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COARSENING INVARIANCE AND BUCKET-SORTED INDEPENDENT SETS
FOR ALGEBRAIC MULTIGRID *

DAVID M. ALBER T AND LUKE N. OLSON#

Abstract. Independent set-based coarse-grid selection algorithmedebraic multigrid are defined by their
policies for weight initialization, independent set séiee, and weight update. In this paper, we develop theory
demonstrating that algorithms employing the same policiesym®ddentical coarse grids, regardless of the im-
plementation. The coarse-grid invariance motivates a newseegrid selection algorithm, called Bucket-Sorted
Independent Sets (BSIS), that is more efficient than an agistigorithm (CLJP-c) using the same policies. Ex-
perimental results highlighting the efficiency of two versoof the new algorithm are presented, followed by a
discussion of BSIS in a parallel setting.
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1. Introduction. The algebraic multigrid (AMG) methodb[ 24] is an efficient numer-
ical algorithm to iteratively approximate the solution todar systems of the formz = b.
Often, these algebraic systems arise from the discraiizafipartial differential equations on
structured and unstructured meshes. In many cases, theutatiopal complexity of AMG
is O(n), wheren is the number of unknowns in the linear system. The linearmagperty of
AMG makes the method particularly attractive for largelsgaoblems.

Classical AMG algorithms execute in two phases: the set@sland the solve phase.
Setup phase algorithms provide functions for construcélgnents needed by the solve
phase, such as coarse grids, intergrid transfer operatersréstriction and prolongation
operators), and the linear systems to be solved on each [Ehelsolve phase applies inex-
pensive iterative methods, called relaxation methodsarctmtext of AMG, on the problems
generated by the setup phase and uses the transfer opévaturge vectors between levels.

In this paper, we focus attention on coarse-grid selectigordhms in the AMG setup
phase and target the class of independent set-based dograkgorithms in particular. New
theory is developed to demonstrate invariance in the re$uttdependent set-based coarse-
grid selection, given restrictions on the selection pebci Algorithms that fall within the
assumptions of the theory are guaranteed to produce the caange grids, regardless of
how the policies are implemented. A new coarse-grid seleaigorithm, designed to se-
lect coarse grids more efficiently than the CLJIP-c algorijtisnpresented to demonstrate the
theoretical results. A theoretical benefit is that outponfrcoarse-grid selection may be
considered independent of the computational efficiency.

This paper is organized as follows. In Sectigynwe discuss contemporary coarse-grid
selection algorithms, and present the components of itk set-based coarsening algo-
rithms. Sectior3 develops theory based on general independent set-basesticiog, and
the invariance of coarse grids selected when the sameiselgdlicies are used. Secti@gh
demonstrates the results from Sectibthrough the introduction of a new coarsening algo-
rithm called Bucket-Sorted Independent Sets (BSIS). BStlyces the same coarse grids
as the CLJP-c coarsening algorithm, but is more efficient ésigh. Experimental results
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are reported to demonstrate the performance gains in B&tBtha integration of the BSIS
algorithm into a parallel environment is discussed. Casiolus are presented in Sectidn

2. Coarse-grid selection. Coarse-grid selection algorithms construct the degrees of
freedom for the coarse-level problems in AMG. Classical Alpblements nodal coars-
ening in which coarse-level degrees of freedom are a suligsbealegrees of freedom on
finer levels. Smoothed aggregatidh 7, 28], on the other hand, forms a coarse-level de-
gree of freedom by aggregating several fine-level degrefrs@fom. In this paper, we study
nodal coarsening.

Given a set of fine-level degrees of freedda, nodal coarse-grid selection constructs a
set of coarse-level degrees of freedm,; C Q. based on the graph of matrik We refer
to aC F-splitting of 2, as a separation 61, into C-points,Q.1, andF-points,Q \ Q1.
Several approaches have been developed to select the gadrseith independent set-based
approaches being the most numero®is Independent set-based algorithms descend from
the classical AMG coarsening algorithm, i.e., Rugaken (RS) coarsenin@{], also called
classical coarsening. Independent set-based methodseafecus of this paper and are dis-
cussed in more detail in the next section.

Other methods take substantially different approachesotwsening. The technique
in [18] develops a parallel coarsening algorithm that utilizes &8 each processor, RS se-
lects several different coarse grids, and then one coaidesgelected per processor in a way
to minimize special treatment on processor boundaries22) i greedy approach is used
to produce a good splitting of the unknowns into fine-grid andrse-grid sets. Subdomain
blocking techniquesZ(] offer another approach for parallel coarse-grid seleckip decou-
pling coarse grids and alleviating the need for commuricatin coarse levels. Compatible
relaxation approached,[6, 8, 21] form coarse grids incrementally and determine when the
coarse grid is sufficient through a quality measure baseélaxration.

