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Abstract. We develop and test a new mapping that can be applied to directed unweighted networks. Although
not a “matrix function” in the classical matrix theory sense, this mapping converts an unsymmetric matrix with
entries of zero or one into a symmetric real-valued matrix of thesame dimension that generally has both positive and
negative entries. The mapping is designed to reveal approximate directed bipartite communities within a complex
directed network; each such community is formed by two set of nodesS1 andS2 such that the connections involving
these nodes are predominantlyfrom a node inS1 and to a node inS2. The new mapping is motivated via the
concept ofalternating walksthat successively respect and then violate the orientations of the links. Considering the
combinatorics of these walks leads us to a matrix that can be neatly expressed via the singular value decomposition
of the original adjacency matrix and hyperbolic functions. We argue that this new matrix mapping has advantages
over other, exponential-based measures. Its performance is illustrated on synthetic data, and we then show that it is
able to reveal meaningful directed bipartite substructure in a network from neuroscience.
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1. Background and notation. Large complex networks can be represented as matrices
and studied using the tools of linear algebra. Perhaps most notably, spectral information
involving eigenvectors or, more generally, singular vectors, can be used for data mining tasks
such as clustering, reordering and discovering various types of substructure [2, 7, 11, 15].

We focus here on the case of an unweighted, directed network of N nodes, with no self-
loops. This may be represented by the unsymmetric adjacencymatrix A ∈ R

N×N , where
aij = 1 if there is a link from nodei to nodej, andaij = 0 otherwise.

Quantifying bipartite structure in large complex directednetworks has proved to be very
informative [7, 13, 17], and our aim here is to consider a specific bipartite patternthat takes
account of the orientation of the connections in a directed network. If the set of nodes contains
two distinct subsets,S1 andS2, such that

• the members ofS1 have very few links between themselves,
• the members ofS2 have very few links between themselves,
• there are many links from members ofS1 to members ofS2, and very few other

links in the network involve the nodes ofS1 andS2,
then we will say thatS1 andS2 form anapproximate directed bipartite community. We are
interested in the task of identifying one or more of these communities in a network. We
emphasize that this concept has been left deliberately vague in order to acknowledge the fact
that real networks are typically noisy—in particular, we do not completely rule out “missing”
links from S1 nodes toS2 nodes and we also allow the possibility of “spurious” links from
S2 to S1.

In Section2, we motivate and develop a new mapping that is designed to reveal this type
of structure, and test it on a synthetic network. Section3 gives illustrations that compare
the new mapping with the matrix exponential function. In Section 4 we describe a method
for generating networks to test the significance of bipartite subgraphs, and in Section5 we
implement these tests on synthetic data. In Section6 we show how meaningful information
can be extracted from a network in neuroscience.
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2. Motivation and new mapping. We begin with a definition.
DEFINITION 2.1. Analternating walkof lengthk − 1 from nodei1 to nodeik is a list of

nodes

i1, i2, i3, . . . , ik

such thatais,is+1
6= 0 for s odd, andais+1,is 6= 0 for s even.

Loosely, an alternating walk is a traversal that successively follows links in the forward
and reverse directions. We emphasize that the nodes and edges that make up an alternating
walk need not be distinct.

From the definition of a matrix product it is immediate that

(2.1)
(
AATAAT · · ·

)
ij

with k factors, counts the number of alternating walks of lengthk from nodei to nodej.
Suppose now thatS1 andS2 form an approximate directed bipartite community, as de-

scribed in Section1. If nodesi andj are both in subsetS1 then there is unlikely to be a link
from i to j, but there are likely to be many ways to traverse fromi to j by following one link
forwards and another link backwards. Hence we expect few alternating walks of length one
betweeni andj but many alternating walks of length two. More generally, wewould expect
an over-abundance of even length alternating walks and a paucity of odd length alternating
walks. Incorporating information about longer walks is an intuitively reasonable way to com-
pensate for possible noise in the network—it smooths out the all-or-nothing issue of whether
two nodes are connected. However it is clear that shorter length walks are generally more in-
formative. Hence, motivated by previous work on undirectednetworks [6, 7], we propose to
scale the total number of alternating walks of lengthk by the factor1/k!, and to give negative
weight to odd length walks, which produces the mapping

(2.2) f(A) = I −A+
AAT

2!
−

AATA

3!
+

AATAAT

4!
− · · · .

