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BENCHMARKING AGGREGATION AMG FOR LINEAR SYSTEMS IN CFD
SIMULATIONS OF COMPRESSIBLE INTERNAL FLOWS  *

MAXIMILIAN EMANS

Abstract. The performance of parallel implementations of three fundaatigndifferent aggregation AMG
(algebraic multigrid) solvers, including novel k-cycle meds, for systems of linear equations appearing in industrial
CFD simulations are examined. The results show that the leeyethods are a good choice for cases with less than
20000 unknowns per process if the cost of the setup tendscturecritical; for most other applications, however,
established methods proved to be equally efficient or superio
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1. Introduction. The three-dimensional simulation of various processede@lto fluid
dynamics requires the approximate solution of the Naviek&s equations and, eventually,
an energy equation for steady or unsteady and for comptessiincompressible flows in
terms of pressure, temperature, and velocity fields. Copdeany simulation tools provide
a considerable amount of freedom with respect to geomeatyréguires a discretisation on
unstructured meshes. Due to the resolution necessarydsomable modelling, the size of
the problems is in the range of one million grid cells or motech makes the use of parallel
computers using typically a few CPUs inevitable to keep tirajguting times at an acceptable
level.

A common approach to provide an appropriate approximatfoth@ solution of the
Navier-Stokes equations in this context is the discreétinaty means of finite volumes. The
SIMPLE (“Semi-Implicit Method for Pressure-Linked Equais”; see Patankaf[]) algo-
rithm or a method derived from it can be used to obtain an agmate solution of this
coupled non-linear system. To the knowledge of the authese kind of methods are used
in most of the actual commercial CFD-tools since they canrbpleyed to a wide range of
problems. The SIMPLE algorithm requires the solution oé#insystems of equations. For
this task, AMG methods are an appropriate choice since tleefaat and sufficiently robust.

However, the term AMG stands for a class of algorithms rattien for a certain method.
Meanwhile a number of methods, well suited for the particuuirements of CFD, are
known, but recently Notay?[0] devised a promising, conceptually new method. Since, as we
will explain later, there is some hope that this method cad e a significant improvement
compared to the known algorithms, especially with respthé particular requirements of
CFD application, we will compare it in terms of computatibegiciency to other successful
techniques in this contribution.

As far as the computing time (in fact the most relevant prgpfar industrial applica-
tion) is concerned, it is not obvious that the propertiesha&f AMG variants described in
the literature can be transferred to the practical apptinah CFD. It is well possible that a
particular algorithm is reported to perform excellentlyy.ein solving a particular diffusion
problem, but that the same algorithm exhibits unacceptaivitmes in our applications. On
the one hand, this is due to the different requirements taticaracy of the solution; on the
other hand, the practical application is decisive for thapprties of the system of linear equa-
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tions: Even if fundamental matrix properties can be verjfted discretisation with different
geometrical cell types or varying gradients in flow variabheight lead to matrices that are
quite different from those of idealised problems. Therefa general understanding of the
fundamental algorithms for the flow simulation is necessafthough these algorithms are
known, we will spend a certain portion of this article to diétse them in detalil in a uniform
matrix based notation since the original papers often usaplementation oriented notation
that is sometimes quite tedious to read for someone notitamilth this practice.

This paper is dedicated to the performance of different eggfion based AMG algo-
rithms in the context of CFD software of the industrial preet We will examine computa-
tional aspects of the behaviour of these algorithms appigelihear solvers for systems that
appear in the simulation of subsonic internal compresdibie at the example of a com-
bustion engine. Both, the algorithms and the hardware cordimpn of our test cases are
deliberately chosen to be as similar as possible to the thatsare used, e.g., by CFD engi-
neers in their daily professional practice. Since our tases are taken from a single practical
application of simulation software and since our conclasiare only backed by experimen-
tal data, it is not always straightforward to transfer ousevations and conclusions to other
applications. A second reason to set great value on a di@dlscription and classification
of the test cases is therefore to preserve at least a centainrd of generality.

The remainder of this article is organised as follows: Int®e® we compile the relevant
algorithms for the solution of the Navier-Stokes equatifsom various papers and present
them in a uniform matrix based notation. In Secti®mve recall the main features of the
known aggregation based multigrid algorithms and the Recyethod of Notay 0], work
out relevant differences, and give details of our paraltgblementations. Sectidhis de-
voted to the presentation of results of numerical expertsesith these algorithms. Finally,
Section6 contains our conclusions.

