
Electronic Transactions on Numerical Analysis.
Volume 10, pp. 351-366, 2010.
Copyright  2010, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University

http://etna.math.kent.edu

BENCHMARKING AGGREGATION AMG FOR LINEAR SYSTEMS IN CFD
SIMULATIONS OF COMPRESSIBLE INTERNAL FLOWS ∗

MAXIMILIAN EMANS †

Abstract. The performance of parallel implementations of three fundamentally different aggregation AMG
(algebraic multigrid) solvers, including novel k-cycle methods, for systems of linear equations appearing in industrial
CFD simulations are examined. The results show that the k-cycle methods are a good choice for cases with less than
20000 unknowns per process if the cost of the setup tends to become critical; for most other applications, however,
established methods proved to be equally efficient or superior.

Key words. algebraic multigrid, fluid dynamics, finite volumes, pressure-velocity coupling

AMS subject classifications.15A06, 65F08, 76G25

1. Introduction. The three-dimensional simulation of various processes related to fluid
dynamics requires the approximate solution of the Navier-Stokes equations and, eventually,
an energy equation for steady or unsteady and for compressible or incompressible flows in
terms of pressure, temperature, and velocity fields. Contemporary simulation tools provide
a considerable amount of freedom with respect to geometry that requires a discretisation on
unstructured meshes. Due to the resolution necessary for reasonable modelling, the size of
the problems is in the range of one million grid cells or more which makes the use of parallel
computers using typically a few CPUs inevitable to keep the computing times at an acceptable
level.

A common approach to provide an appropriate approximation of the solution of the
Navier-Stokes equations in this context is the discretisation by means of finite volumes. The
SIMPLE (“Semi-Implicit Method for Pressure-Linked Equations”; see Patankar [21]) algo-
rithm or a method derived from it can be used to obtain an approximate solution of this
coupled non-linear system. To the knowledge of the author, these kind of methods are used
in most of the actual commercial CFD-tools since they can be employed to a wide range of
problems. The SIMPLE algorithm requires the solution of linear systems of equations. For
this task, AMG methods are an appropriate choice since they are fast and sufficiently robust.

However, the term AMG stands for a class of algorithms ratherthan for a certain method.
Meanwhile a number of methods, well suited for the particular requirements of CFD, are
known, but recently Notay [20] devised a promising, conceptually new method. Since, as we
will explain later, there is some hope that this method can lead to a significant improvement
compared to the known algorithms, especially with respect to the particular requirements of
CFD application, we will compare it in terms of computational efficiency to other successful
techniques in this contribution.

As far as the computing time (in fact the most relevant property for industrial applica-
tion) is concerned, it is not obvious that the properties of the AMG variants described in
the literature can be transferred to the practical application in CFD. It is well possible that a
particular algorithm is reported to perform excellently, e.g., in solving a particular diffusion
problem, but that the same algorithm exhibits unacceptableruntimes in our applications. On
the one hand, this is due to the different requirements to theaccuracy of the solution; on the
other hand, the practical application is decisive for the properties of the system of linear equa-

∗Received January 7, 2010. Accepted for publication April 18, 2010. Published online November 9, 2010.
Recommended by R. Lehoucq.

†AVL List GmbH, Hans-List-Platz 1, 8020 Graz, Austria and IMCC, Altenbergerstr. 69, 4040 Linz, Austria
(maximilian.emans@avl.com).

351

ETNA
Kent State University

http://etna.math.kent.edu

352 M. EMANS

tions: Even if fundamental matrix properties can be verified, the discretisation with different
geometrical cell types or varying gradients in flow variables might lead to matrices that are
quite different from those of idealised problems. Therefore, a general understanding of the
fundamental algorithms for the flow simulation is necessary. Although these algorithms are
known, we will spend a certain portion of this article to describe them in detail in a uniform
matrix based notation since the original papers often use animplementation oriented notation
that is sometimes quite tedious to read for someone not familiar with this practice.

This paper is dedicated to the performance of different aggregation based AMG algo-
rithms in the context of CFD software of the industrial practice. We will examine computa-
tional aspects of the behaviour of these algorithms appliedas linear solvers for systems that
appear in the simulation of subsonic internal compressibleflow at the example of a com-
bustion engine. Both, the algorithms and the hardware configuration of our test cases are
deliberately chosen to be as similar as possible to the toolsthat are used, e.g., by CFD engi-
neers in their daily professional practice. Since our test cases are taken from a single practical
application of simulation software and since our conclusions are only backed by experimen-
tal data, it is not always straightforward to transfer our observations and conclusions to other
applications. A second reason to set great value on a detailed description and classification
of the test cases is therefore to preserve at least a certain amount of generality.

The remainder of this article is organised as follows: In Section 2 we compile the relevant
algorithms for the solution of the Navier-Stokes equationsfrom various papers and present
them in a uniform matrix based notation. In Section3 we recall the main features of the
known aggregation based multigrid algorithms and the k-cycle method of Notay [20], work
out relevant differences, and give details of our parallel implementations. Section5 is de-
voted to the presentation of results of numerical experiments with these algorithms. Finally,
Section6 contains our conclusions.

2. SIMPLE for incompressible flows. Numerical simulation of fluid flow usually re-
lies on a solution of the Navier-Stokes equations and the energy equation, along with (eventu-
ally) a certain number of transport equations. The method discussed in this paper is typical for
industrial CFD codes: its spacial discretisation is based on the technique of the finite volumes
with a collocated variable arrangement that allows to use unstructured meshes. The employed
discretisation practice was described in detail in other publications starting with Demirďzić
and Muzaferija [3] and continuing with Ferziger and Perić [10], Marthur and Marthy [17],
and Basara [1]. With such a scheme, the discretised momentum and continuity equations for
the unknown velocity field~u and the pressure field~p may be written as

A(~̂u)~u + M~p = ~b,

C~̂u = ~c.

