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Abstract. We characterize the spectral behavior of a primal Schurptement-based block diagonal precondi-
tioner for saddle point systems, subject to low-rank modifams. This is motivated by a desire to reduce as much
as possible the computational cost of matrix-vector prézludth the (1,1) block, while keeping the eigenvalues of
the preconditioned matrix reasonably clustered. The fdaition leads to a perturbed hyperbolic quadratic eigen-
value problem. We derive interlacing results, highligbtthe differences between this problem and perturbed linear
eigenvalue problems. As an example, we consider primdlidtexior point methods for semidefinite programs, and
express the eigenvalues of the preconditioned matrix ingef the centering parameter.
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1. Introduction. Consider the following saddle point system coefficient imatr

(1.1) H = [ E: AOT ]

We assume thdf and A have dimensions x n andm x n respectively, withn < n, that
E is symmetric positive definite, and that has rankn. The use of the inverse in the (1,1)
block is purely notational, to highlight the fact that we ke the semidefinite case. We
will, however, assume th& could be very ill-conditioned. Saddle point systems of threrf
(1.2) arise in numerous applications, ranging from optimiza{iog] to solution of PDEs ]
to other areas, and their iterative solution has been stiigjextensive study in the last couple
of decades; seéd|] for a comprehensive survey.

A key for the rapid convergence of an iterative method fomaédir system of the form
Hz = b is the availability of an effective preconditioner, whickewvill denote through-
out by K. Each step of amuter iteration for solving the preconditioned linear system
K'Hxz = K~'b (using, sayMINRES [19)) requires the solution of amner linear sys-
tem whose coefficient matrix IK. Therefore, convergence of the outer iteration is fastef th
eigenvalues of the preconditioned matix ' H are clustered, but careful attention must be
paid to the conditioning and eigenvalue distribution of mhatrix K itself, which determine
the speed of convergence of the inner iteration.

Consider the preconditioner

E1+ATW-IA 0
(1.2) K= 0 W |

with W anm x m symmetric positive definite matrix. Here, we have Bat;, the (1

1)
block of K, to the primal Schur complement of the matrix obtained byaeipgHs: = 0
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by the stabilizing negative definite matrixW. A motivation for this is that even it is
ill-conditioned, by selecting an appropriate weight mafiV it is possible to makd<;
relatively well conditioned. This will enable us to solveetiner systems efficiently using
the conjugate gradient method. For a discussion of pretiondig techniques based on
this and related approaches, their analysis, and apmlit&ii boundary value problems, see
[5, 6, 14, 21].

In [14] it is shown that withK defined as in1.2), the preconditioned matriK —'H
has an eigenvaluk of algebraic multiplicityn, that the negative eigenvalues all lie between
—1 and0, and that ifH,; is allowed to be singular with nullity (which is not the case in
the current paper) them negative eigenvalues are exactht. This characterization of the
clustering of the eigenvalues shows thatlf can be solved within a small number of outer
iterations. The multiplicities of the eigenvalues of the@nditioned matrix hold regard-
less of the choice of the weight matW, and a good choice may help reduce the overall
computational cost, by efficiently solving the inner itévas associated witk ;.

This leads to the main question that we investigate in thpepaSuppose we want to
consider preconditioners of the type.9), ensuring thak;; is well conditioned even when
E is ill-conditioned, but at the same time we aim to reduce th& of performing matrix-
vector products withK;. This may occur when the construction of rows Afor their
multiplication with a vector entails a high computationast One way to address this is by
replacingW —! in K by a simple, lower rank matri¥. Then, ifV is diagonal and some of
its diagonal entries are zero, not all rowsAfare used when forming matrix-vector products
with K;;. We would like to explore whether this is possible withougidaling the condition
numbers and the spectral distributiong6f, andK ~'H too much.

