Electronic Transactions on Numerical Analysis. ETNA

Volume 37, pp. 123-146, 2010. Kent State University
Copyright 0 2010, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.

AN AGGREGATION-BASED ALGEBRAIC MULTIGRID METHOD *

YVAN NOTAY f

Abstract. An algebraic multigrid method is presented to solve largeesystof linear equations. The coarsen-
ing is obtained by aggregation of the unknowns. The aggi@gatheme uses two passes of a pairwise matching
algorithm applied to the matrix graph, resulting in most casesdecrease of the number of variables by a factor
slightly less than four. The matching algorithm favors thiersgest negative coupling(s), inducing a problem depen-
dent coarsening. This aggregation is combined with pieeeadsstant (unsmoothed) prolongation, ensuring low
setup cost and memory requirements. Compared with previousgagm-based multigrid methods, the scalability
is enhanced by using a so-called K-cycle multigrid schemeyigireg Krylov subspace acceleration at each level.
This paper is the logical continuation of [SIAM J. Sci. CompB0 (2008), pp. 1082-1103], where the analysis of
a anisotropic model problem shows that aggregation-basedjtid methods may have optimal order convergence,
and of [Numer. Lin. Alg. Appl., 15 (2008), pp. 473-487], whétrés shown that K-cycle multigrid may provide
optimal or near optimal convergence under mild assumptionseotwit+-grid scheme. Whereas in these papers only
model problems with geometric aggregation were considered,anguly algebraic method is presented and tested
on a wide range of discrete second order scalar elliptic PBEERIding nonsymmetric and unstructured problems.
Numerical results indicate that the proposed method may béisatly more robust as black box solver than the
classical AMG method as implemented in the code AMG1R5 by Kib&t. The parallel implementation of the
method is also discussed. Satisfactory speedups are abtaireemedium size multi-processor cluster that is typical
of today computer market. A code implementing the method is freedjlable for download both as a FORTRAN
program and a MATLAB function.

Key words. Multigrid, linear systems, iterative methods, AMG, precaiaiing, parallel computing.

AMS subject classifications.65F10, 65N55.

1. Introduction. We consider the iterative solution of large spatsen linear systems
Au=Db

arising from the discretization of second order ellipticB&D In this context, multigrid meth-
ods B9 are among the most efficient solution techniques. Whereamggic multigrid
methods require a predetermined hierarchy of grids andedizations, algebraic multigrid
(AMG) methods are set up using only the information preseitiié system matrix3, 37].

These algorithms combine the effect osmootherand acoarse grid correction In
AMG schemes, the smoother is fixed and generally based onpdesitarative method such
as the (symmetric) Gauss-Seidel method. The coarse gnidatimn consists of computing
an approximate solution to the residual equation on a cogrs# that is, solving a linear
system of smaller size. This solution is then transferrazk ba the actual grid by means of
an appropriate prolongation. In AMG methods, this coargaprrection is entirely defined
once the prolongation is known, that is, once an approppiatngation matrix has been set
up by applying a so-calledoarseningalgorithm to the system matrix.

The improvement of AMG schemes is a hot research topic. Themttrend (e.g.,4,
5,7, 15, 18)]) leads to more involved algorithms with denser prolongatinatrices, which in-
creases setup costs and memory requirements. In this paptake the opposite viewpoint.
We consider coarsening by aggregation of the unknowns,hwbads to prolongation matri-
ces with at most one nonzero entry per row, which are muctsspénan the ones obtained
by the classical AMG approach, as developed3n3{, 36, 37].

*Received February 14, 2008. Accepted December 4, 2009.sReblonline April 25, 2010. Recommended by
Thomas Manteuffel.

fService de Mtrologie Nuckaire (C.P. 165/84), UniveréitLibre de Bruxelles, 50, Av. F.D. Roosevelt, B-1050
Brussels, Belgium. Supported by the Belgian FNRS (“Directiurecherches”yfiotay@ulb.ac.be).

123

ETNA
Kent State University
http://etna.math.kent.edu

124 Y. NOTAY

Aggregation schemes are not new and trace back,t6]{. They are not much popular
because it is difficult to obtain grid independent conveogeon this basisj7, pp. 522-524];
see also43, p. 663], where a three-grid analysis is presented for thigsBo model problem.
This may be connected to the fact that aggregation-basdéohgiations do not correspond to
an interpolation which is exact for all polynomials of degjie as required by the theory of
geometric multigrid 4, Sections 3.5 and 6.3.2].

That is why aggregation is often associated vathoothedaggregation, as introduced
in [41, 42]. There, it is proposed to overcome intrinsic difficultiessaciated with aggrega-
tion, by smoothinghe interpolation matrix, that is, an effective prolongatis obtained from
a “tentative” aggregation-based prolongation maffix(with one nonzero entry per row),
letting P = M P,, whereM is a matrix that smooths the interpolation; eyf.,= I — wA,
wherew is a relaxation parameter. In this work, we take an oppos#epoint and stay with
the “pure” (unsmoothed) prolongation matrix.

The approach we follow is the logical continuation of two \poeils works P6, 31].
In[26], analyzing a two-dimensional anisotropic model probléis,shown that aggregation-
basedwo-grid methods may have optimal order convergence prope(itigh respect to the
number of unknowns) provided that, in the presence of amipgtaggregates are formed fol-
lowing the strong coupling direction. It does not mean thatabove mentioned difficulties
are not real, but that they appear when considendfi-grid V- or W-cycles, which scale
poorly with the number of levels. Here the results 3i][enter the scene. This paper intro-
duces K-cycle multigrid, with which Krylov subspace accat®n is applied at every level.
It is shown that this provides enhanced robustness anduilig|acompared with standard V-
or W-cycles, giving support to earlier observations in, . g82]. Furthermore, preliminary
numerical results ing6] indicate that aggregation-based multigrid methods maw thdeed
exhibit convergence that is independent or near-indeperudéhe number of levels.

These results were obtained for symmetric positive definitedimensional model prob-
lems, with regular (geometric-based) aggregation schermethis work, we address more
general problems, including nonsymmetric ones, and censigtomatic aggregation with an
appropriate coarsening algorithm, resulting in a fullyeddgpic method. As in most previ-
ous aggregation-based multilevel algorithrdsq1, 30], we start with a pairwise aggregation
scheme, forming pairs or “matchings” in the matrix graph.wwer, this results in a rela-
tively slow coarsening, which does not permit the efficiesg of K-cycle schemes. Hence
we repeat the process, forming in a second pass pairs of fpainsthe first pass. We call
this strategy “double pairwise aggregation”. Note that wseatially reuse the algorithms
proposed in30] for another type of multilevel method.

We also discuss the parallelization of the algorithms u$#ith the classical AMG ap-
proach, the parallelization of the coarsening raises sangirial issues 10, 16, 22]. Here,
assuming that each task running in parallel receives agoodf the matrix rows, we show
that the coarsening algorithm may be applied independémthese subsets of rows, forming
aggregates with the corresponding (local) variables. Bse@ated restriction and prolonga-
tion do not require any communication, and good scalaligigchieved with a purely local
smoother of block Jacobi type.

It is worth mentioning the method ir2l], which presents some similarity with ours: it
is also based on a pairwise aggregation algorithm and stékis‘pure” aggregation-based
prolongation. However, besides the technical details énabgregation algorithm and the
smoother, there are two major differences. 2d][only simple pairwise aggregation is con-
sidered, whereas we use double pairwise aggregation, wiakles the coarsening just twice

1The aggregation concept was introduced earlier in othedsfied.qg., its use in economics dates back as far

as 4.

ETNA
Kent State University
http://etna.math.kent.edu

AGGREGATION-BASED ALGEBRAIC MULTIGRID 125

as fast. Next, we use K-cycle multigrid to circumvent theatigely bad scalability of the
standard V-cycle, whereas the method 2i][resorts to V-cycle improved by doubling the
number of smoothing steps from one level to the next.

This paper is organized as follows. The coarsening is ptedeand discussed in Sec-
tion 2. The solution method is described in detail in SectionThe results of numerical
experiments are reported in Sectibrand some concluding remarks are given in Seciion

2. Coarsening. An algebraic coarsening algorithm sets up a prolongatiomix& us-
ing only the information available id. The prolongation is an x n. matrix, wheren. < n
is the number of coarse variables. It allows to transfer erfitie grid a vector defined on the
coarse variable sét, n.]. Further, it entirely determines the coarse grid correctfeormally,
the latter also depends on a restriction matrix and on a eaaid matrix, but, as it is usual
with AMG methods, one takes the restriction equal to thesipase of the prolongation, and
the coarse grid matrix is computed from the Galerkin formula

(2.1) A.=PTAP.

