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SEMI-CONVERGENCE AND RELAXATION PARAMETERS FOR A CLASS OF
SIRT ALGORITHMS *

TOMMY ELFVINGf, TOURAJ NIKAZAD?, AND PER CHRISTIAN HANSEN

Abstract. This paper is concerned with the Simultaneous IterativeoR&ttuction Technique (SIRT) class of
iterative methods for solving inverse problems. Based oarefal analysis of the semi-convergence behavior of
these methods, we propose two new techniques to specifgldnaation parameters adaptively during the iterations,
so as to control the propagated noise component of the eFiae. advantage of using this strategy for the choice
of relaxation parameters on noisy and ill-conditioned jeois is demonstrated with an example from tomography
(image reconstruction from projections).
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1. Introduction. Large-scale discretizations of ill-posed problems (sushinaaging
problems in tomography) call for the use of iterative methdaecause direct factorization
methods are infeasible. In particular, there is an intdregtgularizing iterations, where the
iteration vector can be considered as a regularized solutith the iteration index playing the
role of the regularizing parameter. Initially the iteratigector approaches a regularized so-
lution, while continuing the iteration often leads to itéoa vectors corrupted by noise. This
behavior is calledemi-convergenday Natterer R0, p. 89]; for analysis of the phenomenon,
see, e.g.,4, 3,13, 14, 15, 21, 22].

This work focuses on a class of non-stationary iteratiorhmeés, often referred to as Si-
multaneous Iterative Reconstruction Techniques (SIRE)uding Landweber and Cimmino
iteration. These methods incorporate a relaxation paranend the convergence rate of the
initial iterations depends on the choice of this paramétgprinciple, one can use a fixed pa-
rameterA which is found by “training,” i.e., by adjusting it to yieldear-optimal convergence
for one or more test problems. However, this approach is tioresuming and its success
depends strongly on the resemblance of the test problerhs given problem.

An attractive alternative is to choose the relaxation pat@mautomatically in each it-
eration, in such a way that fast semi-convergence is oldaitie this paper we study the
semi-convergence for the SIRT methods, and we use our irsiginopose two new methods
for adaptively choosing the relaxation parameter.

First, we introduce some notation. Late R™*™ andb € R™ be a given matrix and
right-hand side, and consider the linear system of equafi@hich may be inconsistent)

(1.1) Az ~b,  b=b+db.

We assume that the matrit comes from discretization of some ill-posed linear prohlem
such as the Radon transform (used, e.g., when modelingstaction problems in medicine
and biology). We also assume that the noise in the right-satedis additive, i.e consists
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of a noise-free componentplus a noise componensb. We consider SIRT methods of the
following form for solving (L.1).

ALGORITHM SIRT. Initialization: 2° € R™ is arbitrary. Iteration: update the iteration
vectorz® by means of

(1.2) oFH =gk o ATM(b— A2Y), k=0,1,2,....

Here{\x} >0 are relaxation parameters afdl is a given symmetric positive definite (SPD)
matrix that depends on the particular method.

Let ||z|| = VaTz denote the 2-norm, and Idtz||,;, = V2T Mz denote a weighted
Euclidean norm (recall that/ is assumed to be SPD). Also, lef'/? denote the square root
of M, and letp(Q) denote the spectral radius of a matéx The following convergence
results can be found, e.g., if][and [17, Theorem II.3].

THEOREM1.1.Letp = p(AT M A) and assume thdt < e < \p < (2 —€)/p. If € > 0,
ore = 0and ) 2, min(pAs,2 — pAy) = +oo, then the iterates OALGORITHM SIRT
converge to a solutiom* of min || Az — b|[as. If 2° € R(AT) thenz* is the unique solution
of minimal Euclidean norm.

Several well-known fully simultaneous methods can be enitin the form of AGo-
RITHM SIRT for appropriate choices of the matix. With M equal to the identity we get
the classical Landweber methodl§]. Cimmino’s method §] is obtained with
M = Ldiag(1/|a;||?) wherea; denotes theth row of A. The CAV method of Censor,
Gordon, and Gordorn] usesM = diag(1/>7_, Njaz;) whereN; is the number of non-
zeroes in thgth column of A. Moreover, if we augment the iterative steh4) with a row
scaling,

karl :(Ek—i—AkSATM(b—A.Tk), k=0,1,2,...,

with S = diag(m/N;), then we obtain the simultaneous version of the DROP alyuorit
[6]. The original proposals of some SIRT methods use weighitsfds simplicity we do not
include weights here.

