summary, these figures showrtliaisiexample, the APBB2
method can reconstruct images and generate sparse bagéesimhich are comparable to the
Lin and Lee—Seung methods but uses considerably less time.

These observations can be explained by the numerical séaulable4.6. In this table,
the sparseness of a matrixis measured by

Number of Zero Entries in A

4.2 A =
(4.2) P Total Number of Entries in A’

whereA,; is considered a zero entry|ifl;;| < 1075 in our experiment. From this table, we
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FIGURE 4.4. Basis images generated by three algorithms for solvingimaigNMF (i.e. 6 = 0 in nsSNMF)
from ORL database using= 10~10

(a) Lee-Seung (600 seconds) (b) Lin (600 seconds) (c) APBB2 (150 seconds)

FIGURE 4.5. Basis images generated by three algorithms for solving nsiitvin ORL database with = 0.7
and usinge = 10~10,

(a) Lee-Seung (600 seconds) (b) Lin (600 seconds) (c) APBB2 (150 seconds)

can see that wheh = 0.7 is used, each of the three algorithms can increase the spasse
of W (and H) substantially comparing t6 = 0. We also observe that both the Lin and the
APBB2 methods give sparsBr and sparseH than the Lee-Seung method does. In addition,
the APBB2 method obtains slightly smaller residual ndfth— WS H || than the Lin and
Lee—Seung methods. Here we would like to emphasize tha¢ theserical results were
obtained by running APBB2 method fa50 seconds and the Lin and Lee—Seung methods
for 600 seconds.

In Figure4.7, we give the basis images generated by the Lee—Seung, ldnARBB2
methods for solving the nsNMF with = 0.7 and using30 seconds of maximum allowed
CPU time. We can see that the APBB2 method can produce sgmasisrimages than Lin's
method in this case. Moreover, the Lee—Seung method carrodige any sparseness in the
basis matriX¥ within 30 seconds of CPU time, as illustrated in Talll&

Finally, Figure4.8gives the reconstructed sample images by Lee—Seung, ldARBB2
using the nsNMF witt§ = 0.7 and 30 seconds of maximum allowed CPU time. We observe
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FIGURE 4.6. Reconstructed images by three algorithms for solving nsiibtia ORL database with = 0.7

and usinge = 10~10: From top to bottom by Lee-Seung (600 seconds), Lin (600r8syoand APBB2 (150
seconds).

TABLE 4.6
Comparison of APBB2 (150 seconds), Lin (600 seconds), aaeSkeeng (600 seconds) for solving nsNMF
from ORL database using toleranee= 10— 19,

0 Algorithm PGN RN Sparsenessin W  Spareness in H
0 APBB2 0.021793  2.189993 39 35
Lin 0.021746 2.211365 40 35
Lee-Seung| 10.838066 2.247042 34 20
0.7 APBB2 0.002024  2.859032 81 56
Lin 0.022953 2.877591 81 55
Lee-Seung| 16.703386 2.928300 60 32

FIGURE 4.7. Basis images generated by three algorithms for solving nsSNtiem ORL database with =
0.70, usinge = 10~ 19 and Maximum Allowed CPU Time 30 seconds.

(a) Lee-Seung (b) Lin (c) APBB2

that the APBB2 method produces better reconstruction thais imethod. It seems that

when this relatively short period of time is used, the Leesfgemethod has not been able to
generate identifiable reconstructed images.



ETNA
Kent State University
http://etna.math.kent.edu

76 L. Han, M. Neumann, and U. Prasad

TABLE 4.7
Comparison of three algorithms for solving nsNMF from ORLatiase with) = 0.70, usinge = 10~ 1° and
Maximum Allowed CPU Time = 30 seconds.

Algorithm \ PGN RN Sparsenessin W  Sparseness in H
APBB2 0.023983  2.979195 82 50
Lin 2.296475  3.497314 71 32
Lee—Seung| 10.894495 4.698601 0 0

FIGURE 4.8. Reconstructed images by three algorithms for solving nsitvii ORL database with = 0.70,
usinge = 10~1% and Maximum Allowed CPU Time = 30 seconds: From top to bottgrhée—Seung, Lin, and
APBB2.

i ,w | r !