Here,A denotes the discretised and linearised operator that acts on the velocity field in the
momentum equations, i.e., it expresses convective, diffusive, and eventually inertia compo-
nents.M is the discretisation of the gradient operator of the pressure term,~b the body force
term,C represents the discretised continuity equation, and~c is a mass source. The hat ()̂ on
top of the vectors indicates that the vector is discretised on the grid that corresponds to the
cell faces. The discretisation of the operators requires that both the velocity in the cell centre
~u and the velocity at the cell faceŝ~u appear in the system of equations. Both variables are
linked by a linear interpolation operatorS.

The most challenging task within numerical simulations of fluid flows is to compute the
solution of this non-linear and coupled system. For this, the SIMPLE algorithm, see Patankar
[21], can be used. A detailed deduction of the SIMPLE algorithm in a similar notation can

ETNA
Kent State University

http://etna.math.kent.edu

BENCHMARKING AGGREGATION AMG FOR CFD 353

be found in Emans [5]. In the following we restrict ourselves to the steps of the SIMPLE
algorithm.

In this iterative procedure, the velocity field that is calculated in them-th iteration is split
into a tentative velocity field~u ∗ and a velocity update~u ′

~u (m) = ~u ∗ + ~u ′. (2.1)

A similar splitting is applied to the pressure:

~p (m) = ~p (m−1) + ~p ′, (2.2)

where~p ′ is referred to as the pressure-correction.
In the first step of the SIMPLE algorithm the equation

A(~u (m−1))~u ∗ + M~p (m−1) = ~b (2.3)

is solved. The solution is the preliminary velocity~u ∗; it is a solution of the momentum
equation, but in general it is not a solution of the continuity equation. The dependence ofA
on~u reflects the non-linearity of the system. Moreover, the pressure of the previous iteration
is used. Both, the pressure and the (final) velocity of the current iteration are determined later
in the iteration. The solution can be considered converged with respect to the thresholdǫ if the
change in~u lies below this threshold. This implies|~u (m)−~u (m−1)| < ǫ and|~u ∗−~u (m)| < ǫ
or |~u′| < ǫ.

The next step is to compute a pressure-correction~p ′ that is used to update the pressure
and to drive the velocity field towards being a solution of thecontinuity equation, too. The
SIMPLE algorithm on collocated grids requires the velocityon the cell faceŝ~u. A stable
method to couple velocity and pressure has been devised by Rhie and Chow [22]. Within this
scheme the velocity at the cell faces is calculated from

~̂u∗ = S(~u ∗ + A−1
D M~p (m−1)) − ÂMM̂~p (m−1), (2.4)

whereAD := diag(A), ÂM := [SA−1
D

~1], M̂ is the gradient operator on the cell faces based
on the difference between the values of the two adjacent cells, and[~x] stands for a diagonal
matrix that has the element of valuexj (j-th component of vector~x) in thej-the row. With
this, the coefficients and the right-hand side of the pressure-correction equation

− CÂMM̂~p ′ = ~c − C~̂u ∗ (2.5)

can be assembled and this linear system of equation can be solved. In the deduction of this
equation the term−SA−1

D (A − AD)~u ′ (that is driven towards zero in the course of the it-
eration) has been neglected. Since in the incompressible caseC is the divergence operator
(multiplied by the constant density),̂AM merely scales the system matrix and̂M is the gra-
dient operator (on the cell faces), the system matrix is positive semi-definite (with row sum
zero). The solution of this system is one of the computationally most expensive tasks within
the SIMPLE algorithm; for realistic simulation it requirestypically between 30% and 80% of
the total computing time.

From the pressure-correction a velocity correction is calculated with

~̂u ′ = −ÂMM̂~p ′. (2.6)

The velocity and the pressure for the iterationm are then obtained by updating both variables
according to (2.1) and (2.2), respectively. If the solution has not converged yet, another
iteration is taken, starting with the solution of the momentum equation (2.3). In short, the
SIMPLE algorithm is outlined in Algorithm1.

ETNA
Kent State University

http://etna.math.kent.edu

354 M. EMANS

Algorithm 1 SIMPLE for incompressible flows and collocated variable arrangement
1: while <not converged> do
2: assembleA(~u (m−1)) and solve Eqn. (2.3) for u ∗

3: compute~̂u∗ with Eqn. (2.4), assemble right-hand side and matrix of Eqn. (2.5) and
solve for pressure-correction~p ′

4: compute velocity-correction with Eqn. (2.6)
5: update velocity and pressure with Eqns. (2.1) and (2.2)
6: end while

2.1. SIMPLE for compressible flows. For compressible flows, the density̺ depends
on the pressure field~p and the temperature field~T (which may be uniform if the flow is
isothermal). This implies that the continuity operatorC depends linearly on the density and
that the time derivative of the density appears in the continuity equation. The following
formulation of this equation reflects this and is valid for first order time discretisation with
time stepδt:

Cc[~̺̂]~̂u = −[~v](~̺ − ~̺0).

The components of~v arevj = Vj/δt, ~̺0 denotes the density of the previous time step.
For an ideal gas, the relation between density, pressure, and temperature can be expressed

as

~̺ = [~r]~p, (2.7)

where~r denotes the vector with the componentsrj = 1/(Rj · Tj). Rj is the gas constant in
the cellj that depends on the composition of the gas in this cell,Tj is the component of~T
associated with cellj.

The formal introduction of a density update

~̺ ′ = [~r]~p′ = ~̺ (m) − ~̺ (m−1),

substitution and neglect of products of updates yields the discrete pressure-correction equa-
tion for compressible flows

{

Cc

(

[~̺̂ (m−1)](−ÂMM̂) + [~̂u ∗][~̂r]
)

+ [~v][~r]
}

~p′ =

−[~v](~̺ (m−1) − ~̺0) − Cc[~̺̂
(m−1)]~̂u ∗ + ~c. (2.8)

Note that the hat on top of a vector indicates that this vectoris discretised on the cell faces,
i.e., the values at a face are interpolated linearly betweenthe two adjacent cells. The SIMPLE
algorithm for compressible flows on collocated grids that has been introduced by Demirdžić
et al. [4] may be written as Algorithm2; for more details we refer again to Emans [5].

