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COARSENING INVARIANCE AND BUCKET-SORTED INDEPENDENT SETS
FOR ALGEBRAIC MULTIGRID ∗

DAVID M. ALBER † AND LUKE N. OLSON‡

Abstract. Independent set-based coarse-grid selection algorithms for algebraic multigrid are defined by their
policies for weight initialization, independent set selection, and weight update. In this paper, we develop theory
demonstrating that algorithms employing the same policies produce identical coarse grids, regardless of the im-
plementation. The coarse-grid invariance motivates a new coarse-grid selection algorithm, called Bucket-Sorted
Independent Sets (BSIS), that is more efficient than an existing algorithm (CLJP-c) using the same policies. Ex-
perimental results highlighting the efficiency of two versions of the new algorithm are presented, followed by a
discussion of BSIS in a parallel setting.
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1. Introduction. The algebraic multigrid (AMG) method [5, 24] is an efficient numer-
ical algorithm to iteratively approximate the solution to linear systems of the formAx = b.
Often, these algebraic systems arise from the discretization of partial differential equations on
structured and unstructured meshes. In many cases, the computational complexity of AMG
isO(n), wheren is the number of unknowns in the linear system. The linear cost property of
AMG makes the method particularly attractive for large-scale problems.

Classical AMG algorithms execute in two phases: the setup phase and the solve phase.
Setup phase algorithms provide functions for constructingelements needed by the solve
phase, such as coarse grids, intergrid transfer operators (i.e., restriction and prolongation
operators), and the linear systems to be solved on each level. The solve phase applies inex-
pensive iterative methods, called relaxation methods in the context of AMG, on the problems
generated by the setup phase and uses the transfer operatorsto move vectors between levels.

In this paper, we focus attention on coarse-grid selection algorithms in the AMG setup
phase and target the class of independent set-based coarsening algorithms in particular. New
theory is developed to demonstrate invariance in the resultof independent set-based coarse-
grid selection, given restrictions on the selection policies. Algorithms that fall within the
assumptions of the theory are guaranteed to produce the samecoarse grids, regardless of
how the policies are implemented. A new coarse-grid selection algorithm, designed to se-
lect coarse grids more efficiently than the CLJP-c algorithm, is presented to demonstrate the
theoretical results. A theoretical benefit is that output from coarse-grid selection may be
considered independent of the computational efficiency.

This paper is organized as follows. In Section2, we discuss contemporary coarse-grid
selection algorithms, and present the components of independent set-based coarsening algo-
rithms. Section3 develops theory based on general independent set-based coarsening, and
the invariance of coarse grids selected when the same selection policies are used. Section4
demonstrates the results from Section3 through the introduction of a new coarsening algo-
rithm called Bucket-Sorted Independent Sets (BSIS). BSIS produces the same coarse grids
as the CLJP-c coarsening algorithm, but is more efficient by design. Experimental results
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are reported to demonstrate the performance gains in BSIS, and the integration of the BSIS
algorithm into a parallel environment is discussed. Conclusions are presented in Section5.

2. Coarse-grid selection.Coarse-grid selection algorithms construct the degrees of
freedom for the coarse-level problems in AMG. Classical AMGimplements nodal coars-
ening in which coarse-level degrees of freedom are a subset of the degrees of freedom on
finer levels. Smoothed aggregation [9, 27, 28], on the other hand, forms a coarse-level de-
gree of freedom by aggregating several fine-level degrees offreedom. In this paper, we study
nodal coarsening.

Given a set of fine-level degrees of freedom,Ωk, nodal coarse-grid selection constructs a
set of coarse-level degrees of freedomΩk+1 ⊂ Ωk based on the graph of matrixA. We refer
to aCF -splitting ofΩk as a separation ofΩk intoC-points,Ωk+1, andF -points,Ωk \Ωk+1.
Several approaches have been developed to select the coarsegrid, with independent set-based
approaches being the most numerous [2]. Independent set-based algorithms descend from
the classical AMG coarsening algorithm, i.e., Ruge-Stüben (RS) coarsening [24], also called
classical coarsening. Independent set-based methods are the focus of this paper and are dis-
cussed in more detail in the next section.

Other methods take substantially different approaches to coarsening. The technique
in [18] develops a parallel coarsening algorithm that utilizes RS. On each processor, RS se-
lects several different coarse grids, and then one coarse grid is selected per processor in a way
to minimize special treatment on processor boundaries. In [22], a greedy approach is used
to produce a good splitting of the unknowns into fine-grid andcoarse-grid sets. Subdomain
blocking techniques [20] offer another approach for parallel coarse-grid selection by decou-
pling coarse grids and alleviating the need for communication on coarse levels. Compatible
relaxation approaches [4, 6, 8, 21] form coarse grids incrementally and determine when the
coarse grid is sufficient through a quality measure based on relaxation.

2.1. Independent set-based selection.Independent set-based coarsening algorithms
rely on astrength of connectionmeasure to estimate the correlation between degrees of free-
dom. In the classical definition, the set of unknowns that theith unknown strongly depends
on is based on the relative sizes of off-diagonal nonzero entries in theith row of A, and is
defined as

Si =
{

j : i 6= j and|aij | ≥ θmax
k 6=i
|aik|

}

,

where0 < θ ≤ 1. The set of unknowns thati strongly influences, denotedST
i , is defined as

the set of unknowns that strongly depend oni: ST
i = {j : i ∈ Sj}. The strong influence and

strong dependence sets are used in the definition of thestrength matrixS, where the entries
of S are defined as

Sij =

{

1, if j ∈ Si,

0, otherwise.