2. SIMPLE for incompressible flows. Numerical simulation of fluid flow usually re-
lies on a solution of the Navier-Stokes equations and theggrezgjuation, along with (eventu-
ally) a certain number of transport equations. The methscldised in this paper is typical for
industrial CFD codes: its spacial discretisation is basethe technique of the finite volumes
with a collocated variable arrangement that allows to us¢ruatured meshes. The employed
discretisation practice was described in detail in othddlipations starting with Demizl¢
and Muzaferija 8] and continuing with Ferziger and Peifil10], Marthur and Marthy 17],
and Basaral]]. With such a scheme, the discretised momentum and cotytiaguations for
the unknown velocity fieldi and the pressure fiefgmay be written as

A(@)i 4+ Mp=b,
C

ISTh
I
oL

Here, A denotes the discretised and linearised operator that adtseovelocity field in the
momentum equations, i.e., it expresses convective, difuand eventually inertia compo-
nents. M is the discretisation of the gradient operator of the pn@mrm,gthe body force
term, C represents the discretised continuity equation,@isch mass source. The ha} 6n
top of the vectors indicates that the vector is discretisethe grid that corresponds to the
cell faces. The discretisation of the operators requirastibth the velocity in the cell centre
1 and the velocity at the cell facesappear in the system of equations. Both variables are
linked by a linear interpolation operatét

The most challenging task within numerical simulations woififlows is to compute the
solution of this non-linear and coupled system. For this,SIMPLE algorithm, see Patankar
[21], can be used. A detailed deduction of the SIMPLE algorithra isimilar notation can
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be found in Emansg]. In the following we restrict ourselves to the steps of tHBIBLE
algorithm.

In this iterative procedure, the velocity field that is cdétad in them-th iteration is split
into a tentative velocity field * and a velocity updat&’

"™ =q* 4+ a’, (2.1)
A similar splitting is applied to the pressure:
FOm) — =1 51 (2.2)

wherep’ is referred to as the pressure-correction.
In the first step of the SIMPLE algorithm the equation

-

A@@™Ng* + MpmY = b (2.3)

is solved. The solution is the preliminary veloci@i/; it is a solution of the momentum
equation, but in general it is not a solution of the contineitjuation. The dependence 4f
on u reflects the non-linearity of the system. Moreover, the gures of the previous iteration
is used. Both, the pressure and the (final) velocity of theetuiiteration are determined later
in the iteration. The solution can be considered convergtddrespect to the threshotdf the
change int lies below this threshold. This impli¢g (™) — 7 (m—Y| < eand|i* — @ (™| < €

or || < e.

The next step is to compute a pressure-corregiiothat is used to update the pressure
and to drive the velocity field towards being a solution of teatinuity equation, too. The
SIMPLE algorithm on collocated grids requires the veloatythe cell facesi. A stable
method to couple velocity and pressure has been devisedibyaRtt Chow 22]. Within this
scheme the velocity at the cell faces is calculated from

i = S(a* + A Mp ™YYy — Ay MptmTY, (2.4)

whereAp := diag(A), Ay := [SAL'1T], M is the gradient operator on the cell faces based
on the difference between the values of the two adjacerg,@alld|z] stands for a diagonal
matrix that has the element of value (j-th component of vectar) in the j-the row. With
this, the coefficients and the right-hand side of the pressarrection equation

— CAyMyp' =¢—Ci* (2.5)

can be assembled and this linear system of equation can\ersadh the deduction of this
equation the term-SA ;' (A — Ap)i’ (that is driven towards zero in the course of the it-
eration) has been neglected. Since in the incompressibi(tas the divergence operator
(multiplied by the constant density)l,; merely scales the system matrix aitlis the gra-
dient operator (on the cell faces), the system matrix istpessemi-definite (with row sum
zero). The solution of this system is one of the computatipmaost expensive tasks within
the SIMPLE algorithm; for realistic simulation it requirggpically between 30% and 80% of
the total computing time.

From the pressure-correction a velocity correction isudated with

i = —AyMp'. (2.6)

The velocity and the pressure for the iteratiarare then obtained by updating both variables
according to 2.1) and @.2), respectively. If the solution has not converged yet, lagot
iteration is taken, starting with the solution of the momentequation Z.3). In short, the
SIMPLE algorithm is outlined in Algorithmi.
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Algorithm 1 SIMPLE for incompressible flows and collocated variabl@agement
1: while <not converged» do
2: assemble4( (m=1)) and solve Eqn.4.3) for u*
3: computeu with Egn. @.4), assemble right-hand side and matrix of E¢h5( and
solve for pressure-correctigri
4:  compute velocity-correction with Eqr2.©)
5. update velocity and pressure with Eqria1f and @.2)
6: end while

2.1. SIMPLE for compressible flows. For compressible flows, the densitydepends
on the pressure field and the temperature field (which may be uniform if the flow is
isothermal). This implies that the continuity operatddepends linearly on the density and
that the time derivative of the density appears in the caitiinequation. The following
formulation of this equation reflects this and is valid fosfiorder time discretisation with
time stepit:

Celalit = —[¥)( - dv)-
The components af arev; = V; /6t oy denotes the density of the previous time step.
For anideal gas, the relation between density, pressuldeamperature can be expressed
as

g =1[rb, (2.7)
wherer” denotes the vector with the components= 1/(R; - T;). R; is the gas constant in
the cellj that depends on the composition of the gas in this @&lis the component of’
associated with cell.