Considering the composition of the left-hand side operatorof (2.8), one can see that the
operator is certainly positive definite if the velocity field~̂u ∗ and the density satisfy the conti-
nuity equation. Roughly speaking, this property might be lost if the defect of the continuity
equation is no longer balanced by the contribution of[~̂v][~̂r] to the operator on the left-hand
side of (2.8). However, under the condition that the flow field is initialised consistently, the
matrix can be supposed to be definite; e.g., all matrices of the benchmarks described in this
article are indeed positive definite.

It is important to note that the solution of the pressure-correction equation takes place
within an iterative scheme. Experience has shown that a numerically exact solution of these
systems of equations is not needed such that for practical application the reduction of any
residual norm by a factor between 10 and 10000 is sufficient.

ETNA
Kent State University

http://etna.math.kent.edu

BENCHMARKING AGGREGATION AMG FOR CFD 355

Algorithm 2 SIMPLE for incompressible flows and collocated variable arrangement
1: while <not converged> do
2: (re)compute density field~̺ (m−1) with Eqn. (2.7) using~p (m−1) and~T (m−1)

3: assembleA(~u (m−1)) and solve Eqn. (2.3) for ~u ∗

4: compute~̂u∗ with Eqn. (2.4), assemble right-hand side and matrix of Eqn. (2.8) and
solve for pressure-correction~p ′

5: compute velocity-correction with Eqn. (2.6)
6: update velocity and pressure with Eqns. (2.1) and (2.2) to obtain~u (m) and~p (m)

7: if <flow not isothermal> then
8: assemble matrix and right-hand side of the energy equation using ~̺ (m−1), ~u (m),

and~p (m) and solve for~T (m)

9: end if
10: end while

2.2. PISO. The convergence of the SIMPLE algorithm is accelerated if the neglected
termSA−1

D (A−AD)~u ′ is approximated rather than set to zero. A common method is known
as PISO algorithm (“Pressure-Implicit with Splitting Operators”); see Issa [13]. By means of
an additional iteration it makes sure that after each iteration of PISO the continuity equation
is solved at least up to the accuracy of the solution of the pressure-correction equation. For
the incompressible case the correlation between~p ′ and~̂u ′ without neglecting any term in the
original equations is

~̂u ′(i+1) = −ÂMM̂~p ′(i) − SA−1
D (A − AD)~u ′(i). (2.9)

Formally, the pressure-correction equation with this is

− CÂMM̂~p ′(i+1) = ~c − C(~̂u ∗ − SA−1
D (A − AD)~u ′(i+1)), (2.10)

where~u ′(i+1) = ST ~̂u ′(i+1). Since~̂u ′(0) is not known, it is set to zero. Then (2.10) is
solved for~p′(1). Now, for the nexti, the right hand side of (2.9) can be evaluated and in this
way an iteration between (2.10) and (2.9) is done. In the course of this additional iteration,~̂u ′

approaches a certain vector that reflects the velocity correction needed to satisfy the continuity
equation. In the practical application of this algorithm typically up to five iterations are
required to reduce the difference between~̂u ′(i+1) and ~̂u ′(i) below a given threshold that
leads to a significant reduction of the (outer) PISO iterations.

The resulting algorithm has shown to converge significantlyfaster than the standard SIM-
PLE such that the extra effort to evaluate~̂u ′(i+1) using (2.10) and to solve the system of
equations (2.10) pays off in many situations. Note that the matrix of the pressure-correction
equation does not change from one internal iteration withinPISO (marked by indexi in (2.9)
and (2.10)) to the next. PISO can be transferred easily from incompressible to compressible
calculations.

3. Parallel AMG algorithms. The focus of this article is on the comparison of aggre-
gation based k-cycle methods to other established aggregation methods. In this section we
describe relevant common features and the differences of the parallel AMG algorithms under
examination. The fundamental AMG algorithm is not repeatedhere. For this we refer the
reader to the literature; e.g., to the early AMG publicationof Ruge and Sẗuben [23] or to the
appendix of Trottenberg et al. [27].

3.1. General aspects of the parallelisation and implementation. We restrict ourselves
to the employment of AMG methods for the solution of the pressure-correction equations in

ETNA
Kent State University

http://etna.math.kent.edu

356 M. EMANS

one of the schemes described above. The parallelisation of these schemes in AVL FIRE(R)

2009 is done by a geometric domain decomposition, i.e., the total number of finite volumes
(global domain) is divided into disjoint subdomains and distributed to the available processes;
whenever necessary, information between two adjacent subdomains is exchanged. For the
solver of the systems of linear equations the same distributed memory approach is used.

For the computation of the coarse-grid operator we follow the Galerkin approach; see
Trottenberg et al. [27]. Given a system matrixB and a restriction operatorR, we compute
the coarse-grid operatorBC explicitly as

BC = RBRT .

Note that the interpolation operator isRT .
Even though our fine-grid matrices are sparse and have typically not more than 6 off-

diagonal elements, rows with 60 and more elements are frequently found in coarse-grid op-
erators; see, e.g., Yang [31] for similar observations. As a matter of fact, the amount ofdata
to be transmitted and processed is considerable due to this effect and it increases the cost
of the setup significantly. Since, on the other hand, one realises quickly that in our applica-
tion the setup costs tend to be prohibitive to the application of AMG, we allow only local
interpolation in all our algorithms. This is a straightforward method to avoid the necessity to
transfer parts of the matrixB and to reduce efficiently the number of elements ofR that need
to be exchanged between two adjacent domains for the explicit computation ofBC . Possi-
bly a deteriorated convergence of parallel computations isthe price that is to be paid for this
restriction.

It is widely agreed upon that a full parallelisation of the smoother is not practicable. We
follow the usual practice and employ a fully parallel Jacobischeme on the boundaries between
two domains and a Gauß-Seidel lexicographic scheme for the interior points. This technique
is referred to as hybrid Gauß-Seidel smoother; see Henson and Yang [12]. Moreover, in
parallel computations, an agglomeration strategy is employed to treat the systems assigned to
the coarsest grids; see Trottenberg et al. [27]: all the information of grids with less than 200
nodes is passed to one of the neighbours until one grid remains. The system of equations of
this coarsest grid is then solved directly by Gaußian elimination by a single process while the
other processes idle.