The classical strength definition is based on M-matrix properties and does not model
the influence between unknowns in general cases. The formulation of a new, effective, and
inexpensive strength of connection measures is an active area of research [7, 23], and has the
potential to extend the applicability of AMG solvers.

Many independent set-based coarsening algorithms rely on strong influence and strong
dependence to form the set of coarse-grid pointsΩk+1, using the following heuristics; see
Figure2.1.



ETNA
Kent State University 

http://etna.math.kent.edu

AMG COARSENING INVARIANCE 369

j2 ∈ C

i ∈ F

k ∈ C

j1 ∈ F

Figure 2.1: Demonstration of heuristic H1. Arrows indicatethe direction of strong influence.
Here, i ∈ F is strongly influenced byj1, j2, andk. Both j2 andk satisfy H1 by being
C-points, whilej1 is anF -point satisfying H1 by having a common strongly influencing
neighbor (k) with i.

H1: for each unknownj that strongly influences theF -point i, j is either aC-point or
strongly depends on aC-pointk that also strongly influencesi.

H2: the set ofC-points should form a maximal independent set in the reducedgraph ofS
such that noC-point strongly depends on anotherC-point.

In general, H1 and H2 cannot simultaneously be satisfied, so H1 is enforced by independent
set-based methods, while H2 serves as a guideline whose purpose is to encourage selection
of small coarse-grid point sets, i.e., small|Ωk+1|.

One artifact of H1 and H2 is the tendency to generate denser coarse operators, resulting in
large operator complexities. As we discuss in Section4, the sparsity of the graphs impacts the
performance of coarsening algorithms and is a consideration when designing more efficient
data structures. On the other hand, certain independent set-based coarsening algorithms use
a variant of H1, called H1′,
H1′: eachF -point must be strongly influenced by at least oneC-point,
which is designed to produce sparser coarse-level matrices[14]. The theory and algorithms
we develop in this paper target H1 as a guide, but they are alsosuitable for H1′-type coarsen-
ing approaches, such as color-based methods, that satisfy this heuristic.

Independent set-based coarsening algorithms operate on the graph of matrixS. Let
G(S) = (V,E) be the graph ofS whereV defines the vertex set consisting of the degrees of
freedom andE is the set of edges inG(S), where(i, j) ∈ E if Sij = 1.

Independent set-based coarse-grid selection algorithms implement three routines to se-
lect coarse grids: initialization, independent set selection, and weight update. A general
independent set-based coarsening algorithm is outlined inAlgorithm 2.1. Each vertex in the
graph ofS is assigned a weight based on its merit in becoming aC-point. The largest weights
are associated with vertices best suited to beC-points, where the quality of potentialC-points
is quantified by strength of connection measures.

In classical coarsening, the independent setD in line 6 of Algorithm2.1contains a single
vertexi in each iteration, wherewi ≥ wj , ∀j ∈ V \(C∪F ). Coarsening with independent sets
containing a single vertex per iteration is not scalable, soparallel independent set methods use
different weight initialization policies designed to enable the selection of larger independent
sets. In this caseD is selected by comparing weights in each node neighborhood.

DEFINITION 2.2. The neighborhoodNi of vertexi, is the union of the strong influences
of i and the strong dependencies ofi: Ni = Si ∪ ST

i .
For these parallel algorithms, vertexi is eligible to be added to the independent setD if
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ALGORITHM 2.1: Independent Set-Based Coarse-Grid Selection

1 INDEPENDENT-SET-COARSE-GRID-SELECTION(S):
2 F ← ∅
3 C ← ∅
4 w ← INITIALIZE -WEIGHTS(S)
5 whi le C ∪ F 6= V
6 D ←SELECT-INDEPENDENT-SET(w, S)
7 C ← C ∪D
8 (F, w)←UPDATE-WEIGHTS(D, F, S, w)
9 re turn C, F

the following condition is satisfied:

(2.1) wi > wj , for all j ∈ Ni.

The weight update routines in independent set-based coarsening algorithms (line 8, Al-
gorithm2.1) affect weights of a subset of the vertices in

⋃

i∈DNi and take one of two forms:
routines that decrease the values of weights and routines that increase the value of weights.
In all cases, a vertex with a large weight has high fitness and is more desirable as aC-point.
The pseudocode, as written in Algorithm2.1, performs assignment of vertices to theF -point
set during the weight update routine.

Many independent set-based coarsening algorithms have been developed. RS coarsening
is introduced in [24] and is the inspiration for many algorithms that follow. Thefirst parallel
independent set-based coarsening algorithms appeared a little more than ten years ago and
include RS3 [19], CLJP [12], BC-RS and Falgout [19], PMIS and HMIS [14], CLJP-c [1],
PMIS-c1 and PMIS-c2 [2], and PMIS Greedy [10], to name a few. Independent set-based
coarsening algorithms are defined by a set ofpoliciesthat specify how weights are initialized,
the neighborhood used in selectingC-points (see selection neighborhood below), and the way
in which vertex weights are updated. We investigate the nature of these components in the
following section.

