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NEW QUADRILATERAL MIXED FINITE ELEMENTS  *

YUNKYONG HYON T AND DO Y. KWAK ¥

Abstract. In this paper, we introduce a new family of mixed finite elemerstcgs of higher orderk(> 1)
on general quadrilateral grids. A typical element has twoefedegrees of freedom than the well-known Raviart-
Thomas finite elemen®T];), yet enjoys an optimal-order approximation for the veloaity.?-norm. The order of
approximation in the divergence norm is one less than theitglas is common to all other known elements, except
for a recent element introduced by Arnold et al. [SIAM J. Nun#eral., 42 (2005), pp. 2429—-2451]. However, we
introduce a local post-processing technique to obtain imaporder inL2-norm of divergence. This technique can
be used to enhance the resultrdT |, element as well, and hence, can be easily incorporated irgbrexcodes.

Our element has one lower order of approximation in pressuane e R77,; element. However, the pressure
also can be locally post-processed to produce an optimaFambroximation. The greatest advantage of our finite
element lies in the fact that it has the fewest degrees of éreea@mong all the known quadrilateral mixed finite
elements and thus, together with the post-processing tgueésj provides a very efficient way of computing flow
variables in mixed formulation. Numerical examples are in ggied agreement with the theory even for the case
of almost degenerate quadrilateral grids.
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1. Introduction. The mixed finite element method has been widely used as adool t
obtain a direct approximation of physical quantities sustlaxes and velocities for flow
problems. In this method, one introduces a new variable —xVp and designs a finite
element method which approximatasandp simultaneously. For this purpose, one needs
to define finite-dimensional subspac¥s, of H(div; Q) and W}, of L?(Q) which satisfy
some stability condition. A variety of optimal-order metiso such asiTy;, BD Mj;,41j, or
BDF Mj,, have been developed for triangular and rectangular gAds, [6, 10] since its
introduction by Raviart and Thomasd]. Among these BD M|, has the fewest degrees of
freedom and has the same order of accuracy for velocity. dimesother aspects of mixed
finite elements, we refertd[2, 7, 8, 9, 11].

However, for quadrilateral gridd3 D M or BDF M) suffers from a loss of accu-
racy, unless the grids are almost parallel, which arise asultrof repeated refinements of a
coarse grid, are assumegt] P]. So far, the only mixed finite element for general quadeitat
als having optimal order for velocity iBTj;), as shown recently by Arnold, Boffi, and Falk
[3]. In fact, they showed that a necessary and sufficient cimmdivr any finite element space
V,, of H(div ; Q) to have an optimal order in velocity is for it to contain (iretreference
space) a subspac®, of the Raviart-Thomas element space of ordewhere the two ele-
ments(z* 1% 0)T, (0, 289*+1)T are replaced by the single elemgat 1~ —zkgh+hHT,
This is a proper subspace &, but properly containd3 DM, and BDF M4y Their
idea of obtaining such a condition is this: in order to haveoptimal order in the mapped
space, the reference space must contain the inverse im&yg tife space of polynomials up
to degreé:, under the Piola map. The resulting condition is the one ioeatl earlier.

On the other handRT};,; does not have enough polynomials to have optimal order in
divergence norm. A necessary and sufficient condition is tthe divergence of the local
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velocity space contains (again in the reference space)pthee® ;, defined as the space of
all polynomials in each variable up to degrker 1 except constant multiples of the term
#F+1gk+1 However, the pressure space @1, is a proper subspace &;. Thus, one
has to enrich the pressure space and this, in turn, nedesdit@ enrichment of the velocity
space to satisfy the stability conditiodiv V(K) = W (k). Hence, Arnold, Boffi, and Falk
introduced a new element, calletd3 Fj;,;, which has significantly more degrees of freedom
than RTj;,;: ABFj) has six for velocity and three for pressure, ah8 F};; has sixteen and
eight, respectively, for each element.

The purpose of this paper is to propose a new mixed finite eles@ace which lies
betweenB D F M, and RTj,,) (k > 1), yet has an optimal order for velocity on general
guadrilateral grids. Obviously, this element has the sssalhumber of degrees of freedom
among all possible mixed finite elements having optimal pfolevelocity on general quadri-
lateral grids. Our element fdr = 1 has eleven degrees of freedom for velocity and three for
pressure, and a total d¢f: + 6 fewer degrees of freedom thahB Fj;) on each element.