We now give a short summary of the contents of the paper. Itice2 we study the
semi-convergence behavior o A0RITHM SIRT using a constant relaxation parameter and
show that the total error can be decomposed into two pasrstéhation-error and the noise-
error. These two errors can be represented by two functiotisdepending on the iteration
index, the relaxation parameter, and the singular valu#issomatrix. We derive some results
on the behavior of these two functions. Based on this arglysiSectior3 we propose two
new strategies to choose relaxation parametersliG@RITHM SIRT. The parameters are
computed so as to control the propagated noise-error. llagtaection we compare our new
strategies with two other strategies, using an examplentiken image reconstruction from
projections (tomography).

2. Analysis of semi-convergenceln order to analyze the mechanism of semi-conver-
gence, in this section we take a closer look at the errorseénréigularized solution using
ALGORITHM SIRT with aconstantrelaxation parametek. Hence we study the iteration
scheme

(2.1) of Tt = 2k 1 NAT M (b — AzP), k=0,1,2,....
2.1. The error in the kth iterate. For convenience we define the quantities

B=ATMA and c¢=A"Mb,
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and we write the singular value decomposition (SVD)\6f/2 A as
MY2A=UxVT,

whereX = diag(o1,...,0p,0,...,0) € R™*™* with oy > 02 > --- > 0, > 0, andp is the
rank of A. Therefore,

B=(MYV2AT(MV24) =vsTovT
andp(B) = o7. From @.1) we then obtain
k—1 )
o¥ = (I = AB)z" '+ Xe=A) (I - AB)c+ (I - AB)*a".
j=0
Using the SVD ofB we can write

k

=

(I —=AB) =VEVT,
=0

<

where we have introduced the diagonal matrix,

P v ) S (P ) O)

2.2 E, = di .
( ) k 1ag < )\O’% ; ) )\0_12)

Without loss of generality we can assunfe= 0 (for a motivation seel[3, p. 155]), and then
we obtain the following expression for ti¢h iterate,

¥ = VOE)VTe=VE)STUT MY %
Tarl/2(3
(1- (1—)\01»2)]“) ug MTP(b+ 0b) Vi,

i

(2.3)

[
NE

1

-
Il

wherew; andv; are the columns of/ and V. The quantitiesp; = 1 — (1 — /\af)k are
sometimes called thidter factors see, e.g., 14, p. 138].

Let us now consider the minimum-norm solutieto the weighted least squares problem
with the noise-free right-hand side,

T = argmin, | Az — b|| .

Using the SVD it is straightforward to show that

_ 1 1

(2.4) z=VEXTUT M'/?b, E =diag ( —,...,—,0,...,0].
2 2
0'1 O'p

Using 2.3 and @€.4) we now obtain an expression for the error in #th iterate,
Tt -T= k b+ 6b) — b
k VE)STUTMY2(b + 6b) — VESTUT MY?p
(2.5) —v ((/\Ek — B)STUT MY + AEszUwal/%b) ,

and from @.2) we note that

_ 2\k 1—\ 2\k
(2.6) (AEk—E)ET:—diag<(1 Adi) ( %) 00)

g1 Op
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and

— (1= \o2)k 1— (1= Xo2)*
2.7) /\EkET:diag<1 (1-Aop)t 1= =) oo)

o1 Op
If we define
B=UTM"?p  and 08 =U"M?6,
then we can write the error in the SVD basis as
VT(z* — ) = (\E, — B)XT3 + ME,XTs0.
For our analysis below, let us introduce the functions

_ 2\k _ _ 2\k
=2 nd W) = A=A

g g

(2.8) Dk (o, \) =

Then thejth component of the errdr 7 (z* — z) in the SVD basis is given by

We see that this component has two contributions, the finst i theiteration error and the
second term is thaeoise error(other names are used in the literature; for example, tmager
“approximation error” and “data error” are used b3 p. 157]). It is the interplay between
these two terms that explains the semi-convergence of thieatieNote that fov\af- < lwe
haveU*(o;, \) ~ kAo, showing that: and\ play the same role for suppressing the noise;
the same observation is made iy p. 145].