3. Invariance of selection in independent set-based methods. In this section, we de-
velop a theory to demonstrate that, under appropriate conditions, general independent set-
based algorithms produce identical coarse grids. The motivation for developing this theory is
to provide a more formal framework for independent set-based coarsening algorithms. The
main advantages of providing this theory is to more clearly decompose the coarsening al-
gorithm design and implementation choices from coarseningquality (see Section4) and to
provide insight into possible algorithms that have not beenexplored. This theory applies
to many existing, well-known independent set-based coarsening algorithms, including CLJP,
CLJP-c, PMIS, and HMIS.

An artifact of the theory presented in this section is that algorithms relying on differ-
ent and larger neighborhoods, such asdistance-d neighborhoods, may be used to develop
additional coarsening algorithms.

DEFINITION 3.1. The distance-d neighborhoodN d
i of vertexi is the set of verticesj

that are distanced or less fromi in the symmetrized strength graph, excludingi. That is,

N d
i =

{

⋃

j∈Nd−1

i

(Nj ∪ {j}) ∪ Ni

}

\ {i},
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whered ≥ 0,N 0
i = ∅, andN 1

i = Ni.
While the distance-d neighborhood,N d

i , is a natural definition for the set of points from
which the C-points are selected, we do not limit our theory tothis choice. We introduce a
more abstract set, called theselection neighborhood, which is defined in the following

DEFINITION 3.2. The selection neighborhoodN s
i is the set of vertices for vertexi from

which potentialC-points are selected.
Furthermore, given a selection neighborhood, we define thegeneral selection criterion

through the following
DEFINITION 3.3. An independent set-based coarse-grid selection algorithmsatisfies the

general selection criterion if a given vertexi is eligible to be added toD whenever

(3.1) wi > wj , for all j ∈ N s
i ,

whereN s
i is the selection neighborhood ofi.

For example,N s
i = N 1

i ,N s
i ⊂ N 1

i , orN s
i = N 2

i , are common choices for the selection
neighborhood. It is assumed, however, that the matrix formed byN s

∗ (i.e., the selection sets
for all vertices) is symmetric. This is equivalent to stating if j ∈ N s

i , theni ∈ N s
j for all i

andj in the vertex set.
We proceed with the following additional assumptions. Vertex weights are assigned such

that larger values signify greater value for inclusion on the coarse grid. The weight of vertex
i never increases, the weight decreases only as a result of weight updates, and the weight
is unaffected by the assignment of a vertexj /∈ N s

i to theC-point set. Furthermore, weight
updates are deterministic, in the sense that an arbitrary set of newC-points results in the same
weights after update, regardless of the order in which theC-points are processed. Finally,
algorithms to date decrement weights by one for each edge that is symbolically removed
from the strength graph, but the theory below applies more broadly, allowing algorithms that
decrease weights by values other than one following the removal of an edge. Furthermore, it
is assumed that there is a consistent approach to breaking ties in the case of equal weights;
this results in a deterministic and terminating selection algorithm.

Given a symmetric, but otherwise arbitrary, set of selection neighborhoods, the set of
vertices affecting the vertex weight ofi or j ∈ N s

i is theextended selection neighborhood.
DEFINITION 3.4. The extended selection neighborhoodN 2s

i of vertexi, is the union
of the selection neighborhoodN s

i with the selection neighborhoods of the vertices inN s
i ,

excludingi. That is,

N 2s
i =

{(

⋃

j∈N s

i

N s
j

)

∪ N s
i

}

\ {i}.

When a vertexi satisfies the generalized selection criterion (3.1), no other validC-point
assignments are able to affectwi. This is formalized below.

LEMMA 3.5. If (3.1) is satisfied for vertexi, theni is the next vertex in{i} ∪ N s
i to

become aC-point, regardless of otherC-point selections and corresponding weight updates
made in the graph.

Proof. Assume (3.1) holds; that is,wi > wj for all j ∈ N s
i . Suppose vertexk 6= i is

next selected as aC-point.
Case 1:If k ∈ N s

i , then the assumption is violated becausewi ≯ wk.
Case 2:If k /∈ N s

i , then weightswj , for j ∈ N s
k , are decremented. Since the selection

neighborhood is symmetric,i /∈ N s
k so that (3.1) is still maintained for vertexi. Thuswi >

wj , ∀j ∈ N s
i , holds until vertexi is selected as aC-point.
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Let D0 be the set of all vertices satisfying (3.1) following weight initialization. Vertices
in D0 becomeC-points regardless of the algorithm used to build coarse grids. In most in-
dependent set-based algorithms, allD0 vertices becomeC-points in the first iteration. Any
algorithm constructed, however, eventually selects allD0 vertices asC-points, as proven in
the following corollary.

COROLLARY 3.6. Consider aCF -splitting Ωk = F ⊎ C, based on (3.1). A given
selection neighborhoodN s

∗ and weight update method results inD0 ⊂ C.
Proof. The proof follows from Lemma3.5. For eachi ∈ D0, (3.1) is satisfied, thus each

i ∈ D0 is assigned toC without effect on otherj ∈ D0.
Corollary 3.6 states that any coarse-grid selection method using the general selection

condition invariably selectsD0 vertices asC-points. Given the conditions developed earlier
in this section, we now prove that coarse-grid selection is insensitive to the implementation
decisions made in specific algorithms.

