
Electronic Transactions on Numerical Analysis.
Volume 37, pp. 173-188, 2010.
Copyright  2010, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 

http://etna.math.kent.edu

AN IMPLICIT APPROXIMATE INVERSE PRECONDITIONER
FOR SADDLE POINT PROBLEMS ∗

SABINE LE BORNE† AND CHE NGUFOR‡

Abstract. We present a preconditioner for saddle point problems whichis based on an approximation of an
implicit representation of the inverse of the saddle point matrix. Whereas this preconditioner does not require an
approximation to the Schur complement, its theoretical analysis yields some interesting relationship to some Schur-
complement-based preconditioners. Whereas the evaluation of this new preconditioner is slightly more expensive
than the evaluation of standard block preconditioners fromthe literature, it has the advantage that, similar to con-
straint preconditioners, the iterates of the preconditioned system satisfy the constraint equations exactly. We will
demonstrate the performance of the implicit approximate inverse preconditioner in the iterative solution of the dis-
crete two- as well as three-dimensional Oseen equations.
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1. Introduction. The ability to solve large, sparse systems arising from the (linearized)
Navier-Stokes equations is critical to the simulation of incompressible fluid flow. Linear
systems of equations are typically solved (approximately)by iterative methods that have lin-
ear storage and computational complexity (per iteration step) in the number of unknowns.
However, the rate of convergence may be unacceptably slow, and one needs to accelerate
the convergence by suitable preconditioning techniques. The design of robust and efficient
preconditioners for linear systems arising in flow simulations is still a challenge.

Numerous solution techniques have been proposed in the literature for saddle point prob-
lems of the type

(1.1)

[
A B

BT 0

]

︸ ︷︷ ︸
=:A

[
u
p

]
=

[
f
g

]
.

A comprehensive survey [1] reviews many of the most promising solution methods with an
emphasis on the iterative solution of these large, sparse, indefinite problems. Several of these
preconditioners are based on block approaches which require approximate solves for auxiliary
velocity as well as pressure Schur complement problems [4, 5, 6, 12, 14, 18]. The constraint
preconditioner (and its variants) also employ the given block structure and yield iterates that
satisfy the constraint of (discretely) divergence free velocity exactly [9, 11, 13].

In this paper, we will develop a preconditioner that isnotbased on a block LU factoriza-
tion of the saddle point matrix but is a direct approximationto its inverse. The derivation will
start from a well-known representation of the exact inversewhich requires a matrixZ whose
columns form a basis for the kernel of constraints,ker(BT ). While such a matrixZ is typi-
cally unavailable, or only available at great expense, the new implicit inverse preconditioner
is based on some approximation and reformulation and will nolonger require such a matrix
Z. Different from preconditioners based on an (approximate)LU factorization of the saddle
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point matrix, the new preconditioner will still be applicable in the case of a singular matrix
blockA in (1.1).

Similar to constraint preconditioners, the use of the implicit approximate inverse precon-
ditioner ensures that (in exact arithmetic) all of the iterates satisfy the constraints.

The remainder of this paper is structured as follows: In Section 2, we derive the new
implicit inverse preconditioner and present some of its theoretical properties. We review
some related preconditioners from the literature and discuss similarities, differences, and
implementation costs. In Section3, we introduce the model problem, the Oseen equations,
and document numerical tests for problems in two as well as three spatial dimensions which
illustrate the performance of the preconditioner. We provide comparative results with the
related (BFBt-)Schur-complement preconditioner as well as with the direct solver PARDISO
[20, 21].

2. Implicit approximate inverse preconditioner. In this section, we will derive a new
block preconditioner for saddle point problems based on a certain representation of the inverse
of a saddle point matrix. In particular, we will develop a preconditioner for the saddle point
system (1.1), whereA ∈ R

n×n, B ∈ R
n×m, m ≤ n. The preconditioner will exploit the

2×2 block structure but does not require any additional information except for the matrix and
right hand side data. We will make the following two assumptions which together guarantee
that the saddle point matrix in (1.1) is invertible.

ASSUMPTION2.1. B ∈ R
n×m has full rankm.

ASSUMPTION2.2. The symmetric partH := 1
2 (AT + A) of A is positive semidefinite

andker(H) ∩ ker(BT ) = {0}.
Let Z ∈ R

n×(n−m) denote any matrix whose columns form a basis forker(BT ). Defin-
ing

W = Z(ZT AZ)−1ZT , V = BT B,

there holds the following representation for the inverse (which does not requireA to be in-
vertible but requiresB to have full rank),

(2.1)

[
A B

BT 0

]−1

=

[
W (I − WA)BV −1

V −1BT (I − AW ) −V −1BT (A − AWA)BV −1

]
,

which can easily be proven using the fact thatB(BT B)−1BT = I − ZZT . In the past, this
representation of the inverse has been of limited practicaluse, but has primarily been used for
theoretical analyses. The reason lies in the need of computing a (well-conditioned) null space
matrixZ as well as the productZT AZ and its inverse(ZT AZ)−1 as part of the matrixW .