In words, thei, j element off(A) for i 6= j is the difference between the total number of even
and odd length alternating walks, with walks of lengthk scaled by1/k!. We have included
the identity matrixI in (2.2) simply for convenience. Using the singular value decomposi-
tion (SVD), A = UΣV T , whereU ∈ R

N×N is orthogonal,Σ ∈ R
N×N is diagonal and

V ∈ R
N×N is orthogonal [10], we have

f(A) = I − UΣV T +
UΣ2UT

2!
−

UΣ3V T

3!
+

UΣ4UT

4!
+ · · · ,

which can be written

f(A) = U

(
I +

Σ2

2!
+

Σ4

4!
+ · · ·

)
UT − U

(
Σ+

Σ3

3!
+

Σ5

5!
+ · · ·

)
V T .

This could also be written

(2.3) f(A) = U cosh (Σ)UT − U sinh (Σ)V T ,

which shows thatf(A) may be computed via the SVD. We note thatf(A) does not comply
with the usual definition of a matrix function in linear algebra [12]. However, it is a well–
defined mapping fromRN×N toR

N×N .
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FIG. 2.1.Left: Adjacency matrix. Right:f(A) from (2.3).

Based on this motivation, we would expectf(A)ij to take large positive values when
i, j ∈ S1, and large negative values wheni ∈ S1 andj ∈ S2.

To test this idea, the picture on the left in Figure2.1shows an adjacency matrix for a50
node directed network that we constructed. Here nodes{1, 2, . . . , 10} were made to point to
nodes{11, 12, . . . , 25} with independent probability0.65. Similarly, nodes{30, 31, . . . , 39}
point to nodes{40, 41, . . . , 49} with independent probability0.8, and all other links occur
with independent probability0.05. Hence, there are two approximate directed bipartite com-
munities in the network. In the right of Figure2.1we show a heat map off(A), and it is clear
that the dominant regions of positive and negative values are highlighting theS1 → S1 and
S1 → S2 relationships, respectively, as expected.

We note at this stage that the node ordering in Figure2.1was chosen to make it easy to
visualize the results—the communities share contiguous indices. However, it is clear from the
derivation, or from the relationf(PAPT ) = Pf(A)PT for any permutationP , that the same
hot/cold values relating two nodes would be preserved underany node reordering. Entirely
analogously, we may argue thatf(AT ) will have positive entries forS2 → S2 relationships
and negative forS2 → S1. Hence the sumf(A)+f(AT ) should be a useful tool for revealing
inter-cluster (S1 → S1 andS2 → S2) relationships through positive entries and extra-cluster
(S1 → S2 andS2 → S1) relationships through negative entries. It is straightforward to show
that f(A) + f(AT ) is a symmetric matrix, and hence it is amenable to standard clustering
techniques, with positively connected clusters representing the common parts of the bipartite
communities and negatively-connected clusters representing the disparate parts. We note that
the SVD can be used for clustering or reordering this type of symmetric two-signed data into
the desired two-by-two checkerboard patterns [11]. Hence, we propose that two separate
SVDs may be computed, one to createf(A) + f(AT ) and another to analyze it.

3. Comparison with the matrix exponential. In the case of undirected networks, ar-
guments based on the combinatorics of walks between nodes have been used to show that
exp(A) andexp(−A) can be useful to reveal connectivity patterns [6, 7]. In order to show
that the new mappingf(A) + f(AT ) is better suited for pre-processing directed networks,
we may consider a hierarchical structure where there are three sets of nodes,S1, S2 andS3,
such that
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FIG. 3.1.Left: Unsymmetric adjacency matrixA and three different mappings.

• nodes inS1 tend to point to nodes inS2,
• nodes inS2 tend point to nodes inS3,
• few of the other possible links are present.

Then, considering how they represent counts of walks aroundthe network, we can argue that
the exponentials ofA and−A will have3-by-3 block structure of the form

exp(A) ≈




0 + +
0 0 +
0 0 0


 and exp(−A) ≈




0 − +
0 0 −
0 0 0


 ,

whereasf(A) + f(AT ) will take the form

f(A) + f(AT ) ≈




+ − 0
− + −
0 − +


 .

As an illustration, the pictures in Figure3.1 shows results for a directed network of30
nodes whereS1 = {1, 2, . . . , 10}, S2 = {11, 12, . . . , 20}, S3 = {21, 22, . . . , 30}. In a
similar manner to the network in Figure2.1, links were chosen probabilistically with a strong
bias towards the directed bipartite community connections.