For any performance test, the implementation is an important issue. In this study we use
a uniform interface similar to the one described by Falgout and Yang [9]. The data is stored
in CRS (compressed row storage) format; for details see Falgout et al. [8]. All linear algebra
operations are implemented uniformly without the use of external libraries. The choice of the
CRS format for the matrix determines the implementation of all matrix-vector operations in
the sequential case. The solver related parts of the programare coded in FORTRAN 90 and
compiled by the Intel FORTRAN compiler version 10.1.

For the communication in the parallel case we use the hp-MPI library, version 2.3 (with
C-binding). Field data at the domain boundaries is always exchanged through the asyn-
chronous “immediate send” mechanism. In the parallel setupphase, the exchange of data is
started and the local operations are performed simultaneously; once the exchange and the in-
ternal work has been completed, the boundaries are treated.The restriction operators are also
stored in CRS format once they have been computed in the setupphase. The same mechanism
applies to the solution phase: the exchange of the information at the inter-domain boundaries
is started and the local work is done while the exchange takesplace; each operation that re-
quires data exchange at the domain boundaries (matrix-vector product or smoothing sweep)
is finished with the computation of the boundaries after the exchange and the internal work
have been completed. Apart from this asynchronous communication only collective commu-

ETNA
Kent State University

http://etna.math.kent.edu

BENCHMARKING AGGREGATION AMG FOR CFD 357

nication patterns occur: for the synchronisation of the setup phase on the one hand and for
the computation of inner products and norms during the solution phase on the other hand.

3.2. Remarks on the selection of algorithms.The so-called “classical” AMG of Ruge
and Sẗuben [23, 26] is based on a C-F-splitting, i.e., it chooses from the set offine-grid points
(F-points) a set of points the coarse-grid consists of (C-points). Aggregation methods, on the
other hand, divide the set of fine-grid points into a number ofdisjoint subsets that are called
aggregates. These aggregates then become the abstract coarse-grid points. This difference is
illustrated in Figure3.1. Whereas for “classical” AMG methods the interpolation formulae
between C-points and F-points are a very sensitive issue, for aggregation methods in principle
a constant interpolation can be used. Even if a C-F-splitting method employs very efficient
and stable algorithms such as the ones suggested by De Stercket al. [25], the computation of
the interpolation weights is still rather expensive and tends not to pay off in our kind of cases;
see Emans [6]. We therefore do not further follow the concept of C-F-splitting methods in
the present article.

FIG. 3.1.Coarse-grid selection of “classical” AMG of Stüben [26] (left), Smoothed Aggregation (center), and
pairwise aggregation of Notay [19] (right).

There have been, on the other hand, many variations of aggregation methods described in
the literature. In the context of the pressure-correction schemes like SIMPLE the Smoothed
Aggregation AMG of Vaňek et al. [29] is an appropriate algorithm; see, e.g., Emans [6].
This algorithm is characterised by large aggregates, comparatively large cost of the setup,
but low memory requirements. In order to show satisfying convergence, it has to be used
as a preconditioner of a Krylov-subspace method. Another type of methods forms small
aggregates from very few (typically two or three, see, e.g.,Weiss et al. [30]) nodes of the fine
grid, such that the computation of the coarse-grid operators is very simple and cheap, while
the memory requirement can be high. From the viewpoint of application, the k-cycle method
of Notay [20] is an attempt to combine the advantages of simple operator computation and
larger aggregates by employing a special Krylov-backed cycling strategy. It is the cheap setup
and the hope for very good convergence properties that makesthis method seem attractive for
the CFD applications described in this article.

3.3. Smoothed Aggregation AMG.A serial implementation of this method is described
in detail in Vaňek et al. [29]. This algorithm considers the mutual influence ofi ontoj (and

ETNA
Kent State University

http://etna.math.kent.edu

358 M. EMANS

vice versa) and tries to group degrees of freedom (dof) linked by matrix elements with

|aij | ≥ ε · √aii · ajj

together. The parameterε depends on the level in the grid hierarchyl (l = 1: finest grid) and
it is defined as

ε := 0.08 · 0.25(l−1).

The number of dof per aggregate is rather large leading to a rather rapid coarsening process.
In this method, the interpolation operator with constant interpolation is not used directly;
instead, it is refined (“smoothed”) by an application of one Jacobi step along the paths of
the graph of the fine-grid matrix in order to get the final interpolation operator. For parallel
computations, we do not permit aggregates that range over more than one subdomain and
restrict the smoothing to local dof. Through this, the parallel computation of the coarse-grid
operator is kept relatively simple. In fact, more complex approaches that allow to waive these
restrictions do not necessarily seem to result in better performance, in particular not if the
number of unknowns per node is not too small; see Tuminaro andTong [28]. However, the
way of choosing the aggregates influences the convergence significantly; see Fujii et al. [11].
In the parallel algorithm, we therefore take the dof adjacent to domain boundaries as a first
set of root points for the aggregation process.

The Smoothed Aggregation approach produces interpolationschemes and coarse-grid
operators that are structurally the same as the corresponding elements of the classical AMG
of Stüben [26]; the coarsening process is fairly rapid, the size of the aggregates typically
ranges between 10 and more than 50. The interpolation corresponds to a linear interpolation;
see the appendix of Trottenberg [27]. We use this method as a preconditioner for the conjugate
gradient algorithm; see Saad [24]. We have implemented a v-cycle scheme with two pre- and
two post-smoothing hybrid Gauß-Seidel sweeps. For this algorithm we use the abbreviation
ams1cg.

3.4. Basic AMG. The contribution to the computational cost of the setup of both, C–F-
splitting methods as well as Smoothed Aggregation technique to the total computing time of
these AMG variants amounts to more than 40%. Within the setup, the most expensive part is
the (parallel) computation of the interpolation weights and of the elements of the coarse-grid
operators. If constant interpolation is employed, the computation of the interpolation weights
is completely avoided and the computation of the coarse-grid operators is dramatically sim-
plified (in fact it reduces to an addition of rows of the fine-grid operator).

