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ADAPTIVE REDUCTION-BASED MULTIGRID FOR NEARLY SINGULARAN D
HIGHLY DISORDERED PHYSICAL SYSTEMS *

J. BRANNICK!, A. FROMMER!, K. KAHL?, S. MACLACHLANS, AND L. ZIKATANOV 1

Abstract. Classical multigrid solution of linear systems with magscthat have highly variable entries and are
nearly singular is made difficult by the compounding diffied introduced by these two model features. Efficient
multigrid solution of nearly singular matrices is known te possible, provided the so-called Brandt-McCormick
(or eigenvector approximation) criterion is satisfied, evhrequires building interpolation to fit the near-null-spa
modes with high accuracy. When these modes are known,itnaalitmultigrid approaches may be very effective. In
this paper, we consider the case of matrices describindyhdifordered systems, such as those that arise in lattice
quantum chromodynamics (QCD), where the near-null modesatde easily expressed in closed form. We develop
a variational adaptive reduction-based algebraic midtigreconditioner for such systems and present a two-level
convergence theory for the approach for Hermitian and pesitefinite systems. The proposed method is applied
to a two-dimensional model known as the Gauge Laplacianjaroan test problem for development of solvers in
quantum dynamics applications, showing promising nurakmesults. The proposed reduction-based setup uses
compatible relaxation coarsening together with a sparpeoapnation to the so-called ideal interpolation operator
to recursively construct the coarse spaces.
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1. Introduction. Multigrid methods employ two complementary processesoothing
andcoarse-grid correctionln the classical setting, for scalar elliptic problems moother
(or relaxation method) is a simple iterative method, suclsasss-Seidel, that is effective
at reducing high-frequency error. The remaining low-freqey error is then accurately rep-
resented and efficiently eliminated on coarser grids viactherse-grid correction step. To
achieve their optimality, AMG methods employ a fixed smootred generally exploit the
character of the error of the relaxation method. Such esaeferred to as algebraically
smooth and, for most AMG relaxation schemes, is charae@iy the near-nullspace (near-
kernel) of the discrete operator: the span of all vectouch thatdz ~ 0. For simpler
problems, such as scalar elliptic partial differential @gpns, these methods are often opti-
mal, since the near-nullspace components are known and AihGoe designed to resolve
these types of components using a hierarchy of coarse-gcaiems.

In recent years, significant effort has been focused on imipgathe range of applicabil-
ity of black-box multigrid techniques. While there are mapproaches to achieving robust
linear solvers for wide classes of matrices, adaptive mittimethods 10, 11, 12] offer many
advantages because of the efficiency they inherit from tipebsbic multigrid approaches on
which they are base®[, 33, 32]. The key idea behind adaptive multigrid algorithms is te ex
perimentally use the multigrid relaxation process itseléxpose those error components that

*Received October 2, 2009. Accepted for publication June2P80. Published online September 7, 2010.
Recommended by R. Lehoucq.

TDepartment of Mathematics, Pennsylvania State Universigniversity Park, PA 16802, USA
({br anni ck, | udm | }@su. edu). This work was supported by the National Science Foundajiants OCI-
0749202 and DMS-810982.

fFachbereich Mathematik und Naturwissenschaften, Bergiddniversitat Wuppertal, D-42097 Wuppertal,
Germany (f rommer, kkahl }@mat h. uni - wuppertal . de). This work was supported by the Deutsche
Forschungsgemeinschaft through the Collaborative Relse@entre SFB-TR 55 “Hadron physics from Lattice
QCD".

§Department of Mathematics, Tufts University, 503 Bostonedwe, Medford, MA 02155, USA
(scott. macl achl an@ uf ts. edu). This work was supported in part by the European CommuiBixth
Framework Programme, through a Marie Curie Internationabiming Fellowship, MIF1-CT-2006-021927, and by
the National Science Foundation grants OCI-0749317 and DBIS.022.

276



ETNA

Kent State University
http://etna.math.kent.edu

ADAPTIVE REDUCTION-BASED MULTIGRID 277

must be accurately accounted for in the coarse-grid caoregrocess, the so-called “alge-
braically smooth” errors that relaxation is slow to redubreits simplest form, this amounts
to simply iterating many times with a fixed stationary it@érat(relaxation) method on the
homogeneous problemxz: = 0, with a random initial guess. The dominant error left after
many relaxation sweeps must, by definition, reflect the akgjehlly smooth errors of the
problem. These errors can then be built into the coarseegmitection process in the usual
way. In practice, exposing these errors by simple relaxatione is very inefficient and, so,
the process is accelerated by a multilevel relaxation m®tieat exposes the local and global
characteristics of these slow-to-converge errors simelbasly.

These approaches have been shown to be successful for eangkeaf problemslo, 11,
17]. An important new class of problems that can be effectivedated by these techniques
arises in numerical models of quantum dynamics, e.g., guartectrodynamics (QED) and
quantum chromodynamics (QCDJ,[8]. The caveat here is the large setup costs required
by these “classical” adaptive solvers — the setup coststeg [7] are roughly equivalent
to that of solving the original system with 3 or 4 differerghit-hand sides using diagonally-
preconditioned CG. Of course, certain QCD calculationsiiregsolves with thousands of
right-hand sides and, so, these costs can be amortizedthraalculations, e.g., evolution
of the gauge fields in a Monte Carlo process, each system teéédssolved with only a few
right-hand sides, and these methods are not yet competitive

The linear systems arising in numerical models of QED and @@plications are very
challenging for traditional multigrid methods, due maindytwo properties of the system
matrix. The first is the extremely disordered nature of th@rin@&lements; each non-zero
off-diagonal entry of the matrix is chosen at random from acsjic distribution function,
with little correlation between neighboring coefficienthe second property is that the sys-
tem matrix is shifted so that it is very ill-conditioned (Wismallest eigenvalue close to zero),
much more so than one arising from a typical discretizatibaroelliptic PDE. As a result,
classical multigrid assumptions are not satisfied by therdie operator and, thus, such algo-
rithms offer very little in terms of improved convergencesovelaxation alone.

