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A GRADIENT RECOVERY OPERATOR BASED ON AN OBLIQUE PROJECTION ∗

BISHNU P. LAMICHHANE†

Abstract. We present a construction of a gradient recovery operator based on an oblique projection, where
the basis functions of two involved spaces satisfy a condition of biorthogonality. The biorthogonality condition
guarantees that the recovery operator is local.
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1. Introduction. One reason for the success of the finite element method for solving
partial differential equations is that a reliable a posteriori error estimator can be applied to
measure the approximation of the finite element solution in any local region [1, 2]. The
a posteriori error estimator uses the finite element solution itself to assess the accuracy of
the numerical solution. Based on this assessment, the finiteelement mesh can be locally
refined resulting in an adaptive process of controling the global error. The adaptive refine-
ment process is much more efficient than the uniform refinement process in finite element
computation.

One of the most popular a posteriori estimators is based on recovery of the gradient of
the numerical solution. If the recovered gradient approximates the exact gradient better than
the gradient computed directly by using the finite element solution, the comparison gives
an a posteriori error estimator. The asymptotic exactness of the estimator is based on some
superconvergence results [1, 5, 9, 15, 18, 19].

One can compute the orthogonal projection of the computed gradient of the finite element
solution onto the actual finite element space to reconstructthe gradient [3, 7, 11]. As the mass
matrix is not diagonal, the recovery process is not local. Although one can use a mass lumping
procedure to diagonalize the computed mass matrix, the projection property is not valid and
the superconvergence property is, in general, lost after doing the mass lumping procedure.
Therefore, in this paper we focus on an oblique projection ofthe directly computed gradient
of the numerical solution. The oblique projection is obtained by using two different finite
element spaces, where these two spaces satisfy a biorthogonality property. The trial and test
spaces for projecting the finite element gradient are chosensuch that arising Gram matrix is
diagonal. The biorthogonality property allows the local computation of the recovery operator.
We show that the error estimator obtained by using the oblique projection is equivalent to the
one obtained by using the orthogonal projection. We introduce our oblique projection in the
next section and prove some properties of the recovered gradient.

2. Construction of the gradient recovery operator. Let Ω ⊂ R
d, d ∈ {2, 3}, be a

bounded region with polygonal or polyhedral boundary. We consider a locally quasi-uniform
triangulationTh consisting of simplices ord-parallelotopes of the domainΩ, where each
elementT ∈ Th can be transformed affinely to a reference simplex, square orcube. We denote
the mesh-size of elementT by hT , and the global mesh-sizeh is given byh = maxT∈Th

hT .
As the mesh is assumed to be locally quasi-uniform, we also usehT to measure the mesh-size
of elements in the local neighborhood ofT .
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Let Sh be the space of finite elements defined on the triangulationTh ,

Sh := {vh ∈ C0(Ω) : vh|T ∈ Pp(T ), T ∈ Th}, p ∈ N,

wherePp(T ) is the space of polynomials of total degree less than or equalto p in T if T is a
reference simplex andPp(T ) is the space of polynomials of degree less than or equal top in
each variable ifT is ad-parallelotope.

As mentioned in the introduction, we use oblique projectionto compute the projection
of the gradient onto the finite element spaceSh. The projection process can be thought of
as a Petrov–Galerkin formulation for the gradient∇u, where the trial space is[Sh]d, and
the basis functions of the test space are constructed in a special way. Let the space of the
standard finite element functionsSh be spanned by the basis{φ1, . . . , φn}. We construct the
basis{µ1, . . . , µn} of the spaceMh of test functions so that the basis functions ofSh and
Mh satisfy a biorthogonality relation

∫

Ω

µi φj dx = cjδij , cj 6= 0, 1 ≤ i, j ≤ n,(2.1)

wheren := dimMh = dim Sh, δij is the Kronecker symbol, andcj a scaling factor, and is
always positive. This scaling factorcj can be chosen proportionally to the area| suppφj |.
It is easy to show that a local basis on the reference elementT̂ can be easily constructed
so that equation (2.1) holds. In the following, we give these basis functions for linear finite
elements in two and three dimensions. Since we do not requirean approximation property of
these basis functions, the construction is only based on a reference element. Therefore, it is
easy to construct these basis functions for any finite element space. For the reference triangle
T̂ := {(x, y) : 0 ≤ x, 0 ≤ y, x + y ≤ 1}, we have