Here, we propose to avoid these disadvantages simultaneously by replacing(ZT AZ)−1

with ZT A−1Z and making use of the identityZZT = I −B(BT B)−1BT . This leads to the
following approximatioñW of W ,

(2.2) W̃ := ZZT A−1ZZT = (I − BV −1BT )A−1(I − BV −1BT ),

and the resulting representation of an approximate inverse,

(2.3)

[
A B

BT 0

]−1

≈

[
W̃ (I − W̃A)BV −1

V −1BT (I − AW̃ ) −V −1BT A(I − W̃A)BV −1

]
=: P.

We will refer toP as theimplicit approximate inversepreconditioner.

THEOREM2.3. The evaluation of the matrix-vector product

[
v
w

]
= P

[
x
y

]
requires

the following matrix-vector multiplications: One multiplication byA−1, four multiplications
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by V −1 = (BT B)−1, two multiplications with the sparse matrixA and six multiplications
with the sparse matrixB (or BT ).

Proof. The number of matrix-vector multiplications can be counted from the following
implementation,

d := BV −1y;

e := Ad;

f := W̃ (x − e);

v := d + f ;

w := V −1BT (x − Av).

Here, the multiplication bỹW (2.2) includes one multiplication byA−1, two multiplications
by V −1, and four multiplications byB (or BT ).

In the remainder of this work, we will use the following notation.

DEFINITION 2.4. Given a saddle point matrix

[
A B

BT 0

]
, we define

Z : denotes a matrix whose columns form a basis forker(BT );

V := BT B;

X := BV −1BT ;

W̃ := (I − X)A−1(I − X), (see (2.2));

Y := A−1XA.

We useσ(C) to denote the spectrum of a matrixC, andIk to denote ak × k identity matrix.

LEMMA 2.5. The matricesX andY are projections.
Proof. The proposition follows from

XX = BV −1BT BV −1BT = BV −1V V −1BT = X ;

Y Y = A−1XAA−1XA = A−1XXA = Y.

The following Lemma will be used in the proofs of subsequent theorems.
LEMMA 2.6. LetP ∈ R

n,n denote a projection matrix, i.e.,P 2x = Px for all x ∈ R
n.

Let I ∈ R
n,n denote the identity matrix, and letA ∈ R

n,n denote an arbitrary matrix. Then
there holds

(2.4) σ((I − A)P ) ∪ {0, 1} = {1 − µ | µ ∈ σ(AP )} ∪ {0, 1}.

Proof. The following proof makes repeated use of the fact that

σ(AB) ∪ {0} = σ(BA) ∪ {0}

for any two matricesA, B ∈ R
n,n.

“⊆”: Let λ ∈ σ((I − A)P ) \ {0, 1}. Since

σ((I − A)P ) ∪ {0} = σ(P (I − A)) ∪ {0},
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it follows that λ ∈ σ(P (I − A)), i.e., there exists a corresponding eigenvectorv with
P (I − A)v = λv. Premultiplying this equation byP yieldsP (I − A)v = λPv. A compari-
son of these two equations yieldsPv = v (sinceλ 6= 0). Thus,P (I−A)v = λv is equivalent
to PAv = (1 − λ)v and impliesµ := 1 − λ ∈ σ(PA). It follows that

λ = 1 − µ ∈ {1 − µ | µ ∈ σ(PA)}

⊆ {1 − µ | µ ∈ σ(AP ) ∪ {0}}

= {1 − µ | µ ∈ σ(AP )} ∪ {1}.

“⊇”: Let µ ∈ σ(AP ) \ {0, 1}. Sinceσ(AP ) ∪ {0} = σ(PA) ∪ {0} andµ 6= 0, it follows
that µ ∈ σ(PA). Thus, there exists an associated eigenvectorv that satisfiesPAv = µv.
Premultiplication byP yields PAv = µPv which impliesv = Pv (sinceµ 6= 0). Thus,
there holdsP (I − A)v = Pv − PAv = v − µv = (1 − µ)v, so

(1 − µ) ∈ σ(P (I − A)) ⊆ σ((I − A)P ) ∪ {0}.

The following theorem lists some of the properties of the implicit approximate inverse
preconditioner.