In Section2, we set the stage for exploring this issue. WeXet W !, and provide a
few new results on the eigenvalues of the preconditionedixpapecifically exploring con-
nections to the eigenvalues of the dual Schur complemerit. ©)f. (In Section3, we present
a perturbed hyperbolic quadratic eigenvalue problem amg@aew interlacing results. In
Section4, we apply our results to primal-dual interior point methdds semidefinite pro-
gramming.

For notational convenience, the eigenvalues in the lemmdstaeorems below are or-
dered as follows: eigenvalues of symmetric positive defimiatrices are ordered in ascending
order; eigenvalues of symmetric indefinite problems arered in descending order.

2. Preconditioning with a low-rank weight matrix. Motivated by the arguments made

in the Introduction, consider the following block diagonaétrix, which generalizesl(2), as
a preconditioner forX.1),

E-'+ATVA 0
(2.1) K= 0 w |

whereV, W arem x m symmetric matrices. Likewise, the, 1) block of the preconditioner
is now generalized to

Ki; =E '+ ATVA.

We will chooseW to be positive definite an¥ to be a positive semidefinite rank — s
correction of W1 as follows,

(2.2) W!l=v+YTY,
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whereY € Rm=s)xm (0 < s < m, with full row rank. If s = m, Y is “empty” and
V =W ie., .1 reducestol.2). The following lemma includes this case.

LEMMA 2.1. The preconditioned matriK —'H has an eigenvalug = 1 of algebraic
multiplicity n — m + s. The corresponding eigenvectors are of the fqrm W~ Aw). If
s = m thenanyset ofn linearly independent vectors € R™ qualify. Otherwise, a possible
set of eigenvectorgy, W~ Aw) is defined by, — m vectorsw that are linearly independent
null vectors ofA, ands additional null vectors olY'A that are not null vectors oA, that is,
w satisfied) # Aw € null(Y).

Proof. The eigenvalue problem f&—'H is

R a1

(2.3) A 0 z 0 A% z

From the first block row we have
(2.4) ((30 ~1DE'+ goATVA)w — AT,

If ¢ = 1, (2.4) simplifies toA”VAw = ATz. In this case, from the second block row of
(2.3 we havez = W~ Aw, and hence

(2.5) ATVAw = ATW T Aw.

We can readily see that there are vectorg 0 that satisfy this equation, and therefare= 1
is indeed an eigenvalue & ~'H. Notice that ifAw # 0, thenATW~1Aw # 0, sinceA
has full row rank. IfV = W~ then @.5) holds for anyw. Otherwise, under relatior2(2
betweenV andW, (2.5) simplifies to(YA)T YAw = 0. Sincerank(Y) = m — s there are
s linearly independent vectors other than the null vectord dhat satisfy this relation, and
they are as stated in the lemma. 0O

In the special cas®¥ = W~! we can provide further insight. Let us first show that a
matrix we will need to invert later is nonsingular.

LEMMA 2.2.Suppos& = W ! and lety be an eigenvalue & —'H. Then the matrix

T(p) = (¢ — HE™' + pATVA

is singular if = 1 and nonsingular otherwise.

Proof. First, note that sincél is nonsingulary cannot be zero. SindK is symmetric
positive definite,K'/? exists and the eigenvalues B—'H are identical to those of the
symmetric matrixK ~*/2HK ~!/2. The inertia of the latter is equal to the inertialdf and
hence we must have thateigenvalueg are positive anan are negative. By Lemm2 1the
multiplicity of the positive eigenvalug = 1 isn, and therefore all the remaining eigenvalues
» must be negative.

If o = 1thenT = ATVA, which is singular since it is x n but its rank is at mosta.

If ¢ # 1then we must have < 0 by the above inertia considerations, afdn this case is
negative definite, hence nonsingular. 0O

Theoren?.4below relates the eigenvalueslsf-' H to the eigenvalues of the dual Schur

complement of1.1),

(2.6) M = AEAT.

We start with a lemma.
LEMMA 2.3.Define

E'l=(p-1E!, V=¢V, M=AEA"
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Then, ifp # 1,
(AT AT ' =M+ V.