The formal introduction of a density update
[ﬂp _ Q(m) _ g(m—l)’
substitution and neglect of products of updates yields therete pressure-correction equa-
tion for compressible flows

{Ce (18D (=Ane D) + [i°)[71) + @17} 7' =
—[@(@™ Y — gy) — Celg™Va* + & (2.8)

Note that the hat on top of a vector indicates that this vestdiscretised on the cell faces,
i.e., the values at a face are interpolated linearly betwleetwo adjacent cells. The SIMPLE
algorithm for compressible flows on collocated grids that been introduced by Demitit
et al. 4] may be written as Algorithn2; for more details we refer again to Emaig. [

Considering the composition of the left-hand side operat@?.8), one can see that the
operator is certainly positive definite if the velocity field and the density satisfy the conti-
nuity equation. Roughly speaking, this property might kst Ibthe defect of the continuity
equation is no longer balanced by the contributiorizdfi7] to the operator on the left-hand
side of £.8). However, under the condition that the flow field is ini&d consistently, the
matrix can be supposed to be definite; e.g., all matriceseobémchmarks described in this
article are indeed positive definite.

It is important to note that the solution of the pressureexiion equation takes place
within an iterative scheme. Experience has shown that a ricatlg exact solution of these
systems of equations is not needed such that for practiqgdicafion the reduction of any
residual norm by a factor between 10 and 10000 is sufficient.
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Algorithm 2 SIMPLE for incompressible flows and collocated variabl@agement
1: while <not converged do
2. (re)compute density field™—1) with Eqn. @.7) usingp (™1 and7 (m—1)
3. assembled(i(™~1) and solve Eqn.q.3) for i *
4: computeﬁ’* with Eqn. @.4), assemble right-hand side and matrix of E¢h3f and
solve for pressure-correctigi
5. compute velocity-correction with Eqr2.©)
6: update velocity and pressure with Eqria1f and @.2) to obtaina (™ andp (")
7. if <flow not isothermal then
8 assemble matrix and right-hand side of the energy equasorgw (™), ¢ (™),
andp (™) and solve forl* (™)
9: endif
10: end while

2.2. PISO. The convergence of the SIMPLE algorithm is acceleratedsfrtbglected
termSA ;' (A — Ap)i’ is approximated rather than set to zero. A common methoddg/kn
as PISO algorithm (“Pressure-Implicit with Splitting Op#ars”); see Issalf3]. By means of
an additional iteration it makes sure that after each it@naif PISO the continuity equation
is solved at least up to the accuracy of the solution of thesune-correction equation. For
the incompressible case the correlation betw@esnd«’ without neglecting any term in the
original equations is

@'Y = — Ay Mp' D — SAZHA — Ap)a'®. (2.9)

Formally, the pressure-correction equation with this is
— CAyMp' ) = - C(a* — SAGHA — Ap)a't+Y), (2.10)
where@/(i+1) = §T7/(i+1) - Since’() is not known, it is set to zero. Ther.(0) is

solved for’("). Now, for the next, the right hand side of(9) can be evaluated and in this
way an iteration betweer2 (10 and @.9) is done. In the course of this additional iteratian,
approaches a certain vector that reflects the velocity ctioreneeded to satisfy the continuity
equation. In the practical application of this algorithnpitally up to five iterations are
required to reduce the difference betweetit!) and«’(Y) below a given threshold that
leads to a significant reduction of the (outer) PISO iteratio

The resulting algorithm has shown to converge significfaijer than the standard SIM-
PLE such that the extra effort to evaluatéit!) using @.10 and to solve the system of
equations 2.10 pays off in many situations. Note that the matrix of the pugs-correction
equation does not change from one internal iteration with0O (marked by indexin (2.9)
and @.10) to the next. PISO can be transferred easily from incongiloésto compressible
calculations.

3. Parallel AMG algorithms. The focus of this article is on the comparison of aggre-
gation based k-cycle methods to other established aggwagaethods. In this section we
describe relevant common features and the difference®qgfdhallel AMG algorithms under
examination. The fundamental AMG algorithm is not repedtece. For this we refer the
reader to the literature; e.g., to the early AMG publicatddiRuge and Stben P3] or to the
appendix of Trottenberg et aR7].

3.1. General aspects of the parallelisation and implementimn. We restrict ourselves
to the employment of AMG methods for the solution of the puesscorrection equations in
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one of the schemes described above. The parallelisatidmesttschemes in AVL FIRE
2009 is done by a geometric domain decomposition, i.e.,dtad hnumber of finite volumes
(global domain) is divided into disjoint subdomains andrilisited to the available processes;
whenever necessary, information between two adjacentosodicis is exchanged. For the
solver of the systems of linear equations the same disgiboitemory approach is used.