Individually, these difficulties can be treated by the dleasapproach to the adaptive
setup procedure or by preconditioning CG with classical AM&spectively. Indeed, for
homogeneous but nearly singular elliptic problems, fomepke the shifted-Laplace operator,
while AMG fails as a standalone solver, using AMG as a preiareer for CG gives a very
efficient and scalable solution techniq®?]l Moreover, for heterogeneous problems that
aren’t nearly singular, adaptive AMG works very well, gigia good stand-alone solvedZ,

10, 11, 6, 12, 9]. The systems encountered in numerical models of quantdthtfieories,
however, exhibit both these difficulties; the resultingteyss are very heterogeneous, so that
adaptivity is needed, and are also nearly singular, in wbhade care must be taken to ensure
that the computed prototypes give a suitable local reptatien of the algebraically smooth
error (as they are assumed to in the “classical” adaptiveqe® ). Here, we consider an
adaptive reduction-based multigrid algorithm as a pred@er to CG for such systems.
As a first step, we explore the applicability of these methods simplified Gauge Laplace
system.

Multigrid methods for nearly singular problems have beensidered beforeZ, 19, 18,
5, 29, 13], but not in this context. Whereas for classical ellipticeogitors such as Poisson’s
equation, accurate local fitting of the slowest to convergelenof relaxation (or the lowest-
energy mode of the system matrix) is sufficient to ensuretiffereduction of all error modes
by the multigrid process, this is not the case for the extitgrdisordered systems that arise
in quantum dynamical systems. For these operators, thdeshalgenvalues are typically
well separated from the remainder of the spectrum and, merethe eigenvectors associ-
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ated with these eigenvalues do not provide for a good logaksentation of the algebraically
smooth error over the entire domain. Attempting to solveséhgystems by directly apply-
ing the adaptive multigrid methodology presents a diffichiallenge, as classical multigrid
wisdom 6, 3] requires that modes in the near-null space of the matrixepeasented in the
range of interpolation with accuracy inversely proportbio their energy norms and, further-
more, interpolation is typically based on the single lonsigenmode of the system matrix.
We demonstrate, however, that with careful design of thetaprocess, optimal perfor-
mance of a multigrid-preconditioned Krylov iteration cam fecovered for such systems. In
addition, we explore various issues that must be consideratjorithmic development of
adaptive methods for such systems. We also prove the tved-demvergence of the method
for Hermitian and positive-definite (HPD) systems and edtére theory of reduction-based
AMG to allow for smoothing on all variables (using, for exaeplacobi or Gauss-Seidel
smoothers) instead of onlff-smoothing.

The remainder of this paper is organized as follows. FirstSéction2, we introduce
an important model problem for the operators that appeauantym electro- and chromo-
dynamics, the Gauge Laplacian system. In addition, we dsssome of the properties of
this operator. In Sectiofs, we present an adaptive reduction-based algorithm antecela
two-level theory for general HPD systems. In addition, wplese several practical issues
that arise in designing an adaptive AMG algorithm for disoetl nearly singular problems
such as the Gauge Laplacian in Sectloffrollowing this, in Sectiofb, we present numerical
results of our modified adaptive reduction-based AMGAMGr”) method for a variety of
configurations of the Gauge Laplacian.

2. The Gauge Laplacian. The aim of this paper is to develop adaptive multigrid meth-
ods appropriate for the highly disordered nearly singwatems that arise in numerical sim-
ulations of quantum dynamics. We consider a simplified twoeshsional model problem
called the “Gauge Laplacian”, as was done previouslylify PO, 24]. The inverse of the
Gauge Laplacian operator is the simplest form of a propagatisfying a gauge theont{]

(a necessary and fundamental property for physical retsvai the calculation) and, thus,
provides a good initial test problem in the development of @lgchemes for quantum dy-
namics applications.

Consider a uniformV x N periodic (toroidal) quadrilateral lattice, with = N? node
points{(k,¢) | k,¢ =1,..., N}. Such a lattice has. = 2n edges, which can be numbered
individually from 1 throughn. or be associated in pairs with the lattice nodes, conneeting
node(k, £) to its “eastern” and “northern” neighbors; + 1, ¢) and(k, ¢ + 1), respectively,
where all numbers are understood to be méd On such a lattice, we are given values on
each edge in the form of d7(1) gauge field"24 = {u; := "% | j = 1,...,n.}, where the
valuesf; are prescribed based on some known distribution, discussedentarily, and the
“gauge links”,u;, live on the edges of the lattice. Our interest is in the sofubf systems of
the form

AU)p =,

whereA(U) € C"*™ andy, ¥ denote vectors frorf€”. The symbol: will stand for a lattice
site, i.e., a pointk, ¢) of the grid, and the operationst . for 4 = 1, 2 yield the neighboring
lattice sites, i.eqx+1 = (k+1,¢)andx £ 2 = (k, ¢+ 1); again all numbers are understood
to be modN.

The gauge links on the edges (one link, per edgej) act as coupling coefficients. Ex-
plicitly, the two-dimensional Gauge Laplace matdx= A(U/) expresses a periodic nearest-
neighbor coupling which, for a pair of lattice sitesy with corresponding matrix entryl,,,,
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F1G. 2.1.Connectivity of the Gauge Laplace operator before and dfterodd-even reduction.

can be described using the Kroneckexrs

2
1 1 4
(2.1) 2 Z U Oty + Uy — u) 6w—u7y) + (ﬁ +m)dg.y.

Here,u# is the gauge link defined on the edge connecting lattice sitesls+ 1 and(u’ H)T

is the complex conjugate of the gauge link defined on the edgeecting lattice sitegr — 1)
andz. As is usually the case when considering PDEs on perioditsghi = 1/N; the
parametern can be interpreted physically as a mass It is common to @plscale A to
have unit diagonal, yielding = I —xD, wherex = 4+h2 . Inthe related physics literature,
the parametex is known as the “hopping” parameter and matfixs known as the hopping
matrix. We will work with the scaled matri¥ from now on.

To be physically relevant, the gauge linksassociated with a gauge fidllare random
variables from a given Boltzmann distribution that depeadsa temperature parametet,
[14]. The case off = oo is known as the so-called “cold” configuration and giugs= 1 for
all j. For 3 = 0, the configurations are “hot”, in which case the phakes u; := ¢ are
uniformly distributed in[0, 27). Physically relevant configurations arise foe (0, o).