2.1. Independent set-based selectiorindependent set-based coarsening algorithms
rely on astrength of connectiomeasure to estimate the correlation between degrees of free
dom. In the classical definition, the set of unknowns thatitheinknown strongly depends
on is based on the relative sizes of off-diagonal nonzergesnin theith row of A, and is
defined as

S; = {j i # j and|a;;| > 9max|aik|},
: ki

where0 < ¢ < 1. The set of unknowns thatstrongly influences, denotesf’, is defined as
the set of unknowns that strongly dependios? = {j : i € S;}. The strong influence and
strong dependence sets are used in the definition dftthkegth matrixS, where the entries
of S are defined as

1, ifjes,,
Sij = .
0, otherwise

The classical strength definition is based on M-matrix pridge and does not model
the influence between unknowns in general cases. The fatiowlaf a new, effective, and
inexpensive strength of connection measures is an actgearesearch/| 23], and has the
potential to extend the applicability of AMG solvers.

Many independent set-based coarsening algorithms relyrongsinfluence and strong
dependence to form the set of coarse-grid poiits;, using the following heuristics; see
Figure2.1
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Figure 2.1: Demonstration of heuristic H1. Arrows indictte direction of strong influence.
Here,i € F is strongly influenced by, j2, andk. Both j» and k satisfy H1 by being
C-points, whilej; is an F-point satisfying H1 by having a common strongly influencing
neighbor £) with 4.

H1: for each unknownj that strongly influences thé&-point 4, j is either aC-point or
strongly depends on@-point k that also strongly influences

H2: the set ofC-points should form a maximal independent set in the redgeapgh of S
such that n@’'-point strongly depends on anoth@rpoint.

In general, H1 and H2 cannot simultaneously be satisfied,Isis ldnforced by independent

set-based methods, while H2 serves as a guideline whosegauipto encourage selection

of small coarse-grid point sets, i.e., sm&lk.1|.

One artifact of H1 and H2 is the tendency to generate denseseoperators, resulting in
large operator complexities. As we discuss in Secficdhe sparsity of the graphs impacts the
performance of coarsening algorithms and is a consideratleen designing more efficient
data structures. On the other hand, certain independebtisetl coarsening algorithms use
a variant of H1, called H1
H1': eachF-point must be strongly influenced by at least agigoint,
which is designed to produce sparser coarse-level mafriegsThe theory and algorithms
we develop in this paper target H1 as a guide, but they aresaltable for Hi-type coarsen-
ing approaches, such as color-based methods, that saiistyeuristic.

Independent set-based coarsening algorithms operateeogréph of matrixS. Let
G(S) = (V, E) be the graph of whereV defines the vertex set consisting of the degrees of
freedom andE is the set of edges iG'(S), where(s, j) € Eif 5;; = 1.

Independent set-based coarse-grid selection algoritipkement three routines to se-
lect coarse grids: initialization, independent set seectand weight update. A general
independent set-based coarsening algorithm is outlinédgorithm 2.1. Each vertex in the
graph ofS' is assigned a weight based on its merit in becomiag@oint. The largest weights
are associated with vertices best suited t6'bgoints, where the quality of potenti@l-points
is quantified by strength of connection measures.

In classical coarsening, the independent/3ét line 6 of Algorithm2.1contains a single
vertex: in each iteration, where; > w;,V;j € V\(CUF'). Coarsening with independent sets
containing a single vertex per iteration is not scalablgasallel independent set methods use
different weight initialization policies designed to efathe selection of larger independent
sets. In this cas® is selected by comparing weights in each node neighborhood.

DEFINITION 2.2. The neighborhoodV; of vertexi, is the union of the strong influences
of i and the strong dependenciesiof\; = S; U ST .

For these parallel algorithms, verteis eligible to be added to the independent Bef
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ALGORITHM 2.1: Independent Set-Based Coarse-Grid Selection

1 INDEPENDENTFSET-COARSE-GRID-SELECTION(S):
2 F (Z)

s C 0

4 w < INITIALIZE -WEIGHTS(S)

s while CUF #V

6 D <+ SELECT-INDEPENDENFSET(w, S)

7 C+CubD

8 (F, w) <~ UPDATE-WEIGHTS(D, F, S, w)

s return C, F

the following condition is satisfied:
(2.1) w; > wj, foralljeN;.

The weight update routines in independent set-based eoagsalgorithms (line 8, Al-
gorithm2.1) affect weights of a subset of the verticeg il ,, V; and take one of two forms:
routines that decrease the values of weights and routireésnitrease the value of weights.
In all cases, a vertex with a large weight has high fithess suntbire desirable as@-point.
The pseudocode, as written in AlgoritHixil, performs assignment of vertices to thepoint
set during the weight update routine.

Many independent set-based coarsening algorithms havedeseloped. RS coarsening
is introduced in 24] and is the inspiration for many algorithms that follow. Tiirst parallel
independent set-based coarsening algorithms appeartld anore than ten years ago and
include RS3 19|, CLJP [L2], BC-RS and Falgout1[9], PMIS and HMIS [L4], CLJP-c [],
PMIS-c1 and PMIS-c27], and PMIS Greedyl(], to name a few. Independent set-based
coarsening algorithms are defined by a sqialfciesthat specify how weights are initialized,
the neighborhood used in selectifigpoints (see selection neighborhood below), and the way
in which vertex weights are updated. We investigate theraadfithese components in the
following section.