Next we introduce a local post-processing of pressure bigrieo have optimal order,
after which we show how this post-processed pressure snlatin be used to find optimal
divergence.

The organization of this paper is as follows. In the nextisectve introduce some basic
material for mixed methods, focused on quadrilateral gridar new element is introduced
and analyzed in Section 3. In Section 4, post-processitmpigaes to obtain an optimal order
in pressure and divergence are presented. Finally, nuatedsults for our new elements
together with the post-processing of pressure and divesgare presented in Section 5.

2. Mixed finite element for quadrilateral grids. Let Q2 be a bounded polygonal do-
main inR2 with the boundary). We consider the following second-order elliptic boundary
value problem:

—div(kVp)+ep=f, inQ,

(2.1)

p=0, o0onoQ,
wherex = k(x) is a symmetric and uniformly positive definite matrix, andnd f are any
reasonable functions that guarantee the existence of ai@isiglution. Let us introduce a
vector variablar = —xVp and rewrite the problen®(1) in the mixed form

u+xkVp=0, inQ,
(2.2) divu+ep=/f 1IinQ,
p=0, onoQ.

We need to describe some function spaces. For any dofhaive let L2(2) be the space
of all square integrable functions &b equipped with the usual inner produgt-),,. Let
H(Q) = W2(Q) be the Sobolev spaces of ordet 0, 1, - - , with obvious norms. Now,
let H!(€2) be the space of vectots= (u,v) whose components lie iff*(2),i = 0,1, - -.
For both of the space*(Q2) andH*(Q2),i = 0,1, 2, - - -, we shall denote their norms(semi-
norms) byl|-|; o (|- |:,o), and the subscrii2 will be dropped when it is clear from the context.
Also, letV = H(div; Q) = {v € (L*(?))* : divv € L*(Q)} with norm|[|v[|%; 4, .) =

[ v]|3+||div v||3, and let” = L?(£2). Then we have the following variational form fct.g):

(k'u,v) — (divv,p) =0, YveV,

23) (divu,q) + (cp.q) = (f.q), Vg€ W.



ETNA
Kent State University
http://etna.math.kent.edu

NEW QUADRILATERAL MIXED FINITE ELEMENTS 191

This problem is well-posed by the theory of Brezzf], since the formx~1-,-) is coercive
and the form(div u, ¢) satisfies the inf-sup condition. Léti,p) € V x W be the unique
solution pair for which we would like to find an approximatiasing finite element spaces.
For eachh > 0, let7;, = {K} be a triangulation of the domaif into closed triangles,
rectangles, or convex quadrilaterals whose diameters aiaded byh. Assume that we
have some approximating spacés C V andWW, C W based on these grids. Then the
corresponding finite dimensional problem becomes: Find py,) € V;, x W}, such that

(k™ ap, vi) — (div v, pp) =0, Vvy € Vi,
(diVUh,Qh) + (Cphth) = (f7 Qh)a VQh S Wh-

First, we assume a triangular or rectangular grid. If thesep¥;, andW¥;, are chosen to sat-

isfy a certain compatibility condition known as discretesaup condition together with a cer-

tain approximation property, then it is well-knowh5, 16], under a certain shape-regularity
of 7;,, that

(2.5) |lu—apllo + [|div (u —up)flo + [P — prllo < CR* T (ullpsr + [divules1),

(2.4)

wherek is the order of approximation of the spa¥g andiV,.

Next, we consider quadrilateral grids. LiEtbe a quadrilateral with diametér, whose
vertices aren; = (z;,v;), ¢ = 1,2,3,4. Also, let & be the unit square reference element
with verticesa; = (2;,9;),7 = 1,2, 3,4. Then there exists a unique bilinear mép from
K onto K satisfying

FK(éi):ai, ’i:1,...,4.

We let DF denote its derivative and lefx be the Jacobian determinant. L&t be the
subtriangle ofK” with verticesa;_1, a;, anda; 1,7 =1,...,4, wherea,;, 4, = a;.

