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ACCUMULATION OF GLOBAL ERROR IN LIE GROUP METHODS FOR
LINEAR ORDINARY DIFFERENTIAL EQUATIONS *

BOJAN ORELf

Abstract. In this paper we will investigate how the local errors acclateito the global error in Lie group
methods for linear ODEs. The concept of the local and gloivatehas to be redefined to fit in the framework of Lie
groups and algebras. Formulas for tracking the global emeproposed and demonstrated on numerical examples.
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1. Introduction. Among all properties that come with the numerical solutidrthe
initial value problem in ordinary differential equatio®DESs), small global error is usually
the most important. If the global error of the computed doluis small enough on the interval
of interest, other properties of the solution, such as aaeymptotic behavior, conservation
of invariants, or retaining the geometric structure, beedess important.

In this paper, we will focus on the case when the global es@mall. The reason for
this is at least twofold: first, as the numerical solutionl@se to the exact solution, we expect
to observe similar dynamics of both solutions, while thedwdr of the global error can be
more unpredictable, when the distance between both snkibecomes larger. Second, the
global error estimate can be used for the step-size comrblaage global error indicates that
the step-size control failed. How large the global error barbefore it is too large depends
on the problem we are solving. In this paper we will consitierglobal error too large, if the
exact and numerical solutions at a certain value of the iaddpnt variable cannot be covered
with the same coordinate chart of the solution manifold.

The global error at a certain poihis usually a consequencelotal errorscommitted at
each step from the initial point up to How the local errors are accumulating into the global
error depends on the differential equation, on the numenethod, and on the step-size
selection. While we have some control over the size of thallerrors during the process of
solving an ODE, the global errors are usually beyond ourlreac

The connection between global and local errors and possibthods for controlling the
global error directly has inspired a lot of research in régerars. HighhamJ0] analyzed
the connection between the error tolerance and the global ier the case of Runge-Kutta
methods. Dormand et al6] proposed global embedding Runge-Kutta schemes for step-s
control based on the estimation of the global error. Calvalefl] studied methods for
the global error estimation in the presence of the stepshection mechanism for Runge-
Kutta methods. Stuar2p] analyzed tolerance proportionality of the global erroiRange-
Kutta methods. Viswanatt2f] was concerned with situations where the usual exponential
growth of the global error can be replaced by a less pessamage. Onumanyi et al.2P]
studied global error estimates for the finite differencehmds for initial and boundary value
problems. Kulikov and Shindin were concerned with estiméde the local and global errors
of linear multi-step methods with constant coefficients fixed step-size in]7], and linear
multi-step methods combined with Hermite type interpaolatin [18]. Cao and Petzold3]
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proposed a method for the estimation of the global erroetas the approximate condition
number, calculated from the solutions of the adjoint systén®ODEs. Hundsdorfer1[1]
considered improved bounds for the global error for the tsatuof stiff ODEs computed by
general linear methods. Chan and Murdpfpund out that the global errors of the solutions
of periodic and integrable Hamiltonian problems grow liigavhen solved by extrapolated
symplectic or symmetric methods. Estef ¢btained improved global error estimates, both
a priori and a posteriori, for finite element methods and tmieted an effective theory for
global error control. Iserlesl[5] developed an integral formula for the leading term in a glob
error expansion of an arbitrary time stepping method, basetthe variational equation, and
applied this formula to highly oscillating ODEs. Nies&i]combined the Alekseev-Grobner
lemma with the theory of modified equations to obtain an arpestimate for the global error
of Runge-Kutta methods. Schiff and Schnide4][developed a method for error estimation
for the computations in Lie groups.

In this paper, we will study the global error of Lie group medis for solving linear
ODEs of Lie type. Sectio is devoted to Lie group methods. In Secti®the definition
of the local and global errors in the Lie group setting is m®gd and a recursive formula
for the global error is given. The corresponding relatiomsf the Lie algebra viewpoint are
described in SectioA. In Sections the problem of tracking the global error is studied. Some
numerical examples that confirm our theory are given in $adi The last section contains
some conclusions and open questions.