3. Invariance of selection in independent set-based methsdIn this section, we de-
velop a theory to demonstrate that, under appropriate tondj general independent set-
based algorithms produce identical coarse grids. The atadivfor developing this theory is
to provide a more formal framework for independent set-basmrsening algorithms. The
main advantages of providing this theory is to more cleadgaipose the coarsening al-
gorithm design and implementation choices from coarseqirgjity (see Sectiod) and to
provide insight into possible algorithms that have not begplored. This theory applies
to many existing, well-known independent set-based coargalgorithms, including CLJP,
CLJP-c, PMIS, and HMIS.

An artifact of the theory presented in this section is thgbathms relying on differ-
ent and larger neighborhoods, suchdistanced neighborhoodsmay be used to develop
additional coarsening algorithms.

DEFINITION 3.1. The distancet neighborhoodV¢ of vertexi is the set of verticeg
that are distancel or less fromi in the symmetrized strength graph, excludinghat is,

NE={ U W ulnun i,

JENITT
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whered > 0, N? = 0, and\V}! = ;.

While the distancet neighborhood)V?, is a natural definition for the set of points from
which the C-points are selected, we do not limit our theorthis choice. We introduce a
more abstract set, called teelection neighborhogavhich is defined in the following

DEFINITION 3.2. The selection neighborhootl? is the set of vertices for vertéxrom
which potentialC-points are selected.

Furthermore, given a selection neighborhood, we defingémeral selection criterion
through the following

DerINITION 3.3. Anindependent set-based coarse-grid selection algorihtisfies the
general selection criterion if a given vertéxs eligible to be added t& whenever

(3.1) w; > w;, forall j e N,

where? is the selection neighborhood of

For exampleN;? = N}, N € N}, or NF = N2, are common choices for the selection
neighborhood. It is assumed, however, that the matrix fdrine\? (i.e., the selection sets
for all vertices) is symmetric. This is equivalent to stgtihj € N7, theni € N; for all 4
andj in the vertex set.

We proceed with the following additional assumptions. ®emveights are assigned such
that larger values signify greater value for inclusion om tbarse grid. The weight of vertex
1 never increases, the weight decreases only as a result ghtwgbdates, and the weight
is unaffected by the assignment of a verjeg N to the C-point set. Furthermore, weight
updates are deterministic, in the sense that an arbitraof sewC-points results in the same
weights after update, regardless of the order in which@hgoints are processed. Finally,
algorithms to date decrement weights by one for each edddasttsymbolically removed
from the strength graph, but the theory below applies mavadiy, allowing algorithms that
decrease weights by values other than one following the vahod an edge. Furthermore, it
is assumed that there is a consistent approach to breakm@tihe case of equal weights;
this results in a deterministic and terminating selectigo@hm.

Given a symmetric, but otherwise arbitrary, set of selectieighborhoods, the set of
vertices affecting the vertex weight 6br j € A# is theextended selection neighborhood

DEFINITION 3.4. The extended selection neighborhobd@® of vertexi, is the union
of the selection neighborhooll;’ with the selection neighborhoods of the vertices\ip,
excludingi. That is,

e = (U %) uwe o

JEN?

When a vertex satisfies the generalized selection criteridri), no other validC-point
assignments are able to affect This is formalized below.

LEMMA 3.5. If (3.1) is satisfied for vertex, theni is the next vertex ifi} U N7 to
become a&’-point, regardless of othef’-point selections and corresponding weight updates
made in the graph.

Proof. Assume 8.1) holds; that isw; > w, for all j € N7. Suppose vertek # i is
next selected as@-point.

Case LiIf k € N7, then the assumption is violated because# wy.

Case 2:If k£ ¢ N7, then weightaw;, for j € N}, are decremented. Since the selection
neighborhood is symmetri¢,¢ N} so that 8.1) is still maintained for vertex. Thusw; >
wj, Vj € N7, holds until vertex is selected as &-point. a
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Let D, be the set of all vertices satisfying.() following weight initialization. Vertices
in Dy becomeC-points regardless of the algorithm used to build coarsagsgrin most in-
dependent set-based algorithms, 2}l vertices becomé'-points in the first iteration. Any
algorithm constructed, however, eventually selectdglivertices as”-points, as proven in
the following corollary.

COROLLARY 3.6. Consider aC F-splitting Q. = F W C, based onJ.1). A given
selection neighborhood* and weight update method resultsiip c C.

Proof. The proof follows from Lemm&.5. For eachi € Dy, (3.1) is satisfied, thus each
i € Dy is assigned t@' without effect on othey € D. 0

Corollary 3.6 states that any coarse-grid selection method using thergleselection
condition invariably select®, vertices ag”-points. Given the conditions developed earlier
in this section, we now prove that coarse-grid selectiomsemsitive to the implementation
decisions made in specific algorithms.

THEOREM3.7. Letw be a set of initial weights and/’* be a symmetric selection neigh-
borhood. All independent set-based coarse-grid seleatigarithms satisfying the general
selection criterion (see DefinitioB.3) and implementing the same weight reduction policy
yield identical coarse grids.