The nearest-neighbor coupling that is inherent in the Gaagéacian suggests a further
reduction of the problem using an odd-even (or red-blaat)icgion. Splitting the lattice sites
into two sets© andF, by

O:={(k,0) : k+Codd, E:={(k¢):k+even

and ordering the variables such that all odd sites appeardd#ie even ones, the matrik
exhibits the2 x 2 block form
(oe)
A= { LA ] .

Alee)

The Schur complement of resulting from this “odd-even” reduced system is then gibgn
Alee) = 1 — Aleo) Aloe) Figure2.lillustrates the odd-even reduction: thgoint stencil in
the original system become9®eoint stencil in the odd-even reduced system.

The odd-even splitting is motivated by the fact that a solu of the odd-even reduced
systemA(¢®) 3 = ¢ can be easily interpolated exactly to the solutjoaf the original system

by

(2.2) o= [A(Ioe)} 5.
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FIG. 2.2. Modulus, real and imaginary part of the eigenmode to the Estkigenvalue fo3 = 5 on a
64 x 64 grid, no odd-even reduction.
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F1G. 2.3.Modulus, real and imaginary part of an algebraically smoetior after 50 Gauss-Seidel iterations
for 3 = 5 0n a64 x 64 grid, no odd-even reduction.

Interpreting this splitting in our reduction-based alggbrmultigrid framework, the exact
Schur complement will turn out to be a suitable choice forfitet coarse-grid operator using
the odd-even splitting. This leads to a significant redurctioproblem size with almost no
additional computational cost to retrieve the solutionref briginal system. For this reason,
we often assume this odd-even reduction has already be&riped as a first coarsening
step and work directly on the odd-even reduced system. Itereae state explicitly when
such a reduction is not used.

2.1. Spectral properties of the Gauge LaplacianFrom @.1), it follows that the Gauge
Laplacian is Hermitian. In our tests, we vary the hoppingapagters to generate matrices
with varying condition number. For each gauge field configjargl/, there exists a constant
ke for which the Gauge Laplacian with = k., is singular whereas, fot < k., it is
positive definite. In the following, we assume thaits chosen to be close tq.,. but smaller
thank,,, so that the Gauge Laplacian operator is positive definite.

An important feature to consider when developing solverstfe Gauge Laplace system
is the character of the algebraically smooth error of theesysmatrix, also called the near-
kernel. In Figure?.2, the modulus, real, and imaginary parts of the eigenmode switallest
eigenvalue is shown fg# = 5 on a64 x 64 grid, and the error aftef0 Gauss-Seidel iterations
applied to this same system with zero right-hand side andaieminitial guess is shown in
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FIG. 2.4. Eigenvalues of odd-even reduced Gauge Laplaciangfer 1,5, 10 on a32 x 32 grid. Depicted
on the left hand side are the full spectra; on the right-hait®sa close-up of the smalle32 eigenvalues for each
temperature is shown.

Figure 2.3 Here, we see that the algebraically smooth error varieallpcwith random
behavior induced by the gauge field configuration. As thests llustrate, the support of the
eigenmodes is local, further adding to the difficulty of defgan effective MG interpolation
operator for the Gauge Laplace system. Our reduction-bak&@ interpolation is defined
adaptively to fit a given relaxed vector (or some linear camabion of eigenmodes), such as
the computed vector shown in Figu2es,

Another important aspect to consider is the spectrum of yisgesn matrix. As depicted
in Figure2.4, the spectrum of the odd-even reduced system tends to er@dsaround its
upper bound and only a few eigenvalues turn out to be smah,tive smallest eigenvalue well
separated from the second-smallest. Note that fi2) (it is easy to see that the eigenvalues,
A, of A come in pairs)\, 2 — )\, and that

spedA®)) = {A(2— \) : A € specA)}.

When shifting the spectrum by changing the hopping parametthe relative difference
between the two smallest eigenvalues actually increasesvisee later that this property
of the Gauge Laplacian (in its odd-even reduced form) hasjammdluence on the adaptive
setup process.

3. Theoretical considerations: two-level convergence éstates for our “modified”
AMGr solver. Consider a decomposition @" into two subspaced;. and V%, given by
a splitting of thesen variables into two sets, the coargg) @nd fine (F) variables. This
decomposition induces the following block two-by-two repentation of the Hermitian and
positive-definiten x n matrix A,

_ | Arr Age
(3.1) A= {Acf ACC] .

As explained in 23], from a variational point of view, the operator

—A-LA,
= freife
P [

is the “ideal” interpolation operator in the sense thdt @, 0) cycle with Galerkin coarse-
grid operator and exact relaxation dgnleads to a direct solver. AAJ:; is generally dense,
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however, a sparse approximationAq]} is needed to define a practical interpolation oper-
ator and, thereby, a variational multigrid algorithm. Irethultigrid literature, the various
multilevel iterations whose design is based on such an appadgion are typically referred
to as reduction-based AMG methods (AMGr), followirgf)], because of their close relation
to total-reduction approaches.

Before describing our choice for the approximationfb;a‘fl and the resulting algorithm,
we briefly recall the ideas and ingredients of the adaptiveGxvhethod from 23]. In par-
ticular, to expose the main differences between our “madiifldViGr solver and the AMGr
method introduced inZ3], we first recall the main assumptions of the latter method.

In the following, the notatio < B between Hermitian matriced and B is meant
to be with respect to the cone of positive-semidefinite roasji.e., A < B if and only if
T Ap < o By forall o € C", wherep denotes the Hermitian transpose of the vegtor

The main assumption ir2p] is that there exists an easy-to-invert approximationo
A that can be used in both the definition of interpolation aedAkrelaxation. Interpolation
is then given by

. —D_lAfc
ro= [
and the relaxation operator as
D™t 0
(3.2) M=w { 0 0] .

