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ACCUMULATION OF GLOBAL ERROR IN LIE GROUP METHODS FOR
LINEAR ORDINARY DIFFERENTIAL EQUATIONS ∗

BOJAN OREL†

Abstract. In this paper we will investigate how the local errors accumulate to the global error in Lie group
methods for linear ODEs. The concept of the local and global errors has to be redefined to fit in the framework of Lie
groups and algebras. Formulas for tracking the global errorare proposed and demonstrated on numerical examples.
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1. Introduction. Among all properties that come with the numerical solution of the
initial value problem in ordinary differential equations (ODEs), small global error is usually
the most important. If the global error of the computed solution is small enough on the interval
of interest, other properties of the solution, such as correct asymptotic behavior, conservation
of invariants, or retaining the geometric structure, become less important.

In this paper, we will focus on the case when the global error is small. The reason for
this is at least twofold: first, as the numerical solution is close to the exact solution, we expect
to observe similar dynamics of both solutions, while the behavior of the global error can be
more unpredictable, when the distance between both solutions becomes larger. Second, the
global error estimate can be used for the step-size control and large global error indicates that
the step-size control failed. How large the global error canbe before it is too large depends
on the problem we are solving. In this paper we will consider the global error too large, if the
exact and numerical solutions at a certain value of the independent variable cannot be covered
with the same coordinate chart of the solution manifold.

The global error at a certain pointt is usually a consequence oflocal errorscommitted at
each step from the initial point up tot. How the local errors are accumulating into the global
error depends on the differential equation, on the numerical method, and on the step-size
selection. While we have some control over the size of the local errors during the process of
solving an ODE, the global errors are usually beyond our reach.

The connection between global and local errors and possiblemethods for controlling the
global error directly has inspired a lot of research in recent years. Highham [10] analyzed
the connection between the error tolerance and the global error in the case of Runge-Kutta
methods. Dormand et al. [6] proposed global embedding Runge-Kutta schemes for step-size
control based on the estimation of the global error. Calvo etal. [1] studied methods for
the global error estimation in the presence of the step-sizeselection mechanism for Runge-
Kutta methods. Stuart [25] analyzed tolerance proportionality of the global error inRunge-
Kutta methods. Viswanath [26] was concerned with situations where the usual exponential
growth of the global error can be replaced by a less pessimistic one. Onumanyi et al. [22]
studied global error estimates for the finite difference methods for initial and boundary value
problems. Kulikov and Shindin were concerned with estimates for the local and global errors
of linear multi-step methods with constant coefficients andfixed step-size in [17], and linear
multi-step methods combined with Hermite type interpolation in [18]. Cao and Petzold [3]

∗Received November 11, 2009. Accepted for publication March25, 2010. Published online September 7, 2010.
Recommended by K. Burrage. This work was partially sponsored by ARRS, grant J1-5048 and partially by CAS,
Oslo, Norway.

†Faculty of Computer and Information Science, University ofLjubljana, Tržaška 25, 1000 Ljubljana, Slovenia
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proposed a method for the estimation of the global error, based on the approximate condition
number, calculated from the solutions of the adjoint systemof ODEs. Hundsdorfer [11]
considered improved bounds for the global error for the solution of stiff ODEs computed by
general linear methods. Chan and Murua [4] found out that the global errors of the solutions
of periodic and integrable Hamiltonian problems grow linearly when solved by extrapolated
symplectic or symmetric methods. Estep [7] obtained improved global error estimates, both
a priori and a posteriori, for finite element methods and constructed an effective theory for
global error control. Iserles [13] developed an integral formula for the leading term in a global
error expansion of an arbitrary time stepping method, basedon the variational equation, and
applied this formula to highly oscillating ODEs. Niesen [21] combined the Alekseev-Gröbner
lemma with the theory of modified equations to obtain an a priori estimate for the global error
of Runge-Kutta methods. Schiff and Schnider [24] developed a method for error estimation
for the computations in Lie groups.

In this paper, we will study the global error of Lie group methods for solving linear
ODEs of Lie type. Section2 is devoted to Lie group methods. In Section3 the definition
of the local and global errors in the Lie group setting is proposed and a recursive formula
for the global error is given. The corresponding relations from the Lie algebra viewpoint are
described in Section4. In Section5 the problem of tracking the global error is studied. Some
numerical examples that confirm our theory are given in Section 6. The last section contains
some conclusions and open questions.