For the computation of the coarse-grid operator we follow @alerkin approach; see
Trottenberg et al.47]. Given a system matrix8 and a restriction operatdg, we compute
the coarse-grid operatd@® explicitly as

B¢ = RBRT.

Note that the interpolation operatorig”.

Even though our fine-grid matrices are sparse and have tlypitat more than 6 off-
diagonal elements, rows with 60 and more elements are frtlgifeund in coarse-grid op-
erators; see, e.g., Yang]] for similar observations. As a matter of fact, the amoundata
to be transmitted and processed is considerable due toffaid and it increases the cost
of the setup significantly. Since, on the other hand, onesesafuickly that in our applica-
tion the setup costs tend to be prohibitive to the applicatibAMG, we allow only local
interpolation in all our algorithms. This is a straightf@sd method to avoid the necessity to
transfer parts of the matri® and to reduce efficiently the number of element&dhat need
to be exchanged between two adjacent domains for the expticiputation of3¢. Possi-
bly a deteriorated convergence of parallel computatiotisdgrice that is to be paid for this
restriction.

It is widely agreed upon that a full parallelisation of thea@ther is not practicable. We
follow the usual practice and employ a fully parallel Jacaieme on the boundaries between
two domains and a GauRR-Seidel lexicographic scheme fontk&ar points. This technique
is referred to as hybrid Gaul3-Seidel smoother; see Hensor¥amg [L2]. Moreover, in
parallel computations, an agglomeration strategy is eypaoldo treat the systems assigned to
the coarsest grids; see Trottenberg et2il]:[all the information of grids with less than 200
nodes is passed to one of the neighbours until one grid remaime system of equations of
this coarsest grid is then solved directly by GauRian elatiam by a single process while the
other processes idle.

For any performance test, the implementation is an impbitane. In this study we use
a uniform interface similar to the one described by Falgoat ¥ang P]. The data is stored
in CRS (compressed row storage) format; for details seeobalkg al. B]. All linear algebra
operations are implemented uniformly without the use ofexl libraries. The choice of the
CRS format for the matrix determines the implementationliofatrix-vector operations in
the sequential case. The solver related parts of the prograrmoded in FORTRAN 90 and
compiled by the Intel FORTRAN compiler version 10.1.

For the communication in the parallel case we use the hp-MRirly, version 2.3 (with
C-binding). Field data at the domain boundaries is alwaychamged through the asyn-
chronous “immediate send” mechanism. In the parallel sphgse, the exchange of data is
started and the local operations are performed simultahgmnce the exchange and the in-
ternal work has been completed, the boundaries are treBEtedestriction operators are also
stored in CRS format once they have been computed in the ghige. The same mechanism
applies to the solution phase: the exchange of the infoomati the inter-domain boundaries
is started and the local work is done while the exchange tplee®; each operation that re-
quires data exchange at the domain boundaries (matrixwpodduct or smoothing sweep)
is finished with the computation of the boundaries after ttehange and the internal work
have been completed. Apart from this asynchronous comratioiconly collective commu-
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nication patterns occur: for the synchronisation of theisgthase on the one hand and for
the computation of inner products and norms during the solythase on the other hand.

3.2. Remarks on the selection of algorithmsThe so-called “classical” AMG of Ruge
and Stiben P3, 26] is based on a C-F-splitting, i.e., it chooses from the séinefgrid points
(F-points) a set of points the coarse-grid consists of (Btph Aggregation methods, on the
other hand, divide the set of fine-grid points into a numbaetisjoint subsets that are called
aggregates. These aggregates then become the abstraet-gddrpoints. This difference is
illustrated in Figure3.1. Whereas for “classical” AMG methods the interpolation fofae
between C-points and F-points are a very sensitive issuagfiregation methods in principle
a constant interpolation can be used. Even if a C-F-sgiittiethod employs very efficient
and stable algorithms such as the ones suggested by De SteticR5], the computation of
the interpolation weights is still rather expensive anditemot to pay off in our kind of cases;
see Emansq]. We therefore do not further follow the concept of C-F-&plg methods in
the present article.

@

FiG. 3.1.Coarse-grid selection of “classical” AMG of 8ben 6] (left), Smoothed Aggregation (center), and
pairwise aggregation of NotaylP] (right).

There have been, on the other hand, many variations of agiipagnethods described in
the literature. In the context of the pressure-correctiremes like SIMPLE the Smoothed
Aggregation AMG of Vagik et al. P9 is an appropriate algorithm; see, e.g., Emafis [
This algorithm is characterised by large aggregates, coatipely large cost of the setup,
but low memory requirements. In order to show satisfyingveogence, it has to be used
as a preconditioner of a Krylov-subspace method. Anothge yf methods forms small
aggregates from very few (typically two or three, see, 8\giss et al. 30]) nodes of the fine
grid, such that the computation of the coarse-grid opesatovery simple and cheap, while
the memory requirement can be high. From the viewpoint ofiegpon, the k-cycle method
of Notay [20] is an attempt to combine the advantages of simple operatopatation and
larger aggregates by employing a special Krylov-backetaystrategy. It is the cheap setup
and the hope for very good convergence properties that nthisamethod seem attractive for
the CFD applications described in this article.