Proof. This follows readily from [L0], or can be obtained by using the Sherman-Morrison

formula; see alsod, 11]. We have
T '=(E'+ATVA) ! =E—-EAT(I+ VAEAT) 'VAE.
Thus
AT AT = A (E —BAT(I+ VAEAT)*\?AE) AT
=M - M+ VM) 'VM.

One can verify thal — (I + VM)~!VM = (I + VM)~L. Finally, it is immediate to see
thatM(I+ VM)~! = (M~! + V)1, which completes the proof. O

Continuing on with consideriny = W', the specific choice of a scalar multiple of

the identity allows us to relate the eigenvalue¥of' H to the eigenvalues d¥I; we denote
the latter by

(2.7) 0<1n << rm

We have the following result.

THEOREM 2.4. Suppos&/ = W~! = 3I, and lety; be the eigenvalues &I defined
in (2.6), ordered as in2.7). Then, the eigenvalues of the preconditioned mdiix' H are
given, in descending order, as follows:

(p‘]:]" j:17,n,
—B7;
B +1

(2.8)

—1< Qnyj = <0, j=1,....m.

Proof. The multiplicity of ¢ = 1 has been established in Lemrad. Consider now
 # 1. The matrix multiplyingw on the left hand side o2(4), namelyT(y), is nonsingular
by Lemma2.2. Multiplying (2.4) by T—! and usingAw = oWz from (2.3), we obtain

(2.9) AT AT, = oWz,
By Lemma2.3, (2.9 is equivalent to
(2.10) z=p(M™ + V)W

SubstitutingM ! = (o — 1)M~L, V = gL, andW~! = gI , (2.10 is equivalent to

(2.11) Pl — Mz = B(1 - ¢?)z,
orMz = —%ﬁz. Thusy; = —Wﬁ”i%, which gives the second equation @f§). O

It follows from Theoren?.4that the value ofi may be used to control the eigenvalues.
The larger it is, the closer the negative eigenvalues ginef2.i8) are to—1, and hence the
smaller the number of expectadiNRES iterations. However, there is a tradeoff, because
the rate of convergence of the preconditiom&ter iteration, namely the linear system solve
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for K11, depends in a different way gi Let us make the assumption, valid in the case of
semidefinite programming discussed in Sectipthat the costs of multiplication of vectors
by E andE~! are comparable. ThuE provides a preconditioner fd&,, and the spectrum
of EK;; = I+ EATVA controls the rate of convergence of the conjugate gradiethou
to solve systems whose coefficient matridds;. WhenV is a multiple of the identity, the
characterization of this spectrum is straightforward.

LEMMA 2.5.Suppose thaV = 1. Thenn — m eigenvalues of

EK,s =I1+EATVA

are equal tol, and the remainingr eigenvalues have the fori4- 8;, j = 1,...,m.
Proof. This is a consequence of the fact that the nonzero eigeswaltithe matrix
product(EATV)A equal the nonzero eigenvalues of the prodi(EATV). O

Thus, the wish to makg large to speed up convergence of the omeyRES iteration
conflicts with the desire to makeé small to improve the rate of convergence of the inner
conjugate gradient iteration.

3. Interlacing for a quadratic eigenvalue problem. In this section we extend the re-
sults of Sectior? to the case where, instead of setti¥igo a multiple of the identity matrix,
we choose it to have lower rank; the multiplication of vestby A7 VA in the “inner” iter-
ation is then less costly. We first make an easy generalizafibemma2.5 using standard
eigenvalue interlacing results, and then we go on to geimeraheoren®.4 by extending the
interlacing results to the quadratic eigenvalue probleat #nises.

The discussion that ensues shows that the eigenvaluesmibenditioned matrix can be
expressed in terms of a low-rank modification of a hyperbgliadratic eigenvalue problem
(QEP). There is a rich mathematical theory for QEPs; seexbellent review 2] and the
recent paper]5]. However, they are not as well understood as their linegagmialue problem
counterparts. For example, interlacing results for thaeblpms are fairly scarce; se2(].