2. Lie group methods. LetG be a matrix Lie group,g its Lie algebra anda : R×G → g.
The solution of the differential equation,

(2.1) Y ′ = a(t, Y )Y,

that satisfies the initial condition,y(t0) = y0 ∈ G, is a functiony : R → G. Differential
equations such as (2.1) are important in many different application areas; see [14].

Classical numerical methods such as Runge-Kutta and linearmulti-step methods can
be used to solve the equation (2.1) by embedding it in some Euclidean spaceR

N , but its
numerical solutions as a rule do not stay onG [2]. This failure of classical methods to respect
the structure ofG is the main reason that recently many new methods were proposed to
overcome this difficulty, such as the Crouch-Grossman method [5], the Magnus method [15,
19], the Runge-Kutta-Munthe-Kaas method [20], and the Fer method [8, 12, 27].

All of these Lie group methods share a similar pattern: equation (2.1) is pushed to the
corresponding Lie algebrag, solved there, and the solution is pulled back to the Lie group
G via the exponential map. It is true that the corresponding ODE in the Lie algebrag (the
dexpinvequation; see [14]) is more complicated than (2.1), but this disadvantage is more than
compensated for by the fact thatg is a linear space, hence the numerical solution will stay in
g and the exponential map will pull it back toG.

In this paper we will consider numerical methods of the form

(2.2) Yn+1 = eσ̂(Yn)Yn,

which includes the Magnus and Runge-Kutta-Munthe-Kaas methods for the solution of (2.1).
The Crouch-Grossman and Fer methods can be formally broughtto the same form by the
Baker-Campbell-Hausdorff formula if the step-size is not too large. All these numerical
methods generate a sequenceYn of elements inG, such that for a given sequence of real
numbers,

(2.3) t0 < t1 < · · · < tn < · · · ,
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Yi approximates the value of the true solution atti. We will assume that the step-sizes,
hn =: tn − tn−1, n = 1, 2, . . . , are small enough so that the exact solution satisfies a similar
relation,

(2.4) Y (tn+1) = eσ(Y (tn))Y (tn).

Sometimes the mappingΦn : G → G defined byΦn(X) = eσ(Y (tn))X is called theexact
flow and the mappingΨn(X), defined byΨn(X) = eσ̂(Yn)X , the numerical flow. Note
that the flow in equations (2.2) and (2.4) depends explicitly only on the starting point (Yn

or Y (tn)). The dependence of the flow on the independent variablet and the time-step is
implicitly described by the indexn and the the sequence of time-points (2.3).

3. Local and global errors. The global error is usually defined as a difference between
the numerical and exact solutionYn − Y (tn); cf. [9]. Since in the Lie group subtraction (and
even addition) is not defined, we have to begin differently.

DEFINITION 3.1. Theglobal errorafter then-th step of the numerical method is the
unique elementGn ∈ G such thatYn = GnY (tn).

Also the usual definition of the local error cannot be literally extended to the Lie group
setting.

DEFINITION 3.2. Thelocal errorat the(n + 1)st step is the unique elementLn+1 ∈ G
that satisfies the equation,

eσ̂(Yn) = Ln+1e
σ(Yn).

REMARK 3.3. The global and local errors of Definitions3.1 and3.2 are close to unit
elements in the Lie group. When addition is the group operation, both errors are close to zero;
see Example3.5.

In order to explore the dependence of the global error on the local errors, we commence
with the definition of the global error after the(n + 1)st step:Gn+1Y (tn+1) = Yn+1. With
the definition of the exact flow (2.4) and the numerical flow (2.2), we obtain

Gn+1e
σ(Y (tn))Y (tn) = eσ̂(Yn)Yn.

Taking into account the definition of the global error at thenth step and the definition of the
local error at the(n + 1)st step,

Gn+1e
σ(Y (tn))Y (tn) = Ln+1e

σ(Yn)GnY (tn).

Right multiplying both sides of this relation by(Y (tn))−1e−σ(Y (tn)), we obtain the following
result.

THEOREM 3.4. The global error obtained by using the numerical method (2.2) to solve
the equation (2.1) with the exact solution (2.4) satisfies the recurrence relation,

(3.1) Gn+1 = Ln+1e
σ(Yn)Gne−σ(Y (tn)).

