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Abstract. An algebraic multigrid method is presented to solve large systems of linear equations. The coarsen-
ing is obtained by aggregation of the unknowns. The aggregation scheme uses two passes of a pairwise matching
algorithm applied to the matrix graph, resulting in most casesin a decrease of the number of variables by a factor
slightly less than four. The matching algorithm favors the strongest negative coupling(s), inducing a problem depen-
dent coarsening. This aggregation is combined with piecewise constant (unsmoothed) prolongation, ensuring low
setup cost and memory requirements. Compared with previous aggregation-based multigrid methods, the scalability
is enhanced by using a so-called K-cycle multigrid scheme, providing Krylov subspace acceleration at each level.
This paper is the logical continuation of [SIAM J. Sci. Comput., 30 (2008), pp. 1082–1103], where the analysis of
a anisotropic model problem shows that aggregation-based two-grid methods may have optimal order convergence,
and of [Numer. Lin. Alg. Appl., 15 (2008), pp. 473–487], whereit is shown that K-cycle multigrid may provide
optimal or near optimal convergence under mild assumptions on the two-grid scheme. Whereas in these papers only
model problems with geometric aggregation were considered, here a truly algebraic method is presented and tested
on a wide range of discrete second order scalar elliptic PDEs, including nonsymmetric and unstructured problems.
Numerical results indicate that the proposed method may be significantly more robust as black box solver than the
classical AMG method as implemented in the code AMG1R5 by K. Stüben. The parallel implementation of the
method is also discussed. Satisfactory speedups are obtained on a medium size multi-processor cluster that is typical
of today computer market. A code implementing the method is freelyavailable for download both as a FORTRAN
program and a MATLAB function.

Key words. Multigrid, linear systems, iterative methods, AMG, preconditioning, parallel computing.

AMS subject classifications.65F10, 65N55.

1. Introduction. We consider the iterative solution of large sparsen×n linear systems

Au = b

arising from the discretization of second order elliptic PDEs. In this context, multigrid meth-
ods [39] are among the most efficient solution techniques. Whereas geometric multigrid
methods require a predetermined hierarchy of grids and discretizations, algebraic multigrid
(AMG) methods are set up using only the information present in the system matrix [3, 37].

These algorithms combine the effect of asmootherand acoarse grid correction. In
AMG schemes, the smoother is fixed and generally based on a simple iterative method such
as the (symmetric) Gauss-Seidel method. The coarse grid correction consists of computing
an approximate solution to the residual equation on a coarser grid, that is, solving a linear
system of smaller size. This solution is then transferred back to the actual grid by means of
an appropriate prolongation. In AMG methods, this coarse grid correction is entirely defined
once the prolongation is known, that is, once an appropriateprolongation matrix has been set
up by applying a so-calledcoarseningalgorithm to the system matrix.

The improvement of AMG schemes is a hot research topic. The current trend (e.g., [4,
5, 7, 15, 18]) leads to more involved algorithms with denser prolongation matrices, which in-
creases setup costs and memory requirements. In this paper,we take the opposite viewpoint.
We consider coarsening by aggregation of the unknowns, which leads to prolongation matri-
ces with at most one nonzero entry per row, which are much sparser than the ones obtained
by the classical AMG approach, as developed in [3, 34, 36, 37].
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Brussels, Belgium. Supported by the Belgian FNRS (“Directeur de recherches”) (ynotay@ulb.ac.be ).

123



ETNA
Kent State University 

http://etna.math.kent.edu

124 Y. NOTAY

Aggregation schemes are not new and trace back to [2, 6]1. They are not much popular
because it is difficult to obtain grid independent convergence on this basis [37, pp. 522–524];
see also [43, p. 663], where a three-grid analysis is presented for the Poisson model problem.
This may be connected to the fact that aggregation-based prolongations do not correspond to
an interpolation which is exact for all polynomials of degree 1, as required by the theory of
geometric multigrid [14, Sections 3.5 and 6.3.2].

That is why aggregation is often associated withsmoothedaggregation, as introduced
in [41, 42]. There, it is proposed to overcome intrinsic difficulties associated with aggrega-
tion, bysmoothingthe interpolation matrix, that is, an effective prolongation is obtained from
a “tentative” aggregation-based prolongation matrixP0 (with one nonzero entry per row),
letting P = MP0, whereM is a matrix that smooths the interpolation; e.g.,M = I − ωA,
whereω is a relaxation parameter. In this work, we take an opposite viewpoint and stay with
the “pure” (unsmoothed) prolongation matrix.

The approach we follow is the logical continuation of two previous works [26, 31].
In [26], analyzing a two-dimensional anisotropic model problem,it is shown that aggregation-
basedtwo-grid methods may have optimal order convergence properties (with respect to the
number of unknowns) provided that, in the presence of anisotropy, aggregates are formed fol-
lowing the strong coupling direction. It does not mean that the above mentioned difficulties
are not real, but that they appear when consideringmulti-grid V- or W-cycles, which scale
poorly with the number of levels. Here the results in [31] enter the scene. This paper intro-
duces K-cycle multigrid, with which Krylov subspace acceleration is applied at every level.
It is shown that this provides enhanced robustness and scalability, compared with standard V-
or W-cycles, giving support to earlier observations in, e.g., [32]. Furthermore, preliminary
numerical results in [26] indicate that aggregation-based multigrid methods may then indeed
exhibit convergence that is independent or near-independent of the number of levels.

These results were obtained for symmetric positive definitetwo-dimensional model prob-
lems, with regular (geometric-based) aggregation schemes. In this work, we address more
general problems, including nonsymmetric ones, and consider automatic aggregation with an
appropriate coarsening algorithm, resulting in a fully algebraic method. As in most previ-
ous aggregation-based multilevel algorithms [2, 21, 30], we start with a pairwise aggregation
scheme, forming pairs or “matchings” in the matrix graph. However, this results in a rela-
tively slow coarsening, which does not permit the efficient use of K-cycle schemes. Hence
we repeat the process, forming in a second pass pairs of pairsfrom the first pass. We call
this strategy “double pairwise aggregation”. Note that we essentially reuse the algorithms
proposed in [30] for another type of multilevel method.

We also discuss the parallelization of the algorithms used.With the classical AMG ap-
proach, the parallelization of the coarsening raises some nontrivial issues [10, 16, 22]. Here,
assuming that each task running in parallel receives a portion of the matrix rows, we show
that the coarsening algorithm may be applied independentlyto these subsets of rows, forming
aggregates with the corresponding (local) variables. The associated restriction and prolonga-
tion do not require any communication, and good scalabilityis achieved with a purely local
smoother of block Jacobi type.

It is worth mentioning the method in [21], which presents some similarity with ours: it
is also based on a pairwise aggregation algorithm and stays with “pure” aggregation-based
prolongation. However, besides the technical details in the aggregation algorithm and the
smoother, there are two major differences. In [21], only simple pairwise aggregation is con-
sidered, whereas we use double pairwise aggregation, whichmakes the coarsening just twice

1The aggregation concept was introduced earlier in other fields; e.g., its use in economics dates back as far
as [24].