We assume the usual shape regularit@pin the sense ofl[2]: There exists a positive
constant such that

hKSUPIﬁ VKE,]-}M

wherepy is the minimum of the diameters of the circles inscribedjni = 1,--- ,4.
Now, we need to define the spac€g andV;,. Assuming thatV (K) andW (K) are
given, we let

Vi(K)={v="Pgv: veV(K)},

and define
(2.6) V,={veV:v|geV,yK)}
wherePy : H(div; K) — H(div ; K) is the Piola transform defined by
v =Pgv= DFK{I OFgl.
K

This transformation preserves the divergence and flux irfadhewing sense (cf. §]): Let
q = ¢o Fi:', whereg is any scalar function o&’. Then

1 .
divv = Edivf/,

/Vq~vdx:/ Vi-vdx forqe HY(K),
JK

K

/ v-nqu:/ v-ngds forqe HY?(OK).
0K oK
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Finally, we define the finite element spddg,. First, let

Wi(K) ={g=qoFg': e W(K)}
and then define
(2.7) Wi ={q€ L*(Q) : qlx € Wi(K)}.

A most common example of a mixed element$[;), which is defined as

V(K) = Qui1,5(K) x Qg1 (K), W(K) = Qpu(K).

Here,Q; ;(2) for any domairt2 is the space of polynomials of total degreand; in each

variable. For later use, we shall denote By((2) the space of polynomials of total degree
on (2. The RTj; element, as mentioned earlier, does not have optimal ondeéivergence:
one has an estimate similar t.§), but one order lower in divergenceq]. Here, we present
a slightly improved form given by Arnold et al3[;

lu—usllo < CR*H|ul|pga,
[div (u — up)|lo < CR*||divul|g,
CR** pllys k>1,

— <

One of the reason why one does not have optimal order in diveryis thatliv V;, does
not contain enough polynomials. So, in order to improve sitigation, one has to add more
terms in the definition oV (K). As a result, Arnold et al. introduced a new space, called
ABFy(k > 0), where

V(K) = Qpi26(K) x Qpii2(K), W(K)=TRy,

where R, is the subspace GZDHL;CH(IA() which is spanned by all the polynomiaiéy’,
1 <i,7 < k+ 1, except forgh+1gh+l,

The degrees of freedoms & +3)(k+1) and(k+2)2 — 1, respectively. In this case, it
is shown thaV, (K) > P.(K), W(K) D P.(K) anddiv V(K) > W(K), and therefore,

(2.8) |div (u — up)|lo < CAFFY|divul[pir.

3. A new mixed finite element. In this section, we introduce a new mixed finite el-
ement, inspired by the study of Arnold et aB].[ They introduced necessary and sufficient
conditions for the optimalelocity and divergenceapproximations, hence designed a new
elementABF to incorporate those conditions fully. But we have found toadition for
optimal velocity approximation is good enough to determine a new space. Basehis
observation, we shall introduce a new space.

For this purpose, let us present necessary and sufficienitamrs for optimal velocity
and divergence approximations. L%t (k > 1) be the subspace o;ikJrl,k(f() X Qk k41 (f(),
where(2*T19*,0) and (0, 2*9**+1) are replaced by the single elemént*1y%, —2+yk+1).
Then we haved]:

THEOREM 3.1. Suppose thaV (k) containsS;. Then there exists a constafitinde-
pendent ofa such that

inf u— vl < ChFtu , forallu e H*(K).
Lt = vlo < CHFuly ()
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THEOREM 3.2. Suppose thak’ (k') containsR(k > 0). Then there exists a constant
C independent of such that

inf [divu—divvlo < Ch**|divu|y, 1, forall u € H*(K) with divu € H*(K).
€Vy

v

Our new element is based on the paiy,, R;—1) for k£ > 1. Define
V(K) = 8k, W(K) =R

as reference spaces for our new element, and dafipnend W}, through @.6) and @.7).
Then we see that the stability conditidiv V(K) = W (K) holds. Note that our pair has the
degrees of freedon®k + 2)(k + 1) — 1 and(k + 1) — 1, respectively, hence a total of two
fewer thanRTj;) and4k + 6 fewer thanA B Fyy,).

We will now show the unisolvence of this element. L%t (K) be a subspace of
Qr—1.1(K) x Qkr—1(K) where (2*~19%, 0) and (0,2*9*~1) are replaced by the single

element(zF—1gF —zkgh-1),
LEMMA 3.3 (Unisolvence)For anytu = (4, %) € Sk, the conditions

(3.1) /ﬁ N §ds, §e Py(é), foreachedge of K,

(3.2) [ﬁ-frdk, v e Uy(K)
K

uniquely determind.