In the next two sections we address the issue of judging whether results from the algo-
rithm are significant. On one hand, it is unrealistic to expect that all nodes in a real network
can be partitioned into two sets,S1 andS2, such that allS1 → S2 links are present and no
others. On the other hand, simply identifying a pair of nodesi andj such thataij = 1 and
aji = 0 is clearly not of interest. We will use the classic notion of apvalue [8] to address the
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question “How likely is it that the level of bipartivity identified by the algorithm in a given
network would arise in an arbitrary network of the same form?” Perhaps the most widely-
used random graph classes are the Erdös-Ŕenyi (ER) and Gilbert models [5, 9]. However, it
is intuitively clear, and easy to check experimentally, that networks from these classes are ex-
tremely unlikely to admit bipartite substructure. Hence, any attempt to fit this type of model
to the given network is likely to give a pvalue that indicatesstatistical significance for the ob-
served pattern. In an attempt to produce a more realistic test, in the next section we develop
a new class of directed random networks based on an established modeling principle, that are
designed to match, in expectation, in and out degrees specified for each node.

4. Directed stickiness model.For each nodei we define two stickiness indices,θ
[i]
in and

θ
[i]
out, that summarize the likelihood of that node having a connection to/from another node in

a particular direction. More precisely, we define the probability of a connection from nodei
to nodej as the product

P(i → j) = θ
[i]
outθ

[j]
in .

This is a natural generalization of the original stickinessmodel in [18], which was defined
for undirected networks. In that case, the stickiness indexwas justified from a modelling
perspective in the context of protein-protein interactionnetworks.

Our first aim is to choose{θ[i]in , θ
[i]
out} so that the expected out-degree of nodei in the

model matches the out-degree of nodei in the given network. This requires

n∑

j=1

aij = E(out-degree of nodei) =
n∑

j=1

θ
[i]
outθ

[j]
in = θ

[i]
out

n∑

j=1

θ
[j]
in .

We may then write

(4.1) θ
[i]
out =

1

K1

n∑

j=1

aij ,

for some constantK1.
Similarly we wish the expected in-degree of nodei in the model to match the in-degree

of nodei in the data, giving

n∑

j=1

aji = E(in-degree of nodei) =
n∑

j=1

θ
[j]
outθ

[i]
in = θ

[i]
in

n∑

j=1

θ
[j]
out.

Hence, we may write

(4.2) θ
[i]
in =

1

K2

n∑

j=1

aji,

for some constantK2.
Having determined these general forms, we now wish to find appropriate constants of

proportionality,K1 andK2. Returning to the out-degree of nodei, using (4.1) and (4.2), we
require

n∑

j=1

aij =

(
1

K1

n∑

j=1

aij

)(
1

K2

n∑

j=1

n∑

k=1

akj

)
,
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which leads to

1

K1K2

n∑

j=1

n∑

k=1

akj = 1.

Considering the in-degree of nodei leads to the same condition. We thus arrive at the unique
choice

K1 = K2 =

√√√√
n∑

j=1

n∑

k=1

ajk.

We may now outline an algorithm to produce an instance of sucha random graph.
• Inputdegin anddegout, vectors of in/out degrees.

• Compute the scaling factorw =

√∑

i

deg
[i]
in .

• Let θ[i]in = w−1deg
[i]
in andθ[i]out = w−1deg

[i]
out.

• For each ordered pair of nodesi andj, connecti to j with independent probability
θ
[i]
outθ

[j]
in .

Of course, for the model to be valid we require all probabilities to be bounded above
by one. This can be guaranteed, for example, if the product ofthe largest in-degree and the
largest out-degree is less than the total number of edges in the target network. This constraint
was satisfied by the networks that we consider here, and we would not expect it to pose any
difficulties in general.