ETNA
Kent State University 

http://etna.math.kent.edu

AGGREGATION-BASED ALGEBRAIC MULTIGRID 125

as fast. Next, we use K-cycle multigrid to circumvent the relatively bad scalability of the
standard V-cycle, whereas the method in [21] resorts to V-cycle improved by doubling the
number of smoothing steps from one level to the next.

This paper is organized as follows. The coarsening is presented and discussed in Sec-
tion 2. The solution method is described in detail in Section3. The results of numerical
experiments are reported in Section4, and some concluding remarks are given in Section5.

2. Coarsening. An algebraic coarsening algorithm sets up a prolongation matrix P us-
ing only the information available inA. The prolongation is ann× nc matrix, wherenc < n
is the number of coarse variables. It allows to transfer on the fine grid a vector defined on the
coarse variable set[1, nc]. Further, it entirely determines the coarse grid correction. Formally,
the latter also depends on a restriction matrix and on a coarse grid matrix, but, as it is usual
with AMG methods, one takes the restriction equal to the transpose of the prolongation, and
the coarse grid matrix is computed from the Galerkin formula

(2.1) Ac = PT AP.

In the classical AMG coarsening [37], one first selects a subset of fine grid variables
as coarse variable, by inspecting the graph ofA. Next, the matrix entries are used to build
interpolation rules, that defineP .

Coarsening by aggregation works differently. One needs to defineaggregatesGi, which
are disjoint subsets of the variable set. The number of coarse variablesnc is then the number
of such subsets, andP is given by

(2.2) Pij =

{
1, if i ∈ Gj ,

0, otherwise,
(1 ≤ i ≤ n, 1 ≤ j ≤ nc).

If ∪iGi = [1, n] (i.e., if the aggregates form a partitioning of[1, n]), P is a Boolean matrix
with exactly one nonzero entry per row. As seen below, it is however sometimes advanta-
geous to leave some variables outside the set of aggregates,in which case the rows ofP
corresponding to these variables are zero. Note that there is no need to explicitly formP , and
the coarse grid matrix (2.1) is in practice computed by

(2.3) (Ac)ij =
∑

k∈Gi

∑

ℓ∈Gj

akℓ (1 ≤ i, j ≤ nc).

Many aggregation algorithms proposed in the literature (e.g., [2, 21, 30]) starts by form-
ing pairs, or “matchings”, in the matrix graph. Here we reusethe algorithm from [30], because
it discriminates between different neighbors of a node, giving preference to the strongest neg-
ative coupling(s). For two-dimensional anisotropic modelproblems, this produces aggregates
aligned with the strong coupling direction, as desired according to the analysis in [26]. Some
connection may also be made with the classical AMG coarsening, which is also based on
strong negative couplings.

Details are given in Algorithm2.1, which works as follows. Essentially like in the clas-
sical AMG coarsening [37, p. 473], one first defines the set of nodesSi to whichi is strongly
negatively coupled, using the Strong/Weak coupling threshold β:

Si =
{
j 6= i | aij < −β max

aik<0
|aik|

}
.

Then, one picks up an unmarked nodei at a time, giving priority to node(s) with minimalmi,
wheremi is the number of unmarked nodes that are strongly negativelycoupled toi (that is,
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ALGORITHM 2.1 (Pairwise aggregation).

Input : Matrix A = (aij) with n rows;
Strong/Weak coupling thresholdβ (default:β = 0.25);
Logical parameterCheckDD.

Output : Number of coarse variablesnc and subset (aggregates)
Gi, i = 1 . . . , nc (such thatGi ∩ Gj = ∅ for i 6= j).

Initialization : If (CheckDD): U = [1, n]\
{
i | aii > 5

∑
j 6=i |aij |

}
,

otherwise:U = [1, n],
For all i: Si =

{
j ∈ U\{i} | aij < −β maxaik<0 |aik|

}
;

For all i: mi = |
{
j | i ∈ Sj

}
|;

nc = 0.

Algorithm : While U 6= ∅ do
1. Selecti ∈ U with minimalmi; nc = nc + 1.
2. Selectj ∈ U such thataij = mink∈U aik.
3. If j ∈ Si: Gnc

= {i, j},
otherwise:Gnc

= {i}.
4. U = U\Gnc

.
5. For allk ∈ Gnc

, update:mℓ = mℓ − 1 for ℓ ∈ Sk.

mi is the number of setsSj to whichi belongs and that correspond to an unmarked nodej).
This rule is designed to favor a regular covering of the matrix graph. Probably other rules
could work as well. We consider this one because we observed that in some nonsymmetric
examples, at any stage of the process, there is at least one nodej for whichmj = 0. Then, if
this node is not selected, it has many chances to become a singleton, since no unmarked node
is strongly negatively coupled to it.

A tentative aggregate is next formed by grouping the picked up nodei with the unmarked
node it is most strongly negatively coupled to, that is, (oneof) the unmarked node(s)j for
whichaij is minimal. This tentative pair is then accepted if and only if j ∈ Si. If not, the node
i initially picked up stays alone in the aggregate. This may occur only if all nodesk for which
aik is minimal have already been marked (or do not correspond to anegative coupling). For
the kind of applications targeted here, this occurs only incidentally, for instance near bound-
aries. In general, the algorithm progresses smoothly alongthe direction of strongest negative
coupling, and most picked up nodes are effectively associated with (one of) their neighbor(s)
they are most strongly negatively coupled with. Note that, as long as this happens, one has, at
step 3 of Algorithm2.1, j ∈ Si whatever the chosen Strong/Weak coupling thresholdβ, and
it is also unimportant whether the other couplings in rowi are labeled “strong” or “weak”.
Henceβ has only a slight influence on the coarsening process, and itsrole is much less critical
than in the classical AMG coarsening.

In Algorithm 2.1, we also include an optional check for rows strongly dominated by their
diagonal element. The nodes corresponding to these rows aremarked, but they are not as-
sociated to any aggregate. We apply this only to the top levelmatrix, based on the heuristic
argument that, when a row is strongly diagonally dominant enough, a fast reduction of the er-
ror at the corresponding node can be obtained without multilevel enhancement. This process
also guarantees a proper treatment of finite element matrices in which Dirichlet boundary
conditions have been imposed by adding a large number to the corresponding diagonal ele-
ments.

