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ADAPTIVE REDUCTION-BASED MULTIGRID FOR NEARLY SINGULAR AN D
HIGHLY DISORDERED PHYSICAL SYSTEMS ∗

J. BRANNICK†, A. FROMMER‡, K. KAHL‡, S. MACLACHLAN§, AND L. ZIKATANOV †

Abstract. Classical multigrid solution of linear systems with matrices that have highly variable entries and are
nearly singular is made difficult by the compounding difficulties introduced by these two model features. Efficient
multigrid solution of nearly singular matrices is known to be possible, provided the so-called Brandt-McCormick
(or eigenvector approximation) criterion is satisfied, which requires building interpolation to fit the near-null-space
modes with high accuracy. When these modes are known, traditional multigrid approaches may be very effective. In
this paper, we consider the case of matrices describing highly disordered systems, such as those that arise in lattice
quantum chromodynamics (QCD), where the near-null modes cannot be easily expressed in closed form. We develop
a variational adaptive reduction-based algebraic multigrid preconditioner for such systems and present a two-level
convergence theory for the approach for Hermitian and positive-definite systems. The proposed method is applied
to a two-dimensional model known as the Gauge Laplacian, a common test problem for development of solvers in
quantum dynamics applications, showing promising numerical results. The proposed reduction-based setup uses
compatible relaxation coarsening together with a sparse approximation to the so-called ideal interpolation operator
to recursively construct the coarse spaces.
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1. Introduction. Multigrid methods employ two complementary processes:smoothing
andcoarse-grid correction. In the classical setting, for scalar elliptic problems, the smoother
(or relaxation method) is a simple iterative method, such asGauss-Seidel, that is effective
at reducing high-frequency error. The remaining low-frequency error is then accurately rep-
resented and efficiently eliminated on coarser grids via thecoarse-grid correction step. To
achieve their optimality, AMG methods employ a fixed smoother and generally exploit the
character of the error of the relaxation method. Such error is referred to as algebraically
smooth and, for most AMG relaxation schemes, is characterized by the near-nullspace (near-
kernel) of the discrete operator: the span of all vectorsx such thatAx ≈ 0. For simpler
problems, such as scalar elliptic partial differential equations, these methods are often opti-
mal, since the near-nullspace components are known and AMG can be designed to resolve
these types of components using a hierarchy of coarse-scaleproblems.

In recent years, significant effort has been focused on improving the range of applicabil-
ity of black-box multigrid techniques. While there are manyapproaches to achieving robust
linear solvers for wide classes of matrices, adaptive multigrid methods [10, 11, 12] offer many
advantages because of the efficiency they inherit from the algebraic multigrid approaches on
which they are based [31, 33, 32]. The key idea behind adaptive multigrid algorithms is to ex-
perimentally use the multigrid relaxation process itself to expose those error components that
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must be accurately accounted for in the coarse-grid correction process, the so-called “alge-
braically smooth” errors that relaxation is slow to reduce.In its simplest form, this amounts
to simply iterating many times with a fixed stationary iterative (relaxation) method on the
homogeneous problem,Ax = 0, with a random initial guess. The dominant error left after
many relaxation sweeps must, by definition, reflect the algebraically smooth errors of the
problem. These errors can then be built into the coarse-gridcorrection process in the usual
way. In practice, exposing these errors by simple relaxation alone is very inefficient and, so,
the process is accelerated by a multilevel relaxation process that exposes the local and global
characteristics of these slow-to-converge errors simultaneously.

These approaches have been shown to be successful for a wide range of problems [10, 11,
12]. An important new class of problems that can be effectivelytreated by these techniques
arises in numerical models of quantum dynamics, e.g., quantum electrodynamics (QED) and
quantum chromodynamics (QCD) [7, 8]. The caveat here is the large setup costs required
by these “classical” adaptive solvers – the setup costs reported in [7] are roughly equivalent
to that of solving the original system with 3 or 4 different right-hand sides using diagonally-
preconditioned CG. Of course, certain QCD calculations require solves with thousands of
right-hand sides and, so, these costs can be amortized. For other calculations, e.g., evolution
of the gauge fields in a Monte Carlo process, each system needsto be solved with only a few
right-hand sides, and these methods are not yet competitive.

The linear systems arising in numerical models of QED and QCDapplications are very
challenging for traditional multigrid methods, due mainlyto two properties of the system
matrix. The first is the extremely disordered nature of the matrix elements; each non-zero
off-diagonal entry of the matrix is chosen at random from a specific distribution function,
with little correlation between neighboring coefficients.The second property is that the sys-
tem matrix is shifted so that it is very ill-conditioned (with smallest eigenvalue close to zero),
much more so than one arising from a typical discretization of an elliptic PDE. As a result,
classical multigrid assumptions are not satisfied by the discrete operator and, thus, such algo-
rithms offer very little in terms of improved convergence over relaxation alone.

Individually, these difficulties can be treated by the classical approach to the adaptive
setup procedure or by preconditioning CG with classical AMG, respectively. Indeed, for
homogeneous but nearly singular elliptic problems, for example the shifted-Laplace operator,
while AMG fails as a standalone solver, using AMG as a preconditioner for CG gives a very
efficient and scalable solution technique [22]. Moreover, for heterogeneous problems that
aren’t nearly singular, adaptive AMG works very well, giving a good stand-alone solver [22,
10, 11, 6, 12, 9]. The systems encountered in numerical models of quantum field theories,
however, exhibit both these difficulties; the resulting systems are very heterogeneous, so that
adaptivity is needed, and are also nearly singular, in whichcase care must be taken to ensure
that the computed prototypes give a suitable local representation of the algebraically smooth
error (as they are assumed to in the “classical” adaptive process ). Here, we consider an
adaptive reduction-based multigrid algorithm as a preconditioner to CG for such systems.
As a first step, we explore the applicability of these methodsto a simplified Gauge Laplace
system.

