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MAPPING DIRECTED NETWORKS *

JONATHAN J. CROFT$, ERNESTO ESTRADA!, DESMOND J. HIGHAM, AND ALAN TAYLOR f

Abstract. We develop and test a new mapping that can be applied to diraotgeighted networks. Although
not a “matrix function” in the classical matrix theory sendgstmapping converts an unsymmetric matrix with
entries of zero or one into a symmetric real-valued matrix ostimae dimension that generally has both positive and
negative entries. The mapping is designed to reveal appréidigected bipartite communities within a complex
directed network; each such community is formed by two set oéss@d and.S> such that the connections involving
these nodes are predominantfgm a node inS; andto a node inS>. The new mapping is motivated via the
concept ofalternating walkghat successively respect and then violate the orienmtibthe links. Considering the
combinatorics of these walks leads us to a matrix that can bi/reeg@ressed via the singular value decomposition
of the original adjacency matrix and hyperbolic functionse #gue that this new matrix mapping has advantages
over other, exponential-based measures. Its performanibesisated on synthetic data, and we then show that it is
able to reveal meaningful directed bipartite substructar@ metwork from neuroscience.
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1. Background and notation. Large complex networks can be represented as matrices
and studied using the tools of linear algebra. Perhaps nuiably, spectral information
involving eigenvectors or, more generally, singular vegtoan be used for data mining tasks
such as clustering, reordering and discovering varioussyy substructure?[ 7, 11, 15].

We focus here on the case of an unweighted, directed netwWarkrmdes, with no self-
loops. This may be represented by the unsymmetric adjaacaatyix A € RV*N, where
a;; = 1 ifthere is a link from nodé to nodej, anda;; = 0 otherwise.

Quantifying bipartite structure in large complex directedworks has proved to be very
informative [7, 13, 17], and our aim here is to consider a specific bipartite patteahtakes
account of the orientation of the connections in a direced/ark. If the set of nodes contains
two distinct subsetsS; and.S,, such that

e the members of; have very few links between themselves,

e the members of; have very few links between themselves,

e there are many links from members 8f to members ofS,, and very few other

links in the network involve the nodes 6f and.Ss,

then we will say thaiS; and.S; form anapproximate directed bipartite communitwe are
interested in the task of identifying one or more of these rmamities in a network. We
emphasize that this concept has been left deliberatelyevengorder to acknowledge the fact
that real networks are typically noisy—in particular, we dd completely rule out “missing”
links from S; nodes taS> nodes and we also allow the possibility of “spurious” linksrh
Sy 10 57.

In Section2, we motivate and develop a new mapping that is designed &atdhis type
of structure, and test it on a synthetic network. Sec8agives illustrations that compare
the new mapping with the matrix exponential function. Int®et4 we describe a method
for generating networks to test the significance of bipaditbgraphs, and in SectiéGnwe
implement these tests on synthetic data. In Sediae show how meaningful information
can be extracted from a network in neuroscience.
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2. Motivation and new mapping. We begin with a definition.
DEFINITION 2.1. Analternating walkof lengthk — 1 from nodei; to nodeiy, is a list of
nodes

i17i237:37"'3ik

such thata;, ;,,, # 0 for s odd, anda;_ ., ;, # O for s even.

Loosely, an alternating walk is a traversal that succelsfedows links in the forward
and reverse directions. We emphasize that the nodes and #dganake up an alternating
walk need not be distinct.

From the definition of a matrix product it is immediate that

T T
(2.1) (AATAA )”
with k factors, counts the number of alternating walks of lerigtftom nodei to nodej.

Suppose now that; andS; form an approximate directed bipartite community, as de-
scribed in Sectiod. If nodes: and; are both in subsef; then there is unlikely to be a link
from i to j, but there are likely to be many ways to traverse friaim j by following one link
forwards and another link backwards. Hence we expect fesvradting walks of length one
betweeni andj but many alternating walks of length two. More generally,wmauld expect
an over-abundance of even length alternating walks and eitpaaf odd length alternating
walks. Incorporating information about longer walks is atuitively reasonable way to com-
pensate for possible noise in the network—it smooths outlthar-mothing issue of whether
two nodes are connected. However it is clear that shortgthemalks are generally more in-
formative. Hence, motivated by previous work on undireatetivorks p, 7], we propose to
scale the total number of alternating walks of lengthy the factorl /!, and to give negative
weight to odd length walks, which produces the mapping