Coarsening by simple pairwise aggregation is relatively slow, which does not favor op-
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timal performance of multilevel methods. A faster coarsening can be obtained by repeating
the process, defining aggregates by forming pairs of pairs—more precisely, by forming pairs
of aggregates from the first pass, some of which are singletons. Forming pairs of pairs is
considered in [2], but the procedure tries to maximize the number of edges internal to the
aggregates. For two-dimensional discrete PDEs, this favors a coarsening that mimics well the
geometric coarsening with “boxwise” aggregates. However,the analysis in [26] shows that in
the presence of anisotropy, it is better to use “linewise” aggregates, aligned with the direction
of strong negative coupling. This motivates us to follow theapproach in [30], where the sec-
ond pass just exploits the same pairwise aggregation algorithm used in the first pass. That is,
we compute the coarse grid matrix (2.3) resulting from a first application of Algorithm2.1,
and apply again this algorithm to the latter matrix, formingpairs of aggregates from the first
pass. Details are given in Algorithm2.2.

ALGORITHM 2.2 (Double pairwise aggregation).

Input : Matrix A = (aij);
Strong/Weak coupling thresholdβ (default:β = 0.25);
Logical parameterCkDD.

Output : Number of coarse variablesnc and subset (aggregates)
Gi, i = 1 . . . , nc (such thatGi ∩ Gj = ∅ for i 6= j).

Algorithm :
1. Apply Algorithm2.1to A with thresholdβ

andCheckDD=CkDD.
Output:nc1

, andG
(1)
i , i = 1, . . . , nc1

.

2. Compute thenc1
× nc1

auxiliary matrixA1 =
(
a
(1)
ij

)
with

a
(1)
ij =

∑

k∈G
(1)
i

∑

ℓ∈G
(1)
j

akℓ.

3. Apply Algorithm2.1to A1 with thresholdβ
andCheckDD=False.

Output:nc andG
(2)
i , i = 1, . . . , nc.

4. Fori = 1, . . . , nc: Gi = ∪
j∈G

(2)
i

G
(1)
j .

For the class of applications considered in this paper, the resulting aggregates are mostly
quadruplets, with some triplets, pairs and singletons left. Consequently, the coarsening ratio
n/nc is slightly less than 4, regardless of the problem at hand. Applied to two-dimensional
model problems, the procedure produces essentially “boxwise” aggregates if the coefficients
are isotropic, whereas strong anisotropy induces “linewise” aggregates aligned with the di-
rection of strong negative coupling. It is more difficult to figure out what comes out for
three-dimensional problems, especially when the coefficients are isotropic, but the numerical
results show that the approach is robust.

Of course, to generate a multilevel structure, Algorithm2.2 is applied recursively to the
successive coarse grid matrices. This is illustrated in Figure 2.1 for the problem JUMP2D
and in Figure2.2 for the problem CD1. These problems correspond to the five-point finite
difference discretization of elliptic PDEs, and are fully described in Section4. Problem
JUMP2D is the standard diffusion equation with jumps in the coefficients, which are isotropic
everywhere but in two rectangular regions. One indeed sees in the pictures that the coarsening
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First coarse grid

Second coarse grid

FIGURE 2.1. Coarsening for problemJUMP2D (h = 1/60).
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First coarse grid

Second coarse grid

FIGURE 2.2. Coarsening for problemCD1 (h = 1/60 andν = 10−4).
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proceeds differently in these regions, producing aggregates aligned with the strong coupling
direction. Problem CD1 is a convection-diffusion equationwith a divergence-free convective
flow rotating around the middle of the domain. Here, one sees that the coarsening “follows”
the flow, producing aggregates aligned with it in the regionswhere it is largest in magnitude.

2.1. Parallelization. Coarsening the matrix graph by aggregation is one of the key in-
gredients of the multilevel partitioning strategy proposed in [20]. From there, a possible way
to parallelize our method consists of applying the coarsening sequentially, and then partition
the matrix at the coarsest level, inducing the partitioningat all levels, as in [20]. However,
this raises several issues that lie outside the scope of thispaper, such as the sequential bot-
tleneck represented by this coarsening, and the selection of the partitioning strategy at the
coarsest level. Note, nevertheless, that the resulting method would have exactly the same grid
hierarchy for sequential and parallel executions.

We discuss in more detail another context, in which several instances of the program
run in parallel, each having only a portion of the rows of the matrix. It means that some
partitioning has been applied before calling the solution module, for instance at the level of
the discretization or with a standard tool like METIS [19]. It is then important to work with
local information only, as assembling the global matrix on one processor may be infeasible.

In such cases, our coarsening algorithm may be parallelizedin the following natural way:
each task has a portion of the rows, that is, the local matrix is a rectangular matrix with as
many rows as local variables, but more columns, the extra columns corresponding to non-
local variables. Observing that Algorithm2.1 accesses the matrix only row by row, it may
be applied as is to this local rectangular matrix, with the convention that the local variables
have indices1, . . . , n, corresponding to local rows. Hence, non-local variables are treated as
if they were already marked (the set of unmarked nodes is initialized to[1, n]), and they are
therefore excluded from the aggregation process. Non-local variables are however taken into
account when checking if the diagonal dominance is strong enough, and in the definition of
Si, to decide if a local coupling is strong or not. Algorithm2.2may also be applied as is, with
a slight modification of step 2, to take into account that the first application of Algorithm2.1
produces aggregates for local nodes only. To avoid any extracommunication at this stage, we
use

a
(1)
ij =





∑

k∈G
(1)
i

∑

ℓ∈G
(1)
j

akℓ, if 1 ≤ i, j ≤ nc1
,

∑

k∈G
(1)
i

akj , if 1 ≤ i ≤ nc1
andj /∈ [1, n],

that is,A1 is built as if all non-local variables were associated to distinct aggregates, and the
corresponding column indices were kept untouched.

Hence, each task computes locally the coarsening scheme forits local variables. Com-
munication is only needed to compute the coarse grid matrix,which requires knowledge of
the coarsening of non-local variables. Further, because aggregates are all formed with vari-
ables assigned to the same task, applying the associated prolongation (2.2) or its transpose to
some vector does not require any communication.

This parallel coarsening is illustrated in Figure2.3for the problem JUMP2D, parallelized
according to a partitioning of the domain in3 × 2 rectangular subdomains. One sees that the
aggregates do not cross over subdomain boundaries, and haveon the whole a similar shape,
as in the sequential coarsening.

3. The solution algorithm. We first describe the sequential implementation. The few
adaptations needed by the parallel version are discussed later.
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First coarse grid

Second coarse grid

FIGURE 2.3. Parallel coarsening for problemJUMP2D (h = 1/60).
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We use multigrid as a preconditioner in a main iteration routine, which is based on the
flexible conjugate gradient method (FCG), if the matrix is symmetric positive definite. More
precisely, we use FCG(1) from [29] or, equivalently, IPCG from [13]. This method is similar
to the standard conjugate gradient method, except that scalar coefficients are computed in a
slightly different way, at the expense of one more inner product computation per iteration.
This modification enhances the stability of the method in thepresence of variable precondi-
tioning. It is needed here, because use of the K-cycle induces slight variations in the multigrid
preconditioning.