Multigrid methods for nearly singular problems have been considered before [2, 19, 18,
5, 29, 13], but not in this context. Whereas for classical elliptic operators such as Poisson’s
equation, accurate local fitting of the slowest to converge mode of relaxation (or the lowest-
energy mode of the system matrix) is sufficient to ensure effective reduction of all error modes
by the multigrid process, this is not the case for the extremely disordered systems that arise
in quantum dynamical systems. For these operators, the smallest eigenvalues are typically
well separated from the remainder of the spectrum and, moreover, the eigenvectors associ-
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ated with these eigenvalues do not provide for a good local representation of the algebraically
smooth error over the entire domain. Attempting to solve these systems by directly apply-
ing the adaptive multigrid methodology presents a difficultchallenge, as classical multigrid
wisdom [26, 3] requires that modes in the near-null space of the matrix be represented in the
range of interpolation with accuracy inversely proportional to their energy norms and, further-
more, interpolation is typically based on the single lowesteigenmode of the system matrix.
We demonstrate, however, that with careful design of the adaptive process, optimal perfor-
mance of a multigrid-preconditioned Krylov iteration can be recovered for such systems. In
addition, we explore various issues that must be consideredin algorithmic development of
adaptive methods for such systems. We also prove the two-level convergence of the method
for Hermitian and positive-definite (HPD) systems and extend the theory of reduction-based
AMG to allow for smoothing on all variables (using, for example, Jacobi or Gauss-Seidel
smoothers) instead of onlyF -smoothing.

The remainder of this paper is organized as follows. First, in Section2, we introduce
an important model problem for the operators that appear in quantum electro- and chromo-
dynamics, the Gauge Laplacian system. In addition, we discuss some of the properties of
this operator. In Section3, we present an adaptive reduction-based algorithm and related
two-level theory for general HPD systems. In addition, we explore several practical issues
that arise in designing an adaptive AMG algorithm for disordered nearly singular problems
such as the Gauge Laplacian in Section4. Following this, in Section5, we present numerical
results of our modified adaptive reduction-based AMG (“αAMGr”) method for a variety of
configurations of the Gauge Laplacian.

2. The Gauge Laplacian.The aim of this paper is to develop adaptive multigrid meth-
ods appropriate for the highly disordered nearly singular systems that arise in numerical sim-
ulations of quantum dynamics. We consider a simplified two-dimensional model problem
called the “Gauge Laplacian”, as was done previously in [15, 20, 24]. The inverse of the
Gauge Laplacian operator is the simplest form of a propagator satisfying a gauge theory [14]
(a necessary and fundamental property for physical relevance of the calculation) and, thus,
provides a good initial test problem in the development of AMG schemes for quantum dy-
namics applications.

Consider a uniformN × N periodic (toroidal) quadrilateral lattice, withn = N2 node
points{(k, ℓ) | k, ℓ = 1, . . . , N}. Such a lattice hasne = 2n edges, which can be numbered
individually from 1 throughne or be associated in pairs with the lattice nodes, connectinga
node(k, ℓ) to its “eastern” and “northern” neighbors,(k + 1, ℓ) and(k, ℓ+ 1), respectively,
where all numbers are understood to be modN . On such a lattice, we are given values on
each edge in the form of a “U(1) gauge field”,U = {uj := eiθj | j = 1, . . . , ne}, where the
valuesθj are prescribed based on some known distribution, discussedmomentarily, and the
“gauge links”,uj, live on the edges of the lattice. Our interest is in the solution of systems of
the form

A(U)ϕ = ψ,

whereA(U) ∈ Cn×n andϕ, ψ denote vectors fromCn. The symbolx will stand for a lattice
site, i.e., a point(k, ℓ) of the grid, and the operationsx±µ for µ = 1, 2 yield the neighboring
lattice sites, i.e.,x± 1 = (k± 1, ℓ) andx± 2 = (k, ℓ± 1); again all numbers are understood
to be modN .

The gauge links on the edges (one link,uj, per edgej) act as coupling coefficients. Ex-
plicitly, the two-dimensional Gauge Laplace matrixA = A(U) expresses a periodic nearest-
neighbor coupling which, for a pair of lattice sitesx, y with corresponding matrix entryAxy,



ETNA
Kent State University 

http://etna.math.kent.edu

ADAPTIVE REDUCTION-BASED MULTIGRID 279

FIG. 2.1.Connectivity of the Gauge Laplace operator before and afterthe odd-even reduction.

can be described using the Kroneckerδ as

Axy = − 1

h2

2∑

µ=1

(
uµ

x δx+µ,y +
(
uµ

x−µ

)†
δx−µ,y

)
+ (

4

h2
+m)δx,y.(2.1)

Here,uµ
x is the gauge link defined on the edge connecting lattice sitesx andx+µ and(uµ

x−µ)†

is the complex conjugate of the gauge link defined on the edge connecting lattice sites(x−µ)
andx. As is usually the case when considering PDEs on periodic grids, h = 1/N ; the
parameterm can be interpreted physically as a mass. It is common to explicitly scaleA to
have unit diagonal, yieldingA = I−κD, whereκ = h2

4+h2m . In the related physics literature,
the parameterκ is known as the “hopping” parameter and matrixD is known as the hopping
matrix. We will work with the scaled matrixA from now on.

To be physically relevant, the gauge linksuj associated with a gauge fieldU are random
variables from a given Boltzmann distribution that dependson a temperature parameter,β
[14]. The case ofβ = ∞ is known as the so-called “cold” configuration and givesuj = 1 for
all j. Forβ = 0, the configurations are “hot”, in which case the phasesθj in uj := eiθj are
uniformly distributed in[0, 2π). Physically relevant configurations arise forβ ∈ (0,∞).

The nearest-neighbor coupling that is inherent in the GaugeLaplacian suggests a further
reduction of the problem using an odd-even (or red-black) reduction. Splitting the lattice sites
into two sets,O andE, by

O := {(k, ℓ) : k + ℓ odd}, E := {(k, ℓ) : k + ℓ even}

and ordering the variables such that all odd sites appear before the even ones, the matrixA
exhibits the2 × 2 block form

A =

[
I A(oe)

A(eo) I

]
.

The Schur complement ofA resulting from this “odd-even” reduced system is then givenby
A(ee) = I − A(eo)A(oe). Figure2.1 illustrates the odd-even reduction: the5-point stencil in
the original system becomes a9-point stencil in the odd-even reduced system.

The odd-even splitting is motivated by the fact that a solution ϕ̃ of the odd-even reduced
systemA(ee)ϕ̃ = ψ̃ can be easily interpolated exactly to the solutionϕ of the original system
by

(2.2) ϕ =

[
A(oe)

I

]
ϕ̃.
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FIG. 2.2. Modulus, real and imaginary part of the eigenmode to the smallest eigenvalue forβ = 5 on a
64 × 64 grid, no odd-even reduction.