LEMMA 3.1. Suppose thaV is diagonal withs diagonal values set t6 and the other
m — s values equal to zero. Denote the eigenvalueEKf; = I + EATVA by§;, j =
1,...,n, ordered in ascending order. Then we have

0; =1, j=1,...,n—s;
1+6’YJ §5n75+j Sl_"ﬁ’yj#»mfs, jZl,...,s.

Proof. This follows from the interlacing property for symmetricatnices (L2, Theorem
8.1.8], 25, pp. 94-97]), because the matfdV = AEA”V is a rankm — s perturbation
of SM. d
This result includes Lemma2.5 as the special case= m. Likewise, the following result
includes Theorem.4 as the special case= m.

THEOREM 3.2. Suppos@V ! = SI. Let'V be a diagonal matrix witls of its diagonal
values equal tg3 and the rest zero. Denote the eigenvalue¥of'H in this case by,
ordered in descending order. Then, fesufficiently large,

vj > 1, j=1....m—s;

v =1, j=m-—s+1,...,n;
_ﬁ7j+77l75 _B'Yj .

1< ———<vpy; < <0, j=1,...,s;
BYjtm-s+1 = T By +1

v; < —1, j=n+s+1,....,n+m.
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Proof. By Lemma2.3and equations2.9—(2.10, which hold for any choice oV, we
have a quadratic eigenvalue problemvin

Bz = V((V — )M+ I/V)Z.

The cases = m follows from Theoren?.4. Below we present a proof for the case- m — 1
(thatis,V is a rank-1 change &V —1). Consider the spectral decomposition

M = UTU?, T =diag(y1,....vm).
Note thatW —! — V is diagonal, withm — s nonzero elements, all equal to We have
(VQ(I‘71 + 81 —uu”) — vt — 61)2 =0,

whereu is a column vector andl = U7 z. This is a rank-1 change to the diagonal quadratic
eigenvalue problem

(3.1) (<p2(r—1 + BI) — ! —51)2:0,

()

which correspondsto the ca¥e= W ! after performing a step of diagonalization; &.11).
This case is covered by Theoréinl. It is straightforward to show that this quadratic eigen-
value problem is hyperbolicl, Definition 1.1].

By inertia considerations similar to those presented inptfoef of Lemma2.2we must
haven positive andn negative eigenvalues. The existence and multiplicitym +s = n—1
of the eigenvalud follows from Lemma2.1. Suppose now that # 1, and consider the
matrix in (3.1), namely®(v). Itis singular if and only if is an eigenvector of3 1). But this
is covered by Theore®.4. If ® is nonsingular then

(3.2) 0 = det (VQ(I‘71 + 81 —uu”) — vt — ﬁI)
= det (u2(r—1 +BI) — o) — 51)
-1
x det (I - (1/2(1‘_1 + BI) — vt — ﬁI) IJQUUT).

By our assumption, the first determinant on the right hand sidequation $.2), which
is nothing butdet(®(v)), is nonzero and hence the second determinant must be zeranyo
two vectorsr andy we havedet (I + zy”) = 1 + yT2 [7, Lemma 5.1], and hence

det (I - (VQ(I‘fl +B1) — vt — ﬁI) _1V2uuT)
-1
= 1-v2T (1/2(1"’1 +B1) — vt — BI) u

m v2u?

1-— J .
Z vyt 8) -yt =8

Jj=1

g(v)

The expressions in the denominator can be factored as

GW) =2+ B) — vyt =B = (( 7 + B+ B) (v—1), j=1,...,m.
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Denoting the expression for the determinantdiy), the poles ofg are the roots of;,
namely,1 and the negative values given i2.§). We have

i w?v(vy; ' 4 20)
g'(v) = Z ’ ’ PR
= (5 + 8w+ v-1)

Whenv > 0 we haveg’(rv) > 0, since all quantities in the expression fgrare positive.
Therefore, the only eigenvalue that is positive but is natagé¢p 1 must be larger than 1.