In nonsymmetric cases, we use a preconditioned variant of GCR [11], referred to as
GMRESR in [40]. This method provides the minimal residual norm solution and allows for
variable preconditioning. We use an improved implementation, given in Algorithm3.1 for
the sake of completeness. In the standard implementation, at step 3(b) one applies tozj a

recursion similar to the one applied toc(·)
j . This allows us to obtain the approximate solution

at each step with a simple recursion, but doubles the cost of step 3(b), which is the most ex-
pensive part of the algorithm. In Algorithm3.1, instead, the computation of the approximate
solution is performed only upon completion of the main loop.Note that one has effectively
rm = b−Aum, becauserm = r0 − (c1 · · · cm)a whereasA(z1 · · · zm) = (c1 · · · cm)Γ,
entailingrm = r0 − A(z1 · · · zm)(Γ−1

a). This further shows that Algorithm3.1 is mathe-
matically equivalent to the original GCR/GMRESR algorithm, since the residual is computed
as in the latter. This improved implementation is discussedin detail in [17] for the unprecon-
ditioned case, where it is shown to also have superior stability properties.

ALGORITHM 3.1 (Preconditioned GCR – economical version).

Data: Matrix A; right-hand-sideb; initial approximationu0;
Maximal number of iterationsm; toleranceε.

Output : Approximate solutionum; residualrm = b − Aum.

Initialization: r0 = b − Au0.

Algorithm :

For j = 1, . . . ,m do
1. Apply preconditioner:zj =Prec(rj−1).

2. c
(1)
j = Azj .

3. Fori = 1, . . . , j − 1 do
(a) γij = c

T
i c

(i)
j ,

(b) c
(i+1)
j = c

(i)
j − γijci,

4. γjj = ‖c
(j)
j ‖; cj = γ−1

jj c
(j)
j .

5. αj = c
T
j rj−1; rj = rj−1 − αjcj .

6. If ‖rj‖ < ε‖b‖, exit do loop and resetm = j.
um =

[
z1 · · · zm

] (
Γ−1

a
)

where

a =




α1

...
αm


 and Γij =

{
γij , if i ≤ j,

0, otherwise.

In our experiments, to save on computational cost and memoryrequirements, we use
GCR(10), that is, the maximal number of iteration is set to10, and Algorithm3.1is restarted



ETNA
Kent State University 

http://etna.math.kent.edu

AGGREGATION-BASED ALGEBRAIC MULTIGRID 133

if needed. With the improved implementation, preconditioned GCR has about the same cost
as flexible GMRES (FGMRES [35]). GCR is further slightly cheaper upon restart, because
FGMRES requires an additional matrix-vector product to compute the residual. In fact, we
also tested FGMRES, and found that it was slightly slower in most cases, in agreement with
the conclusions in [23].

ALGORITHM 3.2 (Multigrid as a preconditioner at levelk (k ≥ 1)).

Input : rk.

Output : zk = MGprec(rk, k).

Data: matrixAk, smootherMk, prolongationPk; matrixAk−1;
if k > 1: cycle type (V or K), iteration type (FCG or GCR), thresholdt.

Algorithm :
1. Relax using smootherMk: z

(1)
k = M−1

k rk.

2. Compute new residual:̃rk = rk − Akz
(1)
k .

3. Restrict residual:rk−1 = PT
k r̃k.

4. Compute an (approximate) solutionx̃k−1 to Ak−1xk−1 = rk−1:
if k = 1, then x̃k−1 = A−1

k−1rk−1;
else if V-cycle, then x̃k−1 = MGprec(rk−1, k − 1);
else if K-cycle, then Perform 1 or 2 iterations with multigrid prec.:

ck−1 =MGprec(rk−1, k − 1); vk−1 = Ak−1ck−1;{
ρ1 = c

T
k−1vk−1; α1 = c

T
k−1rk−1; if FCG

ρ1 = ‖vk−1‖
2; α1 = v

T
k−1rk−1; if GCR

r̃k−1 = rk−1 −
α1

ρ1
vk−1;

if ‖r̃k−1‖ ≤ t‖rk−1‖, then x̃k−1 = α1

ρ1
ck−1;

else
dk−1 =MGprec(r̃k−1, k − 1); wk−1 = Ak−1dk−1;{

γ = d
T
k−1vk−1;β = d

T
k−1wk−1;α2 = d

T
k−1r̃k−1; if FCG

γ = w
T
k−1vk−1;β = ‖wk−1‖

2;α2 = w
T
k−1r̃k−1; if GCR

ρ2 = β − γ2

ρ1
;

x̃k−1 =
(

α1

ρ1
− γα2

ρ1ρ2

)
ck−1 + α2

ρ2
dk−1;

end if
end if

5. Prolongate coarse-grid correction:z
(2)
k = Pkx̃k−1.

6. Compute new residual:rk = r̃k − Akz
(2)
k .

7. Relax using smootherMk: z
(3)
k = M−1

k rk.

8. zk = z
(1)
k + z

(2)
k + z

(3)
k .

Details of the multigrid preconditioning are given in Algorithm 3.2. It is called by the
main iteration routine at the top levelk = ℓ with the matrixAℓ = A, and it recursively calls
itself with a smaller index untilk = 1. We thus follow the usual convention that coarser
levels correspond to smaller indexes, although the number of levels is not known in advance:
in fact, we stop the coarsening when the coarse grid matrix has 200 rows, or less, allowing
fast direct inversion with LAPACK routines [1].

For the sake of clarity, Algorithm3.2 foresees only one pre- and one post-smoothing
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step. In our experiments, we use symmetric Gauss-Seidel smoothing, that is,

(3.1) Mk = low(Ak) diag(Ak)−1upp(Ak),

where low(·), diag(·) and upp(·) stand for the lower, the diagonal, and the upper triangu-
lar part of a matrix, respectively. Numerical results indicate that, with this smoother, the
scheme is indeed most efficient with only one pre- and one post-smoothing step. Note that the
word “symmetric” refers to the fact that this smoother brings the same effect as one forward
Gauss-Seidel sweep, followed by one backward Gauss-Seidelsweep, that is, the Gauss-Seidel
scheme is symmetrized. However,Mk itself is symmetric if and only ifAk is symmetric.

At step 4, the coarse grid system is solved with either a V-cycle or a K-cycle formulation.
The V-cycle corresponds to one application of the preconditioner at the next coarser level,
whereas with the K-cycle a few steps of a Krylov subspace iterative method are performed.
According to the conclusions from [31], at most 2 iterations are allowed, and the second one
is skipped if the relative residual error is below the threshold t after the first step. In practice,
as discussed at the beginning of Section4, we uset = 0.25.