FIG. 2.3.Modulus, real and imaginary part of an algebraically smootherror after 50 Gauss-Seidel iterations
for β = 5 on a64 × 64 grid, no odd-even reduction.

Interpreting this splitting in our reduction-based algebraic multigrid framework, the exact
Schur complement will turn out to be a suitable choice for thefirst coarse-grid operator using
the odd-even splitting. This leads to a significant reduction in problem size with almost no
additional computational cost to retrieve the solution of the original system. For this reason,
we often assume this odd-even reduction has already been performed as a first coarsening
step and work directly on the odd-even reduced system. Hereafter, we state explicitly when
such a reduction is not used.

2.1. Spectral properties of the Gauge Laplacian.From (2.1), it follows that the Gauge
Laplacian is Hermitian. In our tests, we vary the hopping parameterκ to generate matrices
with varying condition number. For each gauge field configuration,U , there exists a constant
κcr for which the Gauge Laplacian withκ = κcr is singular whereas, forκ < κcr, it is
positive definite. In the following, we assume thatκ is chosen to be close toκcr but smaller
thanκcr, so that the Gauge Laplacian operator is positive definite.

An important feature to consider when developing solvers for the Gauge Laplace system
is the character of the algebraically smooth error of the system matrix, also called the near-
kernel. In Figure2.2, the modulus, real, and imaginary parts of the eigenmode with smallest
eigenvalue is shown forβ = 5 on a64×64 grid, and the error after50 Gauss-Seidel iterations
applied to this same system with zero right-hand side and random initial guess is shown in



ETNA
Kent State University 

http://etna.math.kent.edu

ADAPTIVE REDUCTION-BASED MULTIGRID 281

0 200 400
0

1

2

3

4

 

 

0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

beta=1
beta=5
beta=10

beta=1
beta=5
beta=10

FIG. 2.4. Eigenvalues of odd-even reduced Gauge Laplacians forβ = 1, 5, 10 on a32 × 32 grid. Depicted
on the left hand side are the full spectra; on the right-hand side, a close-up of the smallest32 eigenvalues for each
temperature is shown.

Figure 2.3. Here, we see that the algebraically smooth error varies locally, with random
behavior induced by the gauge field configuration. As these plots illustrate, the support of the
eigenmodes is local, further adding to the difficulty of defining an effective MG interpolation
operator for the Gauge Laplace system. Our reduction-basedAMG interpolation is defined
adaptively to fit a given relaxed vector (or some linear combination of eigenmodes), such as
the computed vector shown in Figure2.3.

Another important aspect to consider is the spectrum of the system matrix. As depicted
in Figure2.4, the spectrum of the odd-even reduced system tends to be clustered around its
upper bound and only a few eigenvalues turn out to be small, with the smallest eigenvalue well
separated from the second-smallest. Note that from (2.2), it is easy to see that the eigenvalues,
λ, ofA come in pairs,λ, 2 − λ, and that

spec(A(ee)) = {λ(2 − λ) : λ ∈ spec(A)}.
When shifting the spectrum by changing the hopping parameter,κ, the relative difference

between the two smallest eigenvalues actually increases. We will see later that this property
of the Gauge Laplacian (in its odd-even reduced form) has a major influence on the adaptive
setup process.

3. Theoretical considerations: two-level convergence estimates for our “modified”
AMGr solver. Consider a decomposition ofCn into two subspaces,Vc andVf , given by
a splitting of thesen variables into two sets, the coarse (C) and fine (F ) variables. This
decomposition induces the following block two-by-two representation of the Hermitian and
positive-definiten× n matrixA,

(3.1) A =

[
Aff Afc

Acf Acc

]
.

As explained in [23], from a variational point of view, the operator

P∗ =

[
−A−1

ffAfc

I

]

is the “ideal” interpolation operator in the sense that aV (1, 0) cycle with Galerkin coarse-
grid operator and exact relaxation onF leads to a direct solver. AsA−1

ff is generally dense,
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however, a sparse approximation toA−1
ff is needed to define a practical interpolation oper-

ator and, thereby, a variational multigrid algorithm. In the multigrid literature, the various
multilevel iterations whose design is based on such an approximation are typically referred
to as reduction-based AMG methods (AMGr), following [30], because of their close relation
to total-reduction approaches.

Before describing our choice for the approximation ofA−1
ff and the resulting algorithm,

we briefly recall the ideas and ingredients of the adaptive AMGr method from [23]. In par-
ticular, to expose the main differences between our “modified” AMGr solver and the AMGr
method introduced in [23], we first recall the main assumptions of the latter method.

In the following, the notationA ≤ B between Hermitian matricesA andB is meant
to be with respect to the cone of positive-semidefinite matrices, i.e.,A ≤ B if and only if
ϕHAϕ ≤ ϕHBϕ for all ϕ ∈ Cn, whereϕH denotes the Hermitian transpose of the vectorϕ.

The main assumption in [23] is that there exists an easy-to-invert approximationD to
Aff that can be used in both the definition of interpolation and theF -relaxation. Interpolation
is then given by

PD =

[
−D−1Afc

I

]

and the relaxation operator as

(3.2) M = ω

[
D−1 0

0 0

]
.

Sufficient conditions onD that guarantee convergence of a two-level method with error-
propagation operator given by

(3.3) E = (I − P (PHAP )−1PHA)(I −MA),

i.e., with one step of pre-smoothing, have been given in [23] as

(3.4) D ≤ Aff ≤ (1 + ǫ)D,

for any fixedǫ > 0 and

(3.5) 0 ≤ AD =

[
D Afc

Acf Acc

]
.

This result also holds with an arbitrary number of pre- or post-relaxation steps. The spectral
equivalence relation (3.4) can be viewed as a smoothing property ofD with respect to the set
of fine variablesF . Compatible relaxation [4, 21, 6, 17] or the method of greedy partitioning
[25] generate splittings where the set of fine variables,F , yields anAff block that is well
approximated by a known matrix,D. In this light, relation (3.4) states thatD defines a
convergent smoother on theF -variables. Relation (3.5), on the other hand, can be interpreted
as a requirement on the interpolation operator and, hence, the coarse-grid operator.