EXAMPLE 3.5. ForG = R
d, d a positive integer, and with addition as the group opera-

tion, we have the classical setting for the ODEs,

(3.2) y′ = f(t, y), y(t0) = y0,

with y : R → R
d andf : R × R

d → R
d. Now the definition for the global error (Defini-

tion 3.1) reduces to the familiar one (see for example [9]) Gn = yn − y(tn) and the local
error (Definition3.2) to Ln+1 = eσ̂(yn)−eσ(yn). The numerical flow is in this setting usually
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FIG. 3.1.The relation between the global errors attn and attn+1 and the local error attn+1 (A slice of the
Lady Windermere’s fan [9]).

denoted byyn+1 = yn + Φ̂(yn) and the exact flow byy(tn+1) = y(tn) + Φ(y(tn)). Note
that bothΦ̂(yn) andΦ(y(tn)) explicitly depend on the value of the corresponding solution
(yn or y(tn)) even when equation (3.2) is linear. Equation (3.1) for the classical setting reads

Gn+1 = Ln+1 + Gn + Φ(yn) − Φ(y(tn));

see Figure3.1. Under the assumption that the differential equation (3.2) satisfies the Lipschitz
condition, the classical a priori bound for the global error[9, Theorem II.3] follows.

4. Local and global errors in the Lie algebra. In this section we will restrict our
attention to linear differential equations of Lie type,

(4.1) Y ′ = a(t)Y.

For linear equations the exact floweσ(Y (tn)) in (2.4) and the numerical floweσ̂(Yn) in (2.2)
do not depend on the solution valueY , so we will use the short-hand notationeσn andeσ̂n ,
respectively.

To analyze the qualitative behavior of the numerical methods on the Lie groupG as the
step-size approaches0, we have to exploit the properties of the corresponding Lie algebrag.
Let us start this section by outlining the precise meaning ofthe phraseorder of approximation.
Suppose that two mapsA andÃ from R to G are given.

DEFINITION 4.1. Ã(h) is anorderp approximantto A(h) ash → 0 if and only if there
exists an element̄g ∈ g, different from0 and independent ofh (called the principle error
term), such thatÃ(h) = G(h)A(h) with

G(h) = eg(h) and g(h) = ḡhp + O(hp+1).

For the remainder of this section we will assume that the step-sizes are constanth =: hn

for all n = 1, 2, . . . . To find a sufficient condition for an order of a numerical method, we
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will first consider the behavior of the numerical method forh → 0 and for some fixedN ∈ N

(consequentlytN → t0). For eachn ≤ N + 1, there exists somegn ∈ g such that

(4.2) Gn = egn ,

and someln ∈ g such that

(4.3) Ln = eln .

Now the result of Theorem3.4can be rephrased as

(4.4) Gn+1 = egn+1 = eln+1eσnegne−σn .

In the proof of our result below we need the Baker-Campbell-Hausdorff (BCH) formula
from [14], which serves to definebch(F, G) := H .

LEMMA 4.2 (Baker-Campbell-Hausdorff).For sufficiently smallt ≥ 0, we have

exp(tF ) exp(tG) = exp(tH),

whereH = bch(F, G) can be constructed from iterated commutators ofF andG. The first
few terms are

(4.5) H = F + G +
t

2
[F, G] +

t2

12
([F, [F, G]] + [G, [G, F ]]) + O(t3).

LEMMA 4.3. For the linear differential equation,Y ′ = a(t)Y, Y (t0) = Y0, and the nu-
merical solution, obtained by a method for which the local error has the property that for each
n there exists somel̄n, different from 0 and independent ofh, such that
ln = l̄nhp+1 + O(hp+2), with fixed step-size,Yn is an orderp approximant toY (tn) and

gn+1 = hp+1
n+1∑

i=1

l̄i + O(hp+2).

Proof. First we observe that the exact and numerical flow are both oforder1 with respect
to h, i.e., σ(Yn) = O(h) andσ̂(Yn) = O(h). Since, for a linear differential equation, the
flow is independent ofY , soσ(Yn) = σ(Y (tn)) := σn.

We will prove the lemma by induction. For the exact initial condition the global error
after the first step equalsg1 = l1 = hp l̄1 + O(hp+1).

Next suppose that for somen ≤ N the relationgn = hpḡn + O(hp+1) holds. Then, by
applying repeatedly the BCH formula (4.5) to (4.4),

Gn+1 = eln+1eσn

︸ ︷︷ ︸ egne−σn

︸ ︷︷ ︸

= ehp l̄n+1+σn+O(hp+1) ehpḡn−σn+O(hp+1)

=ehp(l̄n+1+ḡn)+O(hp+1).