THEOREM 2.7. Let P ∈ R
(n+m)×(n+m) denote the implicit approximate inverse pre-

conditioner as defined in (2.3), and let

(2.5) M = In+m − P

[
A B

BT 0

]

denote the error propagation matrix. Then the following statements hold.
a) If A is symmetric, thenP is also symmetric, i.e.,A = AT impliesP = PT .
b) The error propagation matrix has the form

M =

[
(I − W̃A)(I − BV −1BT ) 0

−V −1BT A(I − W̃A)(I − BV −1BT ) 0

]
,

i.e., the P-preconditioned iteration is u-dominant (only the velocity error is relevant for the
error of the next iterate).

c) M

[
B
0

]
= 0 andM

[
0

Im

]
= 0, i.e.,M has2m zero eigenvalues with explicitly known

eigenvectors.
d) rank(I − W̃A) ≤ 2m.
e)rank(M) ≤ m, i.e.,M has at leastn zero eigenvalues.
f) Them possibly non-zero eigenvalues ofM are given byλ = 1 − µ, whereµ are the
eigenvalues of them × m matrixV −1BT A−1BV −1BT AB.
g) The approximate solution(x, y)T := P (f, g)T satisfies the constraintBT x = g in (1.1)
exactly.
h) If the nullspace ofBT is an invariant subspace ofA, thenM = 0, i.e., the preconditioner
P yields an exact solver.

Proof. The proof uses the previously defined matricesZ, V, X, W̃ , Y ; see Definition2.4.
a) and b) are straightforward.
c) Follows from(I − BV −1BT )B = 0 and b).
d) There holds

I − W̃A = I − (I − X)A−1(I − X)A

= X + Y − XY

= X + (I − X)Y.(2.6)
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The statement now follows fromrank(X) ≤ m (sincerank(B) = m) andrank(Y ) ≤ m.
e) In view of b), there holdsrank(M) = rank((I − W̃A)(I − BV −1BT )). Since

(I − W̃A)(I − BV −1BT )B = (I − W̃A)0 = 0

and, usingXZ = BV −1BT Z = 0,

(I − W̃A)(I − BV −1BT )Z = (I − W̃A)Z

= (X + Y − XY )Z

= (I − X)Y Z,

it follows that

rank(M) = rank(M · [B Z]) = rank((I − X)Y Z) ≤ rank(Y ) ≤ m.

f) In view of part b), the nonzero eigenvalues ofM are the eigenvalues of its first diagonal
(n × n) blockM1,1 = (I − W̃A)(I − BV −1BT ). There holds

σ(M1,1) ∪ {0, 1} = σ((I − W̃A)(I − X)) ∪ {0, 1}

= σ((I − X)(I − W̃A)) ∪ {0, 1}

(2.6)
= σ((I − X)Y ) ∪ {0, 1}

(2.4)
= {1 − µ | µ ∈ σ(XY )} ∪ {0, 1},

(2.7)

where we used(I −X)X = 0 and(I − X)(I −X) = I − X . The proposition now follows
from

σ(V −1BT A−1BV −1BT AB) ∪ {0} = σ(BV −1BT A−1BV −1BT A) ∪ {0}

= σ(XA−1XA) ∪ {0}

= σ(XY ) ∪ {0}.

g) The matrix-vectormultiplication(x, y)T := P (f, g)T yieldsx = W̃f+(I−W̃A)BV −1g.
The statementBT x = g now follows fromBT W̃ = 0.
h) Assume thatZ is an invariant subspace ofA, i.e, there exists a matrixS such thatAZ =
ZS. Then there holds

(I − W̃A)(I − BV −1BT ) = (I − W̃A)ZZT

= ZZT − ZZT A−1ZZT

︸ ︷︷ ︸
W̃

ZS︸︷︷︸
AZ

ZT

= ZZT − ZZT A−1ZSZT

= ZZT − ZZT A−1AZZT = ZZT − Z ZT Z︸ ︷︷ ︸
I

ZT

= 0

which yieldsM = 0.
REMARK 2.8. In the approximate inverse preconditionerP (2.3), the exact inverses

A−1 and(BT B)−1 may be replaced by approximations (including inner iterations). Multi-
plication byA−1 requires the solution of a (scalar) convection-diffusion problem, whereas
the multiplication by(BT B)−1 requires the solution of a symmetric, positive definite system
that shows similarities to a Laplace system. For both types of problems there exist highly
efficient solution methods in the literature.
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2.1. Review of related preconditioners.In the last few years, much work has been
devoted to the development of efficient preconditioners forsaddle point problems. In this
section, we will review some of these techniques. In particular, we will restrict our attention
to blackboxtechniques that are in some sense related to the new implicitapproximate inverse
preconditioner. Byblackboxtechniques we mean techniques that only require the matrix data
(and possibly information about its2 × 2 block structure) and right hand side vector, but no
information on the underlying system of partial differential equations.

Here, we will consider the following widely applicable classes of preconditioning tech-
niques:

• Schur-complement-based preconditioners, in particular the BFBt preconditioner [5,
7, 18],

• preconditioned nullspace solver [15, 17],
• constraint preconditioners [9, 11, 13].