THEOREM 3.7. Letw be a set of initial weights andN s
∗ be a symmetric selection neigh-

borhood. All independent set-based coarse-grid selectionalgorithms satisfying the general
selection criterion (see Definition3.3) and implementing the same weight reduction policy
yield identical coarse grids.

Proof. Consider two verticesi ∈ N s
j and j ∈ N s

i , and let CGSA be a coarse-grid
selection algorithm satisfying the assumptions of the theorem. Furthermore, assume that,
in CGSA, vertex i is assigned toC beforej, i.e., eitherj is assigned toC after i or j is
assigned toF at any time. To prove the theorem, we show that there is no coarse-grid selection
algorithm CGSB that is similar to CGSA as assumed in the theorem for whichj is assigned
toC beforei.

Let CGSA and CGSB make identicalC-point selections up to an arbitrary iteration be-
fore i or j are added toC. At this iteration, letD2s

i be the set of all nodes in the extended
selection neighborhood ofi satisfying (3.1). Without a loss of generality, assume CGSA next
selects subsetA ⊂ D2s

i (i.e.,C ← C ∪ A) by whichwi > wk for all k ∈ N s
i , and assume

CGSB selects subsetB ⊂ D2s
i (i.e., C ← C ∪ B) by whichwj > wk for all k ∈ N s

j .
Therefore, in CGSA, i becomes aC-point beforej, and in CGSB , j becomes aC-point
beforei.

ForB to exist, at least one of the following necessary conditionsmust hold:
Case 1: the value ofwi is smaller whenB is added to theC-point set than whenA is added,

that is,wi : C ← C ∪B is less thanwi : C ← C ∪A;
Case 2: the value ofwj is larger whenB is added to theC-point set than whenA is added,

that is,wj : C ← C ∪B is greater thanwj : C ← C ∪A.
Case 1: this condition implies the existence ofℓ ∈ B ∩ N s

i , ℓ /∈ A. Thus, after
C ← C ∪A, wℓ > wi, contradicting the definition ofA.

Case 2: this condition implies the existence ofm ∈ A ∩ N s
j , m /∈ B. Thus, after

C ← C ∪B, wm > wj , contradicting the definition ofB.
Since both conditions result in a contradiction, we conclude thatA andB cannot both

exist, and therefore,j cannot be selected as aC-point beforei.
Theorem3.7 is an important result about the nature of coarse grids selected by general

independent set-based algorithms. This information enables the design and implementation
of new algorithms that yield identical coarse grids using different and possibly more efficient
techniques.

4. Bucket-Sorted Independent Sets selection.In this section, we introduce the Bucket-
Sorted Independent Set (BSIS) algorithm. BSIS uses the samepolicies as the CLJP-c algo-
rithm [1]. Following the theory in Section3, BSIS and CLJP-c produce the same coarse grids.
BSIS, however, is designed to select independent sets more efficiently than CLJP-c.
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ALGORITHM 4.1: CLJP-c Weight Initialization

1 CLJP-C-INITIALIZE -WEIGHTS(S):
2 σ ←COLOR(G(S)) /∗ r e t u r n s v e r t e x−to−c o l o r mapping ∗ /
3 cℓ = 1 . . .maxσ /∗ c o l o r s numbered [1 , # o f c o l o r s ]∗ /
4 f o r c ∈ cℓ
5 cw(c)← (c− 1)/|cℓ|
6 f o r i ∈ V

7 w(i)← |ST
i |+ cw(σ(i))

8 re turn w

4.1. CLJP-c. Before selectingC-points, CLJP-c colors the graph ofS such that each
pair of adjacent vertices inS are of different color. Colors are used as one component of
vertex weights, and the number of strong influences providesthe other source of contribution.
Initialization of the weights in CLJP-c is detailed in Algorithm 4.1. As a result of coloring,
the structure of the coarse grids selected is improved over the CLJP algorithm [12]. CLJP-c
was initially introduced with a random perturbation term inline 7 of Algorithm 4.1. The
perturbation was designed to serve the same purpose as perturbations in CLJP, namely to
break ties in vertex weights, but is not included here because its purpose is fulfilled entirely
by graph coloring as shown in the following theorem.

THEOREM 4.2. For anyi and for eachj ∈ Ni, CLJP-c guaranteeswi 6= wj .
Proof. Consider any nodei and assume there existsj ∈ Ni such thatwi = wj . Then,

from Algorithm4.1we have

|ST
i |+ cw(σ(i)) = |ST

j |+ cw(σ(j)).

Consequently,|ST
i | = |ST

j | and, without loss of generalization,cw(σ(j)) = cw(σ(i)). Since
the color weights are separated by at least

1

|cℓ|
= inf

{

|cw(k1)− cw(k2)| : cw(k1) 6= cw(k2)
}

,

we have thatσ(j) = σ(i). However,S is colored such thatσ(i) 6= σ(j) for neighboringi
andj (j ∈ Ni), resulting in a contradiction.

Theorem4.2 establishes that all neighbor vertices have different weights in CLJP-c,
which, although unlikely to occur, is not guaranteed in CLJP. The following corollaries are a
result of Theorem4.2.