2.2. Analysis of the noise-error.We first establish some elementary properties of the
functions®” (o, \) and¥* (o, \).
PROPOSITION2.1. Assume that

1
(2.10) 0<e<A<2/0?—¢ and 0<o< —.

VA

(@) Let\ ando be fixed. As functions &f ®*(c, \) is decreasing and convex afd (o, \)
is increasing and concave.

(b)Forall k > 0, (o, \) > 0, U¥(0,\) > 0, ®*(0,0) = 1 /0, and¥* (s, 0) = 0.

(c) Let X be fixed. For allc > 0, as function ofr, (o, \) is decreasing.
Proof. Lety = y(o) = 1 — Ao2. Then @.10 implies that

(2.11) 0<y<l-—eop <l

To prove (a) note tha®”(s,\) = y*/o and ¥*(o,\) = (1 — y*)/o. Denote by®%
and ®f, the first and second derivative df“(o, \) with respect tok, respectively. Then
ok = (Iny/o)y* and ®¥, = ((Iny)?/o)y*, and hencebt < 0 and ®¥, > 0 when
y € (0,1). Since¥*(o,\) = 1/0 — ®(s,)\) the result for¥* (s, \) follows directly.
(b) follows directly from @.8) and @.11). To prove (c), letl/vA > ¢” > ¢’ > 7,. Then
y("),y(a’) € (0,1), and it follows tha®d* (o/, \) > ®*(a”, \). O

REMARK 2.2. The upper bound farin (2.1Q is 6 = 1/v/A. When0 < ¢ < A < 1/0%
then clearlys > o1. And whenl/o? < X\ < 2/0% thené > 1/+/2/0? = o1/v/2. Hence
& > o1/+/2 for all relaxation parameterssatisfying @.10).
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For small values of: the noise-error, expressed Wid (o, \), is negligible and the iter-
ation approaches the exact solution. When the noise-examhies the same order of magni-
tude as the approximation error, the propagated noisa-smo longer hidden in the iteration
vector, and the total error starts to increase. The typivatall error behavior is illustrated
in Figure4.1in Section 4, which shows convergence histories for the dimorand DROP
methods with a fixed.. We next investigate the noise-error further.

PROPOSITION2.3. Assume thaf2.10 of Proposition2.1 holds, and let\ be fixed. For
all k > 2 there exists a point; € (0,1/+v/)) such that

of =arg max _UF(g \).

0<o<1/VX
Moreover,o; is unique and given by
1—Ck
2.12 P =
( ) Ok A )
where(, is the unique root ir{0, 1) of
(2.13) gr1(y) = k=" = (" P+t y+1) =0,

Proof. Denote byl the derivative of’* with respect tar. Then

1 aye-1 L= (1= A0
X\I//(O',)\):Qk(l—/\a) S v E—
o, 1=(1=Xo?)*

_ a\,2\k—1 2 LT A0

=2k(1 — \o?) (1= o)

=2k -1y =y 1) =g (y),

with y = 1 — A\o2. The functiong,_; is continuous withy;,_1(0) = —1 andgx_1(1) = k.
Hence there exists at least one pajpt (0, 1) such thay,_1(¢x) = 0. For ease of notation,
in the rest of this proof we put = gx—1, 2 = (&, ands™ = o}.

Now z = 1 — Ao? so that the point™ = /152 is a critical point of’* obviously lying

in the open interva(0, 1/v/)). We now demonstrate the uniqueness oft is easy to see
that the following equality holds,

_yg(_y)z = (2k — 1)y 2 4+ ((2k — 1)z — 1)y~ 3

+((2k —1)22 — 2z — D)y 4 ...