Proof. Consider two vertices$ < Nj andj € N7, and let CGS be a coarse-grid
selection algorithm satisfying the assumptions of the @0 Furthermore, assume that,
in CGS,, vertexi is assigned ta' beforej, i.e., eitherj is assigned ta” afteri or j is
assigned td” at any time. To prove the theorem, we show that there is nseegtid selection
algorithm CG$; that is similar to CGg as assumed in the theorem for whitks assigned
to C beforei.

Let CGS, and CGS make identicalC'-point selections up to an arbitrary iteration be-
forei or j are added t@'. At this iteration, letD?* be the set of all nodes in the extended
selection neighborhood éfsatisfying 8.1). Without a loss of generality, assume CGSext
selects subset C D? (i.e.,C < C U A) by whichw; > wy, for all k € N?, and assume
CGSg selects subseB C D?* (i.e., C + C U B) by whichw; > wy, for all k € st_
Therefore, in CGg, i becomes aC-point beforej, and in CGS, j becomes aC-point
befores.

For B to exist, at least one of the following necessary conditimast hold:

Case 1:the value ofw; is smaller wherB is added to thé€”’-point set than whenl is added,
thatis,w; : C + C U Bislessthanu, : C + C U A;

Case 2:the value ofw; is larger whenB is added to th&’'-point set than wherl is added,
thatis,w; : C' < C'U B is greater tham; : C + C' U A.

Case 1: this condition implies the existence é6f€¢ B NN?, ¢ ¢ A. Thus, after
C + CU A, wy > w;, contradicting the definition ofl.

Case 2: this condition implies the existence of € AN N7, m ¢ B. Thus, after
C <+ CU B, wy, > wj, contradicting the definition ab.

Since both conditions result in a contradiction, we coneltltat A and B cannot both
exist, and thereforgj, cannot be selected as’apoint before;. a

Theorem3.7 is an important result about the nature of coarse grids eldny general
independent set-based algorithms. This information esatble design and implementation
of new algorithms that yield identical coarse grids usirfiedent and possibly more efficient
techniques.

4. Bucket-Sorted Independent Sets selectiorin this section, we introduce the Bucket-
Sorted Independent Set (BSIS) algorithm. BSIS uses the patitges as the CLJP-c algo-
rithm [1]. Following the theory in Sectiof, BSIS and CLJP-c produce the same coarse grids.
BSIS, however, is designed to select independent sets rffmiergtly than CLIP-c.
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ALGORITHM 4.1: CLJP-c Weight Initialization

1 CLIPC-INITIALIZE -WEIGHTS(S):

2 0 +COLOR(G(S)) /* returns vertexto—color mapping */
3 cp=1...maxo /%« colors numbered [1, # of colors]«/
4« for ceg

s cw(0) & (= 1)/|erl

s for ieV

v w(i) < |5+ cwlo(i)

s return w

4.1. CLJP-c. Before selecting”-points, CLJP-c colors the graph Sfsuch that each
pair of adjacent vertices il¥ are of different color. Colors are used as one component of
vertex weights, and the number of strong influences provitesther source of contribution.
Initialization of the weights in CLJP-c is detailed in Algidrm 4.1 As a result of coloring,
the structure of the coarse grids selected is improved tne€t JP algorithm12]. CLIP-c
was initially introduced with a random perturbation termliime 7 of Algorithm4.1. The
perturbation was designed to serve the same purpose ashagidns in CLJP, namely to
break ties in vertex weights, but is not included here bezé@sgurpose is fulfilled entirely
by graph coloring as shown in the following theorem.

THEOREM4.2. For anyi and for eachj € N;, CLIP-c guarantees); # w;.

Proof. Consider any nodéand assume there exists= N; such thatw; = w;. Then,
from Algorithm4.1we have

|ST] + cw(o(i) = S| + culo(5)).

Consequently,ST| = S| and, without loss of generalization,, (o(j)) = ¢, (o(i)). Since
the color weights are separated by at least

ﬁ = inf{|cw(k1) —cw(ka)| : cw(ky) # Cw(kg)},
we have that (j) = o(i). However,S is colored such that (i) # o(j) for neighboringi
andj (5 € V;), resulting in a contradiction. 0

Theorem4.2 establishes that all neighbor vertices have different ttsign CLJIP-c,
which, although unlikely to occur, is not guaranteed in CLO3 following corollaries are a
result of Theorem.2.

COROLLARY 4.3. Any set of vertices in the graph 6fsharing the same weight is an
independent set.

COROLLARY 4.4.The set of vertices sharing the largest weight in the grap$ fafrms
an independent set satisfying.{).

Corollary4.3states that independent sets can be selected in the graplly byrselecting
sets of vertices with the same weight. Corolldry refines this observation to a subset of
vertices guaranteed to satisfy the selection criter®i)( In particular, it shows it is possible
to build the coarse grid by selecting vertices with the maximweight in the graph, updating
weights, selecting the next set of vertices with maximumghgiand so on. This is the
approach taken by the BSIS algorithm.