Sufficient conditions onD that guarantee convergence of a two-level method with error
propagation operator given by

(3.3) E=(I—-P(PTAP)'PHA)I - MA),
i.e., with one step of pre-smoothing, have been give2@h s
(3.4) D < Asp < 1+ E)D,

for any fixede > 0 and

(3.5) 0< Ap = { p A-’“C] .

Acf Acc

This result also holds with an arbitrary number of pre- ortpetaxation steps. The spectral
equivalence relatior3(4) can be viewed as a smoothing propertydfvith respect to the set
of fine variablesF. Compatible relaxatiord], 21, 6, 17] or the method of greedy partitioning
[25] generate splittings where the set of fine variablEsyields anA; block that is well
approximated by a known matrix). In this light, relation 8.4) states thatD defines a
convergent smoother on tifé-variables. Relation3.5), on the other hand, can be interpreted
as a requirement on the interpolation operator and, heheesdarse-grid operator.

Under assumptions3(4) and 3.5, and assuming = 2%5 in (3.2), the following esti-
mate on the convergence of the two-grid method was provezidn [

€ NS
(3.6) IE|% < s <1+ <2+6> ) < 1.

In [23, 25], approaches for finding were focused on satisfying @) only. For the prob-
lems considered here, however, enforciBg appears to be of equal importance. 23], D
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is adaptively defined to match the action/bﬁ on a specific vectar. In our case, this vector
and the resulting> can be complex valued; however, assumpti@B)(cannot be fulfilled for
suchD.

Thus, we now look to generalize these conditions, by usirggapproximationD g, for
relaxation and anothef) p, for defining interpolation:Pp, = ’DP;Af“ . As we show
below, the following requirements oRr and Dp also imply the convergence of the two-
level method with a bound on the error-propagation matrxilsir to that in 3.6),

(3.7) ADr < Ayy <ADpg,

(3.8) oPF AP, < Pl APp, <OPf AP, ,

for some positive constants, A, 6, and©®. The proof of this convergence result uses the
convergence estimate frorti{] for the two-grid operatorF:,, with one pre- and one post-
smoothing step,

1
|Biglla=1- %,
where the constamt’ can be bounded as
1 ijVYSw

K<
—1-—92 Slul,p wH A w

for constanty and matricesﬁ/fs and A, defined below. This estimate adds further insight
into the two-grid convergence of AMGr methods and also léadsproof of convergence of
AMGr-based methods with full-grid smoothers, i.e., for ttase where, as opposed &3,
the block row ofM corresponding to thé variables is non-zero. For the sake of consistency,
we now adopt the notation irL].

Reduction-based AMGr methods use only smoothing in theesp@dine degrees of
freedom,F, and, as such, can be interpreted as multiplicative hikreat basis methods
based on the space decomposition

(3.9) V =SV, + PV,

with associated interpolation operata?s: V., — V andS : V, — V. Note that writing
V = (C", so thatV, = C" andV; = C"s, givesP € C"*" andS € C"*"/. In general,
we assume thdlS, P] is a square invertible matrix, so thay + n. = n. This is obviously
fulfilled in the case wheré® = [V}’] for W € C™*" andS = [é} In this case, the
splitting in (3.9) is direct.

In the following, we impose certain restrictions on theskspaces to define a two-grid
hierarchical basis method. First, define the coarse-grittixna. and its hierarchical com-
plementA; as

A, = PHAP, A, = S7AS.

Additionally, for a given smoothe)/, : V, — V; for A, (on V), define its symmetrized
version,

M, = MF (MF + M, - A)7 M,
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and introduce the following variational definition of theltsit complement$ 4, of A, induced
by the above space decomposition,

v S4v = inf (Sw 4+ Pv)? A(Sw + Pv).
Note that this definition of 4 is equivalent to the usual definitiof, = A.. — AcfAJ?flAfc;
cf. [1, Thm. 3.8].
The strengthened Cauchy-Bunyakowski-Schwarz (CBS) ial@guil, Eq. (9.5)], which
provides a bound on the abstract angle between two subspgacesliso be used to bound the

spectral equivalence betweehn and S, as needed in3(8). Lety € [0,1) be the smallest
constant such that

(Sw, Pu)? < ?||Swl||4]|Pull’ Yw € Vi,Yu € V.
Due to [L7, Lemma 2.1], it follows that
(1_72)ACSSA§AC

or, equivalently,

Sa .

(3.10) Sa< A< —
1—~2

The two-grid hierarchical basis method (a symmetric tweeld&MGr method) is defined
by the error propagation operator
E=1-B'A=(1-5SM;"S"A)(I1-PA;'P"A) (I -SM;'S"4).

Note that we assume here that the cycle uses both pre- angmposthing.

THEOREM 3.1. Let M, be Hermitian and positive-definite, and lgtbe the small-
est constant such that relatiof8.10 holds. Assume that there exist positive constants,
0 < e1 < eg < 2,such that

(311) Clj\/fs S AS S CQMS.

ThenM, is a convergent smoother fot,. Furthermore, the two-grid multiplicative hierar-
chical basis method defined ywith smootherV/, satisfies

1—~? 1 1
|Ella<1-— 7 wherea = max( , ) .
o c1(2—=c1) 2 (2—c2)

Proof. First note thaty M, < Ay < oM, impliesei I < Ms_l/gAsMs_l/2 < ¢oI which
gives(1 — e2)I < T — My Y2 AMY? < (1 = )1 It follows that

p(I — M7YAL) = p(I — M7Y2AM7Y?) < max{|1 — ¢1, ea — 1|} < 1,

and, so,M; defines a convergent smoother féf. Due to [L7, Theorem 4.2], we also have
that

w Mw
wH Aqw

1
(3.12) A< B<KA whereK < ——
-7

sup
Thus,

1
(3.13) 1Bl <1 =
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Note thatsup,, ﬁig;” can equivalently be defined as the smallg@sbr which M, < BAs.
Now,

Ms S ﬁAs <~ J\/[s (2]\/[.9 - As)il Ms S ﬁAs

-1
& AMATT (A7 MAT 1) AT MAT <L

From 3.11), %I < A;%MSA;% < é[ and, thus,

2 1 1

Note thatL > % by the hypothesis. Taking the maximum of the set3rif), we see that
c2

o 1 1
ﬂ_Oé—Hl&X(Cl(2_CI),02(2_62)).