4.4. Comparison of the APBB2 and HALS/RRI methods.We implemented the HA—
LS/RRI method in MATLAB. In our implementation, we followedlgorithm 7 of Ho [14,
page 69]. The original Algorithm 7 of Ho may result in zero tes h; or w,. To avoid
this type of rank-deficient approximation, we used a stsategoduced in Ho'’s thesisly,
expression (4.5) on page 72].

For both APBB2 and HALS/RRI, we used similar stopping cigetescribed in Sub-
section4.2, except for that the approximate gradient in conditidri was changed to the
gradient:

(4.3) 1IVSGhs(WE HE) (VShs(WE HNT|| 7 < € - PGNC.

Since both the APBB2 and HALS/RRI methods are reasonabty Vigs set the maximum
allowed CPU time to b&00 seconds.
We first tested the APBB2 and HALS/RRI methods on three grafipandomly gener-
ated NMF problems:
e Group 1 (ProblemsP;—Pi;):
V =rand(m,n), Wy = rand(m,r), Hy = rand(r, n).
e Group 2 (ProblemsP;5—Pig):
V = csc(rand(m, n)), Wy = rand(m, r), Hy = rand(r,n).
e Group 3 (ProblemsP,;;—Ps3):
V =rand(m,r) x rand(r,n), Wy = rand(m, r), Hy = rand(r,n).
The numerical results of these experiments are reportecle®.8 From this table
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TABLE 4.8
Comparison of APBB2 and HALS/RRI on Randomly Generated Niglfiéms using = 1076,

Problem Algorithm iter niter CPUTime PGN RN

Py,m =20 HALS/RRI 1157 0.655 0.000282 6.704077
n=50,r=5 APBB2 186 2323 0.156 0.000285 6.704077
P>, m =100 HALS/RRI 1925 4.165 0.003081 15.965216
n =50, =10 APBB2 450 6664 1.201 0.003079 15.964402
P3, m =50 HALS/RRI 652 1.373 0.003241 15.907085
n = 100, = 10 APBB2 689 11946 1.872 0.003263 15.911952
Py, m =100 HALS/RRI 3888 36.301 0.025348 31.949834
n = 200, r = 20 APBB2 616 12077 6.583 0.020062 31.945314
Ps, m = 300 HALS/RRI 2322 100.028 0.793530 98.254061
n = 500, r = 30 APBB2 1186 23309 65.442 0.185916 98.218000
Ps, m = 300 HALS/RRI 1019 100.059 0.627775 91.692878
n = 500, 7 = 50 APBB2 945 19856 100.059 1.305468 91.719337
Pz, m =100 HALS/RRI 4493 100.012 0.212449 77.953204
n = 1000, r = 20 APBB2 942 19239 25.491 0.063113 77.958453
Pg, m = 2000 HALS/RRI 141 100.199 230.102735 388.743544
n = 1000, r = 40 APBB2 136 3510 100.667 8.724113 388.426680
Py, m = 3000 HALS/RRI 3 180.462 2444874883 700.382102
n = 2000, r = 100 APBB2 22 588 104.318 347.053280 667.647866
Pio, m = 2000 HALS/RRI 3 181.273 2608.736609 696.220345
n = 3000, r = 100 APBB2 21 734 103.585 272.621912 666.717715
Py1, m = 2000 HALS/RRI 2 497.253  32270.733529 968.339290
n = 5000, r = 200 APBB2 9 270 125.690 2110.725410 855.042449
P2, m =20 HALS/RRI 33167 18.377 0.005618 275.408370
n=>50,r=5 APBB2 17906 234816 16.536 0.004837 275.408370
P13, m =100 HALS/RRI 30164 64.475 0.031324 1672.570769
n =50,r =10 APBB2 844 15720 2.356 0.033597 1672.570786
P14, m =50 HALS/RRI 21451 45.568 0.019479 1575.266873
n = 100, = 10 APBB2 1656 22326 4.009 0.012779 1575.266875
P15, m =100 HALS/RRI 4841 27.675 0.052223 4351.003826
n =200, =15 APBB2 4978 67865 34.039 0.046538 4351.003826
Pig, m = 200 HALS/RRI 7323 100.012 0.625107 10736.711898
n = 300, r = 20 APBB2 5210 98518 100.012 0.339669 10736.711903
Pi7,m =20 HALS/RRI 1596 0.952 0.000163 0.000454
n=>50,r=5 APBB2 565 9100 0.577 0.000163 0.000420
Pig, m = 100 HALS/RRI 2570 5.538 0.000971 0.002506