The Krylov subspace iterative method used here is also either FCG (for symmetric pos-
itive definite matrices) or GCR. The implementation inside step 4 of Algorithm3.2 is non-
standard: it takes advantage at the fact that the number of iterations is at most 2, to minimize
the work and the number of synchronization points. This implementation is, however, mathe-
matically equivalent to the standard one. This is straightforward to check if only one iteration
is performed. Otherwise, this may be seen by checking that the residual corresponding to
the computed solutioñxk−1 is orthogonal tock−1(dk−1 in case of FCG), and orthogonal to
vk−1(wk−1 in case of GCR). This indeed ensures that the computed solution is the linear
combination ofck−1 anddk−1 which minimizes theAk−1-norm of the error in case of FCG,
and the residual norm in case of GCR.

Now, this residual is

rk−1 = rk−1 −

(
α1

ρ1
−

γα2

ρ1ρ2

)
vk−1 −

α2

ρ2
wk−1.

SincecT
k−1wk−1 = d

T
k−1vk−1, it holds that

{
c

T
k−1rk−1 (for FCG)

v
T
k−1rk−1 (for GCR)

}
= α1 −

(
α1

ρ1
−

γα2

ρ1ρ2

)
ρ1 −

α2

ρ2
γ = 0,

whereas, using

rk−1 = r̃k−1 +
γα2

ρ1ρ2
vk−1 −

α2

ρ2
wk−1,

one obtains
{

d
T
k−1rk−1 (for FCG)

w
T
k−1rk−1 (for GCR)

}
= α2 +

γα2

ρ1ρ2
γ −

α2

ρ2
β =

α2

ρ2

(
ρ2 +

γ2

ρ1
− β

)
= 0.

Hence, in both cases the required orthogonality conditionsare satisfied.
The coarsening algorithm has been designed to ensure a reduction by a factor of about 4

of the number of variables from one level to the next, while avoiding a significant increase of
the mean number of nonzero entries per row. If this is achieved, the K-cycle formulation may
be used at every level while keeping the overall cost bounded. Indeed, letC be a constant
such that the cost of one iteration with the multigrid preconditioner at levelk, except step 4,
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is bounded byC nnz(Ak), wherennz(·) stands for the number of nonzero entries. Further,
let σ be an upper bound fornnz(Ak−1)/nnz(Ak), valid for k = 2, . . . , ℓ; note thatσ defined
in this way depends on the coarsening rationk/nk−1, but takes also into account a possible
increase of the mean number of nonzero entries per row. Assuming the cost of the inversion
of A0 to be negligible, the global cost of each main (top level) iteration is then bounded by
summing the contribution of the top level, and that of each level k (1 ≤ k < ℓ), taking into
account the number of allowed iterations (2), and the maximal number of times this level is
visited in the recursion (2ℓ−k−1):

Cost≤ C

(
nnz(Aℓ) +

ℓ−1∑

k=1

2ℓ−knnz(Ak)

)
(3.2)

≤ C nnz(Aℓ)

ℓ∑

k=1

(2σ)ℓ−k

≤
2σ

1 − 2σ
C nnz(A).(3.3)

This is indeed nicely bounded ifσ is close to1/4.
However, there is no a priori guarantee on the coarsening speed. We therefore set the

parametersηk, k = ℓ − 1, ℓ − 2, . . . , 2, as follows

(3.4) ηk =





2, if
nnz(Aℓ)

nnz(Ak)
ξℓ−k

(
ℓ−1∏

j=k+1

ηj

)−1

≥
3

2
,

1, otherwise,

whereξ = 3
5 . Then, at levelk, we use Algorithm3.2 with V-cycle if ηk−1 = 1, and with

K-cycle if ηk−1 = 2. Note that, since
∏ℓ−1

j=k+1 ηj ≤ 2ℓ−k−1, one has

nnz(Aℓ)

nnz(Ak)
ξℓ−k

(
ℓ−1∏

j=k+1

ηj

)−1

≥ 2

(
ξ

2σ

)ℓ−k

.

Hence, the K-cycle is, in particular, allowed at every levelif σ ≤ ξ
2 = 3

10 . Then, the rela-
tion (3.3) shows that the cost of each main iteration is at most3

2C nnz(A).
More generally, the above rule allows us to keep the cost of the application of the pre-

conditioner bounded in any case. We have to correct (3.2) to take into account that, at levelk
(1 ≤ k < ℓ), the number of allowed iterations is nowηk, and the maximal number of times
this level is visited is now

∏ℓ−1
j=k+1 ηj :

Cost≤ C

(
nnz(Aℓ) +

ℓ−1∑

k=1

(
ℓ−1∏

j=k

ηj

)
nnz(Ak)

)
.

If ηℓ−1 = · · · = ηk = 1, then there holds

(3.5) nnz(Ak)

ℓ−1∏

j=k

ηj ≤ σℓ−knnz(Aℓ).
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Otherwise, letmk be the smallest index such thatmk ≥ k andηmk
= 2; thusmk = k if

ηk = 2. Using the condition in (3.4) for havingηmk
= 2, one has

nnz(Ak)

ℓ−1∏

j=k

ηj ≤ ηmk
σmk−knnz(Amk

)

ℓ−1∏

j=mk+1

ηj

≤
4

3
σmk−kξℓ−mknnz(Aℓ).(3.6)

Hence, withζ = max(σ, ξ), combining (3.5) and (3.6), one has

Cost≤ C nnz(Aℓ)

(
1 +

4

3

ℓ−1∑

k=1

ζℓ−k

)
≤ C nnz(Aℓ)

(
1 +

4ζ

3(1 − ζ)

)
.

In practice, we expectσ ≤ ξ = 3
5 ; σ = 3

5 would already indicate a very slow coarsen-
ing. Then, the above relation means that the cost of each top level iteration is bounded by
3C nnz(Aℓ).

3.1. Parallel implementation. We use the same algorithms in parallel, with the coars-
ening adapted as indicated in Section2. We still use symmetric Gauss-Seidel smoothing, but
locally, that is, the smoother is given by (3.1), but ignoring offdiagonal entries connecting
nodes assigned to different tasks, so thatMk is block diagonal with respect to the partition-
ing of the unknowns. On the other hand, the coarse grid matrixis factorized exactly using
a parallel sparse direct solver (namely MUMPS [25]) as soon as the global number of un-
knowns is below400Np, whereNp is the number of concurrent tasks. This makes it possible
to avoid working with excessively small grids, for which thecommunication/computation ra-
tio is large. As discussed later, although this is not essential, we also use a slightly different
value for the thresholdt in Algorithm 3.2, namelyt = 0.35 instead oft = 0.25.

4. Numerical results. We consider the following test problems. In all cases we use a
uniform mesh with constant mesh sizeh in all directions.

Problem MODEL2D: linear system resulting from the five-point finite difference approx-
imation of−∆u = 1 in Ω = (0, 1) × (0, 1), with boundary conditionsu = 0 everywhere on
∂Ω.

Problem ANI2D: linear system resulting from the five-point finite difference approxima-
tion of −∂2u

∂x2 − b∂2u
∂y2 = 1 in Ω = (0, 1) × (0, 1), with constant coefficientb and boundary

conditions
{

u = 0, for x = 1, 0 ≤ y ≤ 1,
∂u
∂n

= 0, elsewhere on∂Ω.