From this recursion the statement of the lemma follows easily.
REMARK 4.4. In the proof of Lemma4.3, we have tacitly assumed that the exact and nu-

merical solution for all points of interest belong to the same coordinate chart of the groupG.
More interesting than the behavior of the global errorGn for fixed n ash → 0 is the

behavior ofGn ash → 0 andnh = T is fixed (hencen → ∞). The lengthT of the interval
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should be small enough so that the exact and the numerical solution will stay on the same
coordinate chart ofG for all t ∈ [t0, t0 + T ]. Let the basic mesh be defined by the sequence
of time-pointsti = t0 + i

nT . From Lemma4.3it is clear that

gn =
T

n

(
hp

n∑

i=1

l̄i + O(hp+1)

)
.

Introducing theaverage principal local error term̃ln as

l̃n =
1

n

n∑

i=1

l̄i,

this can be simplified to

gn = hpT l̃n + O(hp+1).

The existence of the limit̃l = limh→0 l̃n is guaranteed if the principal local error terms,l̄i,
corresponding to the pointti = t0 + i

nT smoothly depend oni asn → ∞. Thus we have
proved the following result.

THEOREM 4.5. For fixedT > 0 let h > 0 be small enough so that the local errorLn+1,
the global errorsGn andGn+1, and the numerical floweσn belong to the same coordinate
chart ofG for everytn ∈ [t0, t0 +T ]. The numerical solution of a linear differential equation
Y ′ = a(t)Y , Y (t0) = Y0 at the fixed pointt0 + T by the numerical method (2.2) with the
local error of orderp+1 (as in Lemma4.3) with equal step-sizes is an orderp approximation
to the exact solutionY (t0 + T ).

On the basis of this result the following definition is justified.
DEFINITION 4.6. The numerical method (2.2) has orderp iff there exists an element

l̄n ∈ g, different from0 and independent ofh, such that the local error satisfies

Ln = eln with ln = l̄nhp+1 + O(hp+2).

5. Tracking the global error. To compute the size of the global error, we will exploit
the result stated in Theorem3.4,

(5.1) Gn+1 = Ln+1e
σ(Yn)Gne−σ(Y (tn)).

This equation enables us to follow the global error from one step to another, if we are able to
compute a reliable estimation of the local errorLn+1. From the definition of the local error

Ln+1 = eln+1 = eσ̂ne−σn .

Before applying the Baker-Campbell-Hausdorff formula, weshould notice the connection
betweenσn andσ̂n: for the method of orderp there isδn ∈ g with δn = O(hp+1), such that
σ̂n = σn + δn. Therefore,

(5.2) eln+1 = eσn+δne−σn = eδn−[δn,σn]/2+O(hp+3).

Thus the cost of the tracking the global error according to formulas (3.1) and (5.2) amounts
to one additional commutator and two additional exponents,provided we have at our disposal
an approximation of the exact flowσn, which is at least 2 orders more accurate thanσ̂n.

Such an approximation can be computed either as
1. numerical flow of the method of orderp + 2, or
2. using one step of Richardson’s extrapolation [23], or
3. usingk steps ofpth order method with step-sizeh/k for somek ≥ 4, or
4. some other appropriate way.
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FIG. 6.1. The numerical solution of the Airy equation (6.1) on the whole interval[0, 200] (above) and on
interval [195, 200] (below).

6. Examples.
Airy equation.We applied the technique for tracking the global error to theAiry equa-

tion,

(6.1) Y ′ = a · Y ; a =

[
0 1

−t 0

]
; Y : R → R

2,

with initial conditionY (0) = I (the identity matrix), solved by the Magnus method. Since
the trace ofa is 0, the matrixa ∈ sl(2, R) (Lie algebra consisting of all2 × 2 real matri-
ces with vanishing trace) and the solutionY (t) ∈ SL(2, R) (special linear group, consist-
ing of 2 × 2 real matrices with determinant equal to 1) for allt, provided the initial value
Y (0) = Y0 ∈ SL(2, R).