µ̂1 := 3 − 4x − 4y, µ̂2 := 4x − 1, andµ̂3 := 4y − 1,

where the basis functionŝµ1, µ̂2 andµ̂3 are associated with three vertices(0, 0), (1, 0) and
(0, 1) of the reference triangle. For the reference tetrahedronT̂ := {(x, y, z) : 0 ≤ x,

0 ≤ y, 0 ≤ z, x + y + z ≤ 1}, we have

µ̂1 := 4 − 5x − 5y − 5z, µ̂2 := 5x − 1, andµ̂3 := 5y − 1, µ̂4 := 5z − 1,

where the basis functionŝµ1, µ̂2, µ̂3 andµ̂4 associated with four vertices(0, 0, 0), (1, 0, 0),
(0, 1, 0) and(0, 0, 1) of the reference tetrahedron.

If we start by constructing these biorthogonal basis functions locally, and they span the
same polynomial space as the finite element basis functions locally, these basis functions are
unique up to a scaling factor. The global basis functions forthe test space are constructed by
glueing the local basis functions together following exactly the same procedure of construct-
ing global finite element basis functions from the local ones. These global basis functions
then satisfy the condition of biorthogonality (2.1) with global finite element basis functions,
andsuppφi = suppµi, 1 ≤ i ≤ n. The stability requirement for the biorthogonal system is
that

(2.2) β = inf
φh∈Sh

sup
µh∈Mh

∫

Ω
φhµh dx

‖φh‖L2(Ω)‖µh‖L2(Ω)
> 0.

We will see that this constant enters into the error estimate.
REMARK 2.1. Biorthogonal basis functions are very popular in the context of mortar

finite elements [12, 13, 17], where these basis functions should also satisfy an appropriate ap-
proximation property [13, 14], and therefore, difficult to construct for higher order simplicial
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meshes in three dimensions. However, here these basis functions are used only as test func-
tions to compute the projection, and so we do not need the approximation property of these
basis functions. This allows an easy construction of local functions in a reference element.

Our gradient recovery technique is based on the oblique projection operator
Qh : L2(Ω) → Sh, which is defined as

(2.3)
∫

Ω

Qhv µh dx =

∫

Ω

vµh dx, v ∈ L2(Ω), µh ∈ Mh.

It is easy to verify thatQh is well-defined and is the identity if restricted toSh. Hence,Qh is
a projection onto the spaceSh. We note thatQh is not the orthogonal projection ontoSh but
an oblique projection onto it. Oblique projectors are studied extensively in [10], and different
proofs on an identity on the norm of oblique projections are provided in [16].

REMARK 2.2. If we use trial and test functions from the same spaceSh, we obtain an
orthogonal projection. Then, the locality of the operatorQh can be obtained only by mass
lumping. After mass lumping, the projection property of theoperatorQh in terms ofL2-inner
product is lost.

Now we analyze the approximation property of the operatorQh in the L2- andH1-
norms. For an arbitrary elementT ′ ∈ Th, S(T ′) denotes the patch ofT ′. The closure of
S(T ′) is defined as

(2.4) S̄(T ′) =
⋃

{T̄ ∈ Th : ∂T ∩ ∂T ′ 6= ∅}.

Let Qh be the vector version of the operatorQh so thatQh : [L2(Ω)]d −→ [Sh]d and

Qhu = (Qhu1, · · · , Qhud) for u ∈ [L2(Ω)]d.

ThenQh is our gradient recovery operator. We show that the operatorQh satisfies the prop-
erties (R2)–(R3) stated for a gradient recovery operatorGX in [1, pp. 72–73]:

(R2) If x0 ∈ T , then the value of the recovered gradient depends only on values of∇v

sampled on the patchS(T ).
(R3) GX : Sh → Sh × Sh is a linear operator, and there exists a constantC independent

of h such that

‖GXv‖L∞(T ) ≤ C‖v‖W 1,∞(S(T )), T ∈ Th, v ∈ Sh.