Problem ANIBFE: linear system resulting from thebilinear finite elementapproximation
of −∂2u

∂x2 − b∂2u
∂y2 = 1 in Ω = (0, 1) × (0, 1), with constant coefficientb and boundary

conditionsu = 0 everywhere on∂Ω.
Problem JUMP2D: linear system resulting from the five-point finite difference approxi-

mation of− ∂
∂x

(
a∂u

∂x

)
− ∂

∂y

(
b∂u

∂y

)
= f in Ω = (0, 1) × (0, 1), with boundary conditions

{
u = 0, for y = 1, 0 ≤ x ≤ 1
∂u
∂n

= 0, elsewhere on∂Ω,
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and coefficients given by




a = 1, b = 100, f = 0, in (0.65, 0.95) × (0.05, 0.65),
a = 100, b = 1, f = 0, in (0.25, 0.45) × (0.25, 0.45),
a = 100, b = 100, f = 1, in (0.05, 0.25) × (0.65, 0.95),
a = 1, b = 1, f = 0, elsewhere.

Problem CD1 [12]: linear system resulting from the five-point finite difference approx-
imation (upwind scheme) of−ν∆u + v∇u = 0 in Ω = (0, 1) × (0, 1), with boundary
conditions

{
u = 1, for y = 1, 0 ≤ x ≤ 1,

u = 0, elsewhere on∂Ω,

and convective flow given by

v(x, y) =

[
x(1−x)(2y − 1)
−(2x − 1)y(1−y)

]
.

Problem CD2 [33]: linear system resulting from the five-point finite difference approx-
imation (upwind scheme) of−ν∆u + v∇u = 0 in Ω = (0, 1) × (0, 1), with boundary
conditions

{
u = 1, for y = 1, 0 ≤ x ≤ 1,

u = 0, elsewhere on∂Ω,

and convective flow given by

v(x, y) =

[
cos
(
π
(
x − 1

3

))
sin
(
π
(
y − 1

3

))

− cos
(
π
(
y − 1

3

))
sin
(
π
(
x − 1

3

))
]

inside the circle of center( 1
3 , 1

3 ) and radius14 , andv(x, y) = 0 outside.
Problem MODEL3D: linear system resulting from the seven-point finite difference ap-

proximation of−∆u = 1 in Ω = (0, 1) × (0, 1) × (0, 1), with boundary conditionsu = 0
everywhere on∂Ω.

Problem ANI3D: linear system resulting from the seven-point finite difference approxi-
mation of−∂2u

∂x2 − b∂2u
∂y2 − c∂2u

∂z2 = 1 in Ω = (0, 1)× (0, 1)× (0, 1), with constant coefficients
b, c, and boundary conditions

{
u = 0, for x = 1, 0 ≤ y, z ≤ 1,
∂u
∂n

= 0, elsewhere on∂Ω.

Problem JUMP3D: linear system resulting from the seven-point finite difference approx-

imation of− ∂
∂x

(
a∂u

∂x

)
− ∂

∂y

(
b∂u

∂y

)
− ∂

∂z

(
c∂u

∂z

)
= f in Ω = (0, 1) × (0, 1) × (0, 1), with

boundary conditions
{

u = 0, for z = 1, 0 ≤ x, y ≤ 1,
∂u
∂n

= 0, elsewhere on∂Ω,

and coefficients given by
{

a = b = c = d, f = 1, in
(

1
4 , 3

4

)
×
(

1
4 , 3

4

)
×
(

1
4 , 3

4

)
,

a = b = c = 1, f = 0, elsewhere,
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whered is a parameter.
Problem CD3D: linear system resulting from the seven-pointfinite difference approxi-

mation (upwind scheme) of−ν∆u+v∇u = 0 in Ω = (0, 1)× (0, 1)× (0, 1), with boundary
conditions

{
u = 1, for z = 1, 0 ≤ x, y ≤ 1,

u = 0, elsewhere on∂Ω,

and convective flow given by

v(x, y, z) =




2x(1−x)(2y − 1)z
−(2x − 1)y(1−y)

−(2x − 1)(2y − 1)z(1−z)


 .

Besides these problems, we also consider 3D unstructured problems arising in the sim-
ulation of complex electrochemical processes [27]. For these problems, statistics on matrix
data are given in Table4.1.

TABLE 4.1
Matrix statistics for electrochemical problems; “%PosOf”is the percentage of positive offdiagonal entries,

and “%RwNeg” is the percentage of rows with negative row-sum; more precisely, with computed row-sum below
(nnz(A)/n)εmach.

Problem n nnz(A)/n %PosOf %RwNeg
P1 826719 14.2 23 36
P2 2190 12.6 21 50
P3 59771 14.1 23 40
P4 826408 13.8 23 34

In all experiments, the systems where solved using the zero vector as initial approxima-
tion, and toleranceε = 10−6 on the relative residual norm. All times reported are elapsed
(wall clock) time. Those reported in Figures4.1 and4.2 were obtained on an Intel XEON
32bit processor at3.05GHz with 2GB of RAM memory. Times reported in Tables4.2, 4.5
and4.6 were obtained on a multi-processor cluster with two Intel XEON L5420 processors
at 2.50GHz and 16Gb RAM memory per computing node, with Infiniband (half bandwidth)
interconnect; note that the Intel XEON at3.05GHz is from an older generation and about
three times slower than the Intel XEON L5420.

Before presenting the results obtained with default settings, we first show the importance
of using K-cycle multigrid. In Table4.2, we consider two of the test problems, using both
sequential and parallel computation, and compare V- and W-cycle with K-cycle for several
values of the threshold parametert in Algorithm 3.2; note thatt = 0.00 means that two
inner iterations are enforced at each level. The lack of scalability of V- and W-cycles appears
clearly. The K-cycle works fine witht = 0.00, but increasingt to 0.25 does not modify the
number of (outer) iterations, while the cost of the multigrid preconditioner slightly decreases.
Sometimes, increasingt to 0.35 further reduces the computing time, but there is sometimes
a penalty because the number of outer iterations slightly increases. These observations are
supported by many other experiments. In the following, the threshold parametert was set to
0.25 for all sequential runs and to0.35 for the parallel ones. This difference of treatment is
motivated by the fact that communications are more penalizing on small grids, hence using a
largert is slightly more beneficial in parallel, as this reduces the number of times these grids
are visited.
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TABLE 4.2
Comparison of cycling strategies; for the parallel runs, one task per computing node was used and the problem

size was scaled in such a way that the load per processor is approximately the same as that for the corresponding
sequential run; times reported are total elapsed time in seconds.