AAT B AATA n AATAAT B

(2.2) FA)=1-A+= o i

In words, the, j element off (A) for i # j is the difference between the total number of even
and odd length alternating walks, with walks of lengtiscaled byl /k!. We have included
the identity matrix/ in (2.2) simply for convenience. Using the singular value decoriapos
tion (SVD), A = UXVT, whereU € RV*¥ is orthogonal,, € RV*¥ is diagonal and

V € RV*N is orthogonal 10], we have

Ut UstvT  UstuT
- + +

_ T
fA)=1-UxXV" + 9 3l o R

which can be written

DIEEIED 3 - DIEED 3 T
This could also be written
(2.3) f(A) = Ucosh(2)UT — Usinh (2) V7T,

which shows thaff(A) may be computed via the SVD. We note thf@) does not comply
with the usual definition of a matrix function in linear algal12]. However, it is a well—
defined mapping fromRV >N to RV,
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FiG. 2.1. Left: Adjacency matrix. Rightf(A) from (2.3).

Based on this motivation, we would expeftd);; to take large positive values when
1,j € S1, and large negative values wheg S, andj € S,.

To test this idea, the picture on the left in Fig@r& shows an adjacency matrix forsa
node directed network that we constructed. Here ndde3, . .., 10} were made to point to
nodes{11,12,...,25} with independent probabilit9.65. Similarly, nodes{30, 31, ... ,39}
point to nodes{40, 41, ...,49} with independent probabilitg.8, and all other links occur
with independent probability.05. Hence, there are two approximate directed bipartite com-
munities in the network. In the right of FiguBelwe show a heat map ¢gf{ A), and itis clear
that the dominant regions of positive and negative valuesaghlighting theS; — S; and
S1 — S- relationships, respectively, as expected.

We note at this stage that the node ordering in Figutevas chosen to make it easy to
visualize the results—the communities share contiguousésdHowever, itis clear from the
derivation, or from the relatiofi( PAPT) = P f(A)PT for any permutatior?, that the same
hot/cold values relating two nodes would be preserved uadgmode reordering. Entirely
analogously, we may argue thatA™) will have positive entries fof, — S, relationships
and negative fof; — ;. Hence the sunfi(A)+ f(A”') should be a useful tool for revealing
inter-cluster §; — S1 andS; — S5) relationships through positive entries and extra-cluste
(S1 — S9 andS, — Sp) relationships through negative entries. It is straigiwird to show
that f(A) + f(AT) is a symmetric matrix, and hence it is amenable to standaistesing
techniques, with positively connected clusters représgrihe common parts of the bipartite
communities and negatively-connected clusters reprieggtfite disparate parts. We note that
the SVD can be used for clustering or reordering this type/ofraetric two-signed data into
the desired two-by-two checkerboard patterh$].[] Hence, we propose that two separate
SVDs may be computed, one to creditel) + f(A”) and another to analyze it.

3. Comparison with the matrix exponential. In the case of undirected networks, ar-
guments based on the combinatorics of walks between nodesheen used to show that
exp(A) andexp(—A) can be useful to reveal connectivity patterfs7]. In order to show
that the new mapping(A) + f(AT) is better suited for pre-processing directed networks,
we may consider a hierarchical structure where there aee thets of nodes;, S, andSs,
such that
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FiG. 3.1. Left: Unsymmetric adjacency matrix and three different mappings.

e nodes inS; tend to point to nodes if5,

e nodes inS, tend point to nodes i3,

o few of the other possible links are present.
Then, considering how they represent counts of walks arthmdetwork, we can argue that
the exponentials oft and— A will have 3-by-3 block structure of the form

+ +

0 +
0 + and exp(—A)~ | 0
0 0 0

0
exp(A)= | 0
0 0

o o |

whereasf(A) + f(AT) will take the form

fA)+ A~ | - + -
0 — +

As an illustration, the pictures in Figue1 shows results for a directed network 3if
nodes wheres; = {1,2,...,10}, S = {11,12,...,20}, S3 = {21,22,...,30}. Ina
similar manner to the network in Figugel, links were chosen probabilistically with a strong
bias towards the directed bipartite community connections