Under assumptions (3.4) and (3.5), and assumingω = 2
2+ǫ in (3.2), the following esti-

mate on the convergence of the two-grid method was proved in [23],

(3.6) ‖E‖2
A ≤ ǫ

1 + ǫ

(
1 +

( √
ǫ

2 + ǫ

)2
)
< 1.

In [23, 25], approaches for findingD were focused on satisfying (3.4) only. For the prob-
lems considered here, however, enforcing (3.5) appears to be of equal importance. In [23], D
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is adaptively defined to match the action ofA−1
ff on a specific vectoru. In our case, this vector

and the resultingD can be complex valued; however, assumption (3.5) cannot be fulfilled for
suchD.

Thus, we now look to generalize these conditions, by using one approximation,DR, for

relaxation and another,DP , for defining interpolation:PDP
=
[
−D−1

P
Afc

I

]
. As we show

below, the following requirements onDR andDP also imply the convergence of the two-
level method with a bound on the error-propagation matrix similar to that in (3.6),

(3.7) λDR ≤ Aff ≤ ΛDR ,

(3.8) θPH
∗ AP∗ ≤ PH

DP
APDP

≤ ΘPH
∗ AP∗ ,

for some positive constants,λ, Λ, θ, andΘ. The proof of this convergence result uses the
convergence estimate from [17] for the two-grid operator,Etg, with one pre- and one post-
smoothing step,

‖Etg‖A = 1 − 1

K
,

where the constantK can be bounded as

K ≤ 1

1 − γ2
sup
w

wHM̃sw

wHAsw

for constantγ and matrices̃Ms andAs defined below. This estimate adds further insight
into the two-grid convergence of AMGr methods and also leadsto a proof of convergence of
AMGr-based methods with full-grid smoothers, i.e., for thecase where, as opposed to (3.2),
the block row ofM corresponding to theC variables is non-zero. For the sake of consistency,
we now adopt the notation in [17].

Reduction-based AMGr methods use only smoothing in the space of fine degrees of
freedom,F , and, as such, can be interpreted as multiplicative hierarchical basis methods
based on the space decomposition

(3.9) V = SVs + PVc

with associated interpolation operatorsP : Vc → V andS : Vs → V . Note that writing
V = Cn, so thatVc = Cnc andVs = Cns , givesP ∈ Cn×nc andS ∈ Cn×nf . In general,
we assume that[S, P ] is a square invertible matrix, so thatnf + nc = n. This is obviously

fulfilled in the case whereP =
[

W
I

]
, for W ∈ Cns×nc andS =

[
I
0

]
. In this case, the

splitting in (3.9) is direct.
In the following, we impose certain restrictions on these subspaces to define a two-grid

hierarchical basis method. First, define the coarse-grid matrix Ac and its hierarchical com-
plementAs as

Ac = PHAP, As = SHAS.

Additionally, for a given smoother,Ms : Vs → Vs for As (on Vs), define its symmetrized
version,

M̃s = MH
s

(
MH

s +Ms −As

)−1
Ms,
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and introduce the following variational definition of the Schur complement,SA, ofA, induced
by the above space decomposition,

vHSAv = inf
w

(Sw + Pv)H A (Sw + Pv) .

Note that this definition ofSA is equivalent to the usual definition,SA = Acc −AcfA
−1
ffAfc;

cf. [1, Thm. 3.8].
The strengthened Cauchy-Bunyakowski-Schwarz (CBS) inequality [1, Eq. (9.5)], which

provides a bound on the abstract angle between two subspaces, can also be used to bound the
spectral equivalence betweenAc andSA, as needed in (3.8). Let γ ∈ [0, 1) be the smallest
constant such that

〈Sw, Pu〉2A ≤ γ2‖Sw‖2
A‖Pu‖2

A ∀w ∈ Vs, ∀u ∈ Vc.

Due to [17, Lemma 2.1], it follows that
(
1 − γ2

)
Ac ≤ SA ≤ Ac

or, equivalently,

(3.10) SA ≤ Ac ≤ 1

1 − γ2
SA .

The two-grid hierarchical basis method (a symmetric two-level AMGr method) is defined
by the error propagation operator

E = I −B−1A =
(
I − SM−H

s SHA
) (
I − PA−1

C PHA
) (
I − SM−1

s SHA
)
.

Note that we assume here that the cycle uses both pre- and post-smoothing.
THEOREM 3.1. Let Ms be Hermitian and positive-definite, and letγ be the small-

est constant such that relation(3.10) holds. Assume that there exist positive constants,
0 < c1 ≤ c2 < 2, such that

(3.11) c1Ms ≤ As ≤ c2Ms.

ThenMs is a convergent smoother forAs. Furthermore, the two-grid multiplicative hierar-
chical basis method defined byE with smootherMs satisfies

‖E‖A ≤ 1 − 1 − γ2

α
, whereα = max

(
1

c1 (2 − c1)
,

1

c2 (2 − c2)

)
.

Proof. First note thatc1Ms ≤ As ≤ c2Ms impliesc1I ≤ M
−1/2
s AsM

−1/2
s ≤ c2I which

gives(1 − c2)I ≤ I −M
−1/2
s AsM

−1/2
s ≤ (1 − c1)I. It follows that

ρ(I −M−1
s As) = ρ(I −M−1/2

s AsM
−1/2
s ) ≤ max{|1 − c1|, |c2 − 1|} < 1,

and, so,Ms defines a convergent smoother forAs. Due to [17, Theorem 4.2], we also have
that

(3.12) A ≤ B ≤ KA, whereK ≤ 1

1 − γ2
sup
w

wHM̃sw

wHAsw
.

Thus,

(3.13) ‖E‖A ≤ 1 − 1

K
.
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Note thatsupw
wH fMsw
wHAsw

can equivalently be defined as the smallestβ for which M̃s ≤ βAs.
Now,

M̃s ≤ βAs ⇔Ms (2Ms −As)
−1Ms ≤ βAs

⇔ A
− 1

2

s MsA
− 1

2

s

(
2A

− 1

2

s MsA
− 1

2

s − I
)−1

A
− 1

2

s MsA
− 1

2

s ≤ βI.

From (3.11), 1
c2

I ≤ A
− 1

2

s MsA
− 1

2

s ≤ 1
c1

I and, thus,

(3.14) β ∈
{

t2

2t− 1
: t ∈

[
1

c2
,

1

c1

]}
.