In the classical AMG coarsenin@T], one first selects a subset of fine grid variables
as coarse variable, by inspecting the grapmofNext, the matrix entries are used to build
interpolation rules, that defing.

Coarsening by aggregation works differently. One needefineaggregatess;, which
are disjoint subsets of the variable set. The number of eoasables:.. is then the number
of such subsets, and is given by

1, ifie@q,
2.2 P.=<" R 1<i<n,1<j<n).
(2:2) / {0, otherwise, (Isisn jsmne)

If U;G; = [1,n] (i.e., if the aggregates form a partitioning [@f n]), P is a Boolean matrix
with exactly one nonzero entry per row. As seen below, it iwdw@r sometimes advanta-
geous to leave some variables outside the set of aggregatesich case the rows oP
corresponding to these variables are zero. Note that the@meed to explicitly fornP, and
the coarse grid matriX2(1) is in practice computed by

(2.3) (A=Y > awe (1<ij<ne).

keG; LeGy

Many aggregation algorithms proposed in the literaturg. (€, 21, 30]) starts by form-
ing pairs, or “matchings”, in the matrix graph. Here we rethssalgorithm from 80], because
it discriminates between different neighbors of a nodengipreference to the strongest neg-
ative coupling(s). For two-dimensional anisotropic mqueblems, this produces aggregates
aligned with the strong coupling direction, as desired egiog to the analysis ing]. Some
connection may also be made with the classical AMG coargenitnich is also based on
strong negative couplings.

Details are given in Algorithn2.1, which works as follows. Essentially like in the clas-
sical AMG coarseningd7, p. 473], one first defines the set of nodggo whichi is strongly
negatively coupled, using the Strong/Weak coupling thokkh:

Si={j#ilay < _5gvi%|aik|}~

Then, one picks up an unmarked nadsd a time, giving priority to node(s) with minimat;,
wherem; is the number of unmarked nodes that are strongly negatiipled toi (that is,

ETNA
Kent State University
http://etna.math.kent.edu

126 Y. NOTAY

ALGORITHM 2.1 (Pairwise aggregation).

Input: Matrix A = (a,;) with n rows;
Strong/Weak coupling thresholgi(default: 3 = 0.25);
Logical paramete€heckDD
Output: Number of coarse variables. and subset (aggregates)
Gi,i=1...,n.(suchthaG, N G; = 0 fori # j).

Initialization : If (CheckDD: U = [1,n]\{i|aii > 53, |ai;|},
otherwise:U = [1,n],
Foralli: S; = {j € U\{i} |a;; < —Bmaxy,, <o |aix|};
Foralliz m; = |{j|i € S;}|;
n. = 0.
Algorithm : While U #) do
1. Selecti € U with minimalm;; n. = n. + 1.
2. Selectj € U such thaty;; = mingey aqg.
3. Ifje S G, = {i,j},
otherwise:G,,, = {i}.
4. U =U\Gn,.
5. Forallk € G,,_, updaterm, = my, — 1 for ¢ € S.

m; is the number of setS; to whichi belongs and that correspond to an unmarked pde
This rule is designed to favor a regular covering of the magraph. Probably other rules
could work as well. We consider this one because we obsehadrt some nonsymmetric
examples, at any stage of the process, there is at least deg far whichm; = 0. Then, if
this node is not selected, it has many chances to becomelatsimgsince no unmarked node
is strongly negatively coupled to it.

A tentative aggregate is next formed by grouping the pickedade; with the unmarked
node it is most strongly negatively coupled to, that is, (ofjethe unmarked node(g)for
whicha;; is minimal. This tentative pair is then accepted if and ofify& S;. If not, the node
¢ initially picked up stays alone in the aggregate. This maguoonly if all nodes: for which
a;r 1S minimal have already been marked (or do not corresponchimgative coupling). For
the kind of applications targeted here, this occurs onlydimtally, for instance near bound-
aries. In general, the algorithm progresses smoothly aloagirection of strongest negative
coupling, and most picked up nodes are effectively assetiaith (one of) their neighbor(s)
they are most strongly negatively coupled with. Note theitpag as this happens, one has, at
step 3 of Algorithm2.1, 5 € S; whatever the chosen Strong/Weak coupling thresfiolahd
it is also unimportant whether the other couplings in roare labeled “strong” or “weak”.
Hencegs has only a slight influence on the coarsening process, aralétss much less critical
than in the classical AMG coarsening.

In Algorithm 2.1, we also include an optional check for rows strongly don@ddty their
diagonal element. The nodes corresponding to these rowsarted, but they are not as-
sociated to any aggregate. We apply this only to the top lenxatix, based on the heuristic
argument that, when a row is strongly diagonally dominaougih, a fast reduction of the er-
ror at the corresponding node can be obtained without raudtilenhancement. This process
also guarantees a proper treatment of finite element matiiceshich Dirichlet boundary
conditions have been imposed by adding a large number toottiesponding diagonal ele-
ments.

Coarsening by simple pairwise aggregation is relativedyvsivhich does not favor op-

ETNA
Kent State University
http://etna.math.kent.edu

AGGREGATION-BASED ALGEBRAIC MULTIGRID 127

timal performance of multilevel methods. A faster coaragriéan be obtained by repeating
the process, defining aggregates by forming pairs of pairsretmiecisely, by forming pairs
of aggregates from the first pass, some of which are singlet&orming pairs of pairs is
considered in7], but the procedure tries to maximize the number of edgesnat to the
aggregates. For two-dimensional discrete PDEs, this $avaparsening that mimics well the
geometric coarsening with “boxwise” aggregates. Howeaberanalysis in36] shows that in
the presence of anisotropy, it is better to use “linewisegjragates, aligned with the direction
of strong negative coupling. This motivates us to follow #pgroach in30], where the sec-
ond pass just exploits the same pairwise aggregation ggorsed in the first pass. That is,
we compute the coarse grid matrix. 8) resulting from a first application of Algorithra.1,
and apply again this algorithm to the latter matrix, formpairs of aggregates from the first
pass. Details are given in Algorithth2.

ALGORITHM 2.2 (Double pairwise aggregation).

Input: Matrix A = (a;;);
Strong/Weak coupling threshofti(default: 5 = 0.25);
Logical paramete€kDD.
Output: Number of coarse variables. and subset (aggregates)
G, i=1...,n.(suchthaz; NG, = 0 fori # j).
Algorithm :
1. Apply Algorithm2.1to A with thresholds
andCheckDDB-CkDD.
Output:n,,, andG\", i =1,... n,,.
2. Compute the., x n., auxiliary matrixA; = (al(;)) with

=Y Y

keGM teGtV

3. Apply Algorithm2.1to A, with threshold3
andCheckDDG:False
Output:n, andG\®,i =1,... n..
4, Fori=1,...,n..G; =U G

)
e

jea®

For the class of applications considered in this paper,gbelting aggregates are mostly
quadruplets, with some triplets, pairs and singletons @finsequently, the coarsening ratio
n/n. is slightly less than 4, regardless of the problem at handbliég to two-dimensional
model problems, the procedure produces essentially “me\rgggregates if the coefficients
are isotropic, whereas strong anisotropy induces “lineéggregates aligned with the di-
rection of strong negative coupling. It is more difficult tgdire out what comes out for
three-dimensional problems, especially when the coeffisiare isotropic, but the numerical
results show that the approach is robust.

Of course, to generate a multilevel structure, Algorithris applied recursively to the
successive coarse grid matrices. This is illustrated imfgig.1 for the problem odmpP2D
and in Figure2.2 for the problem CD1. These problems correspond to the fivetfinite
difference discretization of elliptic PDEs, and are fullgsdribed in Sectiod. Problem
Jump2D is the standard diffusion equation with jumps in the caogdfits, which are isotropic
everywhere but in two rectangular regions. One indeed sebs pictures that the coarsening

ETNA

Kent State University

http://etna.math.kent.edu

Y. NOTAY

128

First coarse grid

IllIIIIllllllllllllllllllll_ll_ﬂ

I T LI e e e e 11
mLoREREEEIE S s e e e e e
e T -
= —————T
A
A
A
T
R L L L L L L L L L L L LT
A0 15 15 5 O O O O OO
=
=
e T T T T T T T T T T I T T T T T T
L T T T T I T T T T T T T T T
S T T T T T T T T T T T T T
N O
H A T T e T T T T
R ST T R R RS T
xmxpaxaxmaxexxs _.Hll.r.r_ _ _ _ _ __llllllll
“lllllllllLflhﬁ_____=llllllll
TR A O
SannnnnnnnimnnnsliliijiljljjEeen .
A T T T T T HE T
T T T T T T T T T T F
At 1 15 O O O O
m®
NN N NN
i M M
T o v e
A 5 15 1 1 O

Second coarse grid

i

1]

AT

i
i
=

B S

i

i

i

_.