2. Lie group methods. LetG be a matrix Lie groupg its Lie algebraand : RxG — g.
The solution of the differential equation,

(2.1) Y = a(t, Y)Y,

that satisfies the initial condition(t) = yo € G, is a functiony : R — §. Differential
equations such ag (1) are important in many different application areas; se®.[

Classical numerical methods such as Runge-Kutta and limedi-step methods can
be used to solve the equatio®.]) by embedding it in some Euclidean spaRé&, but its
numerical solutions as a rule do not stay®fP]. This failure of classical methods to respect
the structure ofG is the main reason that recently many new methods were pedpias
overcome this difficulty, such as the Crouch-Grossman neefhlp the Magnus methodLp,
19, the Runge-Kutta-Munthe-Kaas meth@f], and the Fer method[ 12, 27].

All of these Lie group methods share a similar pattern: @qug®.l) is pushed to the
corresponding Lie algebrg solved there, and the solution is pulled back to the Lie grou
G via the exponential map. It is true that the correspondinde@Dthe Lie algebrg (the
dexpinvequation; seell4]) is more complicated thar2(1), but this disadvantage is more than
compensated for by the fact thats a linear space, hence the numerical solution will stay in
g and the exponential map will pull it back ¢t

In this paper we will consider numerical methods of the form

(22) Yn+1 = e&(Yn)Yn7

which includes the Magnus and Runge-Kutta-Munthe-Kaakoastfor the solution of4.1).
The Crouch-Grossman and Fer methods can be formally braoghe same form by the
Baker-Campbell-Hausdorff formula if the step-size is nmt targe. All these numerical
methods generate a sequenggeof elements inG, such that for a given sequence of real
numbers,

(2.3) o <ty < oo <ty <---,
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Y; approximates the value of the true solutiontat We will assume that the step-sizes,

hp =:t, —tn,—1, n=1,2,..., are small enough so that the exact solution satisfies asgimil
relation,
(2.4) Y (tpy1) = YDy (2.

Sometimes the mapping,, : G — G defined byd, (X) = ¢ () X is called theexact
flow and the mapping’,,(X), defined by¥,, (X) = ¢?») X, the numerical flow Note
that the flow in equation2(2) and @.4) depends explicitly only on the starting point,(
orY(t,)). The dependence of the flow on the independent variahled the time-step is
implicitly described by the index and the the sequence of time-poiris3.

3. Local and global errors. The global error is usually defined as a difference between
the numerical and exact solutidfy — Y (¢,,); cf. [9]. Since in the Lie group subtraction (and
even addition) is not defined, we have to begin differently.

DEFINITION 3.1. Theglobal errorafter then-th step of the numerical method is the
unique element,, € G such thatt,, = G,,)Y (¢,,).

Also the usual definition of the local error cannot be litgra&xtended to the Lie group
setting.

DEFINITION 3.2. Thelocal errorat the(n + 1)st step is the unique elemeb} ., € G
that satisfies the equation,

V) a(Ya)

Ln+1€ .

REMARK 3.3. The global and local errors of Definitiosl and 3.2 are close to unit
elements in the Lie group. When addition is the group openatioth errors are close to zero;
see Examplé&.5.

In order to explore the dependence of the global error ondballerrors, we commence
with the definition of the global error after tHe + 1)st step:G,,+1Y (t41) = Yot1. With
the definition of the exact flon2(4) and the numerical flow2(2), we obtain

Grp1e”Y DY (t,) = 2 OWY,,,

Taking into account the definition of the global error at thh step and the definition of the
local error at then + 1)st step,

G VDY () = L1 G, Y (t,).

Right multiplying both sides of this relation By (¢,,))~*e=(Y (t»)) we obtain the following
result.