Proof. Since the number of conditions(k + 1)+ (k+1)? —2+k? = 2(k+2)(k+1) -1
equals the dimension &, it suffices to show that if the degrees of freedd@i)— (3.2) are
all zero thenit = 0. The first degree of freedon3.(l) implies thata = 0 for each edgé of
the reference elemeiif, that is, i = (u, v) satisfiesu = z(1 — z)u1, v = y(1 — y)v; where
(u1,v1) € ¥ (K). Immediately, the degree of freedot3) gives the desired result. 0

For the error estimate we need to define a projection opefbéorH’““(K) — V(K)

satisfying
(3.3) /(ﬁ —Tlz0) -0§ds=0, e Py(é), foreachedgeé of K,
(3.4) / (G —Tph) - vdx =0, Ve P(K).

K

This operator has the following property:
LEMMA 3.4.

(3.5) (div(a —TIza),q) =0, Vae V(K), ¥je W(K).

Proof. First, note thatj|; € Py (é) for § € Ry_1, VRi_1 C \Ifk(f(). Hence we see by
(3.3 and 3.4

(dfvﬁkﬁ,q):/Af[Kﬁﬁtjdéf/A g0 V§ dk
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Define the projection operatofsy : H**1(K) — V,,(K) andIl;, : H**1(Q) — V,,
by

Mk (ulx) = Pz (0]z))

and

(IIpu)|x = Uk (ulk).

We also need an operatdy, : L2(2) — W,. First, we Iet@k be the localL?-projection onto
W(K) = Ri_1. Then defingbgp = (2 p) o Fi*. Finally, we let(®,p)|x = ®x(p|x)-
Now sinceV(f{) D Sk, the approximation property @i x follows from [3, Theorem 4.1]:

(36) Hu — HKUHQJ{ S C’hk+1|u|k+1,K, Yu € Hk+1(K).

LeEMmA 3.5. We have the following approximation property of the pragttopera-
tor I1,,:

(3.7) |u—Tulo < CRF M ulpyy, Yue H Q).

Also, the following is valid:

(3.8) (div(u = IIpu),q) =0, YueV,qe Wy,

(3.9) |div (u — TTpu)|lo < ChF|divuly, Yu € H*(Q) with divu € H*(Q).

Proof. The estimate3.7) is a result of 8.6). For (3.8), we see fromg.5) that for eachi,

(div HKLI, q)K = (d{V ﬁkﬁ, Q)R
(3.10) = (diva, gz
= (divu,q)k, g € Wh.
The estimated.9) now follows along the lines ofy, Theorem 4.2]. 0
REMARK 3.6.

1. The operato®;, defined above is different from thB?-projection P, onto W},
which is defined a$(Pup) |k, )k = (0. )k = (D, 4JK )z ¢ € Wi(K). In fact,
(®rp)lk, D) = (PP, 4K ) -

2. Note that since the divergence Vi, is not equal tolW},, the relation .10 does
not imply the relationdiv Iy = ®xdiv, even thoughlivil, = ®.div holds.
However, one can verify thaliv I1; = P,div holds.

Now we have the following error estimates.
THEOREM 3.7. Letu € H**1(Q) andp € H**1(Q2) be the solution 0f2.3) anduy,
andpy, be the solution of2.4). Then

lu = unllo < CH**ulfira,

(3.11) |div (uw —up)[lo < CR*||divully,
1@hp — pallo < CAFF[ullgga,
(3.12) Ip = phllo < CR"||pllks1-

Proof. These estimates essentially follow along the same ling¢3, 8heorem 6.1, 6.2]
using Theorem8.1, 3.2and LemmaB.5. However, the estimate8.(L1), (3.12) are not opti-
mal. Note that the loss of order results from the fact Rat, C Q k- 0
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4. Post-processing.In this section, we present some post-processing techsitisd
produce an optimal-order error for pressure and divergence

4.1. Local post-processing for the pressureln order to enhance the convergence order
in pressure, we apply a simple local postprocessing scheimg the pressure space®f |-
We first define the pressure spat;*”, related toRT(,

WET(K) = {w =10 Fr', w € Qr i }-

Given the solution(uy,, p,) of (2.4), we define a new pressure solutipﬁ e WET
locally on each elemer” € 7}, as follows:

(4.1) /ﬁVph#-quXZ—/ u, - Vgdx, Vqe W (K),
K K

(4.2) /pfdx:/ pp dX.
K K

This technique has been suggested by Stenberg in the caga\DB affine elementsl7].
Since the spac#/;, contains non-polynomials on quadrilateral element, ttmpneeds a
modification. Here we present a modified proof which also hemtihe general coefficients.