.
Thus,sup,, TUH]XSZ’ < «, and

(3.15) K < =

Combining this with 8.13, we have

2

1—
IEJa<1-—". O
(6%
COROLLARY 3.2. Let the Hermitian and positive-definite matrX, be given and the
assumptions of Theore®al be satisfied. Further, assume that there are positive cotsta

andA, such that\D, < A, < AD,. Define the smoothing operatdf, as

1 2
(316) Ms = ;DS, fOTO' = m
Then,
4AA
IEja<1———5(1-7%).
(A+N)

Proof. With (3.16), we haver; = AQ—j/\ andc, = I\Q—ﬁk so that

4NN

1
a—Cl(?-Cl)—ClCQ—m. 0

The requirements in3(7) and @.8) are tailored to reflect the smoothing propertylof
and the quality of interpolation defined byr compared to the ideal interpolation opera-
tor P,. For a given choice oD, the bound in 8.7) can be directly turned into a bound
on||E| 4, as in @.16. The relationship betwee @ and @.10 arises through the strength-
ened Cauchy-Bunyakowski-Schwarz inequality for the cmaubspace spanned Byand the
corresponding fine subspace, measuring the abstract aeggledn them. A more thorough
analysis of this relation can be found ih7, 28§].
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Following [17], we can also derive an estimate for the convergence of egticbmethod
that uses full smoothing, i.e., smoothing on bgifandC, rather than smoothing on only.
Hence, this result also applies to full-grid Jacobi or Gass&lel smoothing, which are of
interest in a final implementation as they tend to yield fagesior smoothing properties than
F-smoothing alone.

To analyze this case, consider a two-grid method given bgrite propagator,

Ey =1— B 'A.

Generalizing the above approach, we can interpret the tiebrgethod with full smooth-
ing in the same framework as was used for the analysis offfsenoothing case. Instead
of using a smootherM,, on V; with ||[I — M;'A.||a, < 1, we consider a smoother
M € C™ ™ with ||I — M~1A||a < 1 and analogously to3(10 its symmetrized versions
M = MH (MH+M—A)71M andM = M(MH+M—A)71MH. Note that this is
equivalent to assuming that= 7 € C"*". The two-grid preconditioneB;g1 may then be
written as
B, =[I P|B, { I}
g tg | pH

with

g1 |1 ~M~HAP] [M~* 0 I 0
t9 |0 I 0 A7 |-PHAMTY I|

Assuming that\/ gives a convergent smoother fdrwith

A< M < kA
and thatP is chosen so that
Ac < VSAa

then [L7, Theorem 5.1] gives the bound

1
E <1l—-—.
|Buglla <1-—

If v andx are independent of, then this bound is independent of the problem size. For the
F-smoothing case, we can look & 16 as a refinement of the condition dd, while the
conditions onA, are equivalent in the two cases.

4. Implementation details and practical issues.In this section, we give a detailed
discussion of the practical issues that must be addressed edsigning an effective adaptive
AMGr setup algorithm for the disordered and nearly singalatems arising in lattice gauge
theories. Particular attention is paid to the two-levelipetigorithm, noting that the multilevel
algorithm follows immediately from recursion. While manther approaches are possible,
we consider only a variational construction and, thus,tlimoir discussion to the construction
of interpolation,P. In Section5, we will consider a fixed choice of relaxation (Gauss-Seidel
on the full matrix,A).
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4.1. Compatible-relaxation-based coarse-grid selectionThe first main task in the
AMG setup algorithm is the partitioning of the grid into appriate sets of coarse and fine
variables. Given a certain localized structure of the lingeratorA, as occurs in most
discretizations of PDEs, a coarse-grid variabié? is generally defined through a weighted
linear combination of fine-grid variables and “nearby” cggrid variables4],

U;(:) = Z kit

In our approach, however, we will take the more-standard@ggh and assume that the
coarse-grid variables are simply a subset of the fine-grihlstes.

We consider various compatible relaxation (CR) based amtres for partitioning the
fine degrees of freedom (dofs) into a coarse 8eand its complementary sef;, the fine-
level-only dofs. In its simplest form, compatible relaxatiis a relaxation scheme that is
confined to the fine-grid variables keeping the coarse-githbles fixed. As shown irlLp],
the convergence rate of compatible relaxation is direahated to the convergence of the
algebraic multigrid method that incorporates the sameseogrid and can, thus, be viewed
as a quality measure of the coarse set. As such, compatiblat®n can be used to develop
a practical adaptive approach for coarse-grid selectip@1, 6].

In our context, fast convergence of CR can be used to showAhat the restriction
of A to the setF, is well conditioned with respect td/, ¢, the restriction of the relaxation
matrix to F, an essential condition for bounding.{1) with reasonable constants, and
c2. Indeed, if we consider compatible relaxation with erroogagation operator defined by
Ef =1 Ml;flAff and let

(4.1) p(Ef) <a<1

and\ be any eigenvalue df/[f*flAff, thenl — X\ is an eigenvalue of — Mf*flAff. From
(4.7), we have that ' '

1=\ <[1=)<a, implying l-a< A <1l+a.

Thus,n(MJ:flAff) < (14a)/(1—a). It also follows from @.1) thatM  , is positive definite.
The smallest eigenvalue efy is, then, estimated as

HAvvo Amin(MY2 A M2
inf PP (M " Apg My ™)

Amin (Aff) =

A0 P T Amax (M)
)‘min(M_lAff)
= 4—1 2 (1 - a))\min(Mff)-
)\max (Mjf )

Estimating the maximum eigenvalue 4f ¢ in a similar fashion leads to the inequality
(42) /\max(Aff) S (1 + a)/\max(Mff)'

It then follows that
1+a

1—a

K(Aff) < H(Mff) and, similarly,(l — a)Mff < Aff < (1 + Q)Mff.