Since for our type of application the required accuracy of the solution is low and conse-
quently only a few iterations are necessary, an expensive setup is particularly painful. There-
fore in our basic AMG method constant interpolation is employed. The disadvantage of
constant interpolation is a comparatively bad representation of the fine-grid problem on the
coarse grid for aggregates of the size that is typical for, e.g., the Smoothed Aggregation
method. Using smaller aggregates is therefore mandatory tokeep the convergence rates at an
acceptable level.

An algorithm that constructs aggregates of not more than twodegrees of freedom has
been described by Notay [20]. In order to form the aggregates, strongly connected degrees of
freedom according to the relation

aij < −β max
(k)

(|aik|)

with β = 0.25 are preferred. This distinction is similar to that used in the successful early
AMG of Stüben [26]. The goal of sufficiently accurate interpolation is reached with this

ETNA
Kent State University

http://etna.math.kent.edu

BENCHMARKING AGGREGATION AMG FOR CFD 359

algorithm. The price to pay is the slow coarsening process, i.e., since the number of dof is
reduced only by a factor close to two from one grid to the next finer grid, much more grids
need to be constructed compared to, e.g., the Smoothed Aggregation algorithm.

Although it would be possible to employ this algorithm as a preconditioner of a CG
method (as the Smoothed Aggregation AMG in this paper), we use it as a “stand-alone”
solver. Satisfying convergence rates are obtained in this configuration if an f-cycle scheme
(recursively a w-cycle is followed by a v-cycle; see Trottenberg et al. [27]) is applied. Only
two hybrid Gauß-Seidel sweeps are necessary after the return to the finer grid, i.e., there is no
pre-smoothing done. The algorithm is here referred to asamggs2

3.5. Aggregation-based AMG with Krylov-acceleration. Here, the coarse-grid oper-
ator is computed in two steps. In the first step, after the fine-grid nodes have been grouped
into pairs using the same algorithm of Notay [20] as for amggs2, an intermediate coarse-
grid operator is computed assuming constant interpolationwithin the aggregates. The second
step is a repetition of this aggregation starting with the aggregates of pairs of the fine-grid
nodes, generated by the first step, and the corresponding coarse-grid operator. The result is a
coarse-grid hierarchy with a reduction factor of almost four.

The cycling strategy is referred to as a k-cycle: On each level the corresponding set of
equations is iterated by a Krylov-subspace method that is inturn recursively preconditioned
by a k-cycle using the hierarchy of the coarser grid. The number of iterations on each level
is either one or two, depending on an error estimate. The control of the recursive precon-
ditioning follows Notay [20]. Since the preconditioning operation is adaptive, the standard
CG method has been replaced by an economic version of the conjugate gradient algorithm
with explicit orthogonalisation of the search directions called “flexible conjugate gradients;”
see Notay [18]. To avoid exhaustive memory consumption the method is restarted after six
iterations. Again two pre- and two post-smoothing hybrid Gauß-Seidel sweeps are done. We
refer to our implementation of the k-cycle algorithm (including computation of coarse-grid
operators) described in Notay [20] asamk1fc.

In the previous publication of Notay [19], a particular modification for parallel compu-
tations has been suggested. It is a switch to standard v-cycle for the two coarsest grids if less
than eight processes are involved. For higher degree of parallelism, three grids are treated
by v-cycles. The modification was motivated by the observation that due to the recursive
structure of the k-cycle algorithm the coarse grids are visited frequently which entails a large
number of communication events. For test purposes we implemented this modification also
for the serial computation. We refer to this algorithm asamk2fc. Some properties of the
employed algorithms are compared in Table3.1.

TABLE 3.1
Some properties of the compared algorithms (the maximum andaverage aggregate size refers to the coarsening

of the finest grid of case 0000; see Section4.1).

ams1cg amggs2 amk1fc amk2fc
employment as prec. of CG solver prec. of flexible CG
interpolation linear constant constant
maximum aggregate size 83 2 4
average aggregate size 23.13 2.0 4.0
cycling strategy v-cycle f-cycle k-cycle k/v-cycle

4. Computations of flows in an engine.Our test cases are taken from a typical simu-
lation of a full cycle of a gasoline engine. The three-dimensional computational domain is
subject to change in time: It contains the interior of the cylinder and the parts of the ducts

ETNA
Kent State University

http://etna.math.kent.edu

360 M. EMANS

through which the air is sucked into the cylinder or expelledfrom it. A three-dimensional
simulation of a full engine cycle comprises the simulation of the (compressible) flow of cold
air into the cylinder while the piston is moving downward, the subsequent compression after
the valves are closed, the combustion of the explosive mixture, and the discharge of the hot
gas while the piston moves upward. In the simulation the fluiddynamics are modelled by the
Navier-Stokes equations amended by a standard k-ε turbulence model of Jones and Launder
[14]; the thermal and thermodynamic effects are considered through the solution of the energy
equation for enthalpy and the computation of the material properties using the coefficients of
air. The combustion model is based on the approach of Magnussen and Hjertager [16]. This
model relates the rate of combustion to the dissipation of eddies and it expresses the rate of
reaction in terms of the concentration of a reacting species, turbulent kinetic energy, and the
dissipation. The model fuel that is burnt is octane. Since a single simulation run on a parallel
computer will still take a few hours computing time, we pick out four characteristic periods
of a few time steps, one from each of the four strokes of the cycle. The data describing the
engine cycle is shown in Figure4.1, the meshes can be seen in Figure4.2.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 400 500 600 700 800 900 1000

pr
es

su
re

 /
kP

a,
 te

m
pe

ra
tu

re
 /

K

angle / deg

CTEC-GASOLINE - Pressure and Temperature

valves closed ignition valves opened

0000

0228

0972

1296

pressure
temperature

piston position

FIG. 4.1.Scheme of the engine cycle along with notation for the considered partial problems.