2.1.1. Schur-complement-based preconditioners (BFBt).The Schur-complement-
based preconditioners are derived from a block LU factorization of the saddle point matrix
and an approximation to the required Schur complement. The factorization

[
A B

BT 0

]
=

[
I 0

BT A−1 I

] [
A B
0 S

]
,

with the Schur complementS = −BT A−1B leads to the block triangular preconditioner

(2.8) P−1
triang :=

[
A B

0 S̃

]
, i.e., Ptriang :=

[
A−1 −A−1BS̃−1

0 S̃−1

]
,

whereS̃ denotes an approximation to the Schur complementS for which the auxiliary prob-
lem S̃v = h can be solved efficiently. The error propagation matrixMtriang := I−PtriangA
has the form

(2.9) Mtriang =

[
A−1BS̃−1BT −A−1B

−S̃−1BT I

]
.

In the case of̃S = S, Mtriang has spectrumσ(Mtriang) = {0} since

σ

(
Ptriang

[
A B

BT 0

])
= σ

([
A B

BT 0

]
Ptriang

)
= σ

([
I 0

BT A−1 I

])
= {1}.

Using a matrixZ as defined in Def.2.4, the columns of the matrix

[
Z A−1B
0 −I

]
aren

(linearly independent) eigenvectors ofMtriang associated with the eigenvalueλ = 0.
Here, we will restrict our attention to the BFBt-preconditioner

S̃−1
BFBt = −(BT B)−1BT AB(BT B)−1

[5, 7, 18]. The following theorem states a close relationship between this Schur-complement
preconditioner and the implicit approximate inverse preconditioner.

THEOREM 2.9. The error propagation matricesM (2.5) of the implicit approximate
inverse preconditioner andMtriang (2.9) using the BFBt-Schur-complement preconditioner
S̃−1 := S̃−1

BFBt have the same set eigenvalues.
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Proof. There holds

[
A B

BT 0

]
P−1

triang =

[
I 0

BT A−1 SS̃−1
BFBt

]
,

thusσ(Mtriang) = {0} ∪ {1 − µ | µ ∈ σ(SS̃−1
BFBt)}. The result now follows from Theo-

rem2.7f) sinceV −1BT ABV −1BT A−1B = S̃−1
BFBtS.

The block LU factorization of the saddle point matrix yieldsthe following block LU-
preconditioner.

PLU :=

[
A B

0 S̃

]−1 [
I 0

BT A−1 I

]−1

(2.10)

=

[
A−1 −A−1BS̃−1

0 S̃−1

][
I 0

−BT A−1 I

]
(2.11)

whereS̃ approximates the Schur complementS = −BT A−1B.
THEOREM 2.10.The error propagation matrixMLU = I − PLUA has the form

MLU =

[
0 −A−1B(I − S̃−1S)

0 (I − S̃−1S)

]
.

The iteration is p-dominant, and there holdsσ(MLU ) = {0}∪σ(I−S̃−1S). If we setS̃−1 :=

S̃−1
BFBt, then the non-zero eigenvalues ofMLU are the same as the non-zero eigenvalues of

Mtriang andM .

2.1.2. Preconditioned nullspace solver.The (preconditioned)nullspace method to solve
the linear system (1.1) is based on the following additional assumptions.

ASSUMPTION2.11.A particular solutionx̂ of BT x = g is available.
ASSUMPTION2.12.A null space basisZ ∈ R

n×(n−m) of BT is available, i.e.,

BT Z = 0 and rank(Z) = n − m.

The required particular solution̂x may be computed througĥx = B(BT B)−1g. The solution
set ofBT x = g is described byx = Zv + x̂ asv ranges inRn−m. Substitutingx = Zv + x̂
into Ax + By = f , we obtainA(Zv + x̂) + By = f . Premultiplying by the full-rank matrix
ZT yieldsZT A(Zv + x̂) + ZT By = ZT f , and usingBT Z = 0 as well as rearranging the
equation yields the reduced, non-singular problem

(2.12) ZT AZv = ZT (f − Ax̂).

Once the solutionv∗ of the reduced problem has been computed, we compute the (velocity)
solutionx∗ = Zv∗ + x̂.

Finally, the (pressure) solutiony∗ can be found by solvingBT By = BT (f − Ax∗) for
y, a reduced system of orderm with a sparse, symmetric positive definite coefficient matrix
BT B. It is easily verified that(x∗, y∗)

T satisfies (1.1).
Preconditioning the reduced system (2.12) imposes difficulties similar to those for pre-

conditioning a Schur complement system: The matrix productZT AZ is typically not com-
puted explicitly since matrix-matrix multiplications areto be avoided and the product would
result in a fully populated matrix. Here, we will consider the preconditionerW := ZT A−1Z
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that has previously been proposed in [15, 17], and we solve the preconditioned reduced
nullspace system

(ZT A−1Z)(ZT AZ)x = (ZT A−1Z)b.

THEOREM 2.13.The error propagation matrixMprecNull := I − (ZT A−1Z)(ZT AZ)
of the preconditioned nullspace method has the same set of eigenvalues as the error propa-
gation matrixM (2.5) of the implicit approximate inverse preconditioner.