5. Statistical analysis. Having discovered a directed bipartite substructure in a given
network, in order to quantify the likelihood of this patternarising by chance, we must also
quantify the level of bipartivity. Consider a perfectly bipartite network consisting of two sets
S1 andS2 containingm1 andm2 nodes respectively. Such a network may be represented

FIG. 5.1.Directed bipartite network: (a) edge structure (b) adjacency matrix.

by an adjacency matrix with nonzeros only in an off-diagonalblock representing the edges
from S1 to S2, as shown in Figure5.1. In practice, there will be some departure from this
perfect division, and as our measure of bipartivity we will simply take the ratio of the density
of nonzeros in theS1 → S2 block to the density of nonzeros in the remaining L-shaped block
plus one (to avoid division by zero); that is,

b =
|S12|/mn

(|S11|+ |S21|+ |S22|)/(m2 +mn+ n2) + 1
.
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Here|Sij | denotes the number of links fromSi → Sj andm,n are the number of nodes in
S1 andS2 respectively. In the case of perfect directed bipartivity,this measure yields a value
of 1. The value decreases as nonzeros are added to the L-shaped block or removed from the
S1 → S2 block. This is analogous to adding edges in the “wrong” direction or edges within
subsets.

Once a measure of bipartivity has been chosen for the given subgraph, we may test for
significance as follows:

1. Sample a network from an appropriate distribution to givean adjacency matrix̂A.
2. Apply the mappingf(Â) + f(ÂT ) and reorder as for the original network; that is,

according to the first eigenvector of the mapped matrix.
3. Use this eigenvector to select the subgraph consisting ofsets of the same dimension

asS1 andS2, and compute the bipartivity measure.
Following a standard hypothesis testing approach, we may then compute a pvalue as the

frequency with which the bipartivity measure of the given network exceeds that of a ran-
domly sampled network. This gives one way to answer the question “What is the likelihood
that we would observe this level of bipartivity, or higher, in a random network?” Following
convention, we will regard a pvalue below0.05 as an indication of a statistically significant
result. Of course, the computed pvalue is dependent on the choice bipartivity measure and the
class of random networks used. We tested several variationsand present here an indicative
summary. We will refer to such a frequency-based pvalue asp1. In further testing we exam-
ined histograms of the sampled bipartivity measures, and, based on quantile-quantile plots,
found that a lognormal distribution seemed to be appropriate. For each test, we therefore also
compute a second pvalue,p2, found by fitting a lognormal distribution to the sampled data
and using the resulting density function to compute the probability that the given network’s
bipartivity measures will be exceeded. Both approaches areillustrated in the following sub-
sections.

5.1. Test case 1.As a proof of concept, we begin with a synthetic network with known
substructure. Here, we have100 nodes. A connection from nodei to j occurs with indepen-
dent probability0.9 if i ∈ {1, 2, . . . , 20} andj ∈ {21, 22, . . . , 40}, and with probability0.3
elsewhere. We then compute the matrix mapping and plot the reordered, mapped matrix to
determine what dimension of subgraph to extract. The upper pictures in Figure5.2show the
original adjacency matrix, a heat map of the reordered mapped matrix, and the relevant sub-
graph comprising the first and last20 nodes of the relevant eigenvector indices. (In a separate
check we found that 85% of the first 20 nodes were in the “correct” set {1, 2, . . . , 20} and,
similarly, 85% of the second 20 nodes were in the “correct” set {21, 22, . . . , 40}.) We then
generated1000 networks by randomly shuffling the in and out degrees of the given network
and connecting nodes according to the algorithm in Section4. So a node in the random graph
typically draws its expected in and out degrees from two different nodes in the original net-
work, but all in and out degrees in the original network are represented in the new graph. The
resulting bipartivity measure samples are displayed in a histogram, with the bipartivity value
of 0.6138 for the given network indicated as a circle on the x-axis. A lognormal fit to the
data is shown, along with a quantile-quantile plot against alognormal distribution—here data
on a straight line is indicative of a good fit [1]. It is clear from the histogram that the given
network produces a bipartivity measure deep in the low probability tail of the distribution,
and this is reflected in the frequency-based pvalue ofp1 = 0/1000 and lognormal version
p2 = 5.05 × 10−15. Table5.1 summarizes results for other types of randomization. In ad-
dition to using the stickiness model from Section4 to form the “shuffled stickiness” class of
networks, we also formed “directed stickiness” networks where nodei has the expected in
and out degree of the corresponding node in the given network, and “biased stickiness” net-
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works where nodei has expected in and out degrees that match theith highest over all nodes
in the given network. Standard Erdös-Ŕenyi style random graphs with expected number of
(directed) edges matching the given network were also used.Intuitively, we would expect the
directed stickiness version to be the most likely to preserve any directed bipartivity present in
the given network. This is borne out in the results, shown in Table5.1, although in all cases
the pvalue is well below the0.05 threshold.