CLJP and CLJP-c rely on a search routine to locate all vextgzgisfying 8.1) (i.e.,
vertices with locally maximal weights) and on a weight ugdatutine to modify weights of
vertices in the neighborhoods of né&Wwpoints.
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ALGORITHM 4.5: CLJP Independent Set Selection

1 CLIP-SELECT-INDEPENDENTFSET(S, C, F):
2 D+ @

s for i€ V\(CUF)

4 if w; >w;foralljeN;

5 D<—DU{Z}

s return D

The algorithms for searching and updating vertex weighGLidP are examined in this
section in detail. The pseudo-code below assumes the geftuges a compressed sparse
row (CSR) R5] matrix format or other similar format, which are common rggamatrix
formats in numerical software. CSR provides low memory @t storing sparse matrices
and provides efficient access to the nonzeros in a row. At@efse nonzeros in a column
is an expensive operation in this format and strongly infbesrthe weight update routine in
CLJP-style algorithms becauses generally not symmetric.

The search step performed in CLJP independent set seléctiatiined in Algorithmé.5,
The inner loop (encapsulated in line 4) is execl2dd| times in the first call to Algorithrd.5.
The total search cost of constructing the coarse grid is tioatpd to analyze and depends on
the number of iterations needed, in addition to other factbr the best case ¢i(E) time,
the cost is significant when the graph contains large nundfexdges, as usually happens on
the lower levels in the grid hierarchy (s&g for examples). In Sectiod.2, we introduce the
technique used in BSIS, which conducts the search indepéndi¢he number of edges in
the graph.

Pseudo-code for the weight update in CLJP is shown in Algorid.6. The level of
complication in this update routine is due to the CSR fornmat #he need to find vertices
strongly influenced by new'-points. When a new’-point & is selected, the first type of
weight update (lines 3-8) is trivial, since determining Weetices inSy, is inexpensive. The
second type of update (lines 10-23) is more expensive, fireceertices influenced blyare
difficult to determine in a CSR format. The update requiresach of many verticesand
all of their strong influencing neighbogs The routine then searches strongly influencing
to determine if anyt € D strongly influences bothandj. The cost increases dramatically
as the density of increases. Large operator complexities have a disprapatiely large
impact on coarse-grid selection run time. In the next saciomodified update routine to
complement the new search technique is introduced.

4.2. Bucket-Sorted Independent Sets algorithmln this section, we develop new tech-
niques for searching the graph 8ffor C-points and subsequently updating the weights of
remaining vertices. The new algorithm is named Bucketegbimdependent Sets (BSIS) to
reflect the data structure used.

Like CLJP-c, BSIS depends on graph coloring, but utilizeslified routines for search
and weight update. Furthermore, rather than applying thee sdormation to augment vertex
weights, BSIS uses the colors in a bucket data structuree @itialized, this data structure
selects independent sets, which satisfy the condition®.ii), {n constant time.

Figure4.1lillustrates the bucket data structure. The number of bgdkethe data struc-
ture ismax;cy | ST | times the number of colors in the graph, that is, each passibight in
S has its own bucket. The vertices are distributed to the gt buckets during the setup
of the coarse-grid selection algorithm, where the bucket oEwly placed vertex depends
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ALGORITHM 4.6: CLJP Weight Update for CSR Matrix
1 UPDATE-WEIGHTS(D, C, F, S, w):

2 S+ S

s for de D

4 for ie Sy

5 w; — w; — 1

6 Sa=Sa\{i} /xremoving edge from graph/
7 if w; <1

8 F+ FU{i}

o for i€ V\(CUF)

10 NZ<—(Z)

1 for k;eS‘iﬂD

12 N; « N; U{k} I+*mark k& new C—pointsx/
13 for j€5;

1 if j¢D

15 for ke S;NN; I« i and j mutually influenced byk x/
16 wj<—wj—1

w S; =S\ {j} /xremove edge fromyj to ix/
18 if w]‘<1

19 F + FU{j}

o for ke S;ND

2 S = S; \ {k} /xremove edge fromk to ix/

2 return F, w

ALGORITHM 4.7: BSIS Data Structure Setup

1 BSIS-SETUP(S, w, 0):

> B + BSIS-ALLOCATE-BUCKETS(max w;, max o)
s for ieV

s b+ (w;—1) maxo+ o(i)

s B[b].INSERT(?)

on the number of vertices it strongly influences and its coleor example, in Figurd.1
vertex 14 strongly influences six vertices and is black. &foge, it is placed into the black
bucket in the sixth group of buckets. Notably, the verticea bucket form an independent
set; e.g., vertices 14, 16, and 21.

In each iteration, the non-empty bucket with largest wefghins D; see Corollary.4.
These vertices are assigned to theoint set and removed from the data structure. Vertex
weight updates lead to corresponding updates to the datetwste, and newr'-points are
removed from the data structure. These operations contintikall buckets are empty, at
which point the coarse-grid selection is complete. Aldoris4.7, 4.8 and4.9 outline the
operations discussed above.