I

R

0
o

1/60).

FIGURE 2.1. Coarsening for problenrdump2D (h

ETNA

t.edu

http://etna.math.ken

129

AGGREGATION-BASED ALGEBRAIC MULTIGRID

First coarse grid

S K 5 o m xoxwm xox xx _ W
el Sl
| N

HamBRcsoooooooooooooonossaum)
llllﬂllllllllllllllllllll.r.____
__ IR ke x
____Ll...lll""""""lll_ll______
HHFH R T i
R e s s e mmnm a1
_________ _llﬂ_lll"""lllll_____________
Ittt ma===maamunl Ul
EEEEEEH
T T
b nb et
Ihlliilislillesis==r sl sl 1 ____
__ HIE T I_L TR
= _ll_______llll"ﬂ:.__l _ll __ ____
__ _ll_I.r.r.r.rIII._.__IlLll____ _=_
___llllllﬁH"HME:m“ mim __________
_1===llllllllllllLI|lllL s
i
i
}

Second coarse gr

o
i

LE

: T
e ik

_.T ST

[
#.m..mm..w..wuw_um

T
o

e
Ee

=

|I|HI_

B e T T

s

__q___ﬁ __
m_

S

EEHEEREE

J.___

1

10~4).

1/60 andv

ning for problen€D1 (h

2.2.Coarse

FIGURE

ETNA
Kent State University
http://etna.math.kent.edu

130 Y. NOTAY

proceeds differently in these regions, producing aggesgaligned with the strong coupling
direction. Problem CD1 is a convection-diffusion equatigth a divergence-free convective
flow rotating around the middle of the domain. Here, one degsthe coarsening “follows”

the flow, producing aggregates aligned with it in the regiwhsre it is largest in magnitude.

2.1. Parallelization. Coarsening the matrix graph by aggregation is one of therkey i
gredients of the multilevel partitioning strategy propdbge[20]. From there, a possible way
to parallelize our method consists of applying the coarsgaequentially, and then partition
the matrix at the coarsest level, inducing the partitiorangll levels, as inZ0]. However,
this raises several issues that lie outside the scope op#mer, such as the sequential bot-
tleneck represented by this coarsening, and the selectitire@artitioning strategy at the
coarsest level. Note, nevertheless, that the resultingadetould have exactly the same grid
hierarchy for sequential and parallel executions.

We discuss in more detail another context, in which seversthinces of the program
run in parallel, each having only a portion of the rows of thatmx. It means that some
partitioning has been applied before calling the solutiaduaie, for instance at the level of
the discretization or with a standard tool like METIS. It is then important to work with
local information only, as assembling the global matrix oe processor may be infeasible.

In such cases, our coarsening algorithm may be paralleiizéne following natural way:
each task has a portion of the rows, that is, the local matri liectangular matrix with as
many rows as local variables, but more columns, the extranmo$ corresponding to non-
local variables. Observing that Algorithehl accesses the matrix only row by row, it may
be applied as is to this local rectangular matrix, with thevemtion that the local variables
have indiced., . .., n, corresponding to local rows. Hence, non-local variabtesr@ated as
if they were already marked (the set of unmarked nodes islizi¢d to[1, n]), and they are
therefore excluded from the aggregation process. Norl-@cebles are however taken into
account when checking if the diagonal dominance is stromgigin, and in the definition of
S;, to decide if a local coupling is strong or not. Algoritth2 may also be applied as is, with
a slight modification of step 2, to take into account that trst ipplication of Algorithn®2.1
produces aggregates for local nodes only. To avoid any egtranunication at this stage, we

use
Z Z Ak, iflgingncla

NONS keG rectV
K > if 1 <i<ne andj ¢ [1,n],
ket

that is, A; is built as if all non-local variables were associated taiés aggregates, and the
corresponding column indices were kept untouched.

Hence, each task computes locally the coarsening schenits focal variables. Com-
munication is only needed to compute the coarse grid mattiich requires knowledge of
the coarsening of non-local variables. Further, becaugeeggtes are all formed with vari-
ables assigned to the same task, applying the associatedgation @.2) or its transpose to
some vector does not require any communication.

This parallel coarsening is illustrated in Fig@&for the problem dmp2D, parallelized
according to a partitioning of the domainanx 2 rectangular subdomains. One sees that the
aggregates do not cross over subdomain boundaries, anadhakie whole a similar shape,
as in the sequential coarsening.

3. The solution algorithm. We first describe the sequential implementation. The few
adaptations needed by the parallel version are discustsd la

ETNA
Kent State University
http://etna.math.kent.edu

AGGREGATION-BASED ALGEBRAIC MULTIGRID 131

First coarse grid
I I O O

|
=]

EEEEEEEEETIN EENNL
IEIIIIII.Illﬂllllllllllllllll.lh
HoCHEREEE S NN R R

T A e
I_llllll=|llﬂllllllllllllllll.ll'l
T e e
I_llllll=|llﬂllllllllllllllll.ll'l
IEIIIIII.Illﬂllllllllllllllll.llq
e
=;|.|EEEE...!_."JIIEIIIIIIIIIIIIIIIIIIIIIIIII."J
T H =]
EENEEREERE llnllllll""""""""" =
T H T HT T =]
munnnnsnsSmensnnnns T =
s
ERnmang semcemmana T
eannmnmiz=c==mnas IS
RananEai = mananas TS
EENEEEEEEN|EERER N I""""""""Il
EENNNENNEN EEEEEE] =
EENEEEEENN|EEEEERERE I""""""""Il
ENNNENENNN EREERREEn |
nnnnnnnnnrizsazaezas qniHHHIIGE
HEEEREEEEEEEREEEEREL s D
S P R T T T T

Second coarse grid
L
ST

R A

I-—""=II

:

S ana

EEEL
He

FIGURE 2.3. Parallel coarsening for problerdump2D (h = 1/60).

i

R I oL R e e

e

ETNA
Kent State University
http://etna.math.kent.edu

132 Y. NOTAY

We use multigrid as a preconditioner in a main iterationirejtwhich is based on the
flexible conjugate gradient method (FCG), if the matrix imsyetric positive definite. More
precisely, we use FCG(1) from§) or, equivalently, IPCG from]3]. This method is similar
to the standard conjugate gradient method, except tharsoagfficients are computed in a
slightly different way, at the expense of one more inner pobccomputation per iteration.
This modification enhances the stability of the method inptesence of variable precondi-
tioning. Itis needed here, because use of the K-cycle irglslgght variations in the multigrid
preconditioning.

In nonsymmetric cases, we use a preconditioned variant d®® @EQ], referred to as
GMRESR in §0]. This method provides the minimal residual norm solutiod allows for
variable preconditioning. We use an improved implemeotatgiven in Algorithm3.1 for
the sake of completeness. In the standard implementatigtea 3(b) one applies ta; a

recursion similar to the one appliedctéi). This allows us to obtain the approximate solution
at each step with a simple recursion, but doubles the cosepfXb), which is the most ex-
pensive part of the algorithm. In Algorithf1, instead, the computation of the approximate
solution is performed only upon completion of the main lodjmte that one has effectively
r, = b— Au,,, because,, =ro—(c; --- ¢;,)awhereasd(z;, --- z,,) = (c1 -+ ¢,
entailingr,, = ro — A(z; -+ z,,)(I'"'a). This further shows that Algorithrd.1is mathe-
matically equivalent to the original GCR/GMRESR algorittsince the residual is computed
as in the latter. This improved implementation is discussetttail in [L7] for the unprecon-
ditioned case, where it is shown to also have superior gfapioperties.