+((2k =122 =28 2 1) = Q(y).
Now Q(0) = ¢(0)/(—z) = 1/z > 0. To complete the proof, we show th@{y) increases
fory > 0. Let0 < ¢ < 1 anda > 0 such that + o < 1. Then

Qt+a)—Qt) = (2k — 1) ((t +a)* 2 —*72)
+((2k — 1)z — 1) ((t + a)F 3 —£F79)
+ (k=122 —2z—1) ((t+ a)k=t — tk74) + e
+(k—1)F 3 —F ) (4 @) — 1)
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Sinceg(z) = (2k — 1)zF 1 — (P2 + 2k 3 4 ... + 2 + 1) = 0, we have

PRk -1z —1)= ("3 4+ k24 1),
Ak -1)2 -2 -1) =t 2 1),

22 (2k—1)" 3 =t ) =2+ L

It follows thatQ (¢ + o) — Q(t) > 0. Hencez ando™ are unique. Since(y) = (y — 2)Q(y)
andQ(y) > 0, we can conclude that

(2.14) g(y) > 0, wheny > z, andg(y) < 0 wheny < z.

Now y < z implies thatl — X\o? < zoro > /(1 —2z)/A i.e., ¥ = \g(y) < 0 when
o > o* and vice versa. This shows that is indeed a maximum point of* (o, \). d

PROPOSITION 2.4. The sequence(;},>2 defined in Proposition2.3 satisfies
0< Ck; < <k+1 < 1, andlimy_ o Go=(C=1.

Proof. By Propositior2.3, 0 < {;, < 1. Using .13, we obtain
(2.15) gi(y) = (2k + 1)y* — 2ky* ! + g1 (y).

We next showy (¢r) < 0 which by 2.14) (with ¢ = g, andz = (41 so thatg(z) = 0)
implies(y < (x+1. Using .13 and the geometric series formula, it follows that

I Sl A

(2.16) g1 (y) = (2k = 1)y = —= )

With y = 37225, we then get

2% \ 2k \ ! 1—(%)#172(2@’@—(21@“)’@
o ) om0 ()

2% + 1 2% + 1 I T O S D

which is positive if2(2k)* — (2k + 1)* > 0 or, equivalently, whe!/* > 1 4 1/(2k). One
can easily show that” — § —1 > 0 for z > 0. So forz = 1/k follows gk,l(%) > 0.
Thus by @.149

2k

(2.17) G < gy

It follows, also using?.15), that

9e(G) = 2k + 1)(C)* — 2k(G)* ™ + gu_1(C)
= (G)* 1 ((2k + 1)¢G — 2k) < 0.

Hencelimy_. o (x = ¢ < 1. We next show thag = 1. Using .16 with y = (i, and putting
Cr =1 — 2z (sothat) < z; < 1), we get

L 1-(1- Zk)k_l_

gk_l(l — Zk) =0= (2k — 1)(1 — Zk
Zk
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W¥(6,100)

0
10 ‘
10° 107 10™

FiG. 2.1. The function¥* (s, \) as a function ofr, for A = 100 andk = 10, 30, 90, and270. The dashed
line showsl /o.

It follows that(1 —z;,)*~1((2k—1)zx+1) = land so(1 — z;,)~*~Y = (2k— 1)z, +1 < 2k.
Therefore0 < —In(1 — z;) = —In ¢ < In(2k)/(k — 1) — 0 ask — oco. It follows that
¢=1lim, = 1. O

Figure2.lillustrates the behavior 0b* (s, \) as a function ofr, for a fixed\. We see
thato}, (the argument to the maximum) decreases axreases (which follows fron2(12)
and Propositior2.4). This property implies that the amount of noiseaifi (coming from
0b) increases with the number of iteratiohshecause the contribution frosib becomes less
damped. Furthermore, it is seen that the maximal valigr;, \) increases withk, which
further increases the amount of noiserfh We now prove this last property.

PROPOSITION2.5. The valuel* (o}, \) is an increasing function of.

Proof. By Propositior2.1(a), we have

T (o, A) > TF(0,\), 0< 0 < 6.
(This result assumes > o, but it also holds forr > 0, as is easily seen.) Hence,

Trtl(gr N\ = TFtL (g \) > Tk (g, \) = TF (o, \). Q0
(0k+17 ) 025?& (Ga )—0133%(& (07 ) (Ukv )

To summarize: using the SVD aff'/2 A we have, for constank, derived the expression
(2.9 for the error in the SVD basis, in thigh iteration. The error depends on two functions
® and WV, whered controls the iteration error anél controls the noise error. Both functions
depend ork, o, andA. In Propositior2.3we analyzed the behavior df as a function ob.
Based on this semi-convergence analysis we propose twoelaxation parameter strategies
in the next section.