SinceSh andMh form a biorthogonal system, we can writeQh as

(2.5) Qhv =
n

∑

i=1

∫

Ω µi v dx

ci

φi,

which shows that the operatorQh is local, and henceQh satisfies the property (R2) of oper-
atorGX stated in [1, p. 73].

By using the above representation, we can show thatQh is stable in theL2-norm.
LEMMA 2.3. For v ∈ L2(Ω), we have

‖Qhv‖L2(T ′) ≤ C‖v‖L2(S(T ′)),

and hence

(2.6) ‖Qhv‖L2(Ω) ≤ C‖v‖L2(Ω).
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Proof. Using the definition ofQh as given in (2.5), we have

‖Qhv‖L2(T ′) =

∥

∥

∥

∥

∥

∥

∥

∥

∑

1≤i≤n

T ′⊂suppφi

∫

Ω
µi v dx

ci

φi

∥

∥

∥

∥

∥

∥

∥

∥

L2(T ′)

.

Sincesuppφi = suppµi for 1 ≤ i ≤ n, we have
∫

Ω

µi v dx =

∫

supp φi

µi v dx.

Denoting the support ofφi by Si and applying the Cauchy–Schwarz inequality yields to
∣

∣

∣

∣

∫

Si

µi v dx

∣

∣

∣

∣

≤ ‖µi‖L2(Si)‖v‖L2(Si),

so that

‖Qhv‖L2(T ′) ≤
∑

1≤i≤n

T ′⊂Si

‖µi‖L2(Si)‖v‖L2(Si)

ci

‖φi‖L2(T ′).

Sinceci is proportional to the area|Si|, we estimate theL2-norm by theL∞-norm and use
the local quasi-uniformity to obtain

‖µi‖L2(Si)‖φi‖L2(T ′) ≤ C ci,

whereC is independent of the mesh-size. Thus

‖Qhv‖L2(T ′) ≤ C
∑

1≤i≤n

T ′⊂Si

‖v‖L2(Si).

Noting that the elementT ′ is fixed and summation is restricted to thosei′s for whichT ′ ⊂ Si,
we have

‖Qhv‖L2(T ′) ≤ C‖v‖L2(S(T ′)),

whereS(T ′) is as defined in (2.4). The L2-stability (2.6) then follows by summing this
estimate over all elementsT ′ ∈ Th.

In the following,Ph : L2(Ω) → Sh denotes theL2-orthogonal projection ontoSh. It
is well-known that the operatorPh is stable in theL2- andH1-norms. Using the stability of
the operatorQh in theL2-norm, and of operatorPh in theH1-norm, we can show thatQh is
also stable in theH1-norm. We refer to [13] for the proof of this result.

LEMMA 2.4. For w ∈ H1(Ω), we have

|Qhw|H1(Ω) ≤ C|w|H1(Ω).

The following lemma establishes the approximation property of the operatorQh for a func-
tion v ∈ Hs(Ω). We refer to [6, 8] for the interpolation theory of functions inHs(Ω).
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LEMMA 2.5. For a functionv ∈ Hs+1(Ω), s > 0, there exists a constantC independent
of the mesh-sizeh so that

(2.7)
‖v − Qhv‖L2(Ω) ≤ Chr+1|v|Hr+1(Ω),

‖v − Qhv‖H1(Ω) ≤ Chr|v|Hr+1(Ω),

wherer := min{s, p}.
Proof. We start with a triangle inequality

‖v − Qhv‖L2(Ω) ≤ ‖v − Phv‖L2(Ω) + ‖Phv − Qhv‖L2(Ω).

SinceQh acts as an identity onSh, we have

‖v − Qhv‖L2(Ω) ≤ ‖v − Phv‖L2(Ω) + ‖Qh(Phv − v)‖L2(Ω).

Now we use the equation (2.6) to get

‖v − Qhv‖L2(Ω) ≤ C‖v − Phv‖L2(Ω).