3.3. Smoothed Aggregation AMG. A serial implementation of this method is described
in detail in Varék et al. R9]. This algorithm considers the mutual influence; @nto j (and
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vice versa) and tries to group degrees of freedom (dof) irkkematrix elements with

laij| = & - /aii a5

together. The parameteidepends on the level in the grid hierardhy = 1: finest grid) and
it is defined as

e:=0.08-0.25(¢~1),

The number of dof per aggregate is rather large leading ttheraapid coarsening process.
In this method, the interpolation operator with constamérpolation is not used directly;
instead, it is refined (“smoothed”) by an application of oaeabi step along the paths of
the graph of the fine-grid matrix in order to get the final iptdation operator. For parallel
computations, we do not permit aggregates that range ovez than one subdomain and
restrict the smoothing to local dof. Through this, the gdatalomputation of the coarse-grid
operator is kept relatively simple. In fact, more complepm@aches that allow to waive these
restrictions do not necessarily seem to result in bettefiopaance, in particular not if the
number of unknowns per node is not too small; see Tuminarorand [28]. However, the
way of choosing the aggregates influences the convergegi@cantly; see Fujii et al.][1].

In the parallel algorithm, we therefore take the dof adjacerdomain boundaries as a first
set of root points for the aggregation process.

The Smoothed Aggregation approach produces interpolattbemes and coarse-grid
operators that are structurally the same as the correspprtiéments of the classical AMG
of Stiiben R€]; the coarsening process is fairly rapid, the size of thereggtes typically
ranges between 10 and more than 50. The interpolation pamés to a linear interpolation;
see the appendix of Trottenbefy]. We use this method as a preconditioner for the conjugate
gradient algorithm; see Saa2¥]. We have implemented a v-cycle scheme with two pre- and
two post-smoothing hybrid Gaul3-Seidel sweeps. For thisrilgn we use the abbreviation
amslcg

3.4. Basic AMG. The contribution to the computational cost of the setup ofipG—F-
splitting methods as well as Smoothed Aggregation teclniguhe total computing time of
these AMG variants amounts to more than 40%. Within the séiigpmost expensive part is
the (parallel) computation of the interpolation weights afthe elements of the coarse-grid
operators. If constant interpolation is employed, the cataion of the interpolation weights
is completely avoided and the computation of the coarsg-aperators is dramatically sim-
plified (in fact it reduces to an addition of rows of the finédgsperator).

Since for our type of application the required accuracy efgblution is low and conse-
qguently only a few iterations are necessary, an expenstup separticularly painful. There-
fore in our basic AMG method constant interpolation is egpth The disadvantage of
constant interpolation is a comparatively bad represiemaif the fine-grid problem on the
coarse grid for aggregates of the size that is typical fay,, éhe Smoothed Aggregation
method. Using smaller aggregates is therefore mandatdwep the convergence rates at an
acceptable level.

An algorithm that constructs aggregates of not more thandegrees of freedom has
been described by Notag()]. In order to form the aggregates, strongly connected a=goé
freedom according to the relation

aij < —f H(lka)x(|aik )

with G = 0.25 are preferred. This distinction is similar to that used ia successful early
AMG of Stuben p6]. The goal of sufficiently accurate interpolation is reatheth this
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algorithm. The price to pay is the slow coarsening process, since the number of dof is
reduced only by a factor close to two from one grid to the nerfigrid, much more grids
need to be constructed compared to, e.g., the Smoothed geggme algorithm.

Although it would be possible to employ this algorithm as aqanditioner of a CG
method (as the Smoothed Aggregation AMG in this paper), veeiuas a “stand-alone”
solver. Satisfying convergence rates are obtained in tmgiguration if an f-cycle scheme
(recursively a w-cycle is followed by a v-cycle; see Trotterg et al. 27]) is applied. Only
two hybrid Gaul3-Seidel sweeps are necessary after thettettive finer grid, i.e., there is no
pre-smoothing done. The algorithm is here referred taraggs?2

3.5. Aggregation-based AMG with Krylov-acceleration. Here, the coarse-grid oper-
ator is computed in two steps. In the first step, after the ding-nodes have been grouped
into pairs using the same algorithm of Not&30] as for amggs2, an intermediate coarse-
grid operator is computed assuming constant interpolatitmin the aggregates. The second
step is a repetition of this aggregation starting with thgragates of pairs of the fine-grid
nodes, generated by the first step, and the correspondimngecged operator. The resultis a
coarse-grid hierarchy with a reduction factor of almostfou