In the next two sections we address the issue of judging wehedsults from the algo-
rithm are significant. On one hand, it is unrealistic to explat all nodes in a real network
can be partitioned into two setS; and.Ss, such that allS; — S, links are present and no
others. On the other hand, simply identifying a pair of nodaadj such thaiu;; = 1 and
a;; = 0 is clearly not of interest. We will use the classic notion @value B] to address the
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question “How likely is it that the level of bipartivity id¢ified by the algorithm in a given
network would arise in an arbitrary network of the same fdrrR@rhaps the most widely-
used random graph classes are thedBsEenyi (ER) and Gilbert model$[ 9]. However, it

is intuitively clear, and easy to check experimentallyt thetworks from these classes are ex-
tremely unlikely to admit bipartite substructure. Henagy attempt to fit this type of model
to the given network is likely to give a pvalue that indicaséatistical significance for the ob-
served pattern. In an attempt to produce a more realisticitethe next section we develop
a new class of directed random networks based on an esetblisbdeling principle, that are
designed to match, in expectation, in and out degrees sgebéifi each node.

4. Directed stickiness model.For each nodéwe define two stickiness indice@{f} and
0([;]1“ that summarize the likelihood of that node having a corioedb/from another node in

a particular direction. More precisely, we define the prdligtof a connection from nodé
to nodej as the product
oY

out”in *

PG — j) = oL

This is a natural generalization of the original stickineszdel in [L8], which was defined
for undirected networks. In that case, the stickiness indax justified from a modelling
perspective in the context of protein protein interacti@tworks.

Our first aim is to choosée1 H[Z]t} so that the expected out-degree of nade the
model matches the out-degree of nadie the given network. This requires

Z% = E(out-degree of nodg) = Y 6b, 00 = 01, S 0],
j=1 j=1

J=1

We may then write

(4.1) gl]lt = K, Zawv

for some constank’;.
Similarly we wish the expected in-degree of nade the model to match the in-degree
of nodei in the data, giving

Zaﬂ = E(in-degree of nodé) = Zaouﬂ“ = ol" Zaout

Jj=1

Hence, we may write

[4]
(42) 9111 - KQ Za]“

for some constank’s.

Having determined these general forms, we now wish to findapjate constants of
proportionality, K; and K. Returning to the out-degree of nodeusing @.1) and @.2), we
require

o= () (e 5
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which leads to

n n

1
e ZZCLM =1.

j=1k=1

Considering the in-degree of nodkeads to the same condition. We thus arrive at the unique
choice

We may now outline an algorithm to produce an instance of suetmdom graph.
e Inputdeg;, anddeg,, vectors of infout degrees.

e Compute the scaling factar = Z degi[fl].

7

o Let 91[;] = w_ldegi[fl] andeﬂt = w‘ldegﬂt.
° F[o]r e[a]ch ordered pair of nodéand;, connect to j with independent probability
gc:utairjl .

Of course, for the model to be valid we require all probaikgitto be bounded above
by one. This can be guaranteed, for example, if the produttteofargest in-degree and the
largest out-degree is less than the total number of edgés itatget network. This constraint
was satisfied by the networks that we consider here, and wilwaot expect it to pose any

difficulties in general.

5. Statistical analysis. Having discovered a directed bipartite substructure invargi
network, in order to quantify the likelihood of this pattearising by chance, we must also
quantify the level of bipartivity. Consider a perfectly bigite network consisting of two sets
S1 and S, containingm; andmsy nodes respectively. Such a network may be represented

S1-81

§2-81 82-82

(@) (b)

FiG. 5.1. Directed bipartite network: (a) edge structure (b) adjacgmatrix.

by an adjacency matrix with nonzeros only in an off-diagdslatk representing the edges
from S; to Ss2, as shown in Figur®&.1 In practice, there will be some departure from this
perfect division, and as our measure of bipartivity we withgly take the ratio of the density
of nonzeros in the; — S5 block to the density of nonzeros in the remaining L-shapedibl
plus one (to avoid division by zero); that is,

‘512‘/777//1

b= .
(1S11] + [Sa1| + [Saz])/(m? +mn + n2) + 1
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Here|S;;| denotes the number of links frosy — S; andm, n are the number of nodes in
S andS; respectively. In the case of perfect directed bipartivtis measure yields a value
of 1. The value decreases as nonzeros are added to the L-shapkabtemoved from the
S1 — S5 block. This is analogous to adding edges in the “wrong” diogcor edges within
subsets.

Once a measure of bipartivity has been chosen for the giviegraph, we may test for
significance as follows:

1. Sample a network from an appropriate distribution to gineadjacency matrix.

2. Apply the mappingf(A4) + f(AT) and reorder as for the original network; that is,
according to the first eigenvector of the mapped matrix.