n =50,r =10 APBB2 947 22529 3.432 0.000949 0.001882
P19, m =50 HALS/RRI 4324 9.656 0.000878 0.002886

n =100, = 10 APBB2 957 27701 4.165 0.000868 0.002168
Py, m =100 HALS/RRI 5008 46.535 0.004903 0.007428

n = 200, r = 20 APBB2 927 32966 17.893 0.004786 0.009190
Ps1,m = 300 HALS/RRI 2340 100.043 3.766695 4.606791

n = 500, r = 30 APBB2 920 41285 100.075 0.746586 2.755773
Ps2, m = 300 HALS/RRI 1044 100.075 42.645934 25.055011
n = 500, r = 50 APBB2 374 21068 100.184 1.750924 1.555805
Po3, m = 2000 HALS/RRI 155 100.745 1004.622468 244.083901
n =100, r = 40 APBB2 110 5340 100.496 49.765120 69.009367

we can see that the APBB2 method has a comparable performétitéhe HALS/RRI
method for small or medium scale problems and the APBB2 naebezomes faster than
the HALS/RRI method as the the size of the NMF problem in@sa¥Ve also observe that
the APBB2 method outperforms the HALS/RRI method on larcgdesproblems.

A natural question is, can the APBB2, Lin, and HALS/RRI meth@roduce a sparse
nonnegative factorization if the matrix V has sparse noatieg factorizations? To answer
this, we tested the APBB2, Lin, and HALS/RRI methods on theCCBace database (see
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[35]). The CBCL database consists of 2429 facial images of d&o@s19 x 19. The matrix
V representing this database 133 rows and2429 columns. In our experiments, we used
r =49.

As shown by Lee and Seung], the data matrix/ of the CBCL database has sparse
nonnegative factorizations when= 49. Moreover, it has been observed that the Lee—Seung
algorithm (L.7) and (L.8) can produce a sparse factorization if it is allowed to runfégent
amount of time.

We report our experiments of the APBB2, Lin, and HALS/RRI hoets on the CBCL
database in Figure$.9, 4.10 and4.11 In Figure4.9, we plot the residual nornRN =
|V — WH]||r versus CPU time for each algorithm using a range of CPU tinteden 0
and 100 seconds. In FigufelOand Figure4.11, we plot the sparseness Bf of H versus
CPU time respectively. We used the sparseness measureiventitgy (4.2), where A;; is
considered a zero jf4;;| < 1076.

We can see from Figures10and4.11that all the three algorithms can generate a sparse
nonnegative factorization in this example. We commentttiehuge sparsenesslin and H
given by the HALS/RRI method at early stages is due to thetfaitthis method generates
some zero vectors,; or wy initially. The large residual norm of the HALS/RRI method at
early stages confirms this. The rank-deficient problem oHA&S/RRI method is remedied
after the strategy of Hol, page 72] is in full play.

We also observe from these three figures that the APBB2 methadobtain fairly
good residual norm and sparsenes$lirand H using less CPU time than both the Lin and
HALS/RRI methods.