TABLE 5.1
Significance of bipartivity substructure discovered in test case 1, for various random network classes.

p1 p2

Erdös-Ŕenyi 0/1000 0
Directed stickiness 0/1000 2.33× 10−15

Shuffled stickiness 0/1000 5.05× 10−15

Biased stickiness 0/1000 0

5.2. Test case 2.We now construct a network with a much less well-defined directed
bipartite substructure. As before, there are100 nodes. Now the independent probability of a
link between one of nodes 1–20 to one of nodes 21–40 is0.8, whereas the probability of a link
elsewhere is0.4. Selecting a40 by 40 subgraph and testing in the same manner as before,
Figure5.2 changes to Figure5.3. (We found that 60% of the nodes in the subgraph came
from the “correct” sets 1–20 and 21–40.) A bipartivity scoreof 0.4083 is obtained for this
subnetwork. The various pvalues, all of which slightly exceed0.05, are listed in Table5.2. We
see that for this data set the level of bipartivity discovered by the mapping cannot be regarded
as significant. This example gives some indication of the extent of directed bipartivity that
we can confidently discover.

TABLE 5.2
Significance of bipartivity substructure discovered in test case 2, for various random network classes.

p1 p2

Erdös-Ŕenyi 55/1000 5.91× 10−2

Directed stickiness 844/1000 8.46× 10−1

Shuffled stickiness 896/1000 9.03× 10−1

Biased stickiness 57/1000 7.00× 10−2

6. Worm brain network. To illustrate the usefulness of the new mapping we anal-
yse two real-world networks1(i) the global neuronal network of the nematode (roundworm)
Caenorhabditis elegans, and (ii) a local subnetwork of131 frontal neurons of the same organ-
ism; see [14]. To obtain a directed network we removed all gap junctions from the data sets,
as experimental techniques used to reconstruct the nervoussystem ofC. elegansare unable
to infer directionality of such connections. After non-neuronal cells are removed, this results
in a local network of131 neurons and964 chemical synapses, and a global network of191
neurons and1904 chemical synapses.

1 The data sets are available athttp://www.biological-networks.org/?page_id=25.

http://www.biological-networks.org/?page_id=25
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nz = 964

A

Reordered f(A) + f(A T)

nz = 96

Subnetwork of A

FIG. 6.1. Upper left: worm neural network with131 nodes. Lower: reordered version off(A) + f(AT ).
Upper right: subnetwork of32 nodes obtained from the reordering.

Our motivation is that Durbin [4, Figure 8.1] used an ad hoc combinatoric algorithm
to search for and display the type of directed bipartite structure that we consider. From a
biological viewpoint, this allows us to consider questionssuch as

what is the processing depth from sensory input to motor output, i.e. how
many intermediary neurons are there?, and to what extent is the circuitry
unidirectional, progressing linearly from input to output? [4]

In this preliminary work, we are simply using the worm brain network to demonstrate that
the new mapping gives a systematic way to discover this type of important structure.

The upper plot in Figure6.1 shows the original adjacency matrix for the local connec-
tivity network. A heat map forf(A) + f(AT ) highlighted certain node pairs as being hot or
cold. Applying the SVD to this matrix and spectrally reordering to reveal the hot and cold
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regions produces the lower picture. We see that tight clusters have emerged via contiguous
nodes at each end of the new ordering. In the upper right picture, we have picked out the
corresponding nodes and plotted the resulting subnetwork.Here theS1 → S2 submatrix is
respectively,5, 35 and9 times more dense than theS1 → S1, S2 → S1 andS2 → S2 subnet-
works. Performing a similar analysis on the global network,allows us, in analogous fashion,
to pick out two sets of contiguous nodes such that theS1 → S2 matrix is respectively,3, 80
and27 times more dense than theS1 → S1, S2 → S1 andS2 → S2 subnetworks.

TABLE 6.1
Significance of subgraphs found for the local and global networks for C. elegans using varying test matrix classes.