3. Use this eigenvector to select the subgraph consistisgtefof the same dimension
asS; andsSsy, and compute the bipartivity measure.

Following a standard hypothesis testing approach, we n&ytbmpute a pvalue as the
frequency with which the bipartivity measure of the givernwark exceeds that of a ran-
domly sampled network. This gives one way to answer the gue8tvhat is the likelihood
that we would observe this level of bipartivity, or highar,d random network?” Following
convention, we will regard a pvalue beldw)5 as an indication of a statistically significant
result. Of course, the computed pvalue is dependent on thieechipartivity measure and the
class of random networks used. We tested several variagiothpresent here an indicative
summary. We will refer to such a frequency-based pvalug at further testing we exam-
ined histograms of the sampled bipartivity measures, aased on quantile-quantile plots,
found that a lognormal distribution seemed to be appropriadr each test, we therefore also
compute a second pvalug,, found by fitting a lognormal distribution to the sampledadat
and using the resulting density function to compute the g@hodlty that the given network’s
bipartivity measures will be exceeded. Both approacheglastrated in the following sub-
sections.

5.1. Test case 1As a proof of concept, we begin with a synthetic network witlown
substructure. Here, we have0 nodes. A connection from nodedo j occurs with indepen-
dent probability0.9 if i € {1,2,...,20} andj € {21,22,...,40}, and with probability0.3
elsewhere. We then compute the matrix mapping and plot theleeed, mapped matrix to
determine what dimension of subgraph to extract. The upigturgs in Figures.2 show the
original adjacency matrix, a heat map of the reordered ndhpperix, and the relevant sub-
graph comprising the first and l&&i nodes of the relevant eigenvector indices. (In a separate
check we found that 85% of the first 20 nodes were in the “c6rsst {1, 2,...,20} and,
similarly, 85% of the second 20 nodes were in the “correct”{g¢, 22, ...,40}.) We then
generated 000 networks by randomly shuffling the in and out degrees of therghetwork
and connecting nodes according to the algorithm in Seéti@o a node in the random graph
typically draws its expected in and out degrees from twoediit nodes in the original net-
work, but all in and out degrees in the original network apresented in the new graph. The
resulting bipartivity measure samples are displayed irseogram, with the bipartivity value
of 0.6138 for the given network indicated as a circle on the x-axis. gnlormal fit to the
data is shown, along with a quantile-quantile plot agairiegaormal distribution—here data
on a straight line is indicative of a good fit][ It is clear from the histogram that the given
network produces a bipartivity measure deep in the low piibatail of the distribution,
and this is reflected in the frequency-based pvalug;0f= 0/1000 and lognormal version
pa = 5.05 x 10715, Table5.1 summarizes results for other types of randomization. In ad-
dition to using the stickiness model from Secti®to form the “shuffled stickiness” class of
networks, we also formed “directed stickiness” networksrehnode; has the expected in
and out degree of the corresponding node in the given netwoik “biased stickiness” net-



ETNA
Kent State University
http://etna.math.kent.edu

J. CROFTS, E. ESTRADA, D. HIGHAM AND A. TAYLOR

344

Mapped matrix x 10"

Adjacency matrix Subgraph

10
8
8
4
2
0
-2
4
-8
-8
rz = 3181
Bipartivity measures Probability distribution Ouantile-quantile plot
80 T T T T T T 25 T T T T T T 5 T
ab
50 4 N
20 1 3r
T
ol
401 4
15 1 1k
o
o
£
3 30 1 a of
a
2
10 1 -1r
20 1
—2F
&
5 1 st + F
10 1
b
0 . 0 -5
0.35 0.4 045 0.5 0.55 06 065 07 0 01 0.2 03 04 05 08 07 5 ] 5
bipartivity bipartivity

FiG. 5.2. Results for synthetic network 1: (a) adjacency matrix; (lpmed matrix; (c) subgraph; (d) histogram of bipartivitylwas for1000 graphs with same expected degree
distribution; (e) fitted probability distribution; and (fuantile-quantile plot.
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works where nodeé has expected in and out degrees that matclittheighest over all nodes
in the given network. Standard ErskRenyi style random graphs with expected number of
(directed) edges matching the given network were also usadtively, we would expect the
directed stickiness version to be the most likely to preserny directed bipartivity present in
the given network. This is borne out in the results, shownahl&5.1, although in all cases
the pvalue is well below the.05 threshold.