4.1. Description of the numerical experiments.The computationally relevant infor-
mation about the cases is compiled in Table4.1 that contains, e.g., the time stepdt, the
number of time stepsnt, the number of systems to solvensy for SIMPLE and PISO and
the number of setupsnse for PISO. When the SIMPLE algorithm is used, in each SIMPLE
iteration the system matrix is different and consequently the setup has to be done each time,
i.e.,nsy = nse. All system matrices are positive definite and have no positive side diagonal
elements. The row sum of all systems is greater than zero. Themaximum ratio of the value
of an off-diagonal element to the value of the diagonal element can be read from Figure4.1.

The performances of the AMG algorithms described in the previous section are com-
pared to each other. We ran each case for each number of processes once using each of these
algorithms as solver of the pressure-correction equationsof the SIMPLE algorithm. All com-
putations were repeated employing PISO instead of SIMPLE. The number of time stepsnt

was the same for SIMPLE and PISO; as expected, the number of SIMPLE and PISO iterations
was different. The iteration of the linear solver was terminated as soon as the 1-norm of the
residual had been reduced by a factor of 20. From experience it is known that this threshold
is sufficient for a stable convergence of SIMPLE and PISO. A stricter criterion would entail
additional computational work for the solution of the pressure-correction equation while it

ETNA
Kent State University

http://etna.math.kent.edu

BENCHMARKING AGGREGATION AMG FOR CFD 361

FIG. 4.2. Slices through the three-dimensional meshes of the partialproblems, from left top clockwise: load,
compression, combustion, discharge.

TABLE 4.1
Characterisation of the cases.

0000 0228 0972 1296
stroke load compression combustion discharge
crank angle 360◦ 585◦ 746◦ 1013◦

problem size 111.0 MB 23.0 MB 18.6 MB 52.1 MB
dt 3.03 · 10−5 3.03 · 10−5 6.06 · 10−6 3.03 · 10−5

nt 5 20 20 15
boundaries mass flow, wall wall wall pressure, wall
nsy, SIMPLE 130 172 378 175
nsy, PISO 120 224 512 130
nse, PISO 52 69 201 58
mesh: hex/tet 80.0 / 1.2 % 76.6 / 1.2 % 71.7 / 1.5 % 74.2 / 1.0 %
matrix: maxi(

−aij

aii
) 0.87 0.79 0.76 0.85

does usually not speed up the convergence of SIMPLE, whereasa weaker criterion can lead
to divergence of the computation, mainly as a consequence ofan insufficient conservation of
the mass in the physical system.

For the measurements we used up to four nodesà 2 quad-cores (i.e., 8 cores) of a Linux
cluster (Intel Xeon CPU X5365, 3.00GHz, main memory 16 GB, L1-cache 2·4·32 kB, L2-
cache 2·2·4 MB) connected by a Mellanox Infiniband network with an effective bandwidth
of around 750 Gbit/s. The test cases were run within the environment of the software AVL
FIRE(R) 2009 on 1, 2, 4, 8, and 16 processes, where the domain decomposition was performed
once for each case by the graph partitioning algorithm METIS; see Karypis and Kumar [15].
Computations with 1, 2, and 4 processes were done on a single node, for 8 and 16 processes
we used 2 and 4 nodes respectively such that each process had full access to 4 MB L2-cache
since in preliminary experiments it has been found that the L2-cache can be the bottleneck
for such kind of computations. Although distributing two orfour tasks to two or four nodes
would increase the performance, we used a single node for these computations since the gain

ETNA
Kent State University

http://etna.math.kent.edu

362 M. EMANS

in performance does usually not justify the occupation of the additional cores in the practical
applications. Note that the inter-nodal communication is implemented by a shared memory
approach in the MPI library that has been used.

5. Results of the numerical experiments.The raw data of our evaluation is the com-
puting time of the setup that is independent of the number of iterations and the computing
time of the solution phase for the SIMPLE and PISO computations; see Figures5.1and5.2.
Furthermore, we present the operator complexityc, the number of levelsnl of the coarse-grid
hierarchy generated by each of the three methods,

c =
∑

(l)

number of matrix elements of level l

number of matrix elements of level 1
,

and the cumulative iteration count; see Table5.1. From the measured times the parallel
efficiencyEp is computed as

Ep =
t1

p · tp
,

wheretp denotes the computing time onp processes. The values ofEp for SIMPLE and
PISO are very similar; for SIMPLE they may be found in Figures5.1and5.2.

TABLE 5.1
Algorithm related results of numerical experiments.

np 1 4 16 1 4 16
Case amk1cg c/(nl) amk2fc c/(nl)
0000 776 775 780 1.57 752 743 720 1.57
0000P 724 721 717 (7) 692 681 681 (7)
0228 480 464 464 1.59 477 462 471 1.59
0228P 673 659 659 (6) 670 653 655 (6)
0972 1414 1408 1382 1.59 1363 1351 1382 1.59
0972P 2734 2307 2235 (6) 2109 2166 2436 (6)
1296 570 572 568 1.60 543 543 541 1.60
1296P 454 464 462 (6) 435 441 439 (6)

np 1 4 16 1 4 16
Case ams1cg c/(nl) amggs2 c/(nl)
0000 416 446 484 1.51 569 568 564 2.55
0000P 419 447 477 (3) 538 525 524 (13)
0228 316 348 400 1.52 419 417 424 2.59
0228P 427 498 534 (3) 555 554 574 (11)
0972 788 1125 1134 1.50 1148 1149 1147 2.60
0972P 1534 1664 1817 (3) 1761 1759 1747 (11)
1296 372 430 455 1.53 447 451 499 2.61
1296P 308 373 393 (3) 402 412 447 (12)

5.1. Performance of AMG algorithms within SIMPLE. In all four cases, the basic
AMG amggs2 is the fastest algorithm for computations on up tofour processes. The algo-
rithms amk1fc and amk2fc come close in some cases, whereas ams1cg is significantly slower
(note the logarithmic scale of the y-axis of the diagrams!).For computations on more than

ETNA
Kent State University

http://etna.math.kent.edu

BENCHMARKING AGGREGATION AMG FOR CFD 363

FIG. 5.1. Computing times for cases 0000 and 0228, using SIMPLE (left)and PISO (center), and parallel
efficiency for solution and setup phase (right) for SIMPLE.

four processes the parallelisation reduces the computing time reasonably for ams1cg, to a sig-
nificantly lower extend also for the k-cycle methods, but in acertainly not satisfying manner
for amggs2. In the smaller cases 0228 and 0972, where the number of unknowns per process
is less than 20000, the performance of the k-cycle algorithms is very attractive.