TABLE 6.1
The accuracy of the global error estimate for the Airy equation on the interval[0, 1000].

step-size max || log(Yn(Y (tn)−1)|| max || log(Gn)||

2−3 1.7 · 10−1 2.1 · 100

2−4 1.5 · 10−4 1.6 · 10−4

2−5 8.2 · 10−6 8.8 · 10−6

2−6 5.0 · 10−7 5.1 · 10−7

2−7 3.1 · 10−8 3.1 · 10−8

2−8 2.0 · 10−9 1.9 · 10−9
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Airy equation with Magnus 4th order method

FIG. 6.2.True (solid) and estimated (dashed) errors for the Airy equation, computed by a fourth order Magnus
method with step-sizeh = 2−4 on [0, 200]. Only the interval[195, 200] is shown.

We computed the solution by a fourth order Magnus method using theσn computed by
a sixth order Magnus method as an approximant for the exact flow and estimated the global
error of the fourth order numerical solution using formulas(3.1) and (5.2). The numerical
solution is plotted in Figure6.1, above on the whole interval[0, 200], below only on the
interval[195, 200]. The estimated global error was then compared to the exact global error.

The results of the experiments are summarized in Table6.1. It is apparent that for reason-
ably small step-sizes,h ≤ 2−4, the estimated error resembles the true global error remarkably
well even on very long time intervals. It has to be noted that the difference between the true
and the estimated errors for the smallest step-size,2−8, is inaccurate due to the limited pre-
cision. Figure6.2confirms the good agreement between the true and estimated global errors
even on a very long interval with a relatively large step-size for a highly oscillatory solution
of the Airy equation. Note also that the peaks in the global error correspond to the extreme
values of the solution.

Coupled oscillator equation.Equations describing a system of four coupled oscilla-
tors [16],
(6.2)

y′ =





0 t sin πt
4 0 0

−t sin πt
4 0 t sin πt

2 0

0 −t sin πt
2 0 t sin 3πt

4

0 0 −t sin 3πt
4 0



 y, t ≥ 0, y(0) = I,

present a considerable problem for classical ODE methods. Since the matrix of the system
is skew-symmetric, the solution of this equation evolves inSO(4, R), the special orthogonal
group consisting of4 × 4 real orthogonal matrices with determinant equal to 1.
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Coupled oscilators equation with Magnus 4th order method

FIG. 6.3. True (solid) and estimated (dashed) errors for the coupled oscillator equation (6.2), computed by a
fourth order Magnus method with step-sizeh = 2−6 on [0, 40]. Only the interval[30, 40] is shown.

TABLE 6.2
The accuracy of the global error estimate for the coupled oscillator equation on the interval[0, 40].

step-size max || log(Yn(Y (tn)−1)|| max || log(Gn)||

2−4 1.0 · 10−2 8.9 · 10−2

2−5 6.6 · 10−4 5.9 · 10−4

2−6 4.2 · 10−5 4.1 · 10−5

2−7 2.6 · 10−6 2.6 · 10−6

2−8 1.6 · 10−7 1.6 · 10−7

2−9 1.0 · 10−8 1.0 · 10−8

2−10 6.4 · 10−10 6.4 · 10−10

2−11 4.0 · 10−11 4.0 · 10−11

The fourth order Magnus method was used to solve equation (6.2). The accurate solution
and the approximant to the exactσn were computed by the Magnus method of order four
with the step-size equal to one tenth of the step-size used tocompute the numerical solution.
The global error was estimated according to equations (3.1) and (5.2) and compared to the
difference between the numerical (computed with step-sizeh) and accurate (computed with
step-sizeh/10) solutions.

The results of numerical experiments with the system (6.2) are summarized in Table6.2.
It is easily observed from these data that the estimate of theglobal error follows closely the
difference between the approximate and accurate solution for the step-sizesh ≤ 2−4. Again,
the inferior behavior of the global error estimate for the step-sizeh = 2−11 is a consequence
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of limited precision. The good agreement between the true global error and its estimate is
evident also from Figure6.3.

7. Conclusions.We investigated the connection between global and local errors in Lie
group methods for computing numerical solutions of linear ordinary differential equations.
For this purpose, the termslocal andglobal errorhad to be reformulated to fit the framework
of the Lie group. The results for the global error are necessarily local. They are valid only
in some neighborhood of the exact solution. It was shown thatfor linear differential equa-
tions, the corresponding Lie algebra can be used for quantitative error analysis, as long as the
exact and the numerical solution belong to the same coordinate chart. It was shown how an
approximation for the global error can be computed. This canbe exploited in constructing an
adaptive algorithm for solving ODEs with global error control.
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