THEOREM4.1. If p € H*1(Q) andu € H¥T1(Q) are the solutions of2.2) (k > 1)
andp;‘;’E is given by(4.1) and(4.2), then we have

(4.3) lp =} o < CR*ulis.

Proof Let ®ZT : L2(K) — WPET(K) be the local projection operator defined by

oy = (BETH) o F', where ®ET is the L2-projection ontoW 7 (K), and put
q = ®87p — p# € WET. Then using the weighted norin- |jo..x = (x-,-)}/* and

weighted semi-norm- |4 . x = (kV-, V-)}Km, we have

0 = [ RV~ p}) - Vads
K
= / kV(ORTp — p) - Vqdx + / kV(p — ph#) -Vqdzx
K K
= / kV(ORTp — p) - Vqdx + / (—u+uy) - Vgdz,
K K
where @.1) was used. Now by the Cauchy-Schwarz inequality, we have
gl ek < Cilp— PR P |1k + Collu — up ok,
whereC;, i = 1,2, are constants. By the norm equivalence, we have

lgli.x < Clp— @ p |1 i + Cllu—uplo -

Next, we let; = g — g, whereg = ﬁ(K) fK q dx is the average aof over K. Then we have
by the Poinca inequality

ldllo,x < Chldli,x = Chlql1,x
(4.4) < Ch(lp— 2§ p ik + [[a— upllo,x).-



ETNA
Kent State University
http://etna.math.kent.edu

196 Y. HYON AND D. Y. KWAK

Also, by (4.2) and the fact that® X p, 1) = (Pxp, 1)k, We have

1 1
q = | — = |———— @ -
il = | ooy @ =0 = | s [ (@i
< Ch™
Hence,
(4.5) lallo.x < Chlldllec < Cl|Pxp — Prllox-

Finally, using ¢.4) and @.5), we have

Ip — 0} o,
=|p-— ‘I’IETP + ‘PRTP Dy ||0 k=lp—2¥p+q+qlox
<lp—

<lp- @ P||0K+C’h(|1’ g P\1K+||11 upllo,x) + Cll®xp — pallo,x-

Now the estimate follows from the approximation propertyddf’, the estimates3(11),
(3.12, and summation over alt’ € 7;,. 0

4.2. Local post-processing for divergenceAccording to the discussion in the previous
sections, one has to enridf(K ) in order to obtain optimal order in divergence norm, so that
divV(K) > Ry. The result isA BFy;; mentioned earlier, for which an improved estimate
(3.9 holds, withk + 1 in place ofk, at the cost of extra degrees of freedom. However, if one
wants an optimal divergence, there is a simple way as we sletowb First, we introduce
some notations:

VitBE(K) = {v = PV, v € ABF},
WABE(K) = {w = 1o Fg', v € Ry}

The corresponding global spac¥s 2" andWABF are defined in an obvious manner.
The notatiorV *T is used for the velocity space afI7;,). We consider the following problem:
Finddive; € V{PF such that

(4.6) (divel,qn) = (f,qn) — (b} qn) — (divuy, qrn), Vg, € WAPE.

Letdiv uff = divuy, + divej. Then, we see that(6) is equivalent to solving

(divul, qn) = (f — o} an),  Van € WiBF.
In other words,
4.7) div uh = PRBE(f - cp#)7
whereP£BF : [2(K) — WABF(K) is the localL? projection operator defined by

(PI?BFpa Q)K = (pa Q)K = (ﬁa qJK)R’7 for all (j € WABF = Rk

For the analysis, subtract.() from the second equation df.¢) to see
div(u—u#) = f—cp— PABE(f — cp#)
= (I = PRPE)f = (cp — PEPF (cp}))
= (I = PRPI)(f = ep) = PRP" (ep — ew).
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Hence,

Idiv (u —u})lo.xc < (I = PP — ep)llo.x
(4.8) + IPEEEN - llello.x Il — 2} llo,x
< ChF Y div ulpsr i + CRM Y PR [ufpn,

where|| PABF || is the operator norm. Let us divert briefly and show fhag? || < 1.
For any¢ € L?(K), we have

|PRBE |2 = (PRPF ¢, PRBY 9) i = (¢, PABE J ) i
< (B, dJK) M2 - (PABF ¢ PABF 61, )12 = ||ll0 1 | PABF llo -

Thus, || PABF| < 1.