TABLE 5.1
Significance of bipartivity substructure discovered irt tesse 1, for various random network classes.

P1 P2

Erdds-Renyi 0/1000 0
Directed stickiness 0/1000 2.33 x 10~
Shuffled stickiness 0/1000 5.05 x 1071°
Biased stickiness  0/1000 0

5.2. Test case 2We now construct a network with a much less well-defined tiekc
bipartite substructure. As before, there &6 nodes. Now the independent probability of a
link between one of nodes 1-20 to one of nodes 21-4®jsvhereas the probability of a link
elsewhere i9).4. Selecting at0 by 40 subgraph and testing in the same manner as before,
Figure 5.2 changes to Figuré.3. (We found that 60% of the nodes in the subgraph came
from the “correct” sets 1-20 and 21-40.) A bipartivity scofeé).4083 is obtained for this
subnetwork. The various pvalues, all of which slightly ee@@.05, are listed in Tabl&.2. We
see that for this data set the level of bipartivity discoddrg the mapping cannot be regarded
as significant. This example gives some indication of thergxof directed bipartivity that
we can confidently discover.

TABLE 5.2
Significance of bipartivity substructure discovered irt tese 2, for various random network classes.

P1 D2

Erdos-Renyi 55/1000  5.91 x 102
Directed stickiness 844/1000 8.46 x 10!
Shuffled stickiness 896/1000 9.03 x 10~!
Biased stickiness  57/1000  7.00 x 10~2

6. Worm brain network. To illustrate the usefulness of the new mapping we anal-
yse two real-world networkgi) the global neuronal network of the nematode (roundworm)
Caenorhabditis eleganand (ii) a local subnetwork af31 frontal neurons of the same organ-
ism; see 14]. To obtain a directed network we removed all gap junctionsifthe data sets,
as experimental techniques used to reconstruct the nesystsm ofC. elegansare unable
to infer directionality of such connections. After non-nenal cells are removed, this results
in a local network ofl31 neurons and64 chemical synapses, and a global network ®f
neurons and904 chemical synapses.

1 The data sets are availablerdtt p: / / www. bi ol ogi cal - net wor ks. or g/ ?page_i d=25.
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FiG. 6.1. Upper left: worm neural network with31 nodes. Lower: reordered version ¢fA) 4 f(AT).
Upper right: subnetwork a32 nodes obtained from the reordering.

Our motivation is that Durbin4, Figure 8.1] used an ad hoc combinatoric algorithm
to search for and display the type of directed bipartitecstme that we consider. From a
biological viewpoint, this allows us to consider questisnsh as
what is the processing depth from sensory input to motorwute. how
many intermediary neurons are there?, and to what exterftascircuitry
unidirectional, progressing linearly from input to outJt]
In this preliminary work, we are simply using the worm braitwork to demonstrate that
the new mapping gives a systematic way to discover this tyjpamortant structure.
The upper plot in Figuré.1 shows the original adjacency matrix for the local connec-
tivity network. A heat map forf (A) + f(AT) highlighted certain node pairs as being hot or
cold. Applying the SVD to this matrix and spectrally reoiidgrto reveal the hot and cold



ETNA
Kent State University
http://etna.math.kent.edu

348 J. CROFTS, E. ESTRADA, D. HIGHAM AND A. TAYLOR

regions produces the lower picture. We see that tight alsistave emerged via contiguous
nodes at each end of the new ordering. In the upper rightreictue have picked out the
corresponding nodes and plotted the resulting subnetwieke theS; — Sy submatrix is
respectivelys, 35 and9 times more dense than tise — S, S — S; andS, — S5 subnet-
works. Performing a similar analysis on the global netwailgws us, in analogous fashion,
to pick out two sets of contiguous nodes such thatthe- So matrix is respectively3, 80
and27 times more dense than tis¢ — S1, So — S; andS; — S5 subnetworks.

TABLE 6.1
Significance of subgraphs found for the local and global weite for C. elegans using varying test matrix classes.