ALGORITHM 3.1 (Preconditioned GCR — economical version).
Data: Matrix A; right-hand-sideb; initial approximationuy;
Maximal number of iterations:; tolerances.
Output: Approximate solution,,; residualr,, = b — Au,,.
Initialization: ro = b — Aug.
Algorithm :
Forj=1,...,mdo
1. Apply preconditionerz; =Predr;_,).
2. V) = Az
3. Fori=1,...,5—1do
@) vij = C?C,(-i),
(b)) =l — e,
4. v =l ej =n;5tey.
5. a; = chrj,l; r; =Tj_| — Q;Cj.
6. If [|r;|| < ¢||b]|, exit do loop and reset = j.
Wy =[z1 - zn| (I ta

(5] f
i ifi<yg
a= . and Fij = Vi L=]i
' 0, otherwise

(62 m

In our experiments, to save on computational cost and memaoyirements, we use
GCR(10), that is, the maximal number of iteration is set@pand Algorithm3.1is restarted

ETNA
Kent State University
http://etna.math.kent.edu

AGGREGATION-BASED ALGEBRAIC MULTIGRID 133

if needed. With the improved implementation, preconditidiCR has about the same cost
as flexible GMRES (FGMRES3F]). GCR is further slightly cheaper upon restart, because
FGMRES requires an additional matrix-vector product to pate the residual. In fact, we
also tested FGMRES, and found that it was slightly slower @shtases, in agreement with
the conclusions inZ3).

ALGORITHM 3.2 (Multigrid as a preconditioner at level(k > 1)).

Input: rg.
Output: z; = MGpredry, k).
Data: matrix A, smootherMy, prolongationP; matrix Ag_1;
if & > 1: cycle type (V or K), iteration type (FCG or GCR), threshold
Algorithm :
1. Relax using smoothe¥l: z\") = M 'r.
2. Compute new residuaF, = ry — Az\").
3. Restrict residualr,_, = PTy.
4. Compute an (approximate) soluti®gp_; to Ay _1Xx_1 = rg_1:
if k=1, then X,_; = A; ' rj_1;
else if V-cycle, then x;_; = MGpredry_1,k — 1);
else if K-cycle, then Perform 1 or 2 iterations with multigrid prec.:
cr—1 =MGpredry 1,k —1); vy = Ap_1ck_1;
pL = ckT,flvk._l;] = C{,lrk—ﬁ if FCG
o1 = |vi_1ll*; a1 = vf_lrk,l; if GCR
Tho1 =Tp—1 — S-Vi_1;
if ||?k—1|| < tHrk—IHy then ik—l = %Ck—l;
else
dy—1 =MGpredry 1,k —1); wi1 = Ap_1dp_1;
y=d}_jvi_1;8=d}_wi_1;a0 =d}_,Tx_1; ifFCG
y=wl_vie1; 8= |wi_1||} 00 = wi_ Tr_1; ifGCR
2

p2=0— =1

%, . — (a1 _ oo as .

Xe—1 = (Pl P1f>2> Ck—1+ P2 di—1;
end if

end if
Prolongate coarse-grid correctimﬁf) = PuXp_1.

Compute new residuafy, = 7 — Agz.”.
Relax using smoothe¥ly: z\”) = M 'ry.

Zp = zl(:) + z,(f) + z,(j).

© N o o

Details of the multigrid preconditioning are given in Alggbm 3.2 It is called by the
main iteration routine at the top level= ¢ with the matrixA, = A, and it recursively calls
itself with a smaller index untik = 1. We thus follow the usual convention that coarser
levels correspond to smaller indexes, although the numidevels is not known in advance:
in fact, we stop the coarsening when the coarse grid matgx208 rows, or less, allowing
fast direct inversion with LAPACK routined].

For the sake of clarity, Algorithn3.2 foresees only one pre- and one post-smoothing

ETNA
Kent State University
http://etna.math.kent.edu

134 Y. NOTAY

step. In our experiments, we use symmetric Gauss-Seidaithing, that is,
(31) M, = |OW(Ak) dlanAk) 71Up[XAk),

where low(-), diag-) and upp-) stand for the lower, the diagonal, and the upper triangu-
lar part of a matrix, respectively. Numerical results irdéc that, with this smoother, the
scheme is indeed most efficient with only one pre- and onegrosbthing step. Note that the
word “symmetric” refers to the fact that this smoother bsitlge same effect as one forward
Gauss-Seidel sweep, followed by one backward Gauss-3sigelp, that is, the Gauss-Seidel
scheme is symmetrized. Howevét,, itself is symmetric if and only if4;, is symmetric.

At step 4, the coarse grid system is solved with either a eoyca K-cycle formulation.
The V-cycle corresponds to one application of the precanbr at the next coarser level,
whereas with the K-cycle a few steps of a Krylov subspacatiter method are performed.
According to the conclusions fron3{], at most 2 iterations are allowed, and the second one
is skipped if the relative residual error is below the thddh after the first step. In practice,
as discussed at the beginning of Secdowe uset = 0.25.

The Krylov subspace iterative method used here is alsordi@& (for symmetric pos-
itive definite matrices) or GCR. The implementation insiteps4 of Algorithm3.2is non-
standard: it takes advantage at the fact that the numbegrafiins is at most 2, to minimize
the work and the number of synchronization points. This eng@ntation is, however, mathe-
matically equivalent to the standard one. This is stra@térd to check if only one iteration
is performed. Otherwise, this may be seen by checking tleatdkidual corresponding to
the computed solutiogy_; is orthogonal tac,—1 (dx—1 in case of FCG), and orthogonal to
vi—1(wi—1 in case of GCR). This indeed ensures that the computed coligithe linear
combination ofc;,_; andd;_; which minimizes thed,_;-norm of the error in case of FCG,
and the residual norm in case of GCR.

Now, this residual is

_ B aq Y2 Q2
1 =TYg1— | —— V-1 — —Wg_1.
P1 P1P2 P2

Sincec! wi_1 = di_,vi_1, it holds that

cl .7,_; (for FCG) ap Yo Q2
Bt =ap— | —— pr——7=0,
Vi_1Tk—1 (for GCR) pP1 - p1pP2

whereas, using
_ ~ Y2 Q2
T 1 =Tk1+ —Vik-1— —Wg_1,
P1P2 P2
one obtains

d}_ T (for FCG) } Y2 Qg Q (7)
1t =as+ — 2= (p+ - -p) =0
{ wi_,Tx_1 (for GCR) T ! pzﬁ p \2 7T s

Hence, in both cases the required orthogonality conditiwasatisfied.

The coarsening algorithm has been designed to ensure aiedbyg a factor of about 4
of the number of variables from one level to the next, whileidwng a significant increase of
the mean number of nonzero entries per row. If this is ackigée K-cycle formulation may
be used at every level while keeping the overall cost boundiedeed, letC' be a constant
such that the cost of one iteration with the multigrid pregiboner at levelk, except step 4,

ETNA
Kent State University
http://etna.math.kent.edu

AGGREGATION-BASED ALGEBRAIC MULTIGRID 135

is bounded byC nnZ A;), wherennZ-) stands for the number of nonzero entries. Further,
let o be an upper bound famz A, _,)/nnZ A), valid for k = 2, ..., ¢; note thatr defined

in this way depends on the coarsening ratjgn,_1, but takes also into account a possible
increase of the mean number of nonzero entries per row. Asguime cost of the inversion
of Ay to be negligible, the global cost of each main (top leveljitien is then bounded by
summing the contribution of the top level, and that of easkllé (1 < k < ¢), taking into
account the number of allowed iteratior®y,(and the maximal number of times this level is
visited in the recursior2{—*-1):

-1
(3.2) Cost< C (nnz(Az) +) zf‘knnz(Ak)>

k=1

14
< CnnzAy) > (20)F
k=1
20

<
—1—20

(3.3) cnnZA).

This is indeed nicely boundedadfis close tol /4.
However, there is no a priori guarantee on the coarseningdsp@/e therefore set the

parametergy, k =¢— 1,0 —2,...,2, as follows
2, if nnz(A”f“’f(ﬁ >_1> 5
_ 9 el A\ 773 N
(34) g = nnz(Ak)] 2
1, otherwise

where¢ = 2. Then, at levek, we use Algorithm3.2 with V-cycle if n,_; = 1, and with

5*

K-cycle if g1 = 2. Note that, sian‘[i;iJrl n; < 2¢7%=1 one has

Nz A, -1 -1 ¢ —k
7nnz(Az)§é k(H 77j> >2 (20) .

j=k+1

Hence, the K-cycle is, in particular, allowed at every lefet < g = %. Then, the rela-
tion (3.3) shows that the cost of each main iteration is at m@shnz A).