The cycling strategy is referred to as a k-cycle: On each kaeecorresponding set of
equations is iterated by a Krylov-subspace method thattigrmrecursively preconditioned
by a k-cycle using the hierarchy of the coarser grid. The remalb iterations on each level
is either one or two, depending on an error estimate. Thera@oof the recursive precon-
ditioning follows Notay P0]. Since the preconditioning operation is adaptive, thedzad
CG method has been replaced by an economic version of thagaisj gradient algorithm
with explicit orthogonalisation of the search directioadied “flexible conjugate gradients;”
see Notay 18]. To avoid exhaustive memory consumption the method iarest after six
iterations. Again two pre- and two post-smoothing hybridiG#&eidel sweeps are done. We
refer to our implementation of the k-cycle algorithm (intdilig computation of coarse-grid
operators) described in Notaf(] asamk1fc.

In the previous publication of NotayL§], a particular modification for parallel compu-
tations has been suggested. It is a switch to standard e-fycthe two coarsest grids if less
than eight processes are involved. For higher degree oflgleam, three grids are treated
by v-cycles. The modification was motivated by the obseovathat due to the recursive
structure of the k-cycle algorithm the coarse grids araedsirequently which entails a large
number of communication events. For test purposes we ingaiégd this modification also
for the serial computation. We refer to this algorithmaask2fc. Some properties of the
employed algorithms are compared in TaBl&

TABLE 3.1
Some properties of the compared algorithms (the maximunaegihge aggregate size refers to the coarsening
of the finest grid of case 0000; see Sectot).

amslcg amggs2 amklfc amk2fc
employment as prec. of CG  solver prec. of flexible CG
interpolation linear constant constant
maximum aggregate size 83 2 4
average aggregate size 23.13 2.0 4.0
cycling strategy v-cycle f-cycle  k-cycle kiv-cycle

4. Computations of flows in an engine.Our test cases are taken from a typical simu-
lation of a full cycle of a gasoline engine. The three-dimenal computational domain is
subject to change in time: It contains the interior of thermyér and the parts of the ducts
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through which the air is sucked into the cylinder or expefienn it. A three-dimensional
simulation of a full engine cycle comprises the simulatiéthe (compressible) flow of cold
air into the cylinder while the piston is moving downwards subsequent compression after
the valves are closed, the combustion of the explosive maxt@and the discharge of the hot
gas while the piston moves upward. In the simulation the fliyidamics are modelled by the
Navier-Stokes equations amended by a standardukbulence model of Jones and Launder
[14]; the thermal and thermodynamic effects are consideredigir the solution of the energy
equation for enthalpy and the computation of the materigberties using the coefficients of
air. The combustion model is based on the approach of Magnuasd Hjertagerl[6]. This
model relates the rate of combustion to the dissipation dfesdand it expresses the rate of
reaction in terms of the concentration of a reacting spetigbulent kinetic energy, and the
dissipation. The model fuel that is burnt is octane. Sindagles simulation run on a parallel
computer will still take a few hours computing time, we piakt dour characteristic periods
of a few time steps, one from each of the four strokes of théecythe data describing the
engine cycle is shown in Figure1, the meshes can be seen in Figdra

CTEC-GASOLINE - Pressure and Temperature
7000 T T T T T T T

pressure

6000 - temperature

4000

5000 -

piston position --------

L 0000

valves closed

ignition

3000 -

2000 -

pressure / kPa, temperature / K

1000

700
angle / deg

400 500 600 800 900 1000

FiG. 4.1. Scheme of the engine cycle along with notation for the censitipartial problems.

4.1. Description of the numerical experiments.The computationally relevant infor-
mation about the cases is compiled in Tablé that contains, e.g., the time stép, the
number of time steps,, the number of systems to solvg, for SIMPLE and PISO and
the number of setups,. for PISO. When the SIMPLE algorithm is used, in each SIMPLE
iteration the system matrix is different and consequethitygetup has to be done each time,
i.e.,ng, = ns. All system matrices are positive definite and have no pesgide diagonal
elements. The row sum of all systems is greater than zeroniexémum ratio of the value
of an off-diagonal element to the value of the diagonal el@an be read from Figure 1L

The performances of the AMG algorithms described in the iptesssection are com-
pared to each other. We ran each case for each number of pesa@sce using each of these
algorithms as solver of the pressure-correction equatibtiee SIMPLE algorithm. All com-
putations were repeated employing PISO instead of SIMPILE. Aumber of time steps;
was the same for SIMPLE and PISO; as expected, the numbeeflH and PISO iterations
was different. The iteration of the linear solver was teraéad as soon as the 1-norm of the
residual had been reduced by a factor of 20. From experi¢ig&nown that this threshold
is sufficient for a stable convergence of SIMPLE and PISO.ritstr criterion would entail
additional computational work for the solution of the pregscorrection equation while it
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FiG. 4.2. Slices through the three-dimensional meshes of the pamtiddlems, from left top clockwise: load,
compression, combustion, discharge.