#it Time #it Time
Problem JUMP2D, sequential

n = 1.00e6 n = 9.00e6
V-cycle 49 17.6 111 372
W-cycle 35 14.6 44 179

K-cycle, t = 0.00 21 9.3 22 95
K-cycle, t = 0.25 21 9.3 22 95
K-cycle, t = 0.35 25 10.5 23 98
Problem JUMP2D, 48 processors

n = 47.9e6 n = 432.0e6
V-cycle 148 61.7 382 1533
W-cycle 67 44.0 85 440

K-cycle, t = 0.00 25 18.0 25 137
K-cycle, t = 0.25 25 17.9 25 138
K-cycle, t = 0.35 25 17.8 25 138
Problem JUMP3D, sequential

n = 1.02e6 n = 64.3e6
V-cycle 18 9.22 40 1367
W-cycle 14 8.57 20 922

K-cycle, t = 0.00 12 7.72 12 603
K-cycle, t = 0.25 12 7.44 12 601
K-cycle, t = 0.35 12 7.08 12 557
Problem JUMP3D, 48 processors

n = 48.5e6 n = 3065.0e6
V-cycle 27 16.7 66 3182
W-cycle 17 17.0 23 1597

K-cycle, t = 0.00 12 12.8 16 1158
K-cycle, t = 0.25 12 12.8 16 1156
K-cycle, t = 0.35 12 12.5 16 1118

Numerical results for all test problems in sequential are reported in Tables4.3 and4.4;
there, “#lev” is the number of levels,

C =
1

nnz(Aℓ)

ℓ∑

k=1

nnz(Ak)

is the (operator) complexity, “#it” the number of iterations, and “SolC” the relative solution
cost, that is, the number of floating point operations neededto solve the system (excluding
setup) divided by the number of floating point operations required by anunpreconditioned
conjugate gradient iteration, or, in other words, the number of unpreconditioned conjugate
gradient iterations one could perform with the amount of work used by the multigrid method
to solve the system.

One sees that the complexity is small in all cases, indicating that setup costs and memory
requirements are low. The solution cost is independent of the mesh size in the best cases,
and nearly independent in the most difficult ones. Note that,except for Problem P4, the
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TABLE 4.3
Numerical results for 2D problems.

h−1 = 300 h−1 = 1200
Problem #lev C #it SolC #lev C #it SolC
MODEL2D 6 1.33 11 56 8 1.33 11 57
ANI2D (b = 100) 6 1.33 15 75 8 1.33 20 103
ANI2D (b = 104) 6 1.33 16 81 8 1.33 17 86
JUMP2D 6 1.35 18 93 8 1.38 22 120
ANIBFE (b = 1) 6 1.26 10 53 8 1.26 11 59
ANIBFE (b = 10) 6 1.33 19 106 8 1.33 21 123
ANIBFE (b = 100) 6 1.33 20 109 8 1.33 23 131
ANIBFE (b = 103) 6 1.33 20 110 8 1.33 23 131
CD1 (ν = 1) 6 1.37 9 50 8 1.41 10 60
CD1 (ν = 10−2) 6 1.42 15 89 8 1.40 12 70
CD1 (ν = 10−4) 7 1.45 17 108 8 1.40 23 137
CD1 (ν = 10−6) 6 1.41 13 81 8 1.39 16 97
CD2 (ν = 1) 6 1.35 9 47 8 1.35 10 54
CD2 (ν = 10−2) 6 1.35 13 69 8 1.35 14 75
CD2 (ν = 10−4) 6 1.39 14 81 9 1.41 14 85
CD2 (ν = 10−6) 6 1.39 20 126 9 1.40 23 144

TABLE 4.4
Numerical results for 3D problems.

h−1 = 60 h−1 = 120
Problem #lev C #it SolC #lev C #it SolC
MODEL3D 7 1.36 9 46 8 1.34 10 54
ANI3D (b = 1, c = 100) 7 1.34 13 62 8 1.34 15 75
ANI3D (b = 10, c = 100) 7 1.34 15 70 8 1.34 13 73
ANI3D (b = 100, c = 100) 7 1.34 9 47 8 1.34 10 52
ANI3D (b = 100, c = 104) 7 1.34 15 70 8 1.34 15 74
JUMP3D (d = 100) 7 1.40 11 64 8 1.39 11 69
JUMP3D (d = 104) 7 1.40 11 63 8 1.39 11 69
JUMP3D (d = 106) 7 1.40 11 65 8 1.39 11 68
CD3D (ν = 1) 7 1.59 12 59 8 1.58 11 68
CD3D (ν = 10−2) 7 1.58 12 72 8 1.56 13 80
CD3D (ν = 10−4) 7 1.58 12 74 9 1.59 16 104
CD3D (ν = 10−6) 7 1.57 12 74 8 1.55 16 101
P1 8 1.35 9 52
P2 3 1.31 5 28
P3 6 1.35 9 52
P4 8 1.34 37 203

solution cost, as measured by “SolC”, never exceeds three times the solution cost for the
model problem.

Timing results are shown in Figures4.1and4.2, where a comparison is made with the old
but classical code AMG1R5 by K. Stüben, based on the “standard” AMG method in [34, 36].
This code was used with the same initial approximation and the same stopping criterion as
our method. Other parameters were set to default, except that we tested the program both
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FIGURE 4.1. Timing results (Elapsed Time
n·10−6 ) for 2D problems withh−1 = 120; AMG1R5 did not converge in the

allowed 100 iterations for ProblemANI2D with b = 100 and ProblemCD2 with ν = 10−6.

with and without conjugate gradient acceleration, recording, for each problem, only the best
of the two timings; by default, conjugate gradient is not used in AMG1R5, but the comparison
could then be seen as unfair since our method always uses Krylov subspace acceleration. In
the figures, “AGMG” refers to the method described in this paper. The bottom part of the bars
represents the setup time, and the upper part the solution time (the total height gives thus the
total time). Reported times are elapsed times in seconds permillion of unknowns.

With the exception of problem P4, our method solves all test cases in a time between 15
and 50 seconds per million of unknowns. In addition, setup times are fairly small. AGMG
is not always the winner, especially in 2D cases, but appearsmore robust. When AMG1R5
is faster, gains are relatively marginal, whereas losses may be much more significant, with
failure in some cases. Note that AGMG hasalwayslower setup time.

Results for parallel runs are reported in Tables4.5and4.6. In all cases, the partitioning
was imposed at the discretization level, based on the partitioning of the domain in rectangular
or parallelepipedal subdomains. We give both the global complexity Cglob, and the maximum
of the local onesCmax; their comparison gives an idea on how the initial load balancing is
preserved throughout all levels. The solution cost “SolC” reported is also the maximum of
the local ones, that is, each task counts the numbers of floating point operations it performed
to solve the system, and divides it by the numbers of floating point operations executed on that
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FIGURE 4.2.Timing results (Elapsed time
n·10−6 ) for 3D problems withh−1 = 120 (in MODEL3D, ANI3D, JUMP3D,

CD3D); AMG1R5 did not converge in the allowed 100 iterations for Problem JUMP3D with d = 106 and for
Problem P4, whereas it broke down for Problem P2; for ProblemJUMP3D with d = 104, Problem P1 and Problem
CD3D with ν = 10−4 or ν = 10−6, the total time for AMG1R5 just goes over the upper limit needed to properly
display results with AGMG: these times are, respectively, 171, 522, 582 and 433 seconds per million of unknowns.

task when performing one unpreconditioned conjugate gradient iteration; what is reported in
Tables4.5and4.6 is then the maximum over all tasks of this quantity.