More generally, the above rule allows us to keep the costeffiplication of the pre-
conditioner bounded in any case. We have to cori@@) (o take into account that, at levil
(1 < k < 0), the number of allowed iterations is naw, and the maximal number of times

this level is visited is novﬂﬁ;i+1 n;:

-1 /0—1
Cost< C (nnz(Ag) + Z (H nj> nnz(Ak.)> .
k=1 \j=k
If np_1 =--- =mn, = 1, then there holds
-1

(3.5) nnz Ay) [[n; < o Fnnz4,).
j=k

ETNA
Kent State University
http://etna.math.kent.edu

136 Y. NOTAY

Otherwise, letn;, be the smallest index such thay, > k£ andn,,, = 2; thusm; = k if
m, = 2. Using the condition in3.4) for havingn,,, = 2, one has

-1 =
g Ag) [[05 < o™ *nnz 4, I w
j=k j=mp+1
4
(36) < ga’”k"‘f“mknnz(Ag).

Hence, with(= max(c, £), combining 8.5 and @.6), one has

Cost< C'nnZ Ay) | 1+ 2 Zi:lg‘@*’“ < CnnZAy) (1 + 44)
) s)T RAEICEISVA

In practice, we expect < & = %; o= % would already indicate a very slow coarsen-
ing. Then, the above relation means that the cost of eactetap iteration is bounded by
3C'nnZ Ay).

3.1. Parallel implementation. We use the same algorithms in parallel, with the coars-
ening adapted as indicated in SectibrVe still use symmetric Gauss-Seidel smoothing, but
locally, that is, the smoother is given b$.{), but ignoring offdiagonal entries connecting
nodes assigned to different tasks, so thitis block diagonal with respect to the partition-
ing of the unknowns. On the other hand, the coarse grid mettfiactorized exactly using
a parallel sparse direct solver (namely MUMPSS]) as soon as the global number of un-
knowns is belowt00N,,, whereN,, is the number of concurrent tasks. This makes it possible
to avoid working with excessively small grids, for which tt@mmunication/computation ra-
tio is large. As discussed later, although this is not esslemie also use a slightly different
value for the thresholdin Algorithm 3.2, namelyt = 0.35 instead oft = 0.25.

4. Numerical results. We consider the following test problems. In all cases we use a
uniform mesh with constant mesh sizén all directions.

Problem MoDEL2D: linear system resulting from the five-point finite difeice approx-
imation of—Au = 1in Q = (0,1) x (0, 1), with boundary conditions = 0 everywhere on
oN.

Problem AN12D: linear system resulting from the five-point finite diffeice approxima-

tion of 7‘3273 - bg%g‘ =1inQ = (0,1) x (0,1), with constant coefficierti and boundary
conditions

u =0, fore=1,0<y<1,

gu—0, elsewhere oR)X.

Problem ANIBFE: linear system resulting from thdinear finite elemenapproximation
2 2
of —2% _p2u — 1inQ = (0,1) x (0,1), with constant coefficienb and boundary
Jx 9y
conditionsu = 0 everywhere odf2.

Problem &mpP2D: linear system resulting from the five-point finite difece approxi-
mation of -~ (a3%) — & (bg—z) = finQ = (0,1) x (0,1), with boundary conditions
{uzO, fory=1,0<z<1

gu—=0, elsewhere ol

ETNA
Kent State University
http://etna.math.kent.edu

AGGREGATION-BASED ALGEBRAIC MULTIGRID 137

and coefficients given by

a=1, b=100, f=0, in(0.65,0.95) x (0.05,0.65),
a=100, b=1, f=0, in(0.25,0.45) x (0.25,0.45),
a=100, b=100, f=1, in(0.05,0.25) x (0.65,0.95),
a=1, b=1, f =0, elsewhere

Problem CD1 12]: linear system resulting from the five-point finite diffexee approx-
imation (upwind scheme) of vAu + 7Vu = 0in Q = (0,1) x (0,1), with boundary
conditions

—_

u=1, fory=1,0<z <1,
u =0, elsewhere 0w,

and convective flow given by

x(1—2)(2y — 1)
-2z - 1)y(1-y)|"
Problem CD2 B3: linear system resulting from the five-point finite diffeiee approx-

imation (upwind scheme) of vAu + vVu = 0in Q = (0,1) x (0,1), with boundary
conditions

o(z,y) = {

u=1, fory=1,0<x<1,
u =0, elsewhere 0w,

and convective flow given by

@(1’72/) _ _COS (ﬂ' ($ —_ l)) SlI-1 (ﬂ' (y —_ £
COS <7T (y 3)) S111 (’7T 3)
inside the circle of centef}, 1) and radius;, andv(z, y) = 0 outside.

Problem MoDEL3D: linear system resulting from the seven-point finite efiéince ap-
proximation of—Au = 1in Q = (0,1) x (0,1) x (0,1), with boundary conditions = 0
everywhere o).

Problem ANI3D: linear system resulting from the seven-point finiteeti#nce approxi-
mation of— gi“; - b% - 02277; =1inQ=(0,1)x(0,1) x (0, 1), with constant coefficients
b, ¢, and boundary conditions

W=
W=

u =0, fore=1,0<y,2<1,
Ju—0, elsewhere 0.

Problem &mMP3D: linear system resulting from the seven-point finiteatiénce approx-
imation of -2 (a3%) — 2 (b32) — & (¢3) = fin @ = (0,1) x (0,1) x (0,1), with

boundary conditions

u =0, forz=1,0<x,y<1,
gu—0, elsewhere 00X,

and coefficients given by

cin (13) < (53 < (3:3)
, elsewhere

ETNA
Kent State University
http://etna.math.kent.edu

138 Y. NOTAY

whered is a parameter.

Problem CD3D: linear system resulting from the seven-piaiite difference approxi-
mation (upwind scheme) efrAu+oVu = 0in Q = (0,1) x (0,1) x (0, 1), with boundary
conditions

u=1, forz=1,0<zx,y <1,
u =0, elsewhere 0w,

and convective flow given by

2x(1—2)(2y — 1)z

o(x,y,2) = —(2z — 1)y(1-y)
-2z - 12y —1)z(1—=2)

Besides these problems, we also consider 3D unstructuoddepns arising in the sim-
ulation of complex electrochemical processgg| [For these problems, statistics on matrix
data are given in Tablé. 1

TABLE 4.1
Matrix statistics for electrochemical problems; “%PosOiS the percentage of positive offdiagonal entries,
and “%RwNeg” is the percentage of rows with negative row-somore precisely, with computed row-sum below
(nnlA)/n)emaCh-

Problem n nnZA)/n %PosOf %RwNeg

P1 826719 14.2 23 36
P2 2190 12.6 21 50
P3 59771 141 23 40
P4 826408 13.8 23 34

In all experiments, the systems where solved using the zntoras initial approxima-
tion, and tolerance = 10~° on the relative residual norm. All times reported are eldpse
(wall clock) time. Those reported in Figurdsl and4.2 were obtained on an Intel XEON
32bit processor a.05GHz with 2GB of RAM memory. Times reported in Tablé, 4.5
and4.6 were obtained on a multi-processor cluster with two IntelONEL5420 processors
at 2.50GHz and 16Gb RAM memory per computing node, with lbéind (half bandwidth)
interconnect; note that the Intel XEON &05GHz is from an older generation and about
three times slower than the Intel XEON L5420.

Before presenting the results obtained with default sgttinve first show the importance
of using K-cycle multigrid. In Tablel.2, we consider two of the test problems, using both
sequential and parallel computation, and compare V- ang/&éavith K-cycle for several
values of the threshold parametein Algorithm 3.2 note thatt = 0.00 means that two
inner iterations are enforced at each level. The lack obddlitly of V- and W-cycles appears
clearly. The K-cycle works fine with = 0.00, but increasing to 0.25 does not modify the
number of (outer) iterations, while the cost of the multigsreconditioner slightly decreases.
Sometimes, increasingto 0.35 further reduces the computing time, but there is sometimes
a penalty because the number of outer iterations slightlyeises. These observations are
supported by many other experiments. In the following, titeghold parametérwas set to
0.25 for all sequential runs and @35 for the parallel ones. This difference of treatment is
motivated by the fact that communications are more pemalian small grids, hence using a
largert is slightly more beneficial in parallel, as this reduces thmber of times these grids
are visited.