For negativer, we havey’(v) < 0 if mj’l + 28 > 0. From Theoren?.4 it follows
that them poles of the functiory(v) are algebraically larger than1. Forv > —1 we have
mj‘l +28 > _%_—1 + 24, and hence fop sufficiently large we have’(r) < 0. Thus, the
subset of eigenvalues that are negat{\zg};?:ﬁl, are equal to or algebraically smaller than

their counterparts foV = W1, {;}"*" |, andm — s = 1 of them are smaller than 1.
Whenm — s is larger than 1, the proof is obtained by considering a secgief rank- 1
changes to a diagonal quadratic eigenvalue problem. Tlaéislate omitted for the sake of

brevity. d

2 : - : 200

150

100F

50r

10 4 -098 -09 -094 092 09 -088

FiG. 3.1. Left: a schematic illustration of the interlacing phenoraerfor the quadratic eigenvalue problem,
with a rank-1 change. Most of the variation occurs neat. Right: a close-up view of the interlacing of the negative
eigenvalues near-1.

For clarity, we provide a characterization of the functidm), under the conditions stated
in Theorem3.2, for a rank-1 change (that is,= m — 1); see also Fig3.1

e It has poles located at the eigenvalues of the problem destin Theoren?.4.
There aren negative poles, and one positive pole at 1.

e It has a positive derivative far > 0 and a negative derivative for < 0.

e Between0 and1 it has no roots. We have that0) = 1, and for0 < v < 1, g is
monotonically increasing and approachesasy — 1.

e For v > 1, the function is monotonically increasing. For — 17, we have
g(v) — —o0. Asv — oo, we have

g(v) — 1—2_17:_6-

i1 i

For 3 sufficiently large this value is positive and hence one roeater than exists.
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e All other roots are negative. Of themm — 1 are between-1 and(0. One root is
smaller than the smallest pole. The smallest pole is latger+1, but the root may
or may not be smaller than1.

2
e Asv — —oo, againg(v) — 1 —> ", vfi—z-kﬁ

Fig. 3.2illustrates the effect of a rank-3 modification on the spattof the precondi-
tioned matrix. Six eigenvalues of the preconditioned ma#scape’ from the range where
the other eigenvalues are trapped: these are the threekdftamd three rightmost eigenvalues
shown in the panel on the right. The tradeoff is interestthg:outemINRES iteration count
will increase by up to six steps, but every inner conjugatalgamt step requires three fewer
inner products with rows oA and three fewer inner products with columnsAof

10

- - - 10 - - -

O pos eig of -H O pos eig of -H

% pos eig of H X pos eig of H

O pos eig of -K ' H XX O poseigof-KH XX

X pos eig of K1 H Xxxxxxxxx X poseig of K1 H Xxxxx”x

1 x X 1 X X
10 o 101 o %
X
X X
X o x X
o X o O X
o X o X
% o
o [e]
100 OOOOO8OOOXXXXXXXXXXXXXXXXXXXXXXX 100 r OO8OOOXXXXXXXXXXXXXXXXXXXX
O [e]
[e] O
1071 L L L L L L 10’1
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

FiG. 3.2. Eigenvalues of a preconditioned matig ' H, with n = 23 andm = 9, whereA is randomly
generated, and& ! = BTB with B randomly generated. Lefly = I. Right: V is diagonal with20 ones and3
zeros.

4. Application to semidefinite programming. We discuss in this section the appli-
cability of the proposed preconditioning technique to regeherate semidefinite programs
(SDPs). Preconditioning of SDPs is an important and actgearch topic4, 26)].

LetS™ denote the Euclidean spacefx N real symmetric matrices with inner product
X oY =tr XY, and letX > 0 (respectivelyX > 0) mean thatX is positive semidefinite
(positive definite). Consider the primal SDP

min CeX

XeSN

such that Ay e X =bg, k=1,...,m,
X =0,

whereb € R™, C' € SV, and then data matrices!,, are linearly independent i§".
The dual SDP is

maXycrm, zeSN vy
such that S A+ Z = C.
Z = 0.