Proof. Using the notation introduced in Def.2.4, there holds

σ((ZT A−1Z)(ZT AZ)) ∪ {0} = σ((ZZT )A−1(ZZT )A) ∪ {0}

= σ((I − X)A−1(I − X)A) ∪ {0}

= σ((I − X)(I − A−1XA)) ∪ {0}

= σ((I − X)(I − Y )) ∪ {0}

(2.6)
= σ(W̃A) ∪ {0}.

2.2. Constraint preconditioners. A (non-singular) constraint preconditioner is given
in the form

[
G B
BT 0

]
,

whereG ∈ R
n,n is some approximation toA. The following Theorem is proven in [13] for

the case of symmetric blocksA andG.
THEOREM 2.14. Assume thatZ is a basis ofker(BT ). The constraint-preconditioned

matrix
[

G B
BT 0

]−1 [
A B

BT 0

]

has the following spectrum:
1. An eigenvalue at1 with multiplicity2m.
2. n−m eigenvalues which are defined by the generalized eigenvalueproblemZT AZx =

λZT GZx.
COROLLARY 2.15. The spectrum of the constraint-preconditioned matrix using G = I

is equal to the spectrum of the reduced matrix in (2.12) (except for the eigenvalue1).
Proof. Follows fromZT GZ = I whenG = I in Theorem2.14(part 2).
LEMMA 2.16.The error propagation matrix of the constraint preconditioner is given by

Mconstraint := I −

[
G B
BT 0

]−1 [
A B

BT 0

]

=

[
I − G−1A + G−1BS−1

G BT (I − G−1A) 0
−S−1

G BT (I − G−1A) 0

]
,

whereSG := −BT G−1B.
REMARK 2.17. The constraint preconditioner requires the solutionof a Schur comple-

ment problemSGy = b. Whereas usingG = I allows for efficient solvers of this problem,
it typically leads to poor convergence of the iterative solution of non-symmetric, strongly in-
definite saddle point systems. In [8], the authors suggest to use the symmetric part ofA as
G, i.e.,G = ω(A + AT ) for some parameterω. Preconditioning with the resulting constraint
preconditioner requires the solution of a Stokes-type (symmetric) problem.
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3. Numerical results. In this section, we will provide numerical results to illustrate
the performance of the approximate inverse preconditioner(2.3). We will use the tech-
nique of (domain-decomposition based)H-matrices [3, 10, 16] to compute an approximate
LU factorizationA ≈ LH

AUH
A as well as an approximate Cholesky factorizationBT B ≈

LH

BT B
(LH

BT B
)T . An H-matrix provides an approximation to a (dense) matrix in which cer-

tain off-diagonal blocks are approximated by low-rank matrices. The accuracies of these
approximations are controlled by prescribing a maximum relative errorδ within each block.
As this relative error approaches zero, i.e.,δ → 0, the approximation becomes more accu-
rate at the expense of increased computation times and storage requirements, similar to ILU
methods in which a smaller threshhold parameter or increased level of fill leads to better but
more expensive approximations.

We replace the exact inversesA−1 and (BT B)−1 in W̃ (2.2) by the approximations
LH

AUH
A andLH

BT B
(LH

BT B
)T , resp. Alternative techniques such as multigrid or incomplete

factorizations are also possible to solve these subproblems.
As a model problem, we consider the Oseen equations: LetΩ ⊂ R

d, d ∈ {2, 3}, denote
a bounded, connected domain with a piecewise smooth boundary Γ. Given a force field
f : Ω → R

d, boundary datag : Γ → R
d, the kinematic viscosity coefficientǫ, and a given,

divergence-free coefficientb : Ω → R
d, the problem is to find the velocity fieldu : Ω → R

d

and the pressurep : Ω → R such that the Oseen equations

− ǫ∆u + (b · ∇)u + ∇p = f in Ω,(3.1)

−divu = 0 in Ω,(3.2)

Bu = g onΓ,(3.3)

are satisfied. Here,B denotes some type of boundary operator. Astablemixed finite element
discretization of the Oseen equations leads to a system of equations of the form (1.1). Here,
we set up the discrete Oseen equations (1.1) using a Taylor-Hood finite element discretization
on a structured mesh onΩ = [−1, 1]d (d = 2, 3) with Tabata’s upwind triangle scheme [19,
Chap. III, Sec. 3.1.1]. We perform tests using constant as well as (re-)circulating convection
directions

bxline(x, y, z) = (1, 0, 0)T ,

brecirc(x, y, z) =
(
−(x2 − 1)y, (y2 − 1)x, 0

)T
.

Our choice of experiments has resulted from our interest in
• the set-up times and storage requirements of the implicit approximate inverse pre-

conditioner for two and three spatial dimensions; see Tables 3.1, 3.2 (d = 2) and
Tables3.5, 3.6(d = 3),

• the dependence of iteration steps on the meshsizeh, the convection directionb, and
the parameterǫ, which determines the convection-dominance of the Oseen problem
(3.1); see Table3.3(d = 2) and Table3.7(d = 3),

• the dependence of the convergence rates on the accuracy of the approximations to
(BT B)−1 andA−1 in the implicit approximate inverse preconditioner, including
a comparison with the BFBt-preconditioner; see Table3.4 (d = 2) and Table3.8
(d = 3).