TABLE 4.1
Characterisation of the cases.

0000 0228 0972 1296
stroke load compression  combustion discharge
crank angle 360° 585° 746° 1013°
problem size 111.0 MB 23.0 MB 18.6 MB 52.1 MB
dt 3.03-107° 3.03-107° 6.06-107°  3.03-107°
Ny 5 20 20 15
boundaries mass flow, wall wall wall pressure, wall
Nsy, SIMPLE 130 172 378 175
Nsy, PISO 120 224 512 130
Nse, PISO 52 69 201 58
mesh: hex/tet 80.0/1.2% 766/1.2% 71.7/15% 742/1.0%
matrix: maz; () 0.87 0.79 0.76 0.85

does usually not speed up the convergence of SIMPLE, whereesker criterion can lead
to divergence of the computation, mainly as a consequenae fsufficient conservation of
the mass in the physical system.

For the measurements we used up to four n@ad2sgjuad-cores (i.e., 8 cores) of a Linux
cluster (Intel Xeon CPU X5365, 3.00GHz, main memory 16 GBsclathe 24-32 kB, L2-
cache 2-4 MB) connected by a Mellanox Infiniband network with an efifee bandwidth
of around 750 Gbit/s. The test cases were run within the enirient of the software AVL
FIRE® 2009 0n 1, 2, 4, 8, and 16 processes, where the domain deciimposs performed
once for each case by the graph partitioning algorithm ME$&2 Karypis and Kumad.p).
Computations with 1, 2, and 4 processes were done on a siogé for 8 and 16 processes
we used 2 and 4 nodes respectively such that each processllhactéss to 4 MB L2-cache
since in preliminary experiments it has been found that tkedche can be the bottleneck
for such kind of computations. Although distributing twofour tasks to two or four nodes
would increase the performance, we used a single node fee twmmputations since the gain
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in performance does usually not justify the occupation efdtditional cores in the practical
applications. Note that the inter-nodal communicationrplemented by a shared memory
approach in the MPI library that has been used.

5. Results of the numerical experiments.The raw data of our evaluation is the com-
puting time of the setup that is independent of the numbeteo&iions and the computing
time of the solution phase for the SIMPLE and PISO computatigee FigureS.1and5.2
Furthermore, we present the operator complexithe number of levels; of the coarse-grid
hierarchy generated by each of the three methods,

Z number of matrix elements of level [
c= - 5
B number of matrix elements of level 1

and the cumulative iteration count; see Tablé&. From the measured times the parallel
efficiency £, is computed as

ty
By= 0
p-ip

wheret, denotes the computing time gnprocesses. The values &f, for SIMPLE and
PISO are very similar; for SIMPLE they may be found in Figusesand5.2.

TABLE 5.1
Algorithm related results of numerical experiments.

np 1 4 16 1 4 16
Case amklcg cl(ny) amk2fc cl(ny)
0000 776 775 780 1.57 752 743 720 1.57
0000P 724 721 717 @) 692 681 681 @)
0228 480 464 464 1.59 477 462 471 159
0228P 673 659 659 (6) 670 653 655 (6)
0972 1414 1408 1382 1.59 1363 1351 1382 1.59
0972P 2734 2307 2235 (6) 2109 2166 2436 (6)
1296 570 572 568 1.60 543 543 541 1.60
1296P 454 464 462 (6) 435 441 439 (6)

Ny 1 4 16 1 4 16
Case amslcg cl(ng) amggs2 cl(ng)
0000 416 446 484 151 569 568 564  2.55
0000P 419 447 477 3) 538 525 524 (13)
0228 316 348 400 1.52 419 417 424 2.59
0228P 427 498 534 3 555 554 574  (11)
0972 788 1125 1134 1.50 1148 1149 1147 2.60
0972P 1534 1664 1817 (3) 1761 1759 1747 (11)
1296 372 430 455 1.53 447 451 499 261
1296P 308 373 393 3) 402 412 447 (12)

5.1. Performance of AMG algorithms within SIMPLE. In all four cases, the basic
AMG amggs? is the fastest algorithm for computations on ufptw processes. The algo-
rithms amkZ1fc and amk2fc come close in some cases, wheressgns significantly slower
(note the logarithmic scale of the y-axis of the diagramBQr computations on more than
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amsicg, setup --{=+--
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amkifc, setup --©--
amk1fc, solution —6—
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processors

FiG. 5.1. Computing times for cases 0000 and 0228, using SIMPLE @efi)PISO (center), and parallel
efficiency for solution and setup phase (right) for SIMPLE.

four processes the parallelisation reduces the complitiegreasonably for amslcg, to a sig-
nificantly lower extend also for the k-cycle methods, but egainly not satisfying manner

for amggs2. In the smaller cases 0228 and 0972, where thearwwhbnknowns per process
is less than 20000, the performance of the k-cycle algostiswery attractive.