In practice, the matriceX andZ almost always have a prescribed block-diagonal structure.
The results below all extend to the block diagonal case, lmintecessary notation is quite
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cumbersome. Note that SDP reduces to linear programminigeircase thak and Z are
diagonal.

Under the assumption that the SDP has strictly feasibletpdimat is the primal SDP has
a feasible pointX > 0 and the dual SDP has a feasible pdintZ) with Z > 0, it is well
known that the optimal values of the primal and dual SDP agestime, and that the central
path, which consists of triplgsX *, y*, Z#) satisfying the primal and dual constraints as well
as the centering condition,

XHZF = pul,  for some p > 0,

exists and converges to solutions of the primal and dual SBP Ja0. Primal-dual interior-
point path-following methods generate iterates that agprately follow the central path to
find solutions to the primal and dual SDR3J. Widely used publicly available software
packages implementing these primal-dual methods inclieTS, SDPA, and SeDuMi. In
contrast, dual-only path-following methods generate ahé/dual iterate$y, Z), motivated
by the fact thatZ is generally much more sparse than the primal itefa{&]. This is because
7 is a weighted sum of the data matricésand theA,, all of which are generally sparse. On
the central pathX is a multiple of the inverse o, so it is generally dense. Se§ for a
special case wher¥ can be represented efficiently even though it is not sparse.

For both classes of methods, the linear algebra bottlefatlstands in the way of solv-
ing large SDPs is as follows. Define

n= N2,
and let “vec” map anV x N matrix to a vector irR™ by stacking its columns. Let

(vec A)"

(vec Ap)"

The basic linear system that must be solved is

o Al VIl

For primal-dual methods, the most commonly used formuld&fas the Kronecker product
X ® Z~1', where X and Z are the current primal and dual iterates. The search decti
associated with this choice & is sometimes called the “HKM” direction and is generally
considered more efficient than its primal-dual competjtte “NT” and “AHO” directions
[23]. It follows that the(1, 1) block of His E-! = X! ® Z, and hence that the cost of
multiplications of vectors byE and E~! are similar, assuming the Cholesky factorsof
andZ are known (this is always the case, since these matriceotheraccepted as iterates
of the optimization algorithm without checking their pagitdefiniteness). In particular, the
preconditioned (1,1) block 02(1) isEKy; = I + (X! ® Z)~"*ATVA and matrix-vector
products with this can be computed efficiently using the iitgn

(X7t ® Z)vec(W) = vec(ZWX 1)

(using [L6, Lemma 4.3.1], aX = X 7).
The discussion above is for primal-dual methods, but forl-dmdy methods, simply
replaceX by uz—1!.
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One step of block Gauss elimination reduces the systef) {o the equivalent normal
equations (or Schur complement system)

MAy = f,
wheref = AEf, — f, andM = AEAT”. Thus, usindE = X ® Z~!, we have
M;; =M;y; = trAiXAjZ’l, 1<i,j<n.

Note thatM > 0 sinceX > 0 andZ > 0.

In the remainder of this section we develop some analysisapglies on the central
path. For any > 0, sinceX* and Z* commute, there exists an orthogonal matpk that
simultaneously diagonalizes them, with

(4.2) X" =Q" diag(\,...,\x) (@M, ZM=Q" diag(wh,...,wh) (Q")7,
and\!w! =, i =1,..., N. Without loss of generality, assume that
NP> >0 and Wl < < Wi

Letting 11 | 0, we obtain(X*,y*, Z*) — (X, 3, Z), which solves the primal and dual SDP
[17]. We have the complementarity conditiahZ = 0, and there must exist a (not necessarily
unigue) orthogonal matrig) with

X = Q diag(jxl,...,;\]v) QT, 7 = Q diag((ﬁl,...,(ﬁ]\[) QT,

where); andw;, the limits of \}' andw!', satisfy\;@; = 0,7 = 1,..., N. Define
r = rank(X),
so that
M= 2 A > == Ay =0.