To analyse this, we turn to the parallel efficiency. The curves are influenced by two
main opposed effects. On the one hand,Ep becomes worse as the number of processes is
increased. This has three reasons: first the well-known parallel overhead that depends on
communication requirements of the algorithm: without further analysis, as for example done
by Čiegis et al. [2] for a simpler point-to-point communication pattern, thiseffect is difficult
to quantify. However, it depends on the number of exchange operations and is consequently
much higher for algorithm amggs2, the algorithm that has themost levels and visits them most
frequently due to the F-cycle. Second, certain hardware resources such as memory access are
depleted since the computations on up to four processes takeplace on one node of the cluster;
this effect is mainly responsible for the decrease of the parallel efficiency for computations
on up to four processes; a detailed study of this effect may beread in Emans [7]. The third
reason is the deterioration of the convergence that is due toimperfect parallelisation of the
algorithms and that leads to an increase in the number of iterations of the solver. This effect
depends on the algorithmic properties and is essentially only seen for algorithm ams1cg.

The opposed effect is a superlinear acceleration of the computation of smaller distributed

ETNA
Kent State University

http://etna.math.kent.edu

364 M. EMANS

FIG. 5.2. Computing times for cases 0972 and 1296, using SIMPLE (left)and PISO (center), and parallel
efficiency for solution and setup phase (right) for SIMPLE.

problems as reported by, e.g.,Čiegis et al. [2], which is due to a decreased probability of cache
misses. It is also very hard to predict this effect quantitatively. Some qualitative observations
are reported in Emans [7]. However, the consequence is that the parallel efficiency of certain
algorithms rises for computations on more than four nodes although a further decrease due
to degraded convergence and additional communication costwould naturally be expected.
The parallel efficiency exceeds 100% in such cases where the gain through cache effects is
stronger than the losses through the parallelisation. Whereas for algorithm ams1cg obviously
positive and negatives effects onto runtime partly annihilate each other and the positive ones
prevail, for algorithm amggs2, characterised by the highest number of levels and the largest
memory requirements, only in the largest case (0000) the positive effects dominate over the
negative ones.

The operator complexity is a rough measure of the memory requirement. The operator
complexities of both k-cycle methods are slightly higher than those of the ams1cg but still
moderate. Due to the slow coarsening of amggs2 the operator complexities of this algorithm
is significantly larger than that of the other algorithms. The main reason for this is that the
first coarse-grid has about 50% of the number of rows of the finegrid, but the number of off-
diagonal elements (per row) is significantly higher than thenumber of off-diagonal elements
on the fine grid.

The significant increase ofEp of amk1fc and amk2fc for two processes is due to the

ETNA
Kent State University

http://etna.math.kent.edu

BENCHMARKING AGGREGATION AMG FOR CFD 365

instruction of Notay [19, 20] to use a stricter criterion to determine if a second preconditioning
iteration is needed for the parallel case, leading to lower iteration numbers and consequently
to lower solution times. A difference between amk1fc and amk2fc is observed, however,
none of both outperforms the other throughout, but amk2fc isfaster in most cases. Moreover,
the number of iterations of these two algorithms is similar;the Krylov-acceleration on the
coarse grids seems not to be effective since, if it is skipped(algorithm amk2fc), this has no
significant negative effect on the convergence.

5.2. Performance of AMG algorithms within PISO. While the parallel efficiency is
essentially the same as for SIMPLE (and is therefore not shown here), the computing times
are different. One observes first that, as expected, the portion of setup time of the AMG
solvers is reduced dramatically since expensively computed coarse-grid hierarchies can be
reused several times due to the fact that several systems with identical right-hand-side oper-
ator are solved in each PISO iteration. Since the setup of ams1cg is much more expensive
than that of amggs2, the difference between ams1cg and amggs2 for up to four processes has
been reduced. Similar as for SIMPLE, amggs2 shows severe deficiencies at high numbers of
processes. Again amk1fc and amk2fc are affected only mildlyand perform significantly bet-
ter than amggs2, but for 16 processes ams1cg remains the fastest solver for the linear systems
within PISO.

6. Conclusions. In the benchmarks the k-cycle algorithms performed best among the
established aggregation methods only in cases where the number of unknowns per node was
below 20000 and where the coarse-grid hierarchy needs to be computed for each linear sys-
tem. Other cases could be treated more efficiently by established methods. In particular,
Smoothed Aggregation is an effective solver if systems withidentical right-hand sides are to
be solved. Basic aggregation AMG methods without Krylov-acceleration, on the other hand,
are efficient whenever the setup should be cheap. It is remarkable that, although k-cycle meth-
ods are rather new and there exists consequently little experience in using them efficiently,
their performance is fairly competitive.

REFERENCES

[1] B. BASARA, A. ALAJBEGOVIC, AND D. BEADER, Simulation of single- and two-phase flows on sliding un-
structured meshes using finite volume method, Internat. J. Numer. Methods Fluids, 45 (2004), pp. 1137–
1159.

[2] R. ČIEGIS, O. ILIEV, AND Z. LAKDAWALA , On parallel numerical algorithms for simulating industrial
filtration problems, Comput. Methods Appl. Math., 7 (2007), pp. 118–134.

[3] I. D EMIRDŽI Ć AND S. MUZAFERIJA, Numerical method for coupled fluid flow, heat transfer and stress
analysis using unstructured moving meshes with cells of arbitrary topology, Comput. Methods Appl.
Mech. Engrg., 125 (1995), pp. 235–255.