3. Choice of relaxation parameters.We first review two relaxation parameter strate-
gies proposed in the literature. The first is the optimal caatrategy: this means finding that
constant value of which gives rise to the fastest convergence to the smabégsive error in
the solution. The value of is found by searching over the interv@, 2/0%). This strategy
requires knowledge of the exact solution, so for real datawauld first need to train the
algorithm using simulated data; se€].
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TABLE 3.1
The unique root;, € (0, 1) of the equatiory;,—1(y) = 0, Eq.(2.13), as function of the iteration index

Ck k Ck k Ck k Ck
0.3333| 9 0.8574| 16 0.9205| 23 0.9449
0.5583| 10 0.8719| 17 0.9252| 24 0.9472
0.6719| 11 0.8837| 18 0.9294| 25 0.9493
0.7394| 12 0.8936| 19 0.9332| 26 0.9513
0.7840| 13 0.9019| 20 0.9366| 27 0.9531
0.8156| 14 0.9090| 21 0.9396| 28 0.9548
0.8392| 15 0.9151| 22 0.9424| 29 0.9564

0 ~NO U WNF

Another strategy is based on picking such that the errgfz* — ¥ is minimized in
each iteration, where* is a solution toAz = b (which we now assume to be consistent):

(r*)T M r*

k k
JATM R !

Ak

This strategy is due to Dos Santd<’[ (based on work by De Pierrd []), where the conver-
gence analysis is done for Cimmino’s method. Similar stri@ehave also been proposed by
Appleby and Smolarskil] and Dax [L(].

3.1. First strategy. We first propose the following rule for picking relaxationrpeme-
tersin ALGORITHM SIRT:
for k=0,1

3.1 Ao =
(31) § 2(1-¢) fork>2.

W AL

We will refer to this choice a¥;-based relaxation. We note that the rogt®f gi.—1 (y) = 0,
for k > 2, can easily be precalculated; see Tahle The following theorem ensures that the
iterates computed by this strategy converge to the weiglest squares solution when the
iterations are carried out beyond the semi-convergencegpha

PrRoPOSITION3.1. The iterates produced using tHe -based relaxation strategyB.1)
converge toward a solution ofiin, ||Az — || ps.

Proof. Propositior2.4 gives, fork > 2,

It follows thatmin(c? )\, 2 — 07\,) = o2\, for k sufficiently large. Next we observe,
using @.17), thatd", - Ak = & Yo 452(1 = Gr) > & 450 gy = oo. Convergence then
follows using Theorem.. 1 i ]

We will now briefly motivate the choice3(1). Assume first that the relaxation parameter
is kept fixed during the first iterations,

A=A j=01,2,... k-1,

so that the results of Secti@apply to the first steps. Also, let:* andz* denote the iterates
of ALGORITHM SIRT using noisy and noise-free data, respectively. Therthor in thekth
iterate clearly satisfies

lz* — 2| < [|z* - 2| + [|l=* — 2"|.
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Fic. 3.1.The ratioA; 41 /A, as a function ofj for the two parameter-choice strategies.

Hence the error decomposes into two components, the @eratiror part|z* — z|| and the
noise-error parfiz* — z¥||. Using Egs. 2.3, (2.4), (2.6), and @.7) we obtain

i —z=VOE, - B)XTUTMY?b,  oF — 2% = VAESTUT MY/2%60.
Hence the norm of the noise-error is bounded by

(3.2) 2F — ZF|| < max UF(oy, \) || MY/260].
1<i<p

To analyze 8.2) further, assume first that € (0, 1/07]. Then by Remark.2, we have
6 > o1, and it follows (withk > 2) that

_ E(g. \) < k < k — Tk (o)),
(3.3) [nax 0 (0, A) < max V(0 A) < max ¥(0, ) = (0}, A)

It follows using €.8) and .12 that

_ 1—¢f
3.4 2B = ZF| < UF (o, )| MY26b|| = VA —=E || M350
Now consider thecth iteration step, and pick;, by the rule 8.1). Assuming that the relax-
ation parameters are such thigt.; /\; ~ 1, we can expect that Eq3() holds approxima-
tively — the plot of the ratio\; 11 /)\; in Figure3.1lindicates the validity of this assumption.
Therefore by substituting(1) into (3.4) we get

. V2
(3:5) lz* — 2" S Ui ) IM2sb|, k=2

This implies that the rule3.1) provides an upper bound for the noise-part of the errorsThi
is our heuristic motivation for using the relaxation rule:mhonitor and control the noise part
of the error.