Now the following result follows from4.3), (4.8), the approximation property, and the
boundedness aPBF.

PROPOSITION4.2. Letu be the solution of problerf2.1) such thatu € H**1(Q) and
divu € H*1(Q), anddiv uﬁ be defined as if¥4.7). Then we have:

[div (u —uf)[lo < CR*F|div ulps.

REMARK 4.3.
1. To computeliv u#, we do not solve4.6). Instead, we obtain it as a projection of

f —cpf asin @.7). In particular, wher: = 0, divu} can be obtained without
computinguy,.

2. This procedure can be easily incorporated into the exjstodes written using7'-
element.

3. It would be interesting to consider the three-dimendioaae, but the 3D Raviart-
Thomas-Nedelec element spadé][does not achieve optimdl® approximation as
numerical experiments showJ. In fact, one can verify with tedious calculation
that the Raviart-Thomas-Nedelec element does not coRtgiander the Piola map
even fork = 0. Further investigations are needed for three-dimensiorddlems.

5. Numerical results. In this section, we report some numerical simulations tdioon
our theoretical results. We solve probleth4) with x = I andc = 1 on the unit square
Q =[0,1] x [0,1]. The functionp(z,y) = log(z® + y? + 4) sin(mz)(y* — y) is chosen as
the exact solution. Wheh = 1, there are eleven degrees of freedom for the velocity space
S1, and three for the pressure spdeg on each element. Grids are distorted as in Figuie
wherea (0 < a < 1) is the measure of distortion. The results for= 0,0.2,0.6 and
a = 0.99 are reported. In all cases, the discrétenorm is measured at nine Gauss points.

Our new element has second order accuracy for all variablesse of a rectangular
element & = 0). As the element becomes distorted, only the velocity shemesnd order
accuracy, while the post-processing shows second ordérdather variable. The odd num-
bered tables show the results without post-processipgy;,, anddiv uy), while the even
numbered tables show those with post—processhﬁga(nd div u#). Note that our scheme
works even when the element almost degenerates into al&iand the shape regularity does
not hold @ = 0.99). As a comparison, we test thel};; element. The results are listed in
Tables5.9 (for « = 0) and5.10 (for & = 0.99). The orders of convergence are exactly as
predicted by the theory, and post-processing increasssymeand divergence orders by one.
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h
—

FIGURE 5.1. An example : trapzoidal grid with: factor.

Alternatively, the divergence can be obtained from fHeprojection of f — cp# as indicated
by the remark above.

It would be interesting to compare the total cost of the neameint and?1},;. The new
element hag1 + 3 = 14 unknowns per element, while thel};; has12 + 4 = 16. Thus, the
total number of unknowns are roughh;, = 14/h? versusN, = 16/h? whereh is the grid
size. The exact comparison is not possible, but the costve fiee saddle point system i\
unknown is at leasD(N?). So we can save relatively abdu¥? — N?) /N3 = (1-7%/8%) ~
12.5%. Instead, the added cost for local post-processing is at pnoportional toNy, which
is negligible.

TABLE 5.1
Results withoy = 0.0.

1P = pnllo [a —unllo [[div (u — an)llo

n error order error order error order
4 | 1.1668e-02 2.1495e-02 1.1806e-01

8 | 2.9998e-03 1.95 5.3625e-03 2.0Q 2.9998e-02 1.97
16 | 7.5518e-04 1.98 1.3401e-03 2.0Q 7.5309e-03 1.96
32| 1.8912e-04 1.99 3.3501e-04 2.00 1.8846e-03 1.99
64 | 4.7301e-05 1.99 8.3752e-05 2.00 4.7129e-04 1.99

TABLE 5.2

Post-processed results with= 0.0.

lp — 07 llo Idiv (a—ujf)lo
n error order error order
4 | 6.7860e-03 6.9514e-03
8 | 1.6974e-03 2.0Q 1.7048e-03 2.02
16 | 4.2445e-04 2.0Q 4.2487e-04 2.00
32| 1.0612e-04 2.0Q0 1.0614e-04 2.00
64 | 2.6532e-05 2.00 2.6532e-05 2.00
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Results withw = 0.2.