For the Jacobi relaxation scheme, this bound can be integbiees the spectral equivalence
of A;¢ and its diagonalD¢¢. This, then, can lead to a proof that fast convergence of CR
implies a well-conditioned! ;¢ for certain problems that arise from PDE discretizations.
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Promising adaptive coarse-grid selection techniques baea developed based on the
idea of compatible relaxatior2], 6, 9]. In what follows, we discuss an implementation
of a coarsening algorithm that uses compatible relaxatiBor completeness, we include
pseudocode for this approach in the appendix as Algorithrim the compatible relaxation
framework, the quality of a give@/F-splitting is measured by the convergence rate of relax-
ation on theF-variables with the-variables fixed. Aiming at a specified convergence sate
CR approaches successively add variables to the set ofecearisbles until the target con-
vergence factor is achieved. Starting with an empty sét-weériables and an initial erraf,
compatible relaxation exposes variables for which relaxatonvergence, when measured
by the pointwise change in a known error, e.g., iterating le ilomogeneous problem, is
slower than a chosen threshold. Because each variablerinfiaghe convergence of vari-
ables in its neighborhood when using a local relaxation sehgsuch as Richardson, Jacobi,
or Gauss-Seidel), it may not be necessary to add all vagdbég are slow to converge in CR
to the seC. Instead, in each cycle a maximally independent set of $teaenverge variables
is added taC. That is, in each iteration of the process we add a discordestibset of the
remaining fine-grid variables t6, where connectivity is defined by the graph canonically
associated tol. This process is repeated until the convergence of CR is ddembe fast
enough. A detailed description of the algorithm considérext can be found irg].

Results such as Theore®al and its corollary can also be useful for development of
coarsening techniques that ensure fast convergence ofatdoigorelaxation without having
to run CR iterations to test convergence, a main cost of mBsb&sed coarsening procedures.
In [25], one such algorithm, a greedy strategy using a measur@gbdal dominance ol ;¢
for coarse-grid selection, was introduced. We briefly revibis approach now, referring the
reader to Algorithn® in the appendix for a more detailed description.

The goal of coarsening is to partition the fine-level vargahhto disjoint setsF andC,
such thatF U C is the entire fine grid. For a given partition, the followingitction measures
the diagonal dominance of roinof the resulting matrix4 ¢,

|aii

Zjef |ai;|

Classical diagonal dominance correspond#,;to> % for all 7 in this definition. Given a
thresholdp, the greedy strategy fron2§] tries to find the largest subsef, of the variables,
such that; > ¢ for all rows: of Ay ;.

To do this partitioning, a third set of “undecided” variabl&, is introduced to represent
variables that have not been assigned tw F. A dynamic measure,

0; =

5 |aiil
(4.3) 0; S o]
tracks the diagonal dominance of each rowdn If §; > 6 for anyi € U, variablei is
automatically added to the set of fine variahfeslf there are no such variables, the least di-
agonally dominant variable,c U4, is added to the set of coarse variablésand the dynamic
measure is updated for all variables in the neighborhoadiofthe grid-interpretation of the
matrix A). This procedure is repeated until a splitting of the prabiomain intaZ andC is
achieved, i.e., untii/ is empty.

As in [25, Theorem 4], thed ;s block after the greedy coarse-grid selection satisfies

1 1
(4.4) (2 - g) Dy < Ajp < 5Dy
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TABLE 4.1
Greedy coarsening and compatible-relaxation-based @arg for several odd-even reduced Gauge Lapla-
cians on a64 x 64 grid, with all systems shifted so that the smallest eigem/aly;, iS Apmin = 1.0 x 10~%.
Greedy Algorithm Performance CR Algorithm Performance
Aen | Aews | L€l [l
System| 6 | 3t o 9] | 1CR System| «a 51 | 1cr

=1 1].55| 10 | 6.539| .299| .648 f=1 1 0.7 | .304| .655
g=11].60| 5 | 4.212| .418| .513 f=1|0.65| .367 | .606
g=11|.65| 3.33| 2.938| .499 | .446 =1 | 06 | .379| .568
= 55| 10 | 6.910| .268| .691 8= 0.7 | .266 | .675
=5 |.60| 5 |4.041| .419| .554 8= 0.65| .419| .631
5 | .65]| 3.33| 3.127| .478| .538 0= 0.6 | .440| .573
10| .55| 10 | 6.740| .267 | .694 g=10| 0.7 | .301| .682
=10| .60 5 | 4.113| .421| .570 #=10 | 0.65| .398| .643
10 | .65 | 3.33| 3.060| .477| .533 g=101| 0.6 | .427| .580

whereDy; = diag(Ay¢). Clearly, the spectral equivalence bfi; and Ay gets better a8
increases. Note that (4) is equivalent to §.7) with Dr = DyyandA =2 — 5, A = 4. In
Table4.1, the performance of the greedy coarse-grid selection weispect to the theoretical
bounds from 4.4) and the observed best possible bounds, which can be codjsate the
respective generalized eigenvalue problem, are provideatidition, we estimate the spectral
equivalence bounds betwedn ; and M and also report the convergence raigr, of CR
for these partitions. We also report on the CR convergertes f@r compatible relaxation
run on these same problems, for values dtfiat produce similar coarsening ratié%.

In general, the best possible equivalence bounds for thedgrstrategy are a lot better
than what the theory predicts. In particular, #or= 0.55 we obtain a relatively aggres-
sive coarsening along with good spectral equivalence kv ; and A;;. Because of
the similarity between the performance of the greedy andpatiile-relaxation coarsening
algorithms, we only give results using compatible relaxain Sectiorb.