FIGURE 4.9. Residual Norm versus CPU Time for HALS/RRI, Lin and APBBagusi= 10~ 7.
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5. Final remarks . We have proposed four algorithms for solving the nonsmooti n
negative matrix factorization (nsNMF) problems. Each of algorithms alternately solves
a nonnegative linear least squares subproblem in matrix fe8ing a projected Barzilai—
Borwein method with a nonmonotone line search or no lineckearhese methods can also



ETNA
Kent State University
http://etna.math.kent.edu

Alternating Projected Barzilai-Borwein Methods for Nogaéve Matrix Factorization 79

FIGURE 4.10. Sparseness & versus CPU Time for HALS/RRI, Lin and APBB2 using 10~ 7.

100 T T T T T T T T T
APEBZ

a0} ‘fl Ln |4
1 ———RRI
i
'\

80

sl T e |

BO L

SpY

a0
40k

il

10 20 30 40 al B0 70 a0 30 100
CPU Tirme

FIGURE 4.11. Sparseness dfl versus CPU Time for HALS/RRI, Lin and APBB2 using 10~ 7.
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be used to solve the original NMF problem by setting the simogtparametef) = 0 in
nsNMF. We have tested and compared our algorithms with thieqted gradient method of
Lin on a variety of randomly generated NMF problems. Our nucaéresults show that three
of our algorithms, namely, APBB1, APBB2, and APBB3, are #igantly faster than Lin’s
algorithm for large-scale, difficult, or exactly factoratNMF problems in terms of CPU time
used. We have also tested and compared our APBB2 methodheitimaltiplicative algo-
rithm of Lee and Seung and Lin’s algorithm for solving the MiNproblem that resulted
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from the ORL face database using béth= 0 andd = 0.7. The experiments show that
whenf = 0.7 is used, the APBB2 method can produce sparse basis imagescamgtructed
images which are comparable to the ones by the Lin and Le&gSeathods but in consider-
ably less time. They also show that the APBB2 method can staast better quality images
and obtain sparser basis images than the methods of Leeg-8rdriLin when each method
is allowed to run for a short period of time. We have also tkshee APBB2 method and
the HALS/RRI method and the comparison shows that the APBBthau can outperform
the HALS/RRI method on large-scale problems. These numilggsts show that the APBBI
(« = 1,2,3) methods, especially APBB1 and APBB2, are suitable foriaglVarge-scale
NMF or nsNMF problems and in particular, if only a short périmf computational time is
available.

So far we have emphasized the computational efficiency of Ni@erithms. If high
accuracy rather than computational time is a priority, we aa an APBBIi { = 1,2,3)
method by setting toleranee= 0 and using relatively large values of maximum allowed CPU
time and maximum allowed number of iterations to terminhtedlgorithm. Alternatively,
taking the APBB2 method as an example, this can be done in KIELXB code APBB2.m
by choosingol = 0, replacing the command line

tolw = max(0.001,tol) *initgrad_norm; tolH = tolw;
with the following

tolw=10"-8; tolH=tolW;
and using suitable MaxTime and MaxIter values. We commaeattithr® is only a reference
which can be replaced by smaller values. This implementatidves the NLS subproblems
(3.20 and @.21) very accurately from the beginning.

An interesting question is: How well our APBBIi(= 1,2, 3) methods perform when
compared to an algorithm resulting from the projected BairABorwein approach of Zdunek
and Cichocki B4] (It is called GPRS-BB in33]) to solve the NLS subproblenB8(1). We
coded the GPRS-BB method in MATLAB and incorporated it in &MLS framework as
we did for PBBNLSIi methods. Our preliminary numerical testssome randomly generated
medium size NMF problems show that the APBBi methods areiderably faster in terms
of CPU time used. More experiments are needed to make a chenmsige comparison.

Another interesting question is to extend the projected d#ito other variants of NMF
problems, such as the symmetric—-NMF (s fnd semi-NMF (seeqd]). Our preliminary
results show that the projected BB approach is very promisihen applied to these two
classes of NMF problems.

Acknowledgments.The authors wish to express their gratitude to the refermethéir very
helpful comments and suggestions.
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