lp = pnllo
error order

[u — upllo

error

order

[div (u —ug)|fo
error order

16
32
64

1.2990e-02
3.9874e-03
1.4835e-03
6.6133e-04
3.1977e-04

1.7
1.4
11
1.0

2.4174e-02
6.1410e-03
1.5494e-03
3.8912e-04
9.7495e-05

1.9
1.9
1.99 2
1991

TABLE 5.4

Post-processed results with= 0.2.

n error
4| 7.7270e-03

lp — p¥llo

order

2.2704e-01
1.0397e-01
5.0588e-02

1.12
1.03
1.01
1.00

.5111e-02
.2533e-02

Ildiv (u —uf) o

error

order

8 | 1.9349e-03
4.8417e-04
1.2108e-04
3.0274e-05

1.99
1.99
1.99

1.99

8.0530e-03
1.9653e-03
4.8922e-04
1.2219e-04
3.0542e-05

2.03
2.00
2.00
2.00

n error

Ip = pnllo

order

TABLE 5.5
Results withe = 0.6.

[u —usllo
error

order

[div (u = up)lo

error

order

4 | 2.1076e-02
8 | 8.4839e-03
16 | 3.9115e-03
32| 1.9113e-03
64 | 9.5004e-04

1.31
1.11
1.03
1.00

4.4702e-02
1.1927e-02
3.0764e-03
7.8044e-04
1.9647e-04

TABLE 5.6

6.4683e-01
3.3039%e-01
1.6580e-01
8.2979e-02
4.1500e-02

1.9
1.9
1.9
1.9

Post-processed results with= 0.6.

lp —
error

P# ||0
order

div (u = ujf)llo
error

order

n

4 | 1.3710e-02
8 | 3.4603e-03
8.6822e-04
2.1730e-04
5.4342e-05

1.98
1.99
1.99
1.99

1.7683e-02
4.1843e-03
1.0325e-03
2.5733e-04
6.4283e-05

2.07
2.01
2.00
2.00

0.96
0.99
0.99
0.99
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TABLE 5.7
Results withh = 0.99.

lp — pallo lw — o Idiv (u — up)llo
n error order error order error order
4 | 3.2052e-02 8.4730e-02 1.3579e-00
8 | 1.3586e-02 1.23 2.4275e-02 1.80Q 7.1167e-01  0.93
16 | 6.3981e-03 1.08 6.4658e-03  1.9Q 3.5943e-01 0.98
32 | 3.1466e-03 1.0Z 1.6648e-03 1.95 1.8017e-01 0.99
64 | 1.5666e-03 1.00 4.2207e-04  1.97 9.0150e-02 0.99
TABLE 5.8
Post-processed results with= 0.99.
lp — ] Il div (u—uf)]lo
n error order error order
4 | 2.1044e-02 3.4112e-02
8 | 5.3703e-03 1.97 7.6588e-03 2.15
16 | 1.3507e-03 1.99 1.8551e-03 2.04
32 | 3.3822e-04 1.99 4.5992e-04 2.01
64 | 8.4590e-05 1.99 1.1473e-04 2.00
TABLE 5.9
Results withe = 0 for RT}y;.
[P —prllo [u—uplo [[div (u —up)lo
n error order error order error order
4| 6.7709e-03 2.1413e-02 9.7288e-02
8 | 1.6966e-03 1.99 5.3582e-03 1.99 2.4330e-02 2.00
16 | 4.2441e-04 1.99 1.3399e-03 2.0Q 6.0836e-03 2.00
32| 1.0611e-04 1.99 3.3500e-04 2.00 1.5209e-03 2.00
64 | 2.6530e-05 1.99 8.3751e-05 2.00 3.8025e-04 2.00
TABLE 5.10
Results withe = 0.99 for RT]y;.
[P —pallo [u—upllo [[div (u —us)llo
n error order error order error order
4| 1.8171e-02 7.1774e-02 6.7905e-01
8 | 4.6367e-03 1.97 1.9508e-02 1.87 3.3798e-01  1.00
16 | 1.1652e-03 1.99 5.0727e-03 1.94 1.6870e-01 1.00
32| 2.9163e-04 1.99 1.2929e-03 1.97 8.4357e-02 1.00
64 | 7.2927e-05 1.99 3.2636e-04 1.98 4.2191e-02 1.00
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