We also need to consider the case (1/0%,2/0%), and it follows by Remark.2 that
6 = 1/VX € (01/V/2,01). This means that3(3) only holds approximatively. However,
using our proposed relaxation rule, we have that< 1/0% for k > 2; see Table3.1

3.2. Second strategyWe next consider an alternative choice of relaxation patarag
% fork=0,1
1

2 1-¢
U_f (1_<g)2 for k 2 2.

(3.6) Ao =

The reason we also introducg §) is that in our numerical tests we found that it usually gives
faster convergence tha8.(). We will refer to this choice a¥,-based relaxation. Reasoning
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as above (substituting () into (3.4)) we get the following bound for the noise-error using
WU,y-based relaxation,

V2

g1

(3.7) |z — 8| < 2= | MY260), Kk >2.
Figure3.1also shows the ratid; 1 /A; for this strategy.

We stress again that the two bound8sy and @.7) for the noise error are derived under
the assumption of a fixed noise level. Further we assumed ihats fixed for
j =0,1,...,k — 1 and that)\; is given by 8.1) or (3.6). We leave it as an open prob-
lem to derive rigorous upper bounds for the noise error withtbese assumptions. In this
context we also mention the boutid® — z*|| < vk || M*/25b|| from [13, Lemma 6.2] when
using a constant relaxation parameter in the algorithm.

Again we need to show convergence to the weighted leastesjgalution when iterating
beyond the semi-convergence phase. To do this we shall egeltbwing result.

LEMMA 3.2.

2—t—t?

28> ——,
2—2t—12

0<t<1/4.

Proof. Let
h(t) =242 -2t —t?) — (2 —t — t?).

We need to show thdi(t) > 0 for 0 < ¢ < 1. The third derivative of satisfies

R (t) = —2"log(2) p(t) <0 for 0<t<

|

wherep(t) = 6 — 2log”(2) + log(64) + ¢ (21og*(2) + log(64)) + t*1og®(2) is a positive
polynomial for0 < ¢ < 1/4. It follows thath”(t) decreases as a function af Using
R’ (0) = 21og(2)(—2 + log(2)) < 0, we obtain

R (t) < " (0) <0,
which means the functioh(t) is concave fol0 < ¢ < 1/4. Therefore,h(t) > 0 for

0 <t < 1/4sinceh(0) = 0andh(1/4) = (23v/2 —27)/16 > 0. n|

PrROPOSITION 3.3. The iterates produced using,-based relaxatior(3.6) converge
toward a solution ofnin, ||Az — || ps.

Proof. Forz € (0,1), let

1—2z
%(Z)—m-
Then
(3.8) 1—=2 1—=2

Yrt1(2) = (1 — ZFH1)2 < (1 — zF)2 = 7 (2).
We will next show that

(3.9) Vi (Cot1) < Ve (Cr)-
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Usinggy—1(¢,) = 0andl —¢F = (1— G)(1+ G +...+ ¢y "), itcan easily be shown that
Y (Ck) = (2k(1 = ¢F)¢F~ )~ Then

dy 2k =1+ (1= k)

= <0,
dCx 2k(1 — ¢F)2¢y
provided that
E—1\Y*
(3.10) Gk < <2k—1) = 2.

The inequality 8.10 holds fork = 2,3 since(; = 1/3 and(s = %ﬁ. Fork > 4 we will
show that

(3.11) grk(zi) > 0.
This implies 8.10 since, by £.14) and Propositior2.4,
2k > Cet1 > Ck-
Now (3.17) is equivalent to
(2k — 1)(2k* — 2k — 1)F > (k — 1)(2k% — k — 1)".
Since—(2k? — 2k — 1)* > —(2k? — k — 1), it suffices to show that

22 —k—1

ol/k o 2R —F— 1
ST T—

This inequality follows from Lemm&.2by puttingt = 1/k. Hence 8.9 holds. Using 8.9
and @.9),

0 < Yit1(Cror1) < Ve(Chr1) < 7 (Cr) < 72(2) < 1.