RG model P1 P2
Local

Erdos-Renyi 6.81 x 1075 0/1000

Directed stickiness ~ 0.9556 951/1000

Shuffled stickiness ~ 0.9683 958/1000

Biased stickiness 0.0468 42/1000
Global

Erdos-Renyi 8.47 x 1072 0/1000

Directed stickiness 5.82 x 10=°>  0/1000
Shuffled stickiness 5.15 x 10> 0/1000
Biased stickiness  8.63 x 10=7  0/1000

Using the methods developed in the previous sections, vteddsr statistical signifi-
cance and obtained the results shown in TébleWe see that for the smaller, local network,
the bipartite structure that we discovered is deemed sigmifiin the case of the “biased
stickiness” and Erdls-Renyi models, but not for the more demanding stickiness oBssi
This inconsistency may be due to the fact that althoughSthe» S5 submatrix has many
more connections than tltg — Sy, So — S andS; — Sy submatrices, it is still relatively
sparse, thus resulting in a low bipartivity score0dt645. For the global network, the con-
nectivity pattern is significant under all stickiness madélhe bipartivity measure 6415
and all pvalues are belo01.

In this example we are fortunate that in addition to stai#tignificance testing, we can
validate the results against known biological information

The neuronal classéthat were picked out by the algorithm along with a descriptid
their respective functionalities are given in Tabfe8and6.3.

For the local neural network dE. elegansneurons contained withi§; were mainly
involved in sensory processes (approximat&y:), whilst those inS, involved a mixture
of motor neurons and so called ‘command’ interneurons. I&ityifor the globalC. elegans
network, we found tha$; consisted of a mixture of sensory neurons and nerve ringiate
rons, whilstS, was made up entirely of command interneurons. Note thad]infurbin
attempted to display the neuronal classes in the nerve fiig) elegansvertically, in such
a way that as many of the synapses as possible pointed dodswahe resultant ordering
placed sensory neurons towards the top, motor neuronsdewviae bottom, and the remain-
ing interneurons in between. Overall, the bipartite stiteet that we have picked out are in
good agreement with the highly directed, hierarchicalyipresented by Durbin.

On closer inspectiorj0% of neurons contained withif; for the localC. eleganset-
work, and all neurons belonging &3 for the global neural network, were found to belong to

2For simplicity we present the combined results for neuroredsss rather than individual cells.
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TABLE 6.2
Neuronal class and type for bipartite subgraph found in theal network ofi31 frontal neurons of C. elegans.

Neuronal Class Description

S OLL Head sensory neuron
URY Head sensory neuron
IL2 Head sensory neuron
RIH Ring interneuron
ASH Amphids; sensory neuron
RIM Ring motor neuron
RIV Ring motor/interneuron
CEP Head sensory neuron
AVH Interneuron
ADL Amphids; sensory neuron
So SMD Ring motor neuron
RME Ring motor neuron
RMD Ring motor neuron
AVB Command interneuron
AVA Command interneuron
AVE Command interneuron
AVD Command interneuron
TABLE 6.3

Neuronal class and type for bipartite subgraph found in tlubgl network oft 91 neurons of the C. elegans.

Neuronal Class Description

S1 DVA Interneuron
FLP Sensory neuron
DvC Ring interneuron
PVP Interneuron
ADL Amphids; sensory neuron
AlM Ring interneuron
ADE Anterior deirid; sensory neuron
ASH Amphids; sensory neuron
AQR Sensory neuron
ADA Ring interneuron
AVM Sensory neuron

So AVA Command interneuron
AVB Command interneuron
AVD Command interneuron
AVE Command interneuron

a group of neurons termed thaeral ganglionwhich are known to be highly interconnected
with both sensory and motor neurons—particularly those maotoirons in the ventral cord.
Indeed, it has been suggested that the lateral ganglioe igrthcipal pathway between sen-
sory and motor components of the nemat@delegang3]. In addition, the neuronal classes
AVA, AVB, AVD and AVE, which were picked out both in the locahd global networks, have
been previously identified as ‘hub’ or ‘center’ neurons duat essential for normal biological
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function [16]. For example, it is well known that both AVA and AVB neuron® aecessary
for normal coordinated movement.

7. Conclusions. This paper addresses the problem of determirdingcted bipartite
structureswithin complex networks via a new matrix mapping and valitgthem statis-
tically. Initial tests on a network from neuroscience shbattthe new mapping can be used
to infer biologically relevant information using only thetwork topology. We also found that
the statistical significance of the connectivity patteras be extremely sensitive to the class
of random matrices chosen for comparison. In future workhia &rea we plan to develop
automated algorithms for discovering and quantifying trespnce of approximate directed
bipartite communities and to test these ideas on furthé¢tifeaata sets.
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