To analyse this, we turn to the parallel efficiency. The csiraee influenced by two
main opposed effects. On the one haal, becomes worse as the number of processes is
increased. This has three reasons: first the well-knownlpbhowerhead that depends on
communication requirements of the algorithm: withoutHiertanalysis, as for example done
by éiegis et al. P] for a simpler point-to-point communication pattern, tbffect is difficult
to quantify. However, it depends on the number of exchangeadipns and is consequently
much higher for algorithm amggs2, the algorithm that hasrtbst levels and visits them most
frequently due to the F-cycle. Second, certain hardwareress such as memory access are
depleted since the computations on up to four processeplase on one node of the cluster;
this effect is mainly responsible for the decrease of thalfrefficiency for computations
on up to four processes; a detailed study of this effect maghéd in Emans7]. The third
reason is the deterioration of the convergence that is diragerfect parallelisation of the
algorithms and that leads to an increase in the number atftibes of the solver. This effect
depends on the algorithmic properties and is essentialjyseaen for algorithm amslcg.

The opposed effect is a superlinear acceleration of the atatipn of smaller distributed
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Problem 012-0972 - 240000 cells, combustion Problem 012-0972P - 240000 cells, combustion
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FiG. 5.2. Computing times for cases 0972 and 1296, using SIMPLE @efl) PISO (center), and parallel
efficiency for solution and setup phase (right) for SIMPLE.

problems as reported by, e.@.iegis etal. P], which is due to a decreased probability of cache
misses. Itis also very hard to predict this effect quariiédy. Some qualitative observations
are reported in Emang]. However, the consequence is that the parallel efficieficgdain
algorithms rises for computations on more than four nodésagh a further decrease due
to degraded convergence and additional communicationveoskd naturally be expected.
The parallel efficiency exceeds 100% in such cases whereaihelyyough cache effects is
stronger than the losses through the parallelisation. Vélsdr algorithm amslcg obviously
positive and negatives effects onto runtime partly anafbieach other and the positive ones
prevail, for algorithm amggs2, characterised by the highamber of levels and the largest
memory requirements, only in the largest case (0000) thitiymsffects dominate over the
negative ones.

The operator complexity is a rough measure of the memoryinement. The operator
complexities of both k-cycle methods are slightly higheaarththose of the amslcg but still
moderate. Due to the slow coarsening of amggs2 the opemataplexities of this algorithm
is significantly larger than that of the other algorithms.eThain reason for this is that the
first coarse-grid has about 50% of the number of rows of thedfiite but the number of off-
diagonal elements (per row) is significantly higher thanrthmber of off-diagonal elements
on the fine grid.

The significant increase df,, of amkl1fc and amk2fc for two processes is due to the
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instruction of Notay 19, 20] to use a stricter criterion to determine if a second pre&@rdng
iteration is needed for the parallel case, leading to lotgzation numbers and consequently
to lower solution times. A difference between amklfc and 2fmks observed, however,
none of both outperforms the other throughout, but amk2fiasger in most cases. Moreover,
the number of iterations of these two algorithms is simitae Krylov-acceleration on the
coarse grids seems not to be effective since, if it is skifjpdgbrithm amk2fc), this has no
significant negative effect on the convergence.

5.2. Performance of AMG algorithms within PISO. While the parallel efficiency is
essentially the same as for SIMPLE (and is therefore not sheeve), the computing times
are different. One observes first that, as expected, théopaof setup time of the AMG
solvers is reduced dramatically since expensively contpatarse-grid hierarchies can be
reused several times due to the fact that several systermsdgittical right-hand-side oper-
ator are solved in each PISO iteration. Since the setup olegnis much more expensive
than that of amggs2, the difference between amslcg and @ifggsp to four processes has
been reduced. Similar as for SIMPLE, amggs2 shows seve@atefies at high numbers of
processes. Again amkl1fc and amk2fc are affected only médtyperform significantly bet-
ter than amggsz2, but for 16 processes amslcg remains thstfaglver for the linear systems
within PISO.

6. Conclusions. In the benchmarks the k-cycle algorithms performed bestrantbe
established aggregation methods only in cases where thberwhunknowns per node was
below 20000 and where the coarse-grid hierarchy needs torbputed for each linear sys-
tem. Other cases could be treated more efficiently by estadadi methods. In particular,
Smoothed Aggregation is an effective solver if systems wiéimtical right-hand sides are to
be solved. Basic aggregation AMG methods without Kryloeederation, on the other hand,
are efficient whenever the setup should be cheap. It is rexhbrkhat, although k-cycle meth-
ods are rather new and there exists consequently littlereqe in using them efficiently,
their performance is fairly competitive.
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