Note that 1
c2

> 1
2 by the hypothesis. Taking the maximum of the set in (3.14), we see that

β ≤ α = max

(
1

c1 (2 − c1)
,

1

c2 (2 − c2)

)
.

Thus,supw
wH fMsw
wHAsw ≤ α, and

(3.15) K ≤ α

(1 − γ2)
.

Combining this with (3.13), we have

‖E‖A ≤ 1 − 1 − γ2

α
.

COROLLARY 3.2. Let the Hermitian and positive-definite matrixDs be given and the
assumptions of Theorem3.1be satisfied. Further, assume that there are positive constants,λ
andΛ, such thatλDs ≤ As ≤ ΛDs. Define the smoothing operatorMs as

(3.16) Ms =
1

σ
Ds, for σ =

2

Λ + λ
.

Then,

‖E‖A ≤ 1 − 4λΛ

(Λ + λ)
2

(
1 − γ2

)
.

Proof. With (3.16), we havec1 = 2λ
Λ+λ andc2 = 2Λ

Λ+λ so that

1

α
= c1 (2 − c1) = c1c2 =

4λΛ

(Λ + λ)
2 .

The requirements in (3.7) and (3.8) are tailored to reflect the smoothing property ofDR

and the quality of interpolation defined byDP compared to the ideal interpolation opera-
tor P∗. For a given choice ofDs, the bound in (3.7) can be directly turned into a bound
on‖E‖A, as in (3.16). The relationship between (3.8) and (3.10) arises through the strength-
ened Cauchy-Bunyakowski-Schwarz inequality for the coarse subspace spanned byP and the
corresponding fine subspace, measuring the abstract angle between them. A more thorough
analysis of this relation can be found in [17, 28].
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Following [17], we can also derive an estimate for the convergence of a two-grid method
that uses full smoothing, i.e., smoothing on bothF andC, rather than smoothing on onlyF .
Hence, this result also applies to full-grid Jacobi or Gauss-Seidel smoothing, which are of
interest in a final implementation as they tend to yield far superior smoothing properties than
F -smoothing alone.

To analyze this case, consider a two-grid method given by itserror propagator,

Etg = I −B−1
tg A.

Generalizing the above approach, we can interpret the two-grid method with full smooth-
ing in the same framework as was used for the analysis of theF -smoothing case. Instead
of using a smoother,Ms, on Vs with ‖I − M−1

s As‖As
≤ 1, we consider a smoother

M ∈ Cn×n with ‖I −M−1A‖A ≤ 1 and analogously to (3.10) its symmetrized versions

M̃ = MH
(
MH +M −A

)−1
M andM̄ = M

(
MH +M −A

)−1
MH . Note that this is

equivalent to assuming thatS = I ∈ Cn×n. The two-grid preconditionerB−1
tg may then be

written as

B−1
tg =

[
I P

]
B̂−1

tg

[
I
PH

]

with

B̂−1
tg =

[
I −M−HAP
0 I

] [
M̄−1 0

0 A−1
c

] [
I 0

−PHAM−1 I

]
.

Assuming that̃M gives a convergent smoother forA with

A ≤ M̃ ≤ κA

and thatP is chosen so that

Ac ≤ νSA,

then [17, Theorem 5.1] gives the bound

‖Etg‖A ≤ 1 − 1

νκ
.

If ν andκ are independent ofn, then this bound is independent of the problem size. For the
F -smoothing case, we can look at (3.16) as a refinement of the condition oñM , while the
conditions onAc are equivalent in the two cases.

4. Implementation details and practical issues.In this section, we give a detailed
discussion of the practical issues that must be addressed when designing an effective adaptive
AMGr setup algorithm for the disordered and nearly singularsystems arising in lattice gauge
theories. Particular attention is paid to the two-level setup algorithm, noting that the multilevel
algorithm follows immediately from recursion. While many other approaches are possible,
we consider only a variational construction and, thus, limit our discussion to the construction
of interpolation,P . In Section5, we will consider a fixed choice of relaxation (Gauss-Seidel
on the full matrix,A).
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4.1. Compatible-relaxation-based coarse-grid selection. The first main task in the
AMG setup algorithm is the partitioning of the grid into appropriate sets of coarse and fine
variables. Given a certain localized structure of the linear operatorA, as occurs in most
discretizations of PDEs, a coarse-grid variableu

(c)
k is generally defined through a weighted

linear combination of fine-grid variables and “nearby” coarse-grid variables [4],

u
(c)
k =

∑

i

µkiui.

In our approach, however, we will take the more-standard approach and assume that the
coarse-grid variables are simply a subset of the fine-grid variables.

We consider various compatible relaxation (CR) based approaches for partitioning the
fine degrees of freedom (dofs) into a coarse set,C, and its complementary set,F , the fine-
level-only dofs. In its simplest form, compatible relaxation is a relaxation scheme that is
confined to the fine-grid variables keeping the coarse-grid variables fixed. As shown in [16],
the convergence rate of compatible relaxation is directly related to the convergence of the
algebraic multigrid method that incorporates the same coarse grid and can, thus, be viewed
as a quality measure of the coarse set. As such, compatible relaxation can be used to develop
a practical adaptive approach for coarse-grid selection [4, 21, 6].

In our context, fast convergence of CR can be used to show thatAff , the restriction
of A to the setF , is well conditioned with respect toMff , the restriction of the relaxation
matrix to F , an essential condition for bounding (3.11) with reasonable constants,c1 and
c2. Indeed, if we consider compatible relaxation with error-propagation operator defined by
Ef = I −M−1

ff Aff and let

(4.1) ρ(Ef ) ≤ a < 1

andλ be any eigenvalue ofM−1
ff Aff , then1 − λ is an eigenvalue ofI −M−1

ff Aff . From
(4.1), we have that

|1 − |λ|| ≤ |1 − λ| ≤ a, implying 1 − a ≤ |λ| ≤ 1 + a.

Thus,κ(M−1
ff Aff ) ≤ (1+a)/(1−a). It also follows from (4.1) thatMff is positive definite.

The smallest eigenvalue ofAff is, then, estimated as

λmin(Aff ) = inf
ϕ 6=0

ϕHAffϕ

ϕHϕ
≥
λmin(M

−1/2
ff AffM

−1/2
ff )

λmax(M
−1
ff )

=
λmin(M

−1
ff Aff )

λmax(M
−1
ff )

≥ (1 − a)λmin(Mff).