The first inequality of (2.7) now follows by using the approximation property of the orthogo-
nal projectionPh ontoSh; see [4]. The second inequality of (2.7) is proved similarly using the
stability of Qh in theH1-norm and the approximation property of the orthogonal projection
Ph ontoSh.

LEMMA 2.6. Letvh ∈ Sh andu ∈ Hs(Ω) with s > d
2 . Then for allT ∈ Th,

(2.8) ‖Qh∇vh‖L∞(T ) ≤ C‖∇vh‖L∞(S(T ))

and

(2.9) ‖Qh∇Ihu‖L∞(T ) ≤ C‖∇u‖L∞(S(T )),

whereIh is the Lagrange interpolation operator.
Proof. The formula (2.5) for Qhv yields

‖Qhv‖L∞(T ) =

∥

∥

∥

∥

∥

∥

∥

∥

∑

1≤i≤n

T ′⊂suppφi

∫

Ω
µi v dx

ci

φi

∥

∥

∥

∥

∥

∥

∥

∥

L∞(T )

.

As ∇vh ∈ L∞(S(T )), we can follow the arguments of the proof of Lemma2.3, and obtain
the estimate (2.8). To obtain the estimate (2.9), we start with the mean value theorem as in
[5],

‖∇Ihu‖L∞(S(T )) ≤ ‖∇u‖L∞(S(T )),

and apply the estimate (2.8).
We note that Lemma2.6 corresponds to property (R3) of the operatorGX stated in [1,

pp. 72–73]. We show that the operatorQh has the same approximation property as theL2-
projection operator. We note that theL2-projection operator is not local, whereas our new
projection operatorQh is local. Hence, it is ideal to use this operator as a gradientrecovery
operator for a posteriori error estimation.

THEOREM 2.7. We have
(2.10)

‖∇Ihu − Ph∇Ihu‖L2(Ω) ≤ ‖∇Ihu − Qh∇Ihu‖L2(Ω) ≤
1

β
‖∇Ihu − Ph∇Ihu‖L2(Ω),
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whereβ > 0 is given in (2.2), andPh is the vector version of theL2-projection operatorPh.

Proof. Due to the property of orthogonal projection, it is well-known that

‖∇Ihu − Ph∇Ihu‖L2(Ω) ≤ ‖∇Ihu − Qh∇Ihu‖L2(Ω).

The second part of the inequality is obtained by using

‖Qh‖ = ‖I− Qh‖, see [16],

where the norm of the operator is taken with respect to theL2-norm, andI is the identity
operator. Letφh be an arbitrary element inSd

h. Applying

‖∇Ihu − Qh∇Ihu‖L2(Ω) = ‖(I− Qh)(∇Ihu − φh)‖L2(Ω)

≤ ‖I− Qh‖‖∇Ihu − φh‖L2(Ω) ≤ ‖Qh‖‖∇Ihu − φh‖L2(Ω).

Furthermore, foru ∈ L2(Ω)d, we have

‖Qhu‖ ≤
1

β
sup

µ
h
∈Md

h

∫

Ω µhQhu dx

‖µh‖L2(Ω)
≤

1

β

∫

Ω µhu dx

‖µh‖L2(Ω)
≤

1

β
‖u‖L2(Ω).

Since the error estimator based onL2-projection is asymptotically exact [3, 7, 11] even
for mildy unstructured meshes, the error estimator based onthis oblique projection is also
asymptotically exact for such meshes. However, theL2-projection is not local and hence
expensive to compute. Our new oblique projection gives a local gradient recovery operator,
which is easy and cheap to compute.

The error estimator on the elementT is defined as

ηT = ‖Qh∇uh −∇uh‖L2(T ),

whereuh is the finite element solution of some boundary value problem. If the finite element
solutionuh and the Lagrange interpolantIhu of the true solutionu satisfies

|uh − Ihu|H1(Ω) ≤ C(u)hp+τ

for someτ ∈ (0, 1] andC(u) > 0 independent ofh, then the error estimator can be proved
to be asymptotically exact as in [1, 3, 5, 9, 11].
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