Figure4.2 illustrates the graph and data structure following the fiestation of the al-
gorithm. Vertex 10 has become(point and its neighbors weights have been updated.
Vertices assigned t6' or C (highlighted with a red ring in Figuré.2) are removed from the
data structure, and other affected vertices are moved tdowations in the data structure.
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Figure 4.1: Graph of a strength matrix and its BSIS data &irac The edges in the graph
represent mutual strong influence between vertices.

ALGORITHM 4.8: Independent Set Selection

1 BSIS-SELECT-INDEPENDENFSET(B):
> return non—empty bucket with largest bucket ID

Using the weight update routine described in Algorithrdwith BSIS is very expensive,
because some iterations of BSIS select very é&points. For a graph with a large number
of colors, BSIS may execute dozens or hundreds of low-ocagtibns to select a coarse grid,
resulting in a large range of memory access. This is due taétight update routine looping
through all unassigned vertices at each call.

The largest factor in the cost of the weight update in Aldomt.6results from searching
for the second type of weight update (beginning at line 1®jictv must be done by looping
through all unassigned vertices, because a @epoint is unable to easily determine which
vertices it strongly influences in a CSR matrix. It is lessengive, in this situation, to
construct the transpose 6fthan to search the entire graph in each iteratiorsinaC-point
quickly determines which vertices it influences and “pditiem. The algorithm then loops
through all painted vertices and determines if any are righ This simple solution has a
dramatic effect on the performance of BSIS, although theatgpdost remains approximately
equivalent to the cost in CLJP-c.
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Figure 4.2: BSIS data structure following selection of thstfi'-point (vertex 10, now solid
blue and unnumbered). The weights of neighbors of the @epoint are updated. Some
neighbors becomé’-points (shown as unnumbered yellow vertices) and are rethérom
the data structure. Vertices removed from the data stre@re highlighted with a red ring
in the graph, while other neighbors are moved to new locatiorihe data structure and are
highlighted (to aid in reading the figure) in the data struetwith a red box.

ALGORITHM 4.9: BSIS Edge-Removal Weight Update
BSIS-UPDATE-WEIGHTS(B, o, i):
b+ (w; — 1) -maxo + o(i)
BJ[b].REMOVE(7)
B[b — max o].INSERT(%)

A w N Rk

4.3. Weight update aggregation.Whenever a vertex weight is updated, BSIS moves
the affected vertex to a new location in the data structurging the selection of the coarse
grid, the cost of the updates to the data structure is neiaitdand, as shown in this section,
unnecessary.

Only one bucket in the data structure is touched duringi@hgoint selection step: the
largest weight non-empty bucket. Other buckets are sulesgiguaffected by the weight
updates resulting from ne@-point assignments. However, a different approach is ptessi
since the only bucket that must contain the correct veriigéise one from whichC-points
are selected.

To save cost, we suggest an approach that aggregates tloé gpdating vertex weights.
Rather than investing computation into maintaining accyra the data structure, a less
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Figure 4.3: BSIS data structure after selecting the €irgtoint (vertex 10) with aggregate
weight updates.

expensive mechanism to test if a vertex is in the correctimicds provided. When a weight
is updated, the vertex is not moved until it is found in theKkaideing used as the new
independent sab.

Figure4.3depicts the data structure after the first set'gboints is selected. Rather than
moving vertices to new buckets, the method now keeps thetmeisame location, and only
moves them when necessary. As shown in Sectidhaggregation of the weight updates
leads to significant savings in computational cost.

4.4. Experimental results. To demonstrate BSIS, the algorithm is compared with
CLJP-c. The first test problem is the 3D 7-point Laplacian stractured grid:

—Au=f, onQ (Q=(0,1)%).

This problem, and the two to follow, have homogeneous Digichoundary conditions.

BSIS is implemented as described in Sectidrisand4.3. In particular, BSIS employs
the transpose of the strength matrix, and the timings betmude the time to compute this
transpose. CLJP-c, on the other hand, works directly fragrsttength matrix. The strength
factor@ is 0.25 in this and the following experiments.

The experiments were serial and run on a single processbe dfttunder supercomputer
at Lawrence Livermore National Laboratory. Timing datatfoe selection of all coarse grids
in the hierarchy is reported. This time includes the cosafigrarts of the algorithm, including
the graph coloring phase. AMG solve phase information igepbrted, since the algorithms
produce identical coarse grids, and information on sohasplperformance for AMG with
CLJP-c is documented iri]2].
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Figure 4.4: Coarse-grid selection times using BSIS withregagte weight update, standard
BSIS, and CLJP-c on the 7-point Laplacian.

The smallest problem is30 x 30 x 30 grid. Subsequent problems are grids of i@,
90?3, and so on, up t@103. The largest problem is 343 times larger than the smallesiem
and contains more than nine million degrees of freedom.

Results for the experiment are presented in FigudeBSIS completes coarse-grid con-
struction in less time than CLJP-c in every case, and BSI8 agigregate weight update
performs better than standard BSIS. For the largest prabB8IS is approximately 17%
less expensive than CLJP-c, while BSIS with aggregate weiptates is 23% less expen-
sive on the largest problems. The benefit is magnified, veldd CLJP-c, for the smaller
problems.