All numerical tests have been performed on a Dell 690n workstation (2.33GHz, 32GB mem-
ory) using the standardH-matrix library HLIB [2]. We choosex0 = (0, 0, 0)T as the initial
vector in the Bicgstab method. We iterate until either the maximum number of 200 iterations
has been reached, or until the residual has been reduced by a factor of10−6. If the residual is
not reduced by a factor of at least10−6 within 200 iteration steps, we denote this by “div”. A
breakdown in the bicgstab method is denoted by “br”.
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3.1. Two-dimensional Oseen problem.In Tables3.1 and 3.2, we report the set-up
times and storage requirements of the approximate implicitinverse preconditioner. In particu-
lar, these numbers result from theH-LU factorization ofA and theH-Cholesky factorization
of BT B. If theseH-factorizations are replaced by alternative methods (e.g., ILU factoriza-
tion, multigrid, etc.), these numbers will change depending on the chosen method. Therefore,
while the results in Tables3.1and3.2illustrate thatH-factorizations are well-suited to solve
the required subproblems, they should not be interpreted asset-up costs intrinsic to the pre-
conditioner.

TABLE 3.1
Set-up time (in seconds),ǫ = 10

−2, bxline

n/2 δH 40,401 78,961 160,801 321,489 641,601
10−1 1 2 6 10 26

H-LU of A 10−2 2 3 7 12 32
10−3 2 3 8 14 36

m 10,404 20,164 40,804 81,225 161,604
10−2 1 2 6 14 27

H-Cholesky 10−4 2 4 7 19 38
of BT B 10−8 2 5 10 25 53

TABLE 3.2
Storage (in MB),ǫ = 10

−2 , bxline

n/2 δH 40,401 78,961 160,801 321,489 641,601
10−1 58 106 254 449 1091

H-LU of A 10−2 63 114 273 477 1151
10−3 66 122 286 507 1213

m 10,404 20,164 40,804 81,225 161,604
10−2 8 17 36 77 159

H-Cholesky 10−4 10 23 48 107 222
of BT B 10−8 14 30 67 148 319
n + m 91,206 178,086 362,406 724,203 1,444,806
PARDISO 183 389 859 1,910 4,100

In Table3.1, we show the set-up times to computeH-LU factorizations ofA andH-
Cholesky factorizations ofBT B for varyingH-accuraciesδH. As δH → 0, the factorizations
become more accurate but also more expensive to compute. Fora fixed accuracyδH, the set-
up time is (almost) linear in the problem size for both factorizations. We use higher accuracies
(i.e., smallerδH) for theH-Cholesky factorization since this will result in significantly faster
convergence in the subsequent iteration; see Table3.4.

Similar to the set-up time, the storage requirements are (almost) optimal in the problem
size and only increase moderately as we increase theH-accuracy. In Table3.2, we also
provide a comparison with the storage required by the directsolver PARDISO 3.3 [20, 21]
which is more than twice the storage required by theH-LU andH-Cholesky factorizations
with H-accuraciesδH = 10−3 andδH = 10−8, resp.

In Table3.3, we list the number of iteration steps and corresponding iteration times (in
seconds) for various problem sizesn + m and varying convection dominance as determined
by the parameterǫ in the Oseen problem (3.1). In the case of constant convectionbxline,
the convergence rate decreases as the problem becomes more convection-dominated, i.e., as
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TABLE 3.3
Dependence on meshsizeh and convection dominance, table lists iteration steps and time (sec),δA = 10

−3,
δ
BT B

= 10
−8

ǫ/n + m 91,206 178,086 362,406 724,203 1,444,806
bxline

1.0 12/4 12/7 15/20 16/45 19/114
10−1 12/4 15/9 16/22 19/53 20/119
10−2 8/2 9/6 12/17 13/36 17/101
10−3 4/1 4/3 4/6 5/14 5/30
PARDISO 7s 19s 46s 138s 417s

brecirc

1.0 10/3 12/7 15/21 16/44 19/114
10−1 14/4 15/9 17/23 18/50 24/142
10−2 13/4 20/12 19/26 21/58 24/142
10−3 26/8 26/16 26/35 29/80 31/183
PARDISO 6s 17s 44s 123s 309s

ǫ decreases. For recirculating convectionbrecirc, however, the number of required steps in-
creases asǫ decreases. For a fixedǫ, the number of required steps increases only slightly as
the problem size increases, both in the case of constant and recirculating convection. We also
provide a comparison with the solution time required by the direct solver PARDISO 3.3 for
the convection-dominated problems usingǫ = 10−3. For a fair comparison, one needs to add
the respective set-up time for the approximate inverse preconditioner as reported in Table3.1
to the solution time. For instance, for problem sizen + m = 1, 444, 806, ǫ = 10−3 and
b = bxline, PARDISO requires417s compared to36s + 53s + 30s = 120s (H-LU of A +
H-Cholesky ofBT B + iterative solver) for the approximate inverse preconditioner. For this
example, PARDISO required4100MB of memory compared to1, 213MB + 319MB =
1, 532MB for theH-LU andH-Cholesky factors required in the approximate inverse pre-
conditioner; see Table3.2. For the same problem size and recirculating convectionbrecirc,
PARDISO requires309s compared to36s + 53s + 183s = 272s for set-up and iterative
solution with the approximate inverse preconditioner.