Estimating the maximum eigenvalue ofAff in a similar fashion leads to the inequality

(4.2) λmax(Aff ) ≤ (1 + a)λmax(Mff ).

It then follows that

κ(Aff ) ≤ κ(Mff )
1 + a

1 − a
and, similarly,(1 − a)Mff ≤ Aff ≤ (1 + a)Mff .

For the Jacobi relaxation scheme, this bound can be interpreted as the spectral equivalence
of Aff and its diagonal,Dff . This, then, can lead to a proof that fast convergence of CR
implies a well-conditionedAff for certain problems that arise from PDE discretizations.
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Promising adaptive coarse-grid selection techniques havebeen developed based on the
idea of compatible relaxation [21, 6, 9]. In what follows, we discuss an implementation
of a coarsening algorithm that uses compatible relaxation.For completeness, we include
pseudocode for this approach in the appendix as Algorithm1. In the compatible relaxation
framework, the quality of a givenC/F -splitting is measured by the convergence rate of relax-
ation on theF -variables with theC-variables fixed. Aiming at a specified convergence ratea,
CR approaches successively add variables to the set of coarse variables until the target con-
vergence factor is achieved. Starting with an empty set ofC-variables and an initial errore0,
compatible relaxation exposes variables for which relaxation convergence, when measured
by the pointwise change in a known error, e.g., iterating on the homogeneous problem, is
slower than a chosen threshold. Because each variable influences the convergence of vari-
ables in its neighborhood when using a local relaxation scheme (such as Richardson, Jacobi,
or Gauss-Seidel), it may not be necessary to add all variables that are slow to converge in CR
to the setC. Instead, in each cycle a maximally independent set of slow-to-converge variables
is added toC. That is, in each iteration of the process we add a disconnected subset of the
remaining fine-grid variables toC, where connectivity is defined by the graph canonically
associated toA. This process is repeated until the convergence of CR is deemed to be fast
enough. A detailed description of the algorithm consideredhere can be found in [6].

Results such as Theorem3.1 and its corollary can also be useful for development of
coarsening techniques that ensure fast convergence of compatible relaxation without having
to run CR iterations to test convergence, a main cost of most CR-based coarsening procedures.
In [25], one such algorithm, a greedy strategy using a measure of diagonal dominance ofAff

for coarse-grid selection, was introduced. We briefly review this approach now, referring the
reader to Algorithm2 in the appendix for a more detailed description.

The goal of coarsening is to partition the fine-level variables into disjoint sets,F andC,
such thatF ∪ C is the entire fine grid. For a given partition, the following function measures
the diagonal dominance of rowi of the resulting matrixAff ,

θi =
|aii|∑

j∈F |aij |
.

Classical diagonal dominance corresponds toθi ≥ 1
2 for all i in this definition. Given a

threshold,θ, the greedy strategy from [25] tries to find the largest subset,F , of the variables,
such thatθi ≥ θ for all rowsi of Aff .

To do this partitioning, a third set of “undecided” variables,U , is introduced to represent
variables that have not been assigned toC orF . A dynamic measure,

(4.3) θ̂i =
|aii|∑

j∈F∪U |aij |
,

tracks the diagonal dominance of each row inU . If θ̂i ≥ θ for any i ∈ U , variablei is
automatically added to the set of fine variablesF . If there are no such variables, the least di-
agonally dominant variable,i ∈ U , is added to the set of coarse variables,C, and the dynamic
measure is updated for all variables in the neighborhood ofi (in the grid-interpretation of the
matrixA). This procedure is repeated until a splitting of the problem domain intoF andC is
achieved, i.e., untilU is empty.

As in [25, Theorem 4], theAff block after the greedy coarse-grid selection satisfies

(4.4)

(
2 − 1

θ

)
Dff ≤ Aff ≤ 1

θ
Dff ,
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TABLE 4.1
Greedy coarsening and compatible-relaxation-based coarsening for several odd-even reduced Gauge Lapla-

cians on a64 × 64 grid, with all systems shifted so that the smallest eigenvalue λmin is λmin = 1.0 × 10
−4.

Greedy Algorithm Performance CR Algorithm Performance
System θ Λth

λth

Λobs

λobs

|C|
|Ω| γCR

β = 1 .55 10 6.539 .299 .648
β = 1 .60 5 4.212 .418 .513
β = 1 .65 3.33 2.938 .499 .446
β = 5 .55 10 6.910 .268 .691
β = 5 .60 5 4.041 .419 .554
β = 5 .65 3.33 3.127 .478 .538
β = 10 .55 10 6.740 .267 .694
β = 10 .60 5 4.113 .421 .570
β = 10 .65 3.33 3.060 .477 .533

System a |C|
|Ω| γCR

β = 1 0.7 .304 .655
β = 1 0.65 .367 .606
β = 1 0.6 .379 .568
β = 5 0.7 .266 .675
β = 5 0.65 .419 .631
β = 5 0.6 .440 .573
β = 10 0.7 .301 .682
β = 10 0.65 .398 .643
β = 10 0.6 .427 .580

whereDff = diag(Aff ). Clearly, the spectral equivalence ofDff andAff gets better asθ
increases. Note that (4.4) is equivalent to (3.7) with DR = Dff andλ = 2 − 1

θ ,Λ = 1
θ . In

Table4.1, the performance of the greedy coarse-grid selection with respect to the theoretical
bounds from (4.4) and the observed best possible bounds, which can be computed from the
respective generalized eigenvalue problem, are provided.In addition, we estimate the spectral
equivalence bounds betweenAff andMff and also report the convergence rate,γCR, of CR
for these partitions. We also report on the CR convergence rates for compatible relaxation
run on these same problems, for values ofa that produce similar coarsening ratios,|C|

|Ω| .
In general, the best possible equivalence bounds for the greedy strategy are a lot better

than what the theory predicts. In particular, forθ = 0.55 we obtain a relatively aggres-
sive coarsening along with good spectral equivalence betweenDff andAff . Because of
the similarity between the performance of the greedy and compatible-relaxation coarsening
algorithms, we only give results using compatible relaxation in Section5.