For our second experiment, we compare the running time ofeimentations of BSIS,
with aggregate weight updates, and CLJP-c, using the PyABI@dckage. In this experi-
ment, we provide CLJP-c with the transpose of the strengthixnahich makes the separa-
tion in timings between the methods substantially smaller.

The problem is a finite element discretization of a two-disienal Laplacian problem
on a Cartesian grid:

4.2 —Au=f onQ (Q=(0,1)?).

Timings for this problem include all portions of the setufaph, except the cost of com-
puting the transpose of the strength matrix, since bothrilfgos utilize it. Data points were
produced 100 times each, and the mean values are reported.

Figure 4.5 plots timings and the timing gap between CLJP-c and BSIS agfiregate
weight update, when both are provided the transpose of teagth matrix. The smaller
difference in timings compared to those in the first test ie tluat least two factors. First,
this two-dimensional problem is less taxing for coarsemiluyprithms, because it produces a
coarse grid hierarchy with fewer nonzeros; second, progi€@LJP-c with the transpose of
the strength matrix results in a performance boost for C&JPhe plot in Figuret.6 shows
that the time spent selecting independent sets for BSISaggiegate weight updates is the
source of its lower cost.
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Figure 4.5: Coarse-grid selection times using BSIS withregate weight update and CLIP-c
on the two-dimensional finite element Laplacian probleimi)( The figure plots total time
for coarsening on the leff-axis and the difference in times on rigivaxis. The number of
unknowns per trial i%.2.
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Figure 4.6: Total time for selecting independent sets inREtJand BSIS with aggregate
weight updates for the two-dimensional finite element Leipla problem 4.1). The number
of unknowns per trial is2.

CLJP-c spends about ninety milliseconds more than BSISaggnegate updates, select-
ing independent sets on the largest problem. The total tifferehce between the methods
on the largest problem is only about fifty milliseconds, heare The discrepancy between
time saved by improved independent set selection and tetaldaved results from the weight
update time, which is more efficient when larger independetst are given. Since BSIS gen-
erates smaller independent sets and runs the weight updateusine many more times than
CLJP-c, there is a noticeable performance impact. Finadiie that while the time spent by
CLJP-c computing the independent set consistently growsiasreases, BSIS with aggre-
gate weight update begins to show total selection timesateindependent with respect to
n, for larger values ofu.
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The final problem in our experiments set is a rotated anipatrdiffusion equation on a
Cartesian grid, discretized using finite elements:

(4.2) ~V-QAQ"Vu = f,
where
[-05 —V3/2 oo
©= [\/5/2 0.5 } and A= {0 0.0001] '

As in the previous problem, timings include all portions lod setup phase work, except
the cost of computing the transpose of the strength mattig.timings reported are the means
of 100 samples for each data point.

Due to the anisotropy, the graph of the matrix4n?j is coarsened more slowly than the
graph of the matrix in4.1), leading to a greater number of levels in the coarse-gedan
chy and a larger number of calls to the weight update routfigure 4.7 plots the timing
information for CLJP-c and BSIS with aggregate weight updatvhich shows that the time
difference is smaller for this problem. As plotted in Figdr8, the gap between independent
selection for the two methods is slightly larger than in thetdi element Laplacian prob-
lem (4.1), because the selection time for CLJP-c is higher. In spig@proximately the same
savings in selection time, compared with the previous grobthe total savings is lower, due
to an increase in the gap of weight update times of the two oagsth

103 102

o—o CLJP-c

o---o BSIS-Aggregate
. o 0 Time difference =
ERLG ot =
E o’ g
E
5 10t {100 2
- &

e S
7
e
10° 0!
102 10;

Figure 4.7: Coarse-grid selection times using BSIS withregate weight update and CLJP-c
on the rotated anisotropic diffusion problerh?). The figure plots total time for coarsening
on the lefty-axis and the difference in times on rigidaxis. The number of unknowns per
trial is n?.

The experiments demonstrate the effectiveness and cdimpediss of the bucket tech-
nique. The independent set selection approach in BSIS isrshm be more efficient and
scale better than the selection routine in CLJP-c. While B&tB aggregate weight update
is less expensive than CLJP-c in the experiments, the gatasned by the improved selec-
tion routine can be eroded by excess cost in the weight updataée. We anticipate that
further efficiency for weight update and the BSIS algoritlsnpassible, for example through
hybrid techniques that result in slightly different, busdeexpensive coarse grid hierarchy
construction. Furthermore, the methods and conceptssiréisiearch are also applicable to
other coarsening algorithms, such as color-based methesigred to satisfy heuristic H1
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Figure 4.8: Total time for selecting independent sets inREtJand BSIS with aggregate
weight updates for the rotated anisotropic diffusion peobi4.2). The number of unknowns
per trial isn?.

4.5. Parallelizing BSIS. In this section, we discuss the prospects for developing-a pa
allel BSIS algorithm. We first discuss coarsening for shamesory architectures and then
explore BSIS for distributed-memory computers.