In Table3.4, we list the number of iteration steps and corresponding iteration times (in
seconds) for various problem sizesn + m and varying accuracies for the approximations to
A−1 and(BT B)−1. The parametersδA andδBT B denote the adaptive accuracy chosen in the
H-LU andH-Cholesky factorizations ofA andBT B, resp. The results show that the number
of iteration steps increases significantly when a less accurate approximation toBT B is used,
even leading to divergence in the case of recirculating convectionbrecirc. The accuracy of the
approximation toA−1 shows the expected behaviour that fewer iteration steps arerequired
as δA → 0. In view of the only moderate increase in the set-up times (see Table3.1) as
δA → 0, we obtain the fastest overall solution time (set-up time and iteration time combined)
for the recirculating convection by choosingδBT B = 10−8 andδA = 10−3. For the largest
problem sizen+m = 1, 444, 806, we also list results for the BFBt-preconditioned BiCGStab
method. The BFBt-preconditioned iteration converges evenfor less accurate approximations
of (BT B)−1 where the approximate inverse preconditioner fails. Dividing the iteration time
by the number of steps, one sees that a single iteration step of the BFBt-method is faster
than a step of the approximate inverse method. For highly accurate approximations to the
subproblems, both methods show the expected very similar convergence behaviour.
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TABLE 3.4
Dependence onH-accuraciesδA andδ

BT B
, table lists iteration steps and time (sec),ǫ = 10

−3

n+m δA = 10−3 δBT B = 10−8

δBT B = 10−2 δBT B = 10−4 δA = 10−1 δA = 10−2 δA = 10−3

bxline

91,206 14/4 5/1 5/2 4/1 4/1
178,086 21/11 5/3 5/3 4/2 4/3
362,406 30/35 7/9 6/8 4/6 4/6
724,203 52/123 7/18 6/16 5/14 5/14
1,444,806 63/312 10/54 7/41 5/30 5/30
BFBt 58/226 12/49 20/84 7/30 6/27

brecirc

91,206 118/31 73/21 55/16 28/8 26/8
178,086 div 88/51 48/29 31/19 26/16
362,406 div 128/161 39/51 42/56 26/35
724,203 div 123/309 27/72 39/106 29/80
1,444,806 div div 51/291 49/285 31/183
BFBt 197/756 145/584 br 72/306 43/186

3.2. Three-dimensional Oseen problem.We repeated the same set of experiments for
the Oseen problem in three spatial dimensions. In Table3.5, we record the set-up times for
the approximate inverse preconditioner which are considerably larger compared to the two-
dimensional case. This is mainly due to the larger number of non-zero entries per matrix row
typical for three-dimensional problems. However, for a fixedH-accuracy, the work complex-
ity is still almost optimal with respect to the increase in problem size.

TABLE 3.5
Set-up time (in seconds),ǫ = 10

−2, bxline

n/3 δH 6,859 15,625 29,791 59,319 132,651 250,047
10−1 1 3 8 33 62 139

H-LU of A 10−2 2 6 15 63 115 264
10−3 2 9 22 94 190 441

m 1,331 2,744 4,913 9,261 19,683 35,937
10−2 1 2 4 10 29 58

H-Cholesky 10−4 1 3 8 20 60 131
of BT B 10−8 1 5 12 37 134 331

In Table3.6, we record the storage requirements. Here, we see the same behaviour as
observed for the work complexity, i.e., almost linear complexity with respect to the problem
size. The direct solver PARDISO requires up to ten times the storage of the approximate
H-LU andH-Cholesky factors and runs out of memory (“o.o.m.”) forn + m = 786, 078
unknowns.

In Table3.7, we show iteration steps and times for varying convection dominance. As for
the two-dimensional case, fewer steps are required as the constant convectionbxline becomes
more dominant. For non-constant convectionbrecirc, the number of steps only increases when
ǫ decreases from10−2 to 10−3. A comparison with the direct solver PARDISO is provided
for the convection-dominated caseǫ = 10−3. Even after including the set-up time as reported
in Table3.5, the time required for the iterative solution is significantly smaller than the time
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TABLE 3.6
Storage (in MB),ǫ = 10

−2, bxline

n/3 δH 6,859 15,625 29,791 59,319 132,651 250,047
10−1 18 45 103 232 549 1122

H-LU of A 10−2 22 57 130 297 708 1437
10−3 25 64 147 342 830 1700

m 1,331 2,744 4,913 9,261 19,683 35,937
10−2 2 5 10 22 56 117

H-Cholesky 10−4 3 8 17 39 104 219
of BT B 10−8 4 11 25 65 186 409
n + m 21,908 49,618 94,286 187,218 417,636 786,078
PARDISO 150 493 1,292 3,344 10,583 o.o.m

for the direct solver.