COROLLARY 4.3. Any set of vertices in the graph ofS sharing the same weight is an
independent set.

COROLLARY 4.4. The set of vertices sharing the largest weight in the graph ofS forms
an independent set satisfying (3.1).

Corollary4.3states that independent sets can be selected in the graph simply by selecting
sets of vertices with the same weight. Corollary4.4 refines this observation to a subset of
vertices guaranteed to satisfy the selection criterion (3.1). In particular, it shows it is possible
to build the coarse grid by selecting vertices with the maximum weight in the graph, updating
weights, selecting the next set of vertices with maximum weight, and so on. This is the
approach taken by the BSIS algorithm.

CLJP and CLJP-c rely on a search routine to locate all vertices satisfying (3.1) (i.e.,
vertices with locally maximal weights) and on a weight update routine to modify weights of
vertices in the neighborhoods of newC-points.
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ALGORITHM 4.5: CLJP Independent Set Selection

1 CLJP-SELECT-INDEPENDENT-SET(S, C, F ):
2 D ← ∅
3 f o r i ∈ V \ (C ∪ F )
4 i f wi > wj for all j ∈ Ni

5 D ← D ∪ {i}
6 re turn D

The algorithms for searching and updating vertex weights inCLJP are examined in this
section in detail. The pseudo-code below assumes the software uses a compressed sparse
row (CSR) [25] matrix format or other similar format, which are common sparse matrix
formats in numerical software. CSR provides low memory costs for storing sparse matrices
and provides efficient access to the nonzeros in a row. Accessing the nonzeros in a column
is an expensive operation in this format and strongly influences the weight update routine in
CLJP-style algorithms becauseS is generally not symmetric.

The search step performed in CLJP independent set selectionis outlined in Algorithm4.5.
The inner loop (encapsulated in line 4) is executed2|E| times in the first call to Algorithm4.5.
The total search cost of constructing the coarse grid is complicated to analyze and depends on
the number of iterations needed, in addition to other factors. In the best case ofΩ(E) time,
the cost is significant when the graph contains large numbersof edges, as usually happens on
the lower levels in the grid hierarchy (see [2] for examples). In Section4.2, we introduce the
technique used in BSIS, which conducts the search independent of the number of edges in
the graph.

Pseudo-code for the weight update in CLJP is shown in Algorithm 4.6. The level of
complication in this update routine is due to the CSR format and the need to find vertices
strongly influenced by newC-points. When a newC-point k is selected, the first type of
weight update (lines 3–8) is trivial, since determining thevertices inSk is inexpensive. The
second type of update (lines 10–23) is more expensive, sincethe vertices influenced byk are
difficult to determine in a CSR format. The update requires a search of many verticesi and
all of their strong influencing neighborsj. The routine then searches strongly influencingj
to determine if anyk ∈ D strongly influences bothi andj. The cost increases dramatically
as the density ofS increases. Large operator complexities have a disproportionately large
impact on coarse-grid selection run time. In the next section, a modified update routine to
complement the new search technique is introduced.

4.2. Bucket-Sorted Independent Sets algorithm.In this section, we develop new tech-
niques for searching the graph ofS for C-points and subsequently updating the weights of
remaining vertices. The new algorithm is named Bucket-Sorted Independent Sets (BSIS) to
reflect the data structure used.

Like CLJP-c, BSIS depends on graph coloring, but utilizes modified routines for search
and weight update. Furthermore, rather than applying the color information to augment vertex
weights, BSIS uses the colors in a bucket data structure. Once initialized, this data structure
selects independent sets, which satisfy the conditions in (2.1), in constant time.

Figure4.1 illustrates the bucket data structure. The number of buckets in the data struc-
ture ismaxi∈V |ST

i | times the number of colors in the graph, that is, each possible weight in
S has its own bucket. The vertices are distributed to the appropriate buckets during the setup
of the coarse-grid selection algorithm, where the bucket ofa newly placed vertex depends
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ALGORITHM 4.6: CLJP Weight Update for CSR Matrix

1 UPDATE-WEIGHTS(D, C, F, S, w):
2 S̄ ← S
3 f o r d ∈ D
4 f o r i ∈ Sd

5 wi ← wi − 1
6 Sd = Sd \ {i} /∗ removing edge from graph∗ /
7 i f wi < 1
8 F ← F ∪ {i}
9 f o r i ∈ V \ (C ∪ F )

10 Ni ← ∅
11 f o r k ∈ S̄i ∩D
12 Ni ← Ni ∪ {k} /∗mark k new C−p o i n t ∗ /
13 f o r j ∈ Si

14 i f j /∈ D
15 f o r k ∈ Sj ∩Ni /∗ i and j m u t u a l l y i n f l u e n c e d byk ∗ /
16 wj ← wj − 1
17 Si = Si \ {j} /∗ remove edge fromj t o i∗ /
18 i f wj < 1
19 F ← F ∪ {j}
20 f o r k ∈ Si ∩D
21 Si = Si \ {k} /∗ remove edge fromk t o i∗ /
22 re turn F, w

ALGORITHM 4.7: BSIS Data Structure Setup

1 BSIS-SETUP(S, w, σ):
2 B ← BSIS-ALLOCATE-BUCKETS(maxwi,maxσ)
3 f o r i ∈ V
4 b← (wi − 1) ·maxσ + σ(i)
5 B[b].INSERT(i)

on the number of vertices it strongly influences and its color. For example, in Figure4.1
vertex 14 strongly influences six vertices and is black. Therefore, it is placed into the black
bucket in the sixth group of buckets. Notably, the vertices in a bucket form an independent
set; e.g., vertices 14, 16, and 21.