ETNA

Kent State University
http://etna.math.kent.edu

AGGREGATION-BASED ALGEBRAIC MULTIGRID 139

TABLE 4.2
Comparison of cycling strategies; for the parallel runsedask per computing node was used and the problem
size was scaled in such a way that the load per processor i®ajppately the same as that for the corresponding
sequential run; times reported are total elapsed time irosels.

#it Time | #it Time
Problem ImP2D, sequential
n = 1.00e6 n = 9.00e6
V-cycle | 49 17.6| 111 372
W-cycle | 35 14.6| 44 179

K-cycle,t =0.00 | 21 9.3 22 95
K-cycle,t =0.25 | 21 9.3| 22 95
K-cycle,t =0.35 | 25 10.5| 23 98

Problem ImMP2D, 48 processors
n =47.9e6 | n = 432.0e6
V-cycle | 148 61.7| 382 1533
W-cycle | 67 44.0| 85 440
K-cycle,t =0.00 | 25 18.0| 25 137
K-cycle,t =0.25 | 25 17.9| 25 138
K-cycle,t =0.35 | 25 17.8| 25 138
Problem ImpP3D, sequential
n = 1.02e6 n = 64.3e6
V-cycle | 18 9.22| 40 1367
W-cycle | 14 8.57| 20 922
K-cycle,t =0.00 | 12 7.72| 12 603
K-cycle,t =0.25 | 12 7.44| 12 601
K-cycle,t =0.35 | 12 7.08| 12 557
Problem &mP3D, 48 processors
n = 48.5e6 | n = 3065.0e6
V-cycle | 27 16.7| 66 3182
W-cycle | 17 17.0| 23 1597
K-cycle,t =0.00 | 12 12.8| 16 1158
K-cycle,t =0.25 | 12 12.8| 16 1156
K-cycle,t =0.35 | 12 125| 16 1118

Numerical results for all test problems in sequential apored in Tablegl.3and4.4;
there, “#lev” is the number of levels,

L
C= L) ; nnz Ay,)

is the (operator) complexity, “#it” the number of iteratgrand “SolC” the relative solution
cost, that is, the number of floating point operations ned¢desblve the system (excluding
setup) divided by the number of floating point operationsuiegl by anunpreconditioned
conjugate gradient iteration, or, in other words, the nundfeunpreconditioned conjugate
gradient iterations one could perform with the amount ofkngged by the multigrid method
to solve the system.

One sees that the complexity is small in all cases, indigdtiat setup costs and memory
requirements are low. The solution cost is independent@ilesh size in the best cases,
and nearly independent in the most difficult ones. Note teatept for Problem P4, the

ETNA
Kent State University
http://etna.math.kent.edu

140 Y. NOTAY

TABLE 4.3
Numerical results for 2D problems.

h=1t =300 h~! = 1200
Problem #ev C #it SolC | #lev C #it SolC
MoODEL2D 6 1.33 11 56| 8 1.33 11 57
ANI2D (b = 100) 6 1.33 15 75| 8 1.33 20 103
ANI2D (b = 104) 6 1.33 16 81 8 1.33 17 86
Jump2D 6 1.35 18 93| 8 1.38 22 120
ANIBFE b =1) 6 1.26 10 53] 8 1.26 11 59
ANIBFE (b = 10) 6 1.33 19 106, 8 1.33 21 123
ANIBFE (b = 100) 6 1.33 20 109 8 1.33 23 131
ANIBFE (b = 103) 6 1.33 20 110, 8 1.33 23 131
CD1w=1 6 1.37 9 50| 8 141 10 60
CD1 = 10_2) 6 142 15 89| 8 140 12 70
CD1 = 10_4) 7 145 17 108 8 1.40 23 137
CD1 = 10_6) 6 141 13 81 8 1.39 16 97
CDh2w=1) 6 135 9 47| 8 1.35 10 54
CD2 (v = 10*2) 6 1.35 13 69 8 1.35 14 75
CD2 (v = 10_4) 6 1.39 14 81 9 141 14 85
CD2 (v = 10_6) 6 1.39 20 126, 9 1.40 23 144
TABLE 4.4
Numerical results for 3D problems.
h=t =60 h™1 =120
Problem #lev C #it SolC | #lev C #it SolC
MoDEL3D 7 136 9 46 8 1.34 10 54
ANI3D (b =1,c = 100) 7 1.34 13 62 8 1.34 15 75
ANI3D (b = 10, ¢ = 100) 7 1.34 15 70 8 1.34 13 73
ANI3D (b = 100, ¢ = 100) 7 1.34 9 47 8 1.34 10 52
ANI3D (b = 100,c¢c = 104) 7 1.34 15 70 8 1.34 15 74
JumpP3D (d = 100) 7 1.40 11 64 8 1.39 11 69
JumpP3D (d = 1()4) 7 1.40 11 63 8 1.39 11 69
JumpP3D (d = 106) 7 140 11 65 8 1.39 11 68
CD3D ¥ =1) 7 1.59 12 59 8 1.58 11 68
CD3D (v = 1072) 7 158 12 72| 8 156 13 80
CD3D (v = 10_4) 7 1.58 12 74 9 1.59 16 104
CD3D (v = 10_6) 7 1.57 12 74 8 155 16 101
P1 8 1.35 9 52
P2 3 1.31 5 28
P3 6 1.35 9 52
P4 8 1.34 37 203

solution cost, as measured by “SolC”, never exceeds thneestthe solution cost for the
model problem.

Timing results are shown in Figurdsland4.2, where a comparison is made with the old
but classical code AMG1RS5 by K. i#ben, based on the “standard” AMG method3d,[36].
This code was used with the same initial approximation aedséime stopping criterion as
our method. Other parameters were set to default, excepivindested the program both

ETNA
Kent State University
http://etna.math.kent.edu

AGGREGATION-BASED ALGEBRAIC MULTIGRID 141
AniBFE
110 ! ! ! 110
CJAGMG CJAGMG
100+ [1AMG1R5H 100H[_JAMG1R5
90f 1 90
80f 1 8or
70+ 4 70
60[1 60F
50(1 50
40t 1 40
30 1 30
20} 4 20t
ol H u | il
0 = = ! o ! !
Model2D Ani2D (b=100) Ani2D (b=1e4) Jump2D 1 10 100 1000
b
CD1 CD2
110 ! ! ! 110 ! ! o
CJAGMG CJAGMG
100+ [1AMG1R5H 100H[_JAMG1R5
90f 1 90]
80f 1 8or
70 4 70
60[- 1 60f
50(1 50
40r
30
20t 1
10t 4
o ! !
1 le-2 le-4 le-6
v v

FIGURE 4.1. Timing results W‘j for 2D problems witth—1 = 120; AMG1R5 did not converge in the
allowed 100 iterations for ProblerANI2D with b = 100 and ProblemCD2 with v = 1076,

with and without conjugate gradient acceleration, reacwggdfor each problem, only the best
of the two timings; by default, conjugate gradient is notliseAMG1R5, but the comparison
could then be seen as unfair since our method always uses\wsybspace acceleration. In
the figures, “AGMG” refers to the method described in thisgrafghe bottom part of the bars
represents the setup time, and the upper part the solutien(the total height gives thus the
total time). Reported times are elapsed times in secondsiflen of unknowns.

With the exception of problem P4, our method solves all tases in a time between 15
and 50 seconds per million of unknowns. In addition, setoyes are fairly small. AGMG
is not always the winner, especially in 2D cases, but appears robust. When AMG1R5
is faster, gains are relatively marginal, whereas lossgslmamuch more significant, with
failure in some cases. Note that AGMG tewayslower setup time.