It follows that

Therefore,
2 2 2 2
0< 57 <M= =5%(G) < =57(0R) < =.
1 o7 o7 o7

If v > 0 convergence follows by invoking the first condition in Thewrl.l Next assume

v = 0, and note thatl/(1 — ¢f)> > 1, since(, < 1. It also follows that
min(oi\,, 2 — 02X;) = o2\ for k large enough. Therefore, using.(7), we have
Shso A > 2/01>0,5,1/(2k + 1) = oo. Hence, convergence follows by the second
condition in Theorenil.l (The same arguments could also have been used in the proof of
Proposition3.1, thus avoiding the need to show thiat 1). d
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3.3. Modified strategies. Finally we will explore the possibility to accelerate theotw
new strategies, via the choice = 7 A\ for & > 2, wherer;, a parameter to be chosen.
Consider first thel'; strategy, for which we have

< 2
(312) /\k:Tk—Q(l—Ck), k22
01

We will assume that;, satisfies
(3.13) 0<e <1 <(1—C) k> 2.

It then follows that

9 ~
0<e—(1—-G) <A<
71

Sl

Hence using tha} , ., (1 — (&) = oo (see proof of Proposition 3.1) we may invoke Theo-
rem1.1to conclude convergence of the relaxation strateg¥d with (3.13. Note that with
a constant value, = 7 we must pickr < (1 — ¢(2)~* ~ 1.5. If we allow 7, to depend on
k then Table3.1 immediately leads to the following upper bounds: < 1.5, 73 < 2.264,
T4 < 3.048, andT5 < 3.84.
For theW, strategy we take

_ 9 1—
Ae = Th — L k> 2

of (1-¢H)% -7
and with
0<er <7< (1=¢0)%/(1 =), k>2,

we maintain convergence (following the same reasoning@ssgbUsing Tabl&.1we obtain
the following upper boundss < 1.185, 13 < 1.545, 74 < 1.932 and7s < 2.33. If we want
to use a constant value we must talke= 7 < 1.185. Our numerical results indicate that
pickingT > 1 accelerates the convergence.

4. Computational results. We report some numerical tests with an example taken from
the field of tomographic image reconstruction from projecs (see16] for a recent and illus-
trative treatment), using the SNARK93 software packajeifd the standard head phantom
from Herman [L5]. The phantom is discretized in&3 x 63 pixels, and we use 16 projections
with 99 rays per projection. The resulting projection matfi has, therefore, the dimensions
1376x3969 (so that the system of equations is highly under-detern)irneéddition toA, the
software produces an exact right-hand sidend an exact solution. By using SNARK93's
right-hand sideb, which is not generated as the produat, we avoid committing an inverse
crime where the exact same model is used in the forward amshsémiction models.

We add independent Gaussian noise of mean 0 and variousstiateliations to gener-
ate three different noise levets= ||0b||/||b]| = 0.01, 0.05, and 0.08. Our figures show the
relative errors in the reconstructions, defined as

relative error= ||z — 2*|| /| z,

as functions of the iteration indéx
Figure4.1 shows relative error histories for the fixed€immino and DROP methods,
taking three different choices of and two different noise levelg for each method. Here
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Cimmino, n =0.05 DROP, n =0.05

Relative error
Relative error

0 10 20 30 40 0 10 20 30 40

Iteration number k Iteration number k
Cimmino, n =0.08 DROP, n =0.08

Relative error
Relative error

0 10 20 30 40 0 10 20 30 40
Iteration number k Iteration number k

FiG. 4.1. Fixed-\ Cimmino and DROP iterations, using five different choices\ @ind two different noise
levelsn for each method. The choicaés= 120 and A\ = 1.9 are optimal for Cimmino and DROP, respectively, and
the circle shows the minimum.

the upper boun@/s? for the relaxation parameter equals 150.6 for Cimmino ai3@ 2or
DROP. The choices = 120 (for Cimmino) and\ = 1.9 (for DROP) are optimal, in the
sense that they give the fastest convergence to the minimoal e

We clearly see the semi-convergence of the iterationsestlidi Sectior? and that, con-
sequently, fewer iterations are needed to reach the minigwar when the noise level in-
creases. We make two important observations: the numbtarafions to reach the minimum
error depends strongly on the choice)gfand the minimum itself is practically independent
of A (except for the largesk). This illustrates the necessity of using either a good fixed
relaxation parameter, which requires an extensive studyazfel problems to find a close-to-
optimal value, or a parameter-choice method that chodgasich that fast semi-convergence
is achieved automatically.