In each iteration, the non-empty bucket with largest weightformsD; see Corollary4.4.
These vertices are assigned to theC-point set and removed from the data structure. Vertex
weight updates lead to corresponding updates to the data structure, and newF -points are
removed from the data structure. These operations continueuntil all buckets are empty, at
which point the coarse-grid selection is complete. Algorithms4.7, 4.8, and4.9 outline the
operations discussed above.

Figure4.2 illustrates the graph and data structure following the firstiteration of the al-
gorithm. Vertex 10 has become aC-point and its neighbors weights have been updated.
Vertices assigned toF or C (highlighted with a red ring in Figure4.2) are removed from the
data structure, and other affected vertices are moved to newlocations in the data structure.
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Figure 4.1: Graph of a strength matrix and its BSIS data structure. The edges in the graph
represent mutual strong influence between vertices.

ALGORITHM 4.8: Independent Set Selection

1 BSIS-SELECT-INDEPENDENT-SET(B):
2 re turn non−empty bucke t w i th l a r g e s t bucke t ID

Using the weight update routine described in Algorithm4.6with BSIS is very expensive,
because some iterations of BSIS select very fewC-points. For a graph with a large number
of colors, BSIS may execute dozens or hundreds of low-cost iterations to select a coarse grid,
resulting in a large range of memory access. This is due to theweight update routine looping
through all unassigned vertices at each call.

The largest factor in the cost of the weight update in Algorithm4.6results from searching
for the second type of weight update (beginning at line 10), which must be done by looping
through all unassigned vertices, because a newC-point is unable to easily determine which
vertices it strongly influences in a CSR matrix. It is less expensive, in this situation, to
construct the transpose ofS than to search the entire graph in each iteration. InST , aC-point
quickly determines which vertices it influences and “paints” them. The algorithm then loops
through all painted vertices and determines if any are neighbors. This simple solution has a
dramatic effect on the performance of BSIS, although the update cost remains approximately
equivalent to the cost in CLJP-c.
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Figure 4.2: BSIS data structure following selection of the firstC-point (vertex 10, now solid
blue and unnumbered). The weights of neighbors of the newC-point are updated. Some
neighbors becomeF -points (shown as unnumbered yellow vertices) and are removed from
the data structure. Vertices removed from the data structure are highlighted with a red ring
in the graph, while other neighbors are moved to new locations in the data structure and are
highlighted (to aid in reading the figure) in the data structure with a red box.

ALGORITHM 4.9: BSIS Edge-Removal Weight Update

1 BSIS-UPDATE-WEIGHTS(B, σ, i):
2 b← (wi − 1) ·maxσ + σ(i)
3 B[b].REMOVE(i)
4 B[b−maxσ].INSERT(i)

4.3. Weight update aggregation.Whenever a vertex weight is updated, BSIS moves
the affected vertex to a new location in the data structure. During the selection of the coarse
grid, the cost of the updates to the data structure is non-trivial and, as shown in this section,
unnecessary.

Only one bucket in the data structure is touched during theC-point selection step: the
largest weight non-empty bucket. Other buckets are subsequently affected by the weight
updates resulting from newC-point assignments. However, a different approach is possible
since the only bucket that must contain the correct verticesis the one from whichC-points
are selected.

To save cost, we suggest an approach that aggregates the costof updating vertex weights.
Rather than investing computation into maintaining accuracy in the data structure, a less
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Figure 4.3: BSIS data structure after selecting the firstC-point (vertex 10) with aggregate
weight updates.

expensive mechanism to test if a vertex is in the correct location is provided. When a weight
is updated, the vertex is not moved until it is found in the bucket being used as the new
independent setD.

Figure4.3depicts the data structure after the first set ofC-points is selected. Rather than
moving vertices to new buckets, the method now keeps them in the same location, and only
moves them when necessary. As shown in Section4.4, aggregation of the weight updates
leads to significant savings in computational cost.

4.4. Experimental results. To demonstrate BSIS, the algorithm is compared with
CLJP-c. The first test problem is the 3D 7-point Laplacian on astructured grid:

−∆u = f, onΩ (Ω = (0, 1)3).

This problem, and the two to follow, have homogeneous Dirichlet boundary conditions.
BSIS is implemented as described in Sections4.2 and4.3. In particular, BSIS employs

the transpose of the strength matrix, and the timings below include the time to compute this
transpose. CLJP-c, on the other hand, works directly from the strength matrix. The strength
factorθ is 0.25 in this and the following experiments.

The experiments were serial and run on a single processor of the Thunder supercomputer
at Lawrence Livermore National Laboratory. Timing data forthe selection of all coarse grids
in the hierarchy is reported. This time includes the cost forall parts of the algorithm, including
the graph coloring phase. AMG solve phase information is notreported, since the algorithms
produce identical coarse grids, and information on solve phase performance for AMG with
CLJP-c is documented in [1, 2].
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Figure 4.4: Coarse-grid selection times using BSIS with aggregate weight update, standard
BSIS, and CLJP-c on the 7-point Laplacian.