Results for parallel runs are reported in Table€sand4.6. In all cases, the partitioning
was imposed at the discretization level, based on the jpaitig of the domain in rectangular
or parallelepipedal subdomains. We give both the globalpexity Cgion, and the maximum
of the local one€nax their comparison gives an idea on how the initial load beilag is
preserved throughout all levels. The solution cost “Sol€jarted is also the maximum of
the local ones, that is, each task counts the numbers ofrftpptint operations it performed
to solve the system, and divides it by the numbers of floatoigtperations executed on that

ETNA
Kent State University
http://etna.math.kent.edu

142 Y. NOTAY

! ; . — 300 y T !
1o CJAGMG EFAGMG
100 C_JAMGI1R5 g — C_JAMG1RS

sl | 250t

8of
200f
7ot
60}
50t
401 1 100t]
30t

Model3D Jump3D (d=100) Jump3D (d=1e4) Jump3D (d=1e6)

Ani3D CD3D
110 : : : 110 :
AGMG EAGMG
100¢ — CJAMGIRS|| 100 CJAMGIRS
90- 4 90t]
8ot { sof
7ot 1 7ot
60} 1 eof
50t 1 sof
4ot { 4ot
30t 1 sof 1
20t - 1 20t 1
o ‘ ‘ ‘ o ‘ ‘ ‘ L 1]
(1,200) (10,100) (100,100) (100,1e4) 1 Le-2 le-4 1e-6
(b.o) v

FIGURE 4.2. Timing results %‘j for 3D problems witth—! = 120 (in MoDEL3D, ANI3D, JumP3D,

CD3D); AMG1R5 did not converge in the allowed 100 iterations feot?em JumP3D with d = 106 and for
Problem P4, whereas it broke down for Problem P2; for Problerip3D with d = 10%, Problem P1 and Problem
CD3Dwithv = 10~% or v = 1075, the total time for AMG1R5 just goes over the upper limit ek properly
display results with AGMG: these times are, respectively, 522, 582 and 433 seconds per million of unknowns.

task when performing one unpreconditioned conjugate gradlieration; what is reported in
Tables4.5and4.6is then the maximum over all tasks of this quantity.

Two sequences of runs were performed: one with one task mepuwiing node, and a
second one with two tasks per computing node. These lattsrailow us to benefit from the
fact that there are two processors per computing node intiséec. This level of parallelism
is, however, not that efficient because the two processam®eghe same memory. Hence,
firstly, one cannot in this way really increase the size of gheblems that can be solved.
This is why, in the tables, we report results for problem sigealed in such a way that the
number of unknown pecomputing nodes approximately constant. Secondly, as for any
computation with large sparse matrices, a significant amofitime is spent fetching and
loading data from and to main memory, implying that the twogeisses running on the same
node slow down each other.

Now, the results indicate that the solution cost, as refdarte'SolC”, is nearly inde-
pendent of both the problem size and the number of processtasks. On the other hand,
timing results show that, with 1 task per computing noden@igi8 nodes allows us to solve
a problem 48 times larger than sequentially in twice the timkess. Using 2 tasks per com-
puting node has mitigated effects on smallest problemsmwvihy processors, but, for largest

ETNA

Kent State University
http://etna.math.kent.edu

AGGREGATION-BASED ALGEBRAIC MULTIGRID 143

TABLE 4.5

Results in parallel for ProblerdumpP2D; #p is the number of concurrent tasks and #cn the number opabm
ing nodes effectively used.

n #p #cn n/Hen Cgop Cmax #it SolC Time

~ 10° unknowns per computing node

1 task per computing node

1.00e6 1 1 1.00e6 136 136 25 127 10.81

7.96e6 8 8 0.9%6 1.34 135 23 120 10.98
24.0le6 24 24 1.00e6 134 141 24 135 15.00
47.89e6 48 48 1.00e6 134 1.41 25 140 17.96
2 tasks per computing node

1.00e6 2 1 1.00e6 135 137 23 119 5.86

7.96e6 16 8 0.9%6 134 1.41 23 128 8.79
24.0le6 48 24 1.00e6 134 135 25 135 14.36
47.89e6 96 48 1.00e6 134 1.41 26 146 20.29

~ 9 - 10° unknowns per computing node
1 task per computing node
9.0e6 1 1 9.0e6 135 135 23 122 99
719e6 8 8 9.0e6 135 139 24 132 112
216.1e6 24 24 9.0e6 134 137 30 162 153
431.8e6 48 48 9.0e6 1.34 141 25 142 137
2 tasks per computing node
9.0e6 2 1 90e6 135 136 24 126 64
71.9e6 16 8 9.0e6 134 138 23 127 87
216.1e6 48 24 9.0e6 134 139 25 138 103
431.8e6 96 48 9.0e6 1.34 141 25 141 115

problems, this allows, using 48 nodes, to solve a problenird@stlarger than sequentially in
a time that is only 15-30% larger than the (purely) sequktiries.

5. Conclusions. We have presented a multigrid method based on the aggregsdtibe
unknowns. The procedure is fully algebraic, that is, it veowkth the information present in
the system matrix only. Numerical experiments have beefopeed on a wide set of dis-
crete second order scalar elliptic PDES, including two- @unée-dimensional problems with
jumps and/or anisotropy in the PDE coefficients, conveetifiusion problems with high
Reynolds number and circulating convective flow, as wellasesproblems from industrial
chemistry with many positive offdiagonal entries. The t&sare promising and indicate that
the approach is robust as a black box solver. On the avetagenethod is also faster than
the classical AMG method as implemented in the AMG1R5 codenndsing the latter with
default settings, that is, also as a black box solver. Ofsmurlassical AMG performances
are significantly improved in some cases by tuning parameteimplementing variants as
developed in, e.g.8F10]. In fact, AMG1RS5 is “just the first realization of an AMG maett,
and there are many improvements introduced during the ¢é@sty [38]. The code developed
to produce the numerical results with our method is, howealsp the first realization of a
multigrid method based on the proposed double pairwiseeggdion algorithm and the use
of K-cycle multigrid to enhance scalability. Moreover, éens that, so far, no AMG variant
can be used as widely as black box solver. Note that the coplementing AGMG is avail-
able for download, both as a FORTRAN program and a MATLAB fiorc[2§], the latter

ETNA

Kent State University
http://etna.math.kent.edu

144 Y. NOTAY

TABLE 4.6

Results in parallel for Problenrdump3D with d = 10%; #p is the number of concurrent tasks and #cn the
number of computing nodes effectively used.

n #p #cen n/#en Cgop Cmax #it SolC Time

~ 10° unknowns per computing node
1 task per computing node
1.02e6 1 1 1.02e6 138 138 12 65 7.90
8.08¢6 8 8 1.0le6 137 140 11 67 8.10
24.05e6 24 24 1.00e6 137 140 13 81 10.65
48.49e6 48 48 1.0le6 1.37 1.40 12 78 12.49
2 tasks per computing node
1.02e6 2 1 1.02e6 144 146 12 72 4.90
8.08e6 16 8 10le6 137 139 11 66 5.98
24.05e6 48 24 1.00e6 136 143 12 77 7.58
48.49e6 96 48 1.0le6 1.37 1.40 12 75 11.03

~ 64 - 10° unknowns per computing node

1 task per computing node
64.0e6 1 1 64.0e6 138 138 12 70 575
513.0e6 8 8 64.0e6 136 1.38 13 80 826
1531.0e6 24 24 64.0e6 135 140 13 86 906
3065.0e6 48 48 64.0e6 136 145 16 110 1112

2 tasks per computing node
64.0e6 2 1 64.0e6 137 138 12 67 444
513.0e6 16 8 64.0e6 136 1.40 13 84 557
1531.0e6 48 24 64.0e6 135 138 13 84 634
3065.0e6 96 48 64.0e6 135 140 15 97 728

illustrating well the black box capabilities of the method.

The parallelization has also been addressed. A strategydrasproposed for which the
total work is nearly independent of the number of procesdbat is, the parallel implemen-
tation incurs almost no penalty from the algorithmic poifvigw. Timing results are also
promising, and satisfactory speedups have been obtained®mode processors cluster with
Infiniband interconnect, which may be seen as represeatatitoday market of medium size
multi-processor computers.

Finally, note that all results were obtained for matricasiag from scalar elliptic PDEs,
that is, with only one vector in the near-kernel that is welp@ximated by the constant
vector. One subject of future research is the extensioreaftéithod to more general problems
with different type of near-kernel, such as those arisingifisystems of PDEs.

REFERENCES

[1] E. ANDERSON Z. Bal, C. BISCHOF, S. BLACKFORD, J. DEMMEL, J. DONGARRA, J. D. QROZ,
A. GREENBAUM, S. HAMMARLING , A. MCKENNEY, AND D. SORENSEN LAPACK Users’ Guide,
3rd ed, SIAM, 1999.