RG model p1 p2
Local

Erdos-Renyi 6.81× 10−5 0/1000
Directed stickiness 0.9556 951/1000
Shuffled stickiness 0.9683 958/1000
Biased stickiness 0.0468 42/1000

Global
Erdos-Renyi 8.47× 10−12 0/1000
Directed stickiness 5.82× 10−5 0/1000
Shuffled stickiness 5.15× 10−5 0/1000
Biased stickiness 8.63× 10−7 0/1000

Using the methods developed in the previous sections, we tested for statistical signifi-
cance and obtained the results shown in Table6.1. We see that for the smaller, local network,
the bipartite structure that we discovered is deemed significant in the case of the “biased
stickiness” and Erd̈os-Ŕenyi models, but not for the more demanding stickiness versions.
This inconsistency may be due to the fact that although theS1 → S2 submatrix has many
more connections than theS1 → S1, S2 → S1 andS2 → S2 submatrices, it is still relatively
sparse, thus resulting in a low bipartivity score of0.2645. For the global network, the con-
nectivity pattern is significant under all stickiness models. The bipartivity measure is0.6415
and all pvalues are below0.01.

In this example we are fortunate that in addition to statistical significance testing, we can
validate the results against known biological information.

The neuronal classes2 that were picked out by the algorithm along with a description of
their respective functionalities are given in Tables6.2and6.3.

For the local neural network ofC. elegans, neurons contained withinS1 were mainly
involved in sensory processes (approximately65%), whilst those inS2 involved a mixture
of motor neurons and so called ‘command’ interneurons. Similarly for the globalC. elegans
network, we found thatS1 consisted of a mixture of sensory neurons and nerve ring interneu-
rons, whilstS2 was made up entirely of command interneurons. Note that in [4], Durbin
attempted to display the neuronal classes in the nerve ring of C. elegansvertically, in such
a way that as many of the synapses as possible pointed downwards. The resultant ordering
placed sensory neurons towards the top, motor neurons towards the bottom, and the remain-
ing interneurons in between. Overall, the bipartite structures that we have picked out are in
good agreement with the highly directed, hierarchical picture presented by Durbin.

On closer inspection,60% of neurons contained withinS2 for the localC. elegansnet-
work, and all neurons belonging toS2 for the global neural network, were found to belong to

2For simplicity we present the combined results for neuronal classes rather than individual cells.
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TABLE 6.2
Neuronal class and type for bipartite subgraph found in the local network of131 frontal neurons of C. elegans.

Neuronal Class Description

S1 OLL Head sensory neuron
URY Head sensory neuron
IL2 Head sensory neuron
RIH Ring interneuron
ASH Amphids; sensory neuron
RIM Ring motor neuron
RIV Ring motor/interneuron
CEP Head sensory neuron
AVH Interneuron
ADL Amphids; sensory neuron

S2 SMD Ring motor neuron
RME Ring motor neuron
RMD Ring motor neuron
AVB Command interneuron
AVA Command interneuron
AVE Command interneuron
AVD Command interneuron

TABLE 6.3
Neuronal class and type for bipartite subgraph found in the global network of191 neurons of the C. elegans.

Neuronal Class Description

S1 DVA Interneuron
FLP Sensory neuron
DVC Ring interneuron
PVP Interneuron
ADL Amphids; sensory neuron
AIM Ring interneuron
ADE Anterior deirid; sensory neuron
ASH Amphids; sensory neuron
AQR Sensory neuron
ADA Ring interneuron
AVM Sensory neuron

S2 AVA Command interneuron
AVB Command interneuron
AVD Command interneuron
AVE Command interneuron

a group of neurons termed thelateral ganglionwhich are known to be highly interconnected
with both sensory and motor neurons—particularly those motor neurons in the ventral cord.
Indeed, it has been suggested that the lateral ganglion is the principal pathway between sen-
sory and motor components of the nematodeC. elegans[3]. In addition, the neuronal classes
AVA, AVB, AVD and AVE, which were picked out both in the local and global networks, have
been previously identified as ‘hub’ or ‘center’ neurons thatare essential for normal biological
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function [16]. For example, it is well known that both AVA and AVB neurons are necessary
for normal coordinated movement.

7. Conclusions. This paper addresses the problem of determiningdirected bipartite
structureswithin complex networks via a new matrix mapping and validating them statis-
tically. Initial tests on a network from neuroscience show that the new mapping can be used
to infer biologically relevant information using only the network topology. We also found that
the statistical significance of the connectivity patterns can be extremely sensitive to the class
of random matrices chosen for comparison. In future work in this area we plan to develop
automated algorithms for discovering and quantifying the presence of approximate directed
bipartite communities and to test these ideas on further real life data sets.
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