4.2. Adaptivity in the modified AMGr framework. As proposed in [23], we use
an adaptive scheme to defineDP and, hence, the interpolation operator,PDP

. As fast-to-
converge Jacobi-CR implies thatAff can be accurately approximated by a diagonal matrix,
we takeDP to be diagonal. Under this assumption, we chooseDP so thatD−1

P matches the

action ofA−1
ff on a given vectoru =

[
uf

uc

]
that corresponds to the near-kernel; i.e., we require

(4.5) −D−1
P Afcuc = uf = −A−1

ffAfcuc

for a givenuc. The key issue to consider when attempting to design an efficient adaptive
AMGr solver in this setting is then reduced to development ofan efficient scheme for com-
puting the prototype,u, used to defineDP . The classical adaptive methods [10, 11, 12]
use repeated application of the given relaxation scheme (orthe resulting solver) to compute
(or improve) the prototype. In general, the two main drawbacks of this approach are that,
first, there is no theoretically founded stopping criterionavailable for such an approach that
guarantees its optimality; and, second, such a classical adaptive process requires (roughly)
O(log(K)) setup iterations, whereK is the condition number of the matrix, to compute
a sufficiently accurate approximation of the prototype [22]. For the Gauge Laplacian, the
smallest eigenmode is often not a good local representativeof the algebraically smooth error,
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TABLE 5.1
Odd-even reduced5-pt discretization of the Laplace operator with Dirichlet boundary conditions shifted so

that the smallest eigenvalue isλmin. V(2, 2)-cycle asymptotic convergence rates with Gauss-Seidel smoother, using
Gauss-Seidel relaxation applied to a positive random initial guess in the adaptive setup phase.

nrel \ λmin 10−1 10−2 10−3 10−4 10−5 10−6

5 .06 .02 .04 .37 .85 .98
25 .07 .02 .05 .05 .38 .86
50 .07 .02 .05 .05 .17 .66
100 .07 .02 .06 .06 .06 .16
500 .07 .02 .06 .06 .06 .06

exact .07 .02 .06 .06 .06 .06

which further compounds the difficulty of developing an adaptive scheme for this system.
Our numerical experience suggests that developing the solver using a setup scheme for the
problem shifted to have only a mild smallest eigenvalue, or perhaps a large smallest eigen-
value, and, then, using the resulting multigrid solver for the unshifted system provides a much
more effective preconditioner than does directly applyingthe setup to the problem with full
shift, which typically has much larger condition number. This seems to be mainly due to the
fact that, as we shift the hopping parameter towards its critical value, the relative gap between
the smallest few eigenvalues and the remaining ones increases. As this relative gap becomes
larger, the adaptive process becomes increasingly dominated by these few modes.

5. Numerical results. For our numerical tests, we consider Gauge Laplacians of vary-
ing size, mass, and temperature to test the AMGr-style method. As a benchmark for later tests
of our method applied to the Gauge Laplace system, we first consider theβ = ∞ case with
Dirichlet boundary conditions, which gives the standard 5-point discrete shifted-Laplacian
operator,

L = −∆ − (2π2 −m)I,(5.1)

obtained using a central-difference discretization. Here, the lowest eigenmode is known and
has global support; specifically, this lowest mode is the restriction of sin(πx) sin(πy) to the
grid points, and the lowest eigenvalue can be determined by the choice of shift,m. This prob-
lem was a first test case in the development of the original adaptive AMG setup process [22].
To illustrate the performance of the original adaptive process for such problems, we consider
this problem with the shift chosen so that the system becomesincreasingly ill-conditioned
for fixed problem sizes. As the numerical results provided inTable5.1 illustrate, such an
adaptive setup procedure produces an effective solver for this model problem provided that
a sufficient amount of work is done to expose the lowest mode ofthe system matrix, i.e., a
sufficient amount of work is done to ensure that the weak approximation property [26, 3] is
satisfied byP , built using this computed vector for the given shift.

Next, we report the results of this original adaptive setup applied to a highly disordered
system. The numerical results in Table5.2 correspond to this scheme applied to a Gauge
Laplacian with randomly configured gauge field. Here, we takeβ = 5 andN = 64 and
again vary the minimal eigenvalue and number of relaxationsused to approximate the lowest
eigenmode of the fine-level system. As the numerical resultsin Table5.2 demonstrate, in
contrast to theβ = ∞ case, here increasing the number of relaxations used in the adaptive
process eventually leads to degradation in performance of the resulting solver based on this
single mode. Further, we see that this degradation is more severe in cases where the minimal
eigenvalue isO(10−3) orO(10−4). This is consistent in all tests, except for the last column
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TABLE 5.2
Odd-even reduced Gauge Laplace operator with periodic boundary conditions shifted to a fixed smallest eigen-

value. V(2, 2)-cycle asymptotic convergence rates with Gauss-Seidel smoother, using Gauss-Seidel applied to a
complex-valued random initial guess in the adaptive setup phase. In parentheses, we report the iteration count for
preconditioned CG to reduce the initial residual by a relative factor of108. For the line labeled “LC”, a linear
combination of the eigenvectors associated with the ten smallest eigenvalues of the system matrix, weighted by the
reciprocal of their eigenvalues as the vector to be fit in the adaptive setup phase. The line labeled CG contains iter-
ation counts of the Conjugate Gradient method applied to this system as a stand-alone solver; again the (relative)
residual is reduced to10−8 in these tests.

nrel \ λmin 10−1 10−2 10−3 10−4 10−5 10−6

5 .4 (9) .79 (15) .97 (19) .99 (21) .99 (23) .99 (25)
25 .32 (9) .53 (11) .83 (14) .98 (15) .99 (17) .99 (18)
50 .31 (8) .55 (11) .72 (12) .95 (14) .99 (15) .99 (17)
100 .28 (8) .52 (10) .65 (13) .9 (14) .99 (16) .99 (17)
300 .32 (8) .48 (10) .53 (10) .54 (10) .61 (11) .89 (13)
500 .33 (8) .5 (10) .6 (11) .6 (11) .60 (11) .62 (11)

exact .31 (8) .53 (10) .61 (12) .61 (11) .62 (12) .62 (12)
LC .35 (8) .43 (9) .67 (11) .67 (12) .62 (11) .62 (12)
CG (44) (75) (107) (231) (343) (435)

where the minimal eigenvalue is shifted to beO(10−6). In this case, using the exact lowest
mode does provide the best overall solver. This is to be expected as the weak approximation
property implies thatP must be able to reproduce this mode very accurately. Becauseof the
local support of the smoothest eigenvalues for this problem, we see that using the minimal
eigenvector is, in general, a suboptimal choice for the vector in the adaptive setup scheme.
While each of these modes is supported locally, their support does not, in general, overlap
exactly. In such cases, a linear combination of these modes may give a better approximation
to the slow-to-converge modes of the system matrix.