The smallest problem is a30× 30× 30 grid. Subsequent problems are grids of size603,
903, and so on, up to2103. The largest problem is 343 times larger than the smallest problem
and contains more than nine million degrees of freedom.

Results for the experiment are presented in Figure4.4. BSIS completes coarse-grid con-
struction in less time than CLJP-c in every case, and BSIS with aggregate weight update
performs better than standard BSIS. For the largest problems BSIS is approximately 17%
less expensive than CLJP-c, while BSIS with aggregate weight updates is 23% less expen-
sive on the largest problems. The benefit is magnified, relative to CLJP-c, for the smaller
problems.

For our second experiment, we compare the running time of implementations of BSIS,
with aggregate weight updates, and CLJP-c, using the PyAMG [3] package. In this experi-
ment, we provide CLJP-c with the transpose of the strength matrix, which makes the separa-
tion in timings between the methods substantially smaller.

The problem is a finite element discretization of a two-dimensional Laplacian problem
on a Cartesian grid:

(4.1) −∆u = f, onΩ (Ω = (0, 1)2).

Timings for this problem include all portions of the setup phase, except the cost of com-
puting the transpose of the strength matrix, since both algorithms utilize it. Data points were
produced 100 times each, and the mean values are reported.

Figure4.5 plots timings and the timing gap between CLJP-c and BSIS withaggregate
weight update, when both are provided the transpose of the strength matrix. The smaller
difference in timings compared to those in the first test is due to at least two factors. First,
this two-dimensional problem is less taxing for coarseningalgorithms, because it produces a
coarse grid hierarchy with fewer nonzeros; second, providing CLJP-c with the transpose of
the strength matrix results in a performance boost for CLJP-c. The plot in Figure4.6shows
that the time spent selecting independent sets for BSIS withaggregate weight updates is the
source of its lower cost.
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Figure 4.5: Coarse-grid selection times using BSIS with aggregate weight update and CLJP-c
on the two-dimensional finite element Laplacian problem (4.1). The figure plots total time
for coarsening on the lefty-axis and the difference in times on righty-axis. The number of
unknowns per trial isn2.

Figure 4.6: Total time for selecting independent sets in CLJP-c and BSIS with aggregate
weight updates for the two-dimensional finite element Laplacian problem (4.1). The number
of unknowns per trial isn2.

CLJP-c spends about ninety milliseconds more than BSIS withaggregate updates, select-
ing independent sets on the largest problem. The total time difference between the methods
on the largest problem is only about fifty milliseconds, however. The discrepancy between
time saved by improved independent set selection and total time saved results from the weight
update time, which is more efficient when larger independentsets are given. Since BSIS gen-
erates smaller independent sets and runs the weight update subroutine many more times than
CLJP-c, there is a noticeable performance impact. Finally,note that while the time spent by
CLJP-c computing the independent set consistently grows asn increases, BSIS with aggre-
gate weight update begins to show total selection times thatare independent with respect to
n, for larger values ofn.
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The final problem in our experiments set is a rotated anisotropic diffusion equation on a
Cartesian grid, discretized using finite elements:

(4.2) −∇ ·QAQT∇u = f,

where

Q =

[

−0.5 −
√
3/2√

3/2 −0.5

]

and A =

[

1 0
0 0.0001

]

.

As in the previous problem, timings include all portions of the setup phase work, except
the cost of computing the transpose of the strength matrix. The timings reported are the means
of 100 samples for each data point.

Due to the anisotropy, the graph of the matrix in (4.2) is coarsened more slowly than the
graph of the matrix in (4.1), leading to a greater number of levels in the coarse-grid hierar-
chy and a larger number of calls to the weight update routine.Figure4.7 plots the timing
information for CLJP-c and BSIS with aggregate weight updates, which shows that the time
difference is smaller for this problem. As plotted in Figure4.8, the gap between independent
selection for the two methods is slightly larger than in the finite element Laplacian prob-
lem (4.1), because the selection time for CLJP-c is higher. In spite of approximately the same
savings in selection time, compared with the previous problem, the total savings is lower, due
to an increase in the gap of weight update times of the two methods.

Figure 4.7: Coarse-grid selection times using BSIS with aggregate weight update and CLJP-c
on the rotated anisotropic diffusion problem (4.2). The figure plots total time for coarsening
on the lefty-axis and the difference in times on righty-axis. The number of unknowns per
trial is n2.

The experiments demonstrate the effectiveness and competitiveness of the bucket tech-
nique. The independent set selection approach in BSIS is shown to be more efficient and
scale better than the selection routine in CLJP-c. While BSISwith aggregate weight update
is less expensive than CLJP-c in the experiments, the gains obtained by the improved selec-
tion routine can be eroded by excess cost in the weight updateroutine. We anticipate that
further efficiency for weight update and the BSIS algorithm is possible, for example through
hybrid techniques that result in slightly different, but less expensive coarse grid hierarchy
construction. Furthermore, the methods and concepts in this research are also applicable to
other coarsening algorithms, such as color-based methods designed to satisfy heuristic H1′.