It follows from the complementarity condition thathas rank at mosV — . We make the
strict complementaritassumption thaZ has rank equal t&V — r, so that

O=@1 = =& <1 < <oy

This holds generically]], but more importantly, it seems to almost always hold forPSD
that occur in practice. We then have the following triviahiea.

LEMMA 4.1. Suppose that the strict complementarity assumption hdldsn the cen-
tral path eigenvalues satisfy
MN=0(1), 1<i<r, MNf=0O(u), r+1<i<N,

2

asu | 0.

REMARK 4.2. Recall that th® notation signifies a stronger relation than big-O notation:
a functionf(n) is ©(g(n)) if f is asymptotically bounded both above and belowyyL 3,
p. 448]. B

Proof. The first equality holds because fox r, A — X\; > 0 asp | 0. The second
holds because far> r,

A= —% and  w!' — @; > 0. a
w!
(2
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Let us partition = [Q1 Q2], whereQ; hasr columns and), hasn — r columns. We
say that the SDP igrimal nondegeneratithe matrices,

QTAQ1 Qf 4rQ2 b 1.9
Q3 A1 0 ’ e

are linearly independent i§”, anddual nondegeneraiéthe matrices,

m,

QT ALQ, k=1,2,...,m,

span the spac8”. These conditions are well defined eveifs not unique.
In what follows it is convenient to use the notation
2 _rr+1)
2

The primal nondegeneracy condition implies thak r2 +(n —r), and the dual nondegen-
eracy condition implies that > 2. Given the strict complementarity assumption, primal
nondegeneracy is equivalent to the dual SDP having a unicuénmeer, that is, having
no other solutions in addition t@y, Z), and dual nondegeneracy is equivalent to the primal
SDP having a unique minimizer, that is, no other solutiongdalition to X [1]. Primal
and dual nondegeneracy are generic properties in the skaseahdomly generated SDPs
with solutions will have both properties, and thereforequa primal and dual solutions, with
probability one. However, in practice it is very typical tHBDPs are either primal or dual
degenerate.

Let B, = QT A, Q. From [16, Lemma 4.3.1], we have

vec B = (QT @ Q1) vec Ay.
Thus
(vec By)T
B= =A(Q®Q).
(vec By,)T

Each column ofB corresponds to an index pd(i, j) identifying two columns ofQ, with
1 < 4,5 < n. Note that there arén — 1)2 duplicate columns (one for each paitZ j).

Following [2], we may partition
BII = [B; B, B3],

wherell is a permutation matrix and the columnsBn, B, andB; correspond, respectively,
to index pairg(4, j) with bothi andj < r, exactly one of, j < r, and neithex r. The dual
nondegeneracy condition says tiyt (which hasr? columns andn rows) has rank:? (the

other(r — 1) columns are redundant), and hence that 2.
On the central path, the dual Schur complement matrix is

M' = AX* ® (2" HAT = p TAX P @ XMAT = 7 'BH (A" @ AY)(BH)T,

whereB* = A(Q* ® Q") andA* = diag(\[, ..., Ny ), using@Q*, A" defined in 4.2). It
follows that

(4.3)  puM* =B (A] @ AT)(BY)" +BE(AY ® A5)(BY)" + BE(AL © AY)(BS)T,
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where A} = diag(Af,..., M), Ay = diag(\},,,...,\y) and, as long a$I is chosen
appropriatelyB/, B4 andBY respectively converge B, B, andBj3 asy | 0. We then
have the following lemma.

LEMMA 4.3. Suppose the strict complementarity and the dual nongeg@sgumptions
hold. ThenM* hasr? eigenvalues that ar®(~1) andm — r? eigenvalues that aré(1).