THEOREM 3.4. The global error obtained by using the numerical methdd)(to solve
the equationZ.1) with the exact solution(4) satisfies the recurrence relation,

(3.1) Gri1 = Ln+1ea(Y")Gne_U(Y(t"))-

ExAMPLE 3.5. ForG = R?, d a positive integer, and with addition as the group opera-
tion, we have the classical setting for the ODEs,

(3.2) y/ = f(ta y)v y(to) = Yo,

withy : R — R?andf : R x R — R<. Now the definition for the global error (Defini-
tion 3.1) reduces to the familiar one (see for exam@ [G., = v, — y(¢,) and the local
error (Definition3.2)to L,, ., = e@») —e?Wn), The numerical flow is in this setting usually
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Ln+1| |

2% tn+1

FiG. 3.1.The relation between the global errorsiaf and att,,+1 and the local error at,,1 (A slice of the
Lady Windermere’s fand)).

denoted by, 1 = y» + ®(y,) and the exact flow by (t,i1) = y(t,) + ®(y(t,)). Note
that both®(y,,) and®(y(t,,)) explicitly depend on the value of the corresponding sotutio
(yn ory(t,)) even when equatior(?) is linear. Equation3.1) for the classical setting reads

Gn+1 = Ln+l + Gn + q)(yn) - (I)(y(tn))v

see Figure.L Under the assumption that the differential equatig)(satisfies the Lipschitz
condition, the classical a priori bound for the global efif@rTheorem 11.3] follows.

4. Local and global errors in the Lie algebra. In this section we will restrict our
attention to linear differential equations of Lie type,

(4.1) Y' = a(t)Y.

For linear equations the exact flaw¥ (*»)) in (2.4) and the numerical flow?*») in (2.2)
do not depend on the solution vallie so we will use the short-hand notatiefr ande’”,
respectively.

To analyze the qualitative behavior of the numerical meshad the Lie groug; as the
step-size approach@swe have to exploit the properties of the corresponding lgelarag.
Let us start this section by outlining the precise meaninth@phraserder of approximation
Suppose that two mapsand A from R to G are given.

DEFINITION 4.1. A(h) is anorderp approximanto A(h) ash — 0 if and only if there
exists an element € g, different from0 and independent di (called the principle error
term), such thatd(h) = G(h) A(h) with

G(h) =e9™ and g(h) = gh? + O(hP*).

For the remainder of this section we will assume that the-siegs are constant=: h,,
foralln = 1,2,.... To find a sufficient condition for an order of a numerical noathwe
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will first consider the behavior of the numerical methodfor- 0 and for some fixedv ¢ N
(consequentlyy — tp). For eachn < N + 1, there exists somg, € g such that

(4.2) G = e9n,
and somé,, € g such that

(4.3) L, = el

Now the result of Theorer.4can be rephrased as

(4.4) Gyl = eI+ = eln+1enedneg=0n,

In the proof of our result below we need the Baker-Campbaealisstiorff (BCH) formula
from [14], which serves to definech(F, G) := H.
LEMMA 4.2 (Baker-Campbell-Hausdorfflror sufficiently smalt > 0, we have

exp(tF) exp(tG) = exp(tH),

whereH = bch(F, G) can be constructed from iterated commutatorg'odind G. The first
few terms are

(4.5) H-F+G+ %[F, al + %([F, IF,G]] + [G, G, F]]) + O().

LEMMA 4.3. For the linear differential equatiory”’ = a(¢)Y, Y (ty) = Yo, and the nu-
merical solution, obtained by a method for which the locabehas the property that for each
n there exists somel,, different from 0 and independent ok, such that
I, = l,hPT1 4+ O(RPT2), with fixed step-siz&;, is an orderp approximant toy (,,) and

n+1
In+1 = hPH Z l_l + O(thrQ)-

i=1

Proof. First we observe that the exact and numerical flow are botind®r1 with respect
to h,i.e.,o(Y,) = O(h) ands(Y,,) = O(h). Since, for a linear differential equation, the
flow is independent oY, soo(Y,,) = o (Y (t,,)) := 0.

We will prove the lemma by induction. For the exact initiahciition the global error
after the first step equalg = I, = hPl; + O(hPH1).