TABLE 3.7
Dependence on meshsizeh and convection dominance, table lists iteration steps and time (sec),δA = 10

−3,
δ
BT B

= 10
−8

ǫ/n + m 21,908 49,618 94,286 187,218 417,636 786,078
bxline

1.0 10/1 11/3 12/8 15/23 18/73 22/190
10−1 8/1 10/3 11/7 13/21 16/64 20/173
10−2 8/1 9/3 10/7 11/17 12/49 13/112
10−3 9/1 10/3 11/7 11/16 12/45 12/98
PARDISO 11s 64s 287s 1,311s 8,597s o.o.m.

brecirc

1.0 9/1 11/3 12/8 14/21 17/67 22/186
10−1 9/1 12/4 12/8 14/21 17/67 21/178
10−2 8/1 11/3 13/9 14/21 17/67 23/195
10−3 11/1 14/4 19/12 20/30 24/94 33/278
PARDISO 12s 63s 259s 1,371s 8,769s o.o.m.

Finally, in Table3.8we show the dependence of the number of required iteration steps on
the accuracies chosen to solve the subproblemsA−1 and(BT B)−1, resp. The fastest solution
is obtained whenδBT B = 10−8 and δA = 10−1 both for the constant and recirculating
convection. The number of required iteration steps increases only moderately as the problem
size increases. However, except for the case in which a breakdown occurs for the BFBt-
preconditioner, the BFBt-preconditioner outperforms theapproximate inverse preconditioner.

Since the use ofH-Cholesky andH-LU factorizations is somewhat uncommon, we also
performed tests for the three-dimensional Oseen problem using a MATLAB implementation
of the approximate inverse preconditioner and the MATLAB routines “luinc” (incomplete LU
factorization), “chol” (exact Cholesky factorization), “cholinc” (incomplete Cholesky factor-
ization) and “bicgstab”. In Table3.9we record the set-up times for the various factorizations
with varying accuracies. Apparently, the exact Cholesky factorization has been optimized to
an extent where it outperforms the incomplete Cholesky factorization for the given problem
sizes (with respect to time, but not with respect to storage).

Tables3.10 and3.11 show iteration steps and times for the MATLAB implementaion
solving the three-dimensional Oseen problem withǫ = 10−2 and convection directionsbxline
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TABLE 3.8
Dependence onH-accuraciesδA andδ

BT B
, table lists iteration steps and time (sec),ǫ = 10

−2

n+m δA = 10−3 δBT B = 10−8

δBT B = 10−2 δBT B = 10−4 δA = 0.5 δA = 10−1 δA = 10−2

bxline

21,908 14/1 8/1 9/1 8/1 8/1
49,618 15/4 9/2 11/2 9/2 9/3
94,286 17/9 10/6 12/6 9/5 9/6
187,218 20/26 12/16 14/15 11/15 11/16
417,636 24/74 15/51 17/45 12/39 11/41
786,078 29/185 17/118 23/126 14/93 13/100
BFBt 31/176 20/118 27/105 14/71 15/90

brecirc

21,908 14/1 8/1 12/1 8/1 8/1
49,618 17/5 11/3 14/3 10/3 11/3
94,286 23/13 13/8 19/8 12/7 12/7
187,218 28/34 16/21 23/23 13/16 14/19
417,636 38/115 26/88 29/75 18/57 18/65
786,078 50/309 40/271 38/202 25/161 22/165
BFBt 39/214 33/192 br 20/97 21/120

TABLE 3.9
MATLAB: Set-up costs

n+m LUINC(A,δA) CHOLINC(BT B, δBT B)
δA = 10−1 δA = 10−2 δA = 10−3 exact δBT B = 10−4

49,618 0.04 0.74 1.62 0.10 1.12
94,286 0.09 2.13 4.75 0.27 3.35
187,218 0.29 6.57 15.2 1.02 11.43
417,636 1.16 25.7 56.6 6.05 52.9

andbrecirc, resp. Table3.10shows the results for the approximate inverse preconditioner
whereas Table3.11shows the results for the BFBt preconditioner. For less accurate settings of
inner solvers, the approximate inverse preconditioner outperforms the BFBt preconditioner.
As the accuracies increase, the number of iteration steps become comparable and iteration
time is faster for the BFBt preconditioner since each step ischeaper. However, the gain in
iteration time comes at the expense of an increase in set-up time for better accuracies of inner
solvers. Overall, the approximate inverse preconditionerappears to be less sensitive with
respect to the accuracies of inner solvers than the BFBt preconditioner.
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