4.2. Adaptivity in the modified AMGr framework. As proposed in 23], we use
an adaptive scheme to defiig> and, hence, the interpolation operatéy,,. As fast-to-
converge Jacobi-CR implies thdt: ; can be accurately approximated by a diagonal matrix,
we takeD p to be diagonal. Under this assumption, we chobseso thatD;1 matches the

action ofA;]} on a given vecton = {Zf} that corresponds to the near-kernel; i.e., we require

(45) —DI_DIAfCuc =us = —A;}Afcuc

for a givenu.. The key issue to consider when attempting to design an eiti@daptive
AMGr solver in this setting is then reduced to developmerdmgfficient scheme for com-
puting the prototypey, used to defineDp. The classical adaptive methodE)[ 11, 17]
use repeated application of the given relaxation schemthéoresulting solver) to compute
(or improve) the prototype. In general, the two main drawksaaf this approach are that,
first, there is no theoretically founded stopping criteravailable for such an approach that
guarantees its optimality; and, second, such a classicgitae process requires (roughly)
O(log(K)) setup iterations, wher& is the condition number of the matrix, to compute
a sufficiently accurate approximation of the prototy@é][ For the Gauge Laplacian, the
smallest eigenmode is often not a good local representative algebraically smooth error,
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TABLES.1
Odd-even reduced-pt discretization of the Laplace operator with Dirichlebindary conditions shifted so
that the smallest eigenvalue As,;,,. V(2, 2)-cycle asymptotic convergence rates with Gauss-Seidsbisrar, using
Gauss-Seidel relaxation applied to a positive randomahiguess in the adaptive setup phase.

Nrel \ Amin | 1071 | 1072 | 1073 | 107 | 107> | 10~
5 06 [ .02 | 04 [ 37 | 8 | .98

25 07 | .02 | 05 | .05 | .38 | .86

50 07 | .02 | .05 | .05 | .17 | .66
100 07 | .02 | .06 | .06 | .06 | .16
500 07 | .02 | 06 | .06 | .06 | .06
exact 07 [ .02 ] 06 [ .06 | .06 | .06

which further compounds the difficulty of developing an atilapscheme for this system.
Our numerical experience suggests that developing thesaking a setup scheme for the
problem shifted to have only a mild smallest eigenvalue,eyhpps a large smallest eigen-
value, and, then, using the resulting multigrid solver far tinshifted system provides a much
more effective preconditioner than does directly applyting setup to the problem with full
shift, which typically has much larger condition numberisiseems to be mainly due to the
fact that, as we shift the hopping parameter towards itativalue, the relative gap between
the smallest few eigenvalues and the remaining ones ireseds this relative gap becomes
larger, the adaptive process becomes increasingly doedrimst these few modes.

5. Numerical results. For our numerical tests, we consider Gauge Laplacians gf var
ing size, mass, and temperature to test the AMGr-style ndeths a benchmark for later tests
of our method applied to the Gauge Laplace system, we firgtidenthes = oo case with
Dirichlet boundary conditions, which gives the standargdint discrete shifted-Laplacian
operator,

(5.1) L=—-A—2r%—m)I,

obtained using a central-difference discretization. Htre lowest eigenmode is known and
has global support; specifically, this lowest mode is the&i@®n of sin(7z) sin(7y) to the
grid points, and the lowest eigenvalue can be determineldogtioice of shiftyn. This prob-
lem was a first test case in the development of the origingdidaAMG setup procesgp].

To illustrate the performance of the original adaptive gsxfor such problems, we consider
this problem with the shift chosen so that the system becdonuesasingly ill-conditioned
for fixed problem sizes. As the numerical results providedable 5.1 illustrate, such an
adaptive setup procedure produces an effective solvehfesmhodel problem provided that
a sufficient amount of work is done to expose the lowest modbebystem matrix, i.e., a
sufficient amount of work is done to ensure that the weak apmration property P6, 3] is
satisfied byP, built using this computed vector for the given shift.

Next, we report the results of this original adaptive setpplie@d to a highly disordered
system. The numerical results in Taldle? correspond to this scheme applied to a Gauge
Laplacian with randomly configured gauge field. Here, we tdke 5 and N = 64 and
again vary the minimal eigenvalue and number of relaxatitsesl to approximate the lowest
eigenmode of the fine-level system. As the numerical re$nl®ble 5.2 demonstrate, in
contrast to thes = oo case, here increasing the number of relaxations used indigtise
process eventually leads to degradation in performanclkeofdsulting solver based on this
single mode. Further, we see that this degradation is mesre@ cases where the minimal
eigenvalue i)(10~2) or O(10~*). This is consistent in all tests, except for the last column
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TABLE 5.2

Odd-even reduced Gauge Laplace operator with periodic Hannconditions shifted to a fixed smallest eigen-
value. V@, 2)-cycle asymptotic convergence rates with Gauss-Seidebthrer, using Gauss-Seidel applied to a
complex-valued random initial guess in the adaptive setgsp. In parentheses, we report the iteration count for
preconditioned CG to reduce the initial residual by a relatifactor of10%. For the line labeled “LC", a linear
combination of the eigenvectors associated with the terllesh@igenvalues of the system matrix, weighted by the
reciprocal of their eigenvalues as the vector to be fit in thagtive setup phase. The line labeled CG contains iter-
ation counts of the Conjugate Gradient method applied te $ystem as a stand-alone solver; again the (relative)
residual is reduced ta0—8 in these tests.

Nret \ Amin | 1071 1072 1073 10~4 1075 10-6

5 4 (9) [.79(15) [ .97 (19) | .99 (21) | .99 (23) | .99 (25)
25 32 (9) | 53 (11) | .83 (14) | .98 (15) | .99 (17) | .99 (18)
50 B1(8) | .55 (11) | .72 (12) | .95 (14) | .99 (15) | .99 (17)
100 28 (8) | .52(10) | .65 (13) | .9 (14) | .99 (16) | .99 (17)
300 32 (8) | .48 (10) | .53 (10) | .54 (10) | .61 (11) | .89 (13)
500 33 (8) | .5 (10) | .6 (11) | .6 (11) | .60 (11) | .62 (11)
exact 31 (8) .53 (10) | .61 (12) | .61 (11) | .62 (12) | .62 (12)
LC 35 (8) | 43 (9) | .67 (11) | .67 (12) | .62 (11) | .62 (12)
CG (44) (75) (107) (231) (343) (435)

where the minimal eigenvalue is shifted to©®é10). In this case, using the exact lowest
mode does provide the best overall solver. This is to be drpexs the weak approximation
property implies thaf? must be able to reproduce this mode very accurately. Beazfube
local support of the smoothest eigenvalues for this problemsee that using the minimal
eigenvector is, in general, a suboptimal choice for theoreict the adaptive setup scheme.
While each of these modes is supported locally, their supgaes not, in general, overlap
exactly. In such cases, a linear combination of these modggiwe a better approximation
to the slow-to-converge modes of the system matrix.