Next suppose that for some< N the relationg,, = h?g, + O(h?*1) holds. Then, by
applying repeatedly the BCH formuld.f) to (4.4),

Gn+1 _ eln+1 eon eIne=n

— P lniton O b gn—on+O(RPT)

— PP (g1 +gn) +O(RPTY)
From this recursion the statement of the lemma follows gaKil
REMARK 4.4. Inthe proof of Lemma&.3, we have tacitly assumed that the exact and nu-
merical solution for all points of interest belong to the gamnordinate chart of the group.
More interesting than the behavior of the global ertgy for fixedn ash — 0 is the
behavior ofGG,, ash — 0 andnh = T is fixed (hencen — oo). The lengthl” of the interval
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should be small enough so that the exact and the numericgl@olwill stay on the same
coordinate chart oz for all ¢ € [to, o + T]. Let the basic mesh be defined by the sequence
of time-pointst; = to + ~7'. From Lemma4.3it is clear that

T n B
— P ) p+1
gn = p (h g li+O(h ))

i=1

Introducing theaverage principal local error tern, as

i iia
=1

S|

I, =

this can be simplified to
gn = hPT1, + O(hP*Y).

The existence of the limit = limj,_.o [, is guaranteed if the principal local error ternas,
corresponding to the poirtt = tg + %T smoothly depend ohasn — oo. Thus we have
proved the following result.

THEOREMA4.5. For fixedT > 0 leth > 0 be small enough so that the local errby, |1,
the global errorsG,, and G,, 1, and the numerical flow’~ belong to the same coordinate
chart of G for everyt,, € [to,to+ T]. The numerical solution of a linear differential equation
Y = a(t)Y, Y(ty) = Yy at the fixed pointy + T by the numerical metho®(2) with the
local error of orderp+ 1 (as in Lemmat.3) with equal step-sizes is an ordeapproximation
to the exact solutiol (¢ + 7).

On the basis of this result the following definition is justi

DEFINITION 4.6. The numerical method(2) has orderp iff there exists an element
I, € g, different from0 and independent &f, such that the local error satisfies

L, =e¢l" with 1, = 1,,h?*1 + O(hP?).

5. Tracking the global error. To compute the size of the global error, we will exploit
the result stated in Theore®,

(51) Gn+1 = Ln+1ea(YH)Gnef‘7(Y(tn))'

This equation enables us to follow the global error from die@ $o another, if we are able to
compute a reliable estimation of the local erfgy, ;. From the definition of the local error

Lyy1 = elntl = efne=on,

Before applying the Baker-Campbell-Hausdorff formula, sf®uld notice the connection
betweerr,, anda,,: for the method of ordep there iss,, € g with §,, = O(hP*1), such that
0, = o, + 0. Therefore,

(5.2) elnt1 — Onton—on _ 66n7[6n70n1/2+0(hp+3).

Thus the cost of the tracking the global error according tonfdas @.1) and 6.2 amounts
to one additional commutator and two additional expongmtsjided we have at our disposal
an approximation of the exact flow,, which is at least 2 orders more accurate than
Such an approximation can be computed either as

1. numerical flow of the method of ordgr+ 2, or

2. using one step of Richardson’s extrapolatia® [ or

3. usingk steps ofpth order method with step-size/ k for somek > 4, or

4. some other appropriate way.
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FIG. 6.1. The numerical solution of the Airy equatiofi.{) on the whole interval0, 200] (above) and on
interval [195, 200] (below).

6. Examples.
Airy equation. We applied the technique for tracking the global error to Aty equa-
tion,

(6.1) Y'=a-Y; a:[

with initial conditionY (0) = I (the identity matrix), solved by the Magnus method. Since
the trace ofu is 0, the matrixa € sl(2,R) (Lie algebra consisting of all x 2 real matri-
ces with vanishing trace) and the solutitiit) € SL(2,R) (special linear group, consist-
ing of 2 x 2 real matrices with determinant equal to 1) for gllprovided the initial value

Y (0) =Y, € SL(2,R).