Two sequences of runs were performed: one with one task per computing node, and a
second one with two tasks per computing node. These latter runs allow us to benefit from the
fact that there are two processors per computing node in the cluster. This level of parallelism
is, however, not that efficient because the two processors share the same memory. Hence,
firstly, one cannot in this way really increase the size of theproblems that can be solved.
This is why, in the tables, we report results for problem sizes scaled in such a way that the
number of unknown percomputing nodeis approximately constant. Secondly, as for any
computation with large sparse matrices, a significant amount of time is spent fetching and
loading data from and to main memory, implying that the two processes running on the same
node slow down each other.

Now, the results indicate that the solution cost, as reported in “SolC”, is nearly inde-
pendent of both the problem size and the number of processorsor tasks. On the other hand,
timing results show that, with 1 task per computing node, using 48 nodes allows us to solve
a problem 48 times larger than sequentially in twice the timeor less. Using 2 tasks per com-
puting node has mitigated effects on smallest problems withmany processors, but, for largest
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TABLE 4.5
Results in parallel for ProblemJUMP2D; #p is the number of concurrent tasks and #cn the number of comput-

ing nodes effectively used.

n #p #cn n/#cn Cglob Cmax #it SolC Time

≈ 106 unknowns per computing node
1 task per computing node
1.00e6 1 1 1.00e6 1.36 1.36 25 127 10.81
7.96e6 8 8 0.99e6 1.34 1.35 23 120 10.98

24.01e6 24 24 1.00e6 1.34 1.41 24 135 15.00
47.89e6 48 48 1.00e6 1.34 1.41 25 140 17.96
2 tasks per computing node
1.00e6 2 1 1.00e6 1.35 1.37 23 119 5.86
7.96e6 16 8 0.99e6 1.34 1.41 23 128 8.79

24.01e6 48 24 1.00e6 1.34 1.35 25 135 14.36
47.89e6 96 48 1.00e6 1.34 1.41 26 146 20.29

≈ 9 · 106 unknowns per computing node
1 task per computing node

9.0e6 1 1 9.0e6 1.35 1.35 23 122 99
71.9e6 8 8 9.0e6 1.35 1.39 24 132 112

216.1e6 24 24 9.0e6 1.34 1.37 30 162 153
431.8e6 48 48 9.0e6 1.34 1.41 25 142 137
2 tasks per computing node

9.0e6 2 1 9.0e6 1.35 1.36 24 126 64
71.9e6 16 8 9.0e6 1.34 1.38 23 127 87

216.1e6 48 24 9.0e6 1.34 1.39 25 138 103
431.8e6 96 48 9.0e6 1.34 1.41 25 141 115

problems, this allows, using 48 nodes, to solve a problem 48 times larger than sequentially in
a time that is only 15–30% larger than the (purely) sequential time.

5. Conclusions.We have presented a multigrid method based on the aggregation of the
unknowns. The procedure is fully algebraic, that is, it works with the information present in
the system matrix only. Numerical experiments have been performed on a wide set of dis-
crete second order scalar elliptic PDEs, including two- andthree-dimensional problems with
jumps and/or anisotropy in the PDE coefficients, convection-diffusion problems with high
Reynolds number and circulating convective flow, as well as some problems from industrial
chemistry with many positive offdiagonal entries. The results are promising and indicate that
the approach is robust as a black box solver. On the average, the method is also faster than
the classical AMG method as implemented in the AMG1R5 code when using the latter with
default settings, that is, also as a black box solver. Of course, classical AMG performances
are significantly improved in some cases by tuning parameters or implementing variants as
developed in, e.g., [8–10]. In fact, AMG1R5 is “just the first realization of an AMG method,
and there are many improvements introduced during the last years” [38]. The code developed
to produce the numerical results with our method is, however, also the first realization of a
multigrid method based on the proposed double pairwise aggregation algorithm and the use
of K-cycle multigrid to enhance scalability. Moreover, it seems that, so far, no AMG variant
can be used as widely as black box solver. Note that the code implementing AGMG is avail-
able for download, both as a FORTRAN program and a MATLAB function [28], the latter
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TABLE 4.6
Results in parallel for ProblemJUMP3D with d = 106; #p is the number of concurrent tasks and #cn the

number of computing nodes effectively used.

n #p #cn n/#cn Cglob Cmax #it SolC Time

≈ 106 unknowns per computing node
1 task per computing node

1.02e6 1 1 1.02e6 1.38 1.38 12 65 7.90
8.08e6 8 8 1.01e6 1.37 1.40 11 67 8.10

24.05e6 24 24 1.00e6 1.37 1.40 13 81 10.65
48.49e6 48 48 1.01e6 1.37 1.40 12 78 12.49

2 tasks per computing node
1.02e6 2 1 1.02e6 1.44 1.46 12 72 4.90
8.08e6 16 8 1.01e6 1.37 1.39 11 66 5.98

24.05e6 48 24 1.00e6 1.36 1.43 12 77 7.58
48.49e6 96 48 1.01e6 1.37 1.40 12 75 11.03

≈ 64 · 106 unknowns per computing node
1 task per computing node

64.0e6 1 1 64.0e6 1.38 1.38 12 70 575
513.0e6 8 8 64.0e6 1.36 1.38 13 80 826

1531.0e6 24 24 64.0e6 1.35 1.40 13 86 906
3065.0e6 48 48 64.0e6 1.36 1.45 16 110 1112
2 tasks per computing node

64.0e6 2 1 64.0e6 1.37 1.38 12 67 444
513.0e6 16 8 64.0e6 1.36 1.40 13 84 557

1531.0e6 48 24 64.0e6 1.35 1.38 13 84 634
3065.0e6 96 48 64.0e6 1.35 1.40 15 97 728

illustrating well the black box capabilities of the method.
The parallelization has also been addressed. A strategy hasbeen proposed for which the

total work is nearly independent of the number of processors, that is, the parallel implemen-
tation incurs almost no penalty from the algorithmic point of view. Timing results are also
promising, and satisfactory speedups have been obtained ona 48-node processors cluster with
Infiniband interconnect, which may be seen as representative of today market of medium size
multi-processor computers.

Finally, note that all results were obtained for matrices arising from scalar elliptic PDEs,
that is, with only one vector in the near-kernel that is well approximated by the constant
vector. One subject of future research is the extension of the method to more general problems
with different type of near-kernel, such as those arising from systems of PDEs.
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