ETNA
Kent State University 

http://etna.math.kent.edu

382 D. M. ALBER AND L. N. OLSON

Figure 4.8: Total time for selecting independent sets in CLJP-c and BSIS with aggregate
weight updates for the rotated anisotropic diffusion problem (4.2). The number of unknowns
per trial isn2.

4.5. Parallelizing BSIS. In this section, we discuss the prospects for developing a par-
allel BSIS algorithm. We first discuss coarsening for shared-memory architectures and then
explore BSIS for distributed-memory computers.

Shared-memory parallelism is important to consider, sinceon-chip parallelism is now
the primary mechanism for scaling processor performance astransistor sizes decrease.

For the search phase, CLJP-c benefits greatly from the presence of many threads, due
to its many local tasks. The amount of parallelism in each iteration of BSIS depends on the
number of vertices in the eliminated bucket, which is often few. This means that there is less
parallelism for BSIS to exploit in each iteration, but this is not a weakness because BSIS has
optimized the search phase to such a point that it is almost cost-free.

Both BSIS and CLJP-c benefit from multiple threads while computing updates, although
BSIS with aggregate updates has the advantage that it is ableto proceed despite knowing the
weight of a vertex is to be updated. This means that weight update in this scheme could be
overlapped with search.

The setup phase of BSIS takes more time for similar problems than the setup phase for
CLJP-c, and this is due to the cost of loading the bucket data structure. Exploiting parallelism
here will widen the gap between BSIS and CLJP-c.

Using BSIS in a parallel algorithm for distributed-memory computers presents chal-
lenges because the parallelism in BSIS is very fine-grained.Its elegance and potential to
greatly improve the efficiency of coarse-grid selection motivates the development of parallel
algorithms incorporating BSIS. Several alternatives are explored below.

For this discussion, assume thatG(S) is decomposed intop disjoint partitions, such
that eachi ∈ V belongs to exactly one partition. Furthermore, assume thateach partition
is mapped to a processing core. In this model, computation isdone on each partition, but
dependencies between vertices on different partitions necessitate communication between
partitions. Minimizing the frequency and the amount of communication is a goal in achieving
scalability.

Our parallel BSIS algorithm is called the painted boundary method, and takes advantage
of the invariance between coarse grids selected by BSIS and CLJP-c. We propose using
BSIS to select as many of the interiorC-points as possible prior to any communication with
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Figure 4.9: Painted boundary method with aggregate weight updates following one iteration.
The data structure is for the left partition. Painted vertices are marked with a green ring in the
graph and a green box in the data structure. Vertices in the data structure that are half green
and half red are painted and also have had their weights updated.

neighboring partitions. All vertices belonging to a partition are colored and inserted into the
BSIS data structure. The partition boundary vertices, however, are “painted”. If a painted
vertex is in a setD in some iteration, then the vertex is not added toC. It is instead removed
from the data structure and its neighbors in the same partition are also painted. Figure4.9
illustrates the first iteration of the painted boundary method with weight update aggregation.
The data structure shown is for the left partition.

The first iteration selects a newC-point, but does not select any painted vertices. In
the second iteration, vertex 22 is selected, but is already painted. Therefore, same-partition
neighbors of vertex 22 are also painted; see Figure4.10.

The method finishes when the data structure is emptied of all vertices. The result is now
three disjoint sets:C andF , as usual, but also a set of painted vertices. The painted vertices
are the vertices that cannot be assigned to theF or C set without communication between
partitions. The information is provided to CLJP-c, which handles the parallel portion of the
algorithm.

The painted boundary approach is ideal when large numbers ofinterior vertices are given,
which can be guaranteed on most problems for the fine grid. A side-effect of H1-based coars-
ening algorithms, however, is the creation of denser graphson coarse levels. The issue is less
of a concern for H1′-based coarsening using BSIS, wherein operator complexities are smaller
and less dependent on problem size. In all cases, however, the number of processor bound-
ary vertices relative to the number of interior vertices increases as the number of unknowns
per processor decreases; e.g., on coarse levels. A few techniques may be applicable in this
situation. The easiest solution is to simply use CLJP-c, or some other coarsening algorithm,
on the coarser levels where few vertices are found. A second approach is the application of
a dynamic load-balancing algorithm to decrease communication and possibly decrease the
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Figure 4.10: Painted boundary method with aggregate weightupdates following the second
iteration. In this iteration a painted vertex was selected,leading to the painting of its same-
partition neighbors.

number of partitions on coarse levels. If the number of vertices per partition per level is
maintained at a high enough level, BSIS is still valuable on coarse grids. A third option is to
replicate the operator matrix on compute nodes, which leadsto processors doing some iden-
tical work, but by avoiding communication. The second and third ideas are similar in nature
and both involve using dynamic load-balancing techniques [11, 13, 15–17, 26].

5. Conclusions. In this paper, we have made two main contributions. First, new theo-
retical results were presented to expose the nature of independent-set based coarse-grid se-
lection. Algorithms using the same rules, with some restrictions, for weight initialization,
independent set selection, and weight update produce the same coarse grids, regardless of
the particular implementation of the rules. This result decouples the design of policies for
selecting quality coarse grids from the design and efficiency of the algorithms used to select
the coarse grids. Our second contribution builds on these theoretical results with a new coars-
ening algorithm called BSIS, which selects the same coarse grids as CLJP-c, but uses a more
efficient algorithm to select independent sets.
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