[4] I. D EMIRDŽI Ć, Ž. L ILEK , AND M. PERIĆ, A collocated finite volume method for predicting flow at all speeds,
Internat. J. Numer. Methods Fluids, 16 (1993), pp. 1029–1050.

[5] M. EMANS, Efficient parallel AMG methods for approximate solutions oflinear systems in CFD applications,
SIAM J. Sci. Comput., 32 (2010), pp. 2235–2254.

[6] , Performance of parallel AMG-preconditioners on CFD-codesfor weakly compressible flows, Parallel
Comput., 36 (2010), pp. 326–338.

[7] M. EMANS AND A. VAN DER MEER, Mixed-precision AMG as linear equation solver for definite systems, in
ICCS2010, Part I, G. v. Albada, P.M.A. Sloot and J. Dongarra,eds., vol. 1 of Procedia Computer Science,
Elsevier, Amsterdam, 2010, pp. 175–183.

[8] R. FALGOUT, J. JONES, AND U. YANG, Pursuing scalability for hypre’s conceptual interfaces, ACM Trans.
Math. Soft., 31 (2005), pp. 326–350.

[9] R. FALGOUT AND U. YANG, hypre: a library of high performance preconditioners, in P.M.A. Sloot, C. Tan,
J. Dongarra, and A. Hoekstra, eds., vol. 2331 of Computational Science, ICCS 2002 Part III, Lecture
Notes on Computer Science, Springer, Heidelberg, 2002, pp. 632–641.

ETNA
Kent State University

http://etna.math.kent.edu

366 M. EMANS

[10] J. FERZIGER AND M. PERIĆ, Computational Methods for Fluid Dynamics, Springer, Berlin Heidelberg,
1996.

[11] A. FUJII, A. NISHIDA , AND Y. OYANAGI , Evaluation of parallel aggregate creation orders: smoothed aggre-
gation algebraic multigrid method, in High Performance computational science and engineering,M. Ng,
A. Concescu, L. Yang, and T. Leng, eds., IFIP TC5 Workshop on High Performance Computational
Science and Engineering (HPCSE), World Computer Congress, Toulouse, France, Springer, New York,
2004, pp. 201–213.

[12] V. HENSON AND U. YANG, BoomerAMG: a parallel algebraic multigrid solver and preconditioner, Appl.
Numer. Math., 41 (2002), pp. 155–177.

[13] R. ISSA, Solution of the implicity discretised fluid flow equations byOperator-Splitting, J. Comput. Phys., 62
(1985), pp. 40–65.

[14] W. JONES AND B. LAUNDER, The prediction of laminarization with a two-equation modelof turbulence, Int.
J. Heat Mass Transfer, 15 (1972), pp. 301–314.

[15] G. KARYPIS AND V. K UMAR, A fast and high quality multilevel scheme for partitioning irregular graphs,
SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[16] B. MAGNUSSEN AND B. HJERTAGER, On mathematical modeling of turbulent combustion with special em-
phasis on soot formation and combustion, in Proc. of the 16th Int. Symp. on Combustion 1976, Combus-
tion Institute, Pittsburg, 1976, pp. 719–729.

[17] S. MARTHUR AND J. MURTHY, A pressure based method for unstructured meshes, Numer. Heat Transfer B,
31 (1997), pp. 195–215.

[18] Y. NOTAY, Flexible conjugate gradients, SIAM J. Sci. Comput., 22 (2000), pp. 1444–1460.
[19] , An aggregation-based algebraic multigrid method, tech. report, Service de Ḿetrologie Nucĺeaire,

Universit́e Libre de Bruxelles, 2008.
[20] , An aggregation-based algebraic multigrid method, Electron. Trans. Numer. Anal., 37 (2010),

pp. 123–146,http://etna.math.kent.edu/vol.37.2010/pp123-146.dir.
[21] S. PATANKAR , Numerical Heat and Mass Transfer and Fluid Flow, Hemisphere Publishing, New York, 1980.
[22] C. RHIE AND W. CHOW, Numerical study of the turbulent flow past an airfoil with trailing edge separation,

AIAA J., 21 (1983), pp. 1525–1532.
[23] J. W. RUGE AND K. STÜBEN, Algebraic multigrid, in Multigrid methods, vol. 3 of Frontiers Appl. Math.,

SIAM, Philadelphia, 1987, pp. 73–130.
[24] Y. SAAD , Iterative Methods for Sparse Linear Systems,third ed., SIAM, Philadelphia, 2003.
[25] H. D. STERCK, U. YANG, AND J. HEYS, Reducing complexity in parallel algebraic multigrid precondition-

ers, SIAM J. Matrix Anal. Appl., 27 (2006), pp. 1–20.
[26] K. STÜBEN, Algebraic multigrid (AMG): An introduction with applications, tech. report, GMD

Forschungszentrum Informationstechnik GmbH, St. Augustin (Germany), 1999.
[27] U. TROTTENBERG, C. OOSTERLEE, AND A. SCHÜLLER, Multigrid, Academic Press, Orlando, 2001.
[28] R. TUMINARO AND C. TONG, Parallel smoothed aggregation multigrid: aggregation strategies on massively

parallel machines, in Proceeding of 2000 ACM/IEEE conference on Supercomputing, Dallas, IEEE
Computer Society, Washington, 2000.

[29] P. VANĚK, J. MANDEL , AND M. BREZINA, Algebraic multigrid by smoothed aggregation for second and
fourth order elliptic problems, Computing, 56 (1996), pp. 179–196.

[30] J. WEISS, J. MARUSZEWSKI, AND W. SMITH , Implicit solution of preconditioned Navier-Stokes equations
using algebraic multigrid, AIAA J., 37 (1999), pp. 29–36.

[31] U. YANG, Parallel algebraic multigrid methods - high performance preconditioners, in Numerical Solution
of Partial Differential Equations on Parallel Computers, A.Bruaset and A. Tveito, eds., vol. 51, Springer,
Berlin, 2006, pp. 209–236.

http://etna.math.kent.edu/vol.37.2010/pp123-146.dir