TABLE 6.1
The accuracy of the global error estimate for the Airy equiatdn the interval0, 1000].

step-size| max/||log(Y, (Y (t,)~1)|| | max||log(G.,)||
273 1.7-1071 2.1-10°
24 1.5-107% 1.6-1074
270 8.2-107¢ 8.8-1076
26 5.0-1077 5.1-1077
2°7 3.1-1078 3.1-10°8
2-8 2.0-107° 1.9-107°
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FIG. 6.2.True (solid) and estimated (dashed) errors for the Airy aiue computed by a fourth order Magnus
method with step-size = 2~ on [0, 200]. Only the interval[195, 200] is shown.

We computed the solution by a fourth order Magnus methodguias,, computed by
a sixth order Magnus method as an approximant for the exaetdial estimated the global
error of the fourth order numerical solution using formu(&sl) and £.2. The numerical
solution is plotted in Figurés.1, above on the whole interval, 200], below only on the
interval[195, 200]. The estimated global error was then compared to the exalabérror.

The results of the experiments are summarized in Talldt is apparent that for reason-
ably small step-size$, < 274, the estimated error resembles the true global error reaidyk
well even on very long time intervals. It has to be noted thatdifference between the true
and the estimated errors for the smallest step-giz&, is inaccurate due to the limited pre-
cision. Figures.2 confirms the good agreement between the true and estimatidl girrors
even on a very long interval with a relatively large stepediar a highly oscillatory solution
of the Airy equation. Note also that the peaks in the globadrezorrespond to the extreme

values of the solution.
Coupled oscillator equationEquations describing a system of four coupled oscilla-

tors [16],

(6.2)
0 tsin%t 0 0
/ —tsin I 0 tsin 2 0
- t>0 0)=1
Y 0 —tsin 7t 0 tsin 3zt | ¥ >0, y0)=1,

i 3T
0 0 —t blnTt 0

present a considerable problem for classical ODE methoit&e3he matrix of the system
is skew-symmetric, the solution of this equation evolveS@(4, R), the special orthogonal
group consisting of x 4 real orthogonal matrices with determinant equal to 1.
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x107° Coupled oscilators equation with Magnus 4th order method

estimated (dashed) and true (solid) error

30 32 34 36 38 40

FI1G. 6.3. True (solid) and estimated (dashed) errors for the coupledliator equation 6.2), computed by a
fourth order Magnus method with step-size= 2~% on [0, 40]. Only the interval[30, 40] is shown.

TABLE 6.2
The accuracy of the global error estimate for the coupledliaser equation on the intervalo, 40].

step-size| max || log(Y;, (Y (t,)"1)|| | max||log(G,)||
2-4 1.0-1072 8.9.102
275 6.6-107* 5.9-1074
2-6 42-107° 4.1-107°
2-7 2.6-1076 2.6-1076
28 1.6-1077 1.6-1077
279 1.0-1078 1.0-1078
2-10 6.4-10"10 6.4-1010
211 4.0-107 11 4.0-107 11

The fourth order Magnus method was used to solve equ&ii@h (The accurate solution
and the approximant to the exagt were computed by the Magnus method of order four
with the step-size equal to one tenth of the step-size usedntgpute the numerical solution.
The global error was estimated according to equati@nd @nd 6.2) and compared to the
difference between the numerical (computed with step-8)z&nd accurate (computed with
step-sizé:i/10) solutions.

The results of numerical experiments with the systér)(are summarized in Tabke 2
It is easily observed from these data that the estimate aflidtgal error follows closely the
difference between the approximate and accurate solutioié step-sizes < 2—%. Again,
the inferior behavior of the global error estimate for thepssizeh = 27! is a consequence
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of limited precision. The good agreement between the trobajlerror and its estimate is
evident also from Figuré.3,

7. Conclusions. We investigated the connection between global and locat&im Lie
group methods for computing numerical solutions of lineatimary differential equations.
For this purpose, the ternhiscal andglobal error had to be reformulated to fit the framework
of the Lie group. The results for the global error are necdlgsacal. They are valid only
in some neighborhood of the exact solution. It was shownftrainear differential equa-
tions, the corresponding Lie algebra can be used for qaintterror analysis, as long as the
exact and the numerical solution belong to the same codmlafwrt. It was shown how an
approximation for the global error can be computed. Thislmaexploited in constructing an
adaptive algorithm for solving ODEs with global error canitr
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