Figure4.2shows the relative error histories for thg, ¥, and optimal strategies using
the Cimmino and DROP methods. For Cimmino’s method we alslide the strategy pro-
posed by Dos Santos mentioned in the previous section. Wenaba noise-damping effect
using the¥; andWV, strategies. The zigzagging behavior of the Dos Santogglyatas also
noted by Combetted] pp. 479 and 504]; the reason seems to be that the strategmess
consistent data.

We see that for low-noise data tlg and V¥, strategies are less efficient than the Dos
Santos and optimal strategies. However, for larger noisgddéwhere the Dos Santos strategy
leads to irregular convergence) our new methods produceitial iconvergence rate, during
the semi-convergent phase, which is close to that of thengbstrategy. Note that the relative
error stays almost constant after the minimum has beenr@atashowing that th&; and
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Cimmino, n =0.01 DROP, n=0.01
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% | —— Dos Santos | | % 03 Ws--_
@ ST - 4 S bttt
= — 0.2
0 10 20 30 40 0 10 20 30 40
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FIG. 4.2. Relative error histories for different relaxation strateg in the Cimmino and DROP methods, for
three different noise levelg The circle and the dot show the minimum for the optimal sgratand the Dos Santos
strategy, respectively.

U, strategies are indeed able to dampen the influence of the-raisr, as desired. The very
flat minimum reduces the sensitivity of the solution to thetipalar stopping criterion used.
Figure4.3 shows the relative error histories using Cimmino’s methaith whe modified
v, andW, strategies from Sectio®.3, for four different choices of a constant (Note that
7 = 1 correspond to the originall; and W, strategies.) As mentioned in Sectidr8, in the
modified W, strategy the theoretical upper limit feris 1.18, but Figurel.3shows it pays to
allow a somewhat larger value and we found= 1.5 is a reasonable choice for the modified
U, strategy. (Note that = 2 leads to instability during the first iterations.) Similgror the
U, -strategy (where the upper bound fois 1.5), we found that = 2 is a reasonable choice.
Of course, one could here also consider other options, ssieti@vingr to depend on the
iteration index, or introducing a constant factoafter more than two iterations. But since
we are looking for a simple and self-contained method we hateonsidered these choices.

Finally in Figure4.4, we compare the two best modified strategies together wih th
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FIG. 4.3. Relative error histories using the modifidd, and W4 relaxation strategies in Cimmino’s method,
for three different noise levels
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FIG. 4.4. Comparison of the error histories for the modifigd and W5 relaxation strategies in Cimmino’s
method with those of the optimal strategy and the Dos Santategy, for three different noise levels

optimal strategy and the Dos Santos strategy. We see thahddarger noise levels, the
modified¥; andW, strategies give an initial convergence which is almost tidahto that
of the other two methods, but with much better damping of thisepropagation: once we

reach the minimum in the error histories, then the error amtyeases slowly. Also, we avoid
the erratic behavior of the Dos Santos strategy.
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5. Conclusion. Using theoretical results for the semi-convergence of tHTSalgo-
rithm with a fixed relaxation parameter, we derive two newatggies for choosing the param-
eter adaptively in each step in order to control the propadjabise component of the error.
We prove that with these strategies, the SIRT algorithm still converge in the noise-free
case. Our numerical experiments show that if the noise isawosmall, then the initial con-
vergence of the SIRT algorithm with our strategies is coritigetwith the Dos Santos strategy
(which leads to erratic convergence) as well as the optrhalee strategy (which depends
on a careful “training” of the parameter). The experimegs ahow that our strategies carry
over to the DROP algorithm which is a weighted SIRT method.
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