To test this approach, we consider an “artificial” adaptive process that uses a linear com-
bination of the eigenvectors associated with thek smallest eigenvalues of the system matrix,
weighted by the reciprocal of their eigenvalues, as the vector to be fit in the adaptive setup
phase. We choosek = 10 as this gives good performance in our numerical tests. Results for
this approach are shown in Table5.2 in the line labeled “LC”. Here, we see that the perfor-
mance of the stand alone MG solver based on this approach is not, in general, better than that
of the solver based onP defined using a prototype computed using relaxation. As the lowest
modes can be local, using relaxation (or a linear combination of the ten smallest eigenmodes
computed exactly) does not produce an AMGr-styleP that satisfies the weak approxima-
tion property [26, 3], which requires accuracy in the computed prototype proportional to its
Rayleigh Quotient. However, both methods produce aP that leads to an effective variational
MG preconditioner.

The results in Table5.3are for various problem sizes and choices ofβ. Here,P is defined
using the prototype computed by using relaxation and also bytaking a linear combination of
the ten lowest modes. As before, we see that both solvers perform well as a preconditioner for
CG. Overall, our proposed AMGr-style method, based on a single prototype, is not expected
to produce an optimal stand-alone solver for these systems.Our numerical results suggest
that the approach does, however, have potential for dramatically improving CG performance
for cases where the more expensive multiple-vector type adaptive methods (e.g.,α SA) are
not applicable. An example of such setting was mentioned earlier, where only system solves
for O(1) right hand sides are needed for a given gauge field configuration.
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TABLE 5.3
Odd-even reduced Gauge Laplacians of various sizes and temperaturesβ, shifted so that the smallest eigen-

value is 1

N2
. AMGr 2-level V(2, 2) preconditioner with Gauss-Seidel smoothing for CG using both a linear com-

bination of the smallest ten eigenmodes, scaled by their associated inverse RQs to defineP (shown first) as well as
using relaxation to define the prototype in the definition of interpolation (shown second).

β \ N 32 64 128 256
1 11 / 12 10 / 14 15 / 15 11 / 14
5 12 / 15 11/ 15 15 / 15 14 / 16
10 7 / 11 13 / 15 17 / 16 19 / 17
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Convergence plot, beta=1, m=1e−3, recomp every 10th step

FIG. 5.1.Performance of nonlinear adaptive solver to applied to the Gauge Laplacian withβ = 1 andN = 64.

5.1. Non-linear adaptive cycling schemes.A possible (practical) variant of the station-
ary adaptive setup schemes for the Gauge Laplace systems is given by a non-linear iteration
in which we consider integrating the adaptive setup and solve phases into a single, non-linear,
solution process. The most basic implementation of non-linear adaptive cycling schemes is to
run the solver for the homogeneous and the inhomogeneous systems simultaneously and use
the homogeneous system to improve the solver while solving the inhomogeneous problem.
If we start with a fixed AMG method and apply a small number of steps of the method to
both the homogeneous and inhomogeneous systems, we can adaptively tune our approach. If
the convergence of the solver measured on the homogeneous system is fast enough, we con-
tinue to use this method for the non-homogeneous system of interest. If, on the other hand,
the convergence factor of the method on the homogeneous system is larger than a certain
threshold, we incorporate the current error computed for the homogeneous system as a new
near-kernel prototype in an additional reduction-based AMG setup process to define a new
method and, then, continue the iteration using this method.Heuristically, this method is moti-
vated by the fact that each of these successive AMG methods removes certain components of
the near-kernel, but fails to remove others. Incorporatingthe evolving error into a new AMG
method yields an effective iteration for treating this error in the inhomogeneous system. To
prohibit previously treated error from reappearing in the solution, we can cycle through a set
of methods created in this non-linear adaptive process. In Figure5.1, we provide a plot of the
residual versus number of nonlinear adaptive AMG iterations applied to the Gauge Laplacian
with β = 1 andN = 64. We note that the number of nonlinear iterations needed to reduce the
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residual by108 is again significantly less for this adaptive scheme than it is for the CG solver.
Further, we mention that the iteration counts reported hereare for the nonlinear solver ap-
plied as a stand alone solver, as opposed to a preconditionerto CG. Combining our nonlinear
scheme with aflexibleCG solver [27] will improve the performance of this method. Finally,
we mention that our reported results are representative of the performance of this solver for
varying problem sizes, shifts and configurations of the gauge field.

6. Concluding remarks. In this paper, we analyze and develop an adaptive reduction-
based AMG algorithm for highly disordered nearly singular systems encountered in gauge
theories discretized on a lattice. We provide two-level convergence theory for AMGr-type
methods for HPD matrices. Using this theory, we develop practical measures and tools for
constructing an effective MG method for such systems. Further, we explore variants of this
adaptive AMGr process for a simplified two-dimensional Gauge Laplacian system and show
that these approaches can provide effective preconditioners in this setting. The reduction in
iteration counts of our solver over CG, coupled with the low grid and operator complexities
of this MG method that results from our chosen form of interpolation are, thus, expected to
significantly improve time to solution for this Gauge Laplace system. Further, as the problem
size increases, this improvement is expected to become evenmore dramatic.

Appendix A. Coarsening algorithms.Algorithm 1 describes the implementation of the
CR coarsening strategy. Herein,Ei measures how slowly theF -variablei converges. Algo-
rithm 2 describes our implementation of the greedy coarsening strategy. We use
Adj(j) = {i 6= j|aij 6= 0} to denote the graph neighborhood of variablej in the graph
associated toA.

Algorithm 1: Coarse-grid selection using compatible relaxation.
Input : A, e0
Output : F , C
F = {1, 2, . . . , n}, C = ∅,m = 0;
Do k CR sweeps onAe = 0, measure convergence rateµCR := ‖e(k)‖/‖e(k−1)‖;
while µCR > a ANDm < mmax do

E = 1
maxi(ei)

e;

U = {i, |Ei| > 1 − a};
Compute maximal independent setC∗ of U ;
UpdateC = C ∪ C∗, F = F \ C∗;
m = m+ 1;
Do k CR sweeps onAe = 0, measure convergence rateµCR;
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