Proof. Following [2], we consider the scaled dual Schur complement matrix shown
in (4.3 asp | 0. The second and third terms on the right-hand side convergero by
Lemma4.1, while the first converges B (A; ® A;)(B1)7, whereA; = diag(Ay, ..., \).
The matrixB; has rank-? by the dual nondegeneracy assumption, whijey A, is a positive
definite diagonal matrix of ordef. It follows thatr? eigenvalues of the: x m matrix uM#
converge to positive numbers. The remaining eigenvaluaeserge to zero, and since the
second and third terms id (3 areO(), these eigenvalues af¥ 1) by Lipschitz continuity.
Dividing by p gives the result. O

We are now ready to perform a spectral analysis for the prditioned systeniK —'H
for SDP, assuming that the relevant matrices are evaluatéueocentral path. The first result
is a refinement of Theorem4. Recall that the order @ in (4.1) isn +m = N2 4+ m.

THEOREM4.4. Suppose that ird( 1),

E'l=(X""1ez"
and thatin @.1),
V=W '!l=pI=p"°I

for somea > 0. Finally, assume that the strict complementarity and duaidegeneracy
conditions hold. Them eigenvalues oK ~'H are equal to 1,2 eigenvalues; are —1 +
O(utt), andm—r? eigenvalueg; are —1+0(u®). These eigenvalues are all algebraically
larger than—1.

Proof. The multiplicity of the eigenvalue one follows immediatétom Theorem2.4.
From Lemma4.3, provided strict complementarity and dual nondegeneradsy, Hor 2 of
the eigenvalues d¥1* there exists a positive constantindependent of, such thaty; = %,
and hence by4.9

—cyp” (>t —Ci

cp—O) 11 ¢+ pott

Yi =

Therefore foru sufficiently small we have? eigenvaluesp; that are—1 + ©(u®*1t). The
remainingm — r? eigenvalues correspond to eigenvalued/f that areO(1). By a similar
argument, these eigenvalues aré+ O(u®). Furthermore, sincg > 0, these eigenvalues
are all larger than-1. d

Next, we present a refinement of Theorgrd

THEOREM4.5. Supposd@V ! = gI. LetV be a diagonal matrix witls of its diagonal
values equal tg3 and the rest zero. Denote the eigenvalue¥of' H in this case by;,
ordered in descending order. Suppose, as in the previousdhe that the iterates follow the
central path, that the strict complementarity and dual negeheracy conditions hold, and
that3 = ©(u~*). Assume further that? < s < m. Then, fory sufficiently small, there are
at leastmax (0,72 + s — m) eigenvalues oK ~'H that are—1 + O (u**1).

Proof. By Lemma4.3, 2 eigenvalues; of M* are®(x~1) and the remaining.—12 are
O(1). Suppose = m. Then by Theorerd.4the algebraically smallest negative eigenvalues

arer? eigenvalues that are1+0(u**1). Now suppose = m— 1. By interlacing arguments
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identical to the ones made in Theor@, 2 — 1 of these eigenvalues are trapped between
poles of the same magnitude and hence are still of the sanee. o8inceg’(¢) < 0 for

¢ < 0, the remaining negative eigenvalue moves to the left uridepérturbation implied by
reducings tom — 1. However, it is not necessarily of the ordet + ©(u*1), since it is not
trapped by a pole af on the left. The same arguments can be repeatedforn — 1. [

5. Conclusions and future work. We have studied the spectral properties of a primal
Schur-complement-based block diagonal preconditioresdddle point systems, subject to
low-rank modifications. A motivation for this approach ietgoal of performing matrix-
vector products with as few as possible rows of the condtraatrix, while maintaining the
effectiveness of the preconditioner. We have taken semitkefirogramming as an example.
Our focus in this paper is on the analysis, and there is mudotm investigate the practi-
cality of the proposed approach. First, semidefinite prograre typically degenerate, and
in such cases, some of our analysis does not hold. Secohdlgtriong connection between
the spectrum of the preconditioned matrix to that of the daiur complement requires a
comparison to alternatives that rely on the latter, namelynmal equations solvers. Finally,
the approach that we have investigated is parameter-depgrahd it would be desirable to
explore choices that reduce the overall computational cost
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