To test this approach, we consider an “artificial” adaptiv@cess that uses a linear com-
bination of the eigenvectors associated with Aremallest eigenvalues of the system matrix,
weighted by the reciprocal of their eigenvalues, as theordct be fit in the adaptive setup
phase. We choode= 10 as this gives good performance in our numerical tests. Refrl
this approach are shown in Tal#e? in the line labeled “LC". Here, we see that the perfor-
mance of the stand alone MG solver based on this approach, isg@neral, better than that
of the solver based oR defined using a prototype computed using relaxation. Asaivest
modes can be local, using relaxation (or a linear combinaifahe ten smallest eigenmodes
computed exactly) does not produce an AMGr-stfléhat satisfies the weak approxima-
tion property p6, 3], which requires accuracy in the computed prototype propoal to its
Rayleigh Quotient. However, both methods producethat leads to an effective variational
MG preconditioner.

The results in Tablé.3are for various problem sizes and choicegoHere,P is defined
using the prototype computed by using relaxation and alsaking a linear combination of
the ten lowest modes. As before, we see that both solversipeviell as a preconditioner for
CG. Overall, our proposed AMGr-style method, based on asipgptotype, is not expected
to produce an optimal stand-alone solver for these systédus.numerical results suggest
that the approach does, however, have potential for draaigtimproving CG performance
for cases where the more expensive multiple-vector typptagamethods (e.gq SA) are
not applicable. An example of such setting was mentiondieearhere only system solves
for O(1) right hand sides are needed for a given gauge field configurati
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TABLE 5.3
Odd-even reduced Gauge Laplacians of various sizes andetapes3, shifted so that the smallest eigen-
value isﬁ. AMGr 2-level V2, 2) preconditioner with Gauss-Seidel smoothing for CG usiathfa linear com-
bination of the smallest ten eigenmodes, scaled by theacised inverse RQs to defide (shown first) as well as
using relaxation to define the prototype in the definitiomtdiipolation (shown second).

B\N| 32 | 64 | 128 | 256
1 [ 11/12] 10714 15/15] 11/14
5 |12/15| 11/15 | 15/15| 14/16
10 | 7/11 | 13/15|17/16| 19/17

Convergence plot, beta=1, m=1e-3, recomp every 10th step
10 T T T T T

100

10° |

107 |

107

107 |

10

10°

FiG. 5.1.Performance of nonlinear adaptive solver to applied to tteu@e Laplacian with3 = 1 and N = 64.

5.1. Non-linear adaptive cycling schemesA possible (practical) variant of the station-
ary adaptive setup schemes for the Gauge Laplace systenveislyy a non-linear iteration
in which we consider integrating the adaptive setup andesphases into a single, non-linear,
solution process. The most basic implementation of nogalimdaptive cycling schemes is to
run the solver for the homogeneous and the inhomogeneotesysimultaneously and use
the homogeneous system to improve the solver while sohiegrthomogeneous problem.
If we start with a fixed AMG method and apply a small number epstof the method to
both the homogeneous and inhomogeneous systems, we cdivelgdpne our approach. If
the convergence of the solver measured on the homogenestessig fast enough, we con-
tinue to use this method for the non-homogeneous systentayest. If, on the other hand,
the convergence factor of the method on the homogeneousnsystlarger than a certain
threshold, we incorporate the current error computed feritbmogeneous system as a new
near-kernel prototype in an additional reduction-based@\betup process to define a new
method and, then, continue the iteration using this methdiristically, this method is moti-
vated by the fact that each of these successive AMG methatsses certain components of
the near-kernel, but fails to remove others. Incorporatiregevolving error into a new AMG
method yields an effective iteration for treating this efirothe inhomogeneous system. To
prohibit previously treated error from reappearing in tb&igon, we can cycle through a set
of methods created in this non-linear adaptive processigurg5.1, we provide a plot of the
residual versus number of nonlinear adaptive AMG iteratiapplied to the Gauge Laplacian
with 3 = 1 andN = 64. We note that the number of nonlinear iterations neededioaethe
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residual byl 0% is again significantly less for this adaptive scheme thagfitii the CG solver.
Further, we mention that the iteration counts reported laeeefor the nonlinear solver ap-
plied as a stand alone solver, as opposed to a preconditm@&. Combining our nonlinear
scheme with dlexibleCG solver 7] will improve the performance of this method. Finally,
we mention that our reported results are representativeeoperformance of this solver for
varying problem sizes, shifts and configurations of the gdieid.

6. Concluding remarks. In this paper, we analyze and develop an adaptive reduction-
based AMG algorithm for highly disordered nearly singulgstems encountered in gauge
theories discretized on a lattice. We provide two-levelvaygence theory for AMGr-type
methods for HPD matrices. Using this theory, we developtaracmeasures and tools for
constructing an effective MG method for such systems. Fuytlve explore variants of this
adaptive AMGr process for a simplified two-dimensional Galgplacian system and show
that these approaches can provide effective precondisandhis setting. The reduction in
iteration counts of our solver over CG, coupled with the lawd@nd operator complexities
of this MG method that results from our chosen form of intéagion are, thus, expected to
significantly improve time to solution for this Gauge Lapgaystem. Further, as the problem
size increases, this improvement is expected to becomemsgendramatic.

Appendix A. Coarsening algorithms. Algorithm 1 describes the implementation of the
CR coarsening strategy. Hereill; measures how slowly th&-variablei converges. Algo-
rithm 2 describes our implementation of the greedy coarseningteglya We use
Adj(j) = {i # jlai; # 0} to denote the graph neighborhood of variaple the graph
associated tol.

Algorithm 1: Coarse-grid selection using compatible relaxation.
Input : A, e
Output: F,C
F={1,2,....,n},C=0,m=0;
Do k CR sweeps onle = 0, measure convergence rateg := ||e®||/|[e*= D
while ucgr > a ANDmMm < mypq, do

E= me;

L{:{i, E1| >1—a};

Compute maximal independent ggtof U/

UpdateC = CUC*, F = F\ C*

m=m —+ 1;

Do k CR sweeps onle = 0, measure convergence rateg;
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