Shared-memory parallelism is important to consider, smeehip parallelism is now
the primary mechanism for scaling processor performanteasistor sizes decrease.

For the search phase, CLJP-c benefits greatly from the pressrmany threads, due
to its many local tasks. The amount of parallelism in eadtaiten of BSIS depends on the
number of vertices in the eliminated bucket, which is often.fThis means that there is less
parallelism for BSIS to exploit in each iteration, but thsiot a weakness because BSIS has
optimized the search phase to such a point that it is almastfoee.

Both BSIS and CLJP-c benefit from multiple threads while catimg updates, although
BSIS with aggregate updates has the advantage that it iscaapieceed despite knowing the
weight of a vertex is to be updated. This means that weighatgpith this scheme could be
overlapped with search.

The setup phase of BSIS takes more time for similar probléws the setup phase for
CLJP-c, and this is due to the cost of loading the bucket deiatsre. Exploiting parallelism
here will widen the gap between BSIS and CLJP-c.

Using BSIS in a parallel algorithm for distributed-memormynputers presents chal-
lenges because the parallelism in BSIS is very fine-grainedelegance and potential to
greatly improve the efficiency of coarse-grid selectioniwatés the development of parallel
algorithms incorporating BSIS. Several alternatives apmaged below.

For this discussion, assume that.S) is decomposed intp disjoint partitions, such
that eachi € V belongs to exactly one partition. Furthermore, assumedaeth partition
is mapped to a processing core. In this model, computatidoie on each partition, but
dependencies between vertices on different partitiongss#iate communication between
partitions. Minimizing the frequency and the amount of canmiation is a goal in achieving
scalability.

Our parallel BSIS algorithm is called the painted boundaeghud, and takes advantage
of the invariance between coarse grids selected by BSIS &d&-C. We propose using
BSIS to select as many of the interi@Fpoints as possible prior to any communication with
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Figure 4.9: Painted boundary method with aggregate weigtiates following one iteration.
The data structure is for the left partition. Painted vediare marked with a green ring in the
graph and a green box in the data structure. Vertices in tteestiaicture that are half green
and half red are painted and also have had their weights eghdat

neighboring partitions. All vertices belonging to a paotitare colored and inserted into the
BSIS data structure. The partition boundary vertices, weweare “painted”. If a painted
vertex is in a seD in some iteration, then the vertex is not added’'tdt is instead removed
from the data structure and its neighbors in the same martitre also painted. Figure9
illustrates the first iteration of the painted boundary rodttvith weight update aggregation.
The data structure shown is for the left partition.

The first iteration selects a ne@-point, but does not select any painted vertices. In
the second iteration, vertex 22 is selected, but is alreaitytgd. Therefore, same-partition
neighbors of vertex 22 are also painted; see Figuté

The method finishes when the data structure is emptied oégices. The result is now
three disjoint setsC' and F', as usual, but also a set of painted vertices. The paintéidesr
are the vertices that cannot be assigned toRhar C' set without communication between
partitions. The information is provided to CLJP-c, whiclmbEes the parallel portion of the
algorithm.

The painted boundary approach is ideal when large numbérteoior vertices are given,
which can be guaranteed on most problems for the fine griddé-effect of H1-based coars-
ening algorithms, however, is the creation of denser grapharse levels. The issue is less
of a concern for Htbased coarsening using BSIS, wherein operator compmexatie smaller
and less dependent on problem size. In all cases, howeeenutinber of processor bound-
ary vertices relative to the number of interior vertices@ases as the number of unknowns
per processor decreases; e.g., on coarse levels. A fewiqeelsrmay be applicable in this
situation. The easiest solution is to simply use CLJP-cparesother coarsening algorithm,
on the coarser levels where few vertices are found. A secpprbach is the application of
a dynamic load-balancing algorithm to decrease commuaitand possibly decrease the
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Figure 4.10: Painted boundary method with aggregate weigtiates following the second
iteration. In this iteration a painted vertex was selecteading to the painting of its same-
partition neighbors.

number of partitions on coarse levels. If the number of wediper partition per level is
maintained at a high enough level, BSIS is still valuable oarse grids. A third option is to
replicate the operator matrix on compute nodes, which leagsocessors doing some iden-
tical work, but by avoiding communication. The second anditideas are similar in nature
and both involve using dynamic load-balancing techniqaés3, 15-17, 26].

5. Conclusions. In this paper, we have made two main contributions. First tieeo-
retical results were presented to expose the nature of @amdlgmt-set based coarse-grid se-
lection. Algorithms using the same rules, with some retstirs, for weight initialization,
independent set selection, and weight update produce the saarse grids, regardless of
the particular implementation of the rules. This resultalgites the design of policies for
selecting quality coarse grids from the design and effigieriche algorithms used to select
the coarse grids. Our second contribution builds on thessarétical results with a new coars-
ening algorithm called BSIS, which selects the same coaids gs CLJP-c, but uses a more
efficient algorithm to select independent sets.
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