[2] D. BRAESS Towards algebraic multigrid for elliptic problems of secborder, Computing, 55 (1995),
pp. 379-393.
[3] A.BRANDT, S. F. McCoRMICK, AND J. W. RUGE, Algebraic multigrid (AMG) for sparse matrix equatigns

in Sparsity and its Application, D. J. Evans, ed., Cambridg&érsity Press, Cambridge, 1984, pp. 257—
284.

(4]

(5]
(6]
(71
(8]

9]
(10]
[11]
(12]
(23]

[14]
[15]

[16]
[17)
[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]
[26]

[27]

(28]

[29]
(30]

[31]
(32]
(33]

(34]

ETNA
Kent State University
http://etna.math.kent.edu

AGGREGATION-BASED ALGEBRAIC MULTIGRID 145

M. BREZINA, A. J. CLEARY, R. D. FALGOUT, V. E. HENSON, J. E. ODNES, T. A. MANTEUFFEL, S. F.
McCoRMICK, AND J. W. RUGE, Algebraic multigrid based on element interpolation (AMG&AM J.
Sci. Comput., 22 (2000), pp. 1570-1592.

M. BREZINA, R. FALGOUT, S. MACLACHLAN, T. MANTEUFFEL, S. MCCORMICK, AND J. RUGE, Adap-
tive smoothed aggregation§A) SIAM Rev., 47 (2005), pp. 317-346.

V. E. BuLGAKov, Multi-level iterative technique and aggregation concejithveemi-analytical precondi-
tioning for solving boundary-value problepmSomm. Numer. Methods Engrng., 9 (1993), pp. 649-657.

T. CHARTIER, R. D. FALGOUT, V. E. HENSON, J. DNES, T. MANTEUFFEL, S. MCCORMICK, J. RUGE,
AND P. S. \AssILEVSKI, Spectral AMGe¢AMGe) SIAM J. Sci. Comput., 25 (2004), pp. 1-26.

A. J. CLEARY, R. D. FALGOUT, V. E. HENSON, J. E. DNES, T. A. MANTEUFFEL, S. F. MCCORMICK,
G. N. MIRANDA, AND J. W. RUGE, Robustness and scalability of algebraic multigrislAM J. Sci.
Comput., 21 (2000), pp. 1886-1908.

H. DE STERCK, R. D. FALGOUT, J. NOLTING, AND U. M. YANG, Distance two interpolation for parallel
algebraic multigrid Numer. Linear Algebra Appl., 15 (2008), pp. 115-139.

H. DE STERCK, U. M. YANG, AND J. J. HEYS, Reducing complexity in parallel algebraic multigrid prezo
ditioners SIAM J. Matrix Anal. Appl., 27 (2006), pp. 1019-1039.

S. C. HSENSTAT, H. C. EEMAN, AND M. H. ScHuULTZ, Variational iterative methods for nonsymmetric
systems of linear equationSIAM J. Numer. Anal., 20 (1983), pp. 345-357.

H. ELMAN AND D. SILVESTER, Fast nonsymmetric iterations and preconditioning for Na&tokes equa-
tions, SIAM J. Sci. Comput., 17 (1996), pp. 33—46.

G. H. GoLuB AND Q. YE, Inexact preconditioned conjugate gradient method witrerrouter iterations
SIAM J. Sci. Comput., 21 (1999), pp. 1305-1320.

W. HACKBUSCH, Multi-grid Methods and ApplicationsSSpringer, Berlin, 1985.

V. E. HENSON AND P. S. \AssILEVSKI, Element-free AMGe: General algorithms for computing ipt#a-
tion weights in AMGSIAM J. Sci. Comput., 23 (2002), pp. 629-650.

V. E. HENSON AND U. M. YANG, BoomerAMG: a parallel algebraic multigrid solver and prexhtioner,
Appl. Numer. Math., 41 (2002), pp. 155-177.

P. JRANEK, M. ROZLOZNiK, AND M. H. GUTKNECHT, How to make Simpler GMRES and GCR more
stable SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1483—-1499.

J. E. DNES ANDP. S. \AssILEVsKI, AMGE based on element agglomerati@IAM J. Sci. Comput., 23
(2001), pp. 109-133.

G. KARYPIS, METIS software and documentatiofvailable at
http://glaros.dtc.umn.edu/gkhome/views/metis

G. KARYPIS AND V. KUMAR, A fast and high quality multilevel scheme for partitionimgegular graphs
SIAM J. Sci. Comput., 20 (1998), pp. 359-392.

H. Kim, J. Xu, AND L. ZIKATANOV, A multigrid method based on graph matching for convectidfusion
equationsNumer. Linear Algebra Appl., 10 (2003), pp. 181-195.

A. KRECHEL AND K. STUBEN, Parallel algebraic multigrid based on subdomain blockifgrallel Compuit.,
27 (2001), pp. 1009-1031.

J. LANGOU, GCR vs Flexible GMRESTalk presented at “Conference on Applied Linear AlgebExlissel-
dorf, 2006.

W. LEONTIEF, The Structure of the American Economy 1919-193%ford University Press, New York,
1951.

MUMPS software and documentatiofvailable athttp://graal.ens-lyon.frIMUMPS/

A. C. MURESAN AND Y. NOTAY, Analysis of aggregation-based multigrf6lAM J. Sci. Comput 30 (2008),
pp. 1082-1103.

G. NELISSEN AND P. F. VANKEIRSBILCK, Electrochemical modelling and software genericity Modern
Software Tools for Scientific Computing, E. Arge, A. M. Brugsad H. P. Langtangen, eds., Biddser
Boston, Cambridge, 1997, pp. 81-104.

Y. NoTAY, AGMG software and documentatioAvailable at
http://homepages.ulb.ac.be/ ~ ynotay/AGMG .

, Flexible conjugate gradientSIAM J. Sci. Comput., 22 (2000), pp. 1444-1460.

, Aggregation-based algebraic multilevel preconditioni®AM J. Matrix Anal. Appl., 27 (2006),
pp. 998-1018.

Y. NOTAY AND P. S. \ASSILEVSKI, Recursive Krylov-based multigrid cyclédumer. Linear Algebra Appl.,
15 (2008), pp. 473-487.

C. W. OosTERLEE ANDT. WASHIO, Krylov subspace acceleration of nonlinear multigrid witbpdication
to recirculating flows SIAM J. Sci. Comput., 21 (2000), pp. 1670-1690.

A. REUSKEN, A multigrid method based on incomplete Gaussian eliminatiumer. Linear Algebra Appl.,
3 (1996), pp. 369-390.

J. W. RUGE AND K. STUBEN, Algebraic multigrid (AMG) in Multigrid Methods, S. F. McCormick, ed.,
vol. 3 of Frontiers in Applied Mathematics, SIAM, Philadeiph1987, pp. 73-130.

http://glaros.dtc.umn.edu/gkhome/views/metis
http://graal.ens-lyon.fr/MUMPS/
http://homepages.ulb.ac.be/~ynotay/AGMG

146

ETNA
Kent State University
http://etna.math.kent.edu

Y. NOTAY

[35] Y. SaAD, A flexible inner-outer preconditioned GMRES algorithBIAM J. Sci. Comput., 14 (1993),

(36]
(37]
(38]
(39]
(40]
(41]
(42

(43]

pp. 461-469.

K. STUBEN, Algebraic multigrid (AMG): experiences and comparisoAppl. Math. Comput., 13 (1983),
pp. 419-452.

, An introduction to algebraic multigridn Trottenberg et al.g9], 2001, pp. 413-532. Appendix A.

, Private communication granting the right to publish resoiftfs&ined with AMG1R5, 2007.

U. TROTTENBERG C. W. OOSTERLEE AND A. SCHULLER, EDS., Multigrid, Academic Press, San Diego,
2001.

H. A. VAN DER VORST AND C. VUIKk, GMRESR: a family of nested GMRES methddsmer. Linear
Algebra Appl., 1 (1994), pp. 369-386.

P. VANEK, M. BREZINA, AND R. TEZAUR, Two-grid method for linear elasticity on unstructured mesh
SIAM J. Sci. Comput., 21 (1999), pp. 900-923.

P. VANEK, J. MANDEL, AND M. BREZINA, Algebraic multigrid based on smoothed aggregation for seco
and fourth order elliptic problemsComputing, 56 (1996), pp. 179-196.

R. WIENANDS AND C. W. OOSTERLEE On three-grid Fourier analysis for multigridSIAM J. Sci. Compult.,
23 (2001), pp. 651-671.

