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A PRECONDITIONER FOR A FETI-DP METHOD FOR MORTAR ELEMENT
DISCRETIZATION OF A 4TH ORDER PROBLEM IN 2D*

LESZEK MARCINKOWSKIt

Abstract. In this paper a parallel preconditioner for a FETI-DP formulation for a mortar discretization of a
fourth order problem is presented and analyzed. We show that the condition number of the preconditioned FETI-DP
operator is proportional to (1 + log(H/h)?2, where H and h are mesh sizes.
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1. Introduction. Many technical problems are modeled by partial differential equa-
tions. A way of constructing an effective approximation of the differential problem is to
introduce a global conforming mesh and then to set up an approximate discrete problem.
However it is often required to use different approximation methods or independent local
meshes in some subregions of the original domain. Then one can make adaptive changes of
the local mesh in a substructure without modifying meshes in the other subdomains. This
type of technique requires matching conditions on the interfaces between adjacent substruc-
tures to ensure some type of weak continuity of the solution. One possible way of enforcing
such matching conditions is to impose some integral conditions on the jumps of the traces
of finite element functions across subdomain interfaces. This approach is taken by a mor-
tar method which is an effective method of constructing approximation on nonconforming
triangulations, cf. [6].

In this paper we extend the results of Kim and Lee [22], where the case of a FETI-
DP method for mortar discretization for a second order problem is analyzed, to a mortar
discretization of a fourth order problem. We present and analyze a preconditioned FETI-DP
(dual primal Finite Element Tearing and Interconnecting) method for solving the system of
equations arising from the mortar element discretization of a model fourth order problem in
2D. In each subdomain a reduced Hsieh-Clough-Tocher (RHCT) conforming finite element
space on an independent local mesh is defined, and then a discrete mortar problem of saddle
point type is introduced.

The original problem is reduced to a smaller dual FETI-DP problem. We eliminate first
the unknowns associated with the degrees of freedom at interior nodal points, and then the
unknowns related to the degrees of freedom at the interface nodes. The resulting dual FETI-
DP problem is solved iteratively using a fully parallel preconditioner. We prove that our
method is almost optimal, i.e., the polylogarithmic bound with respect to the local number
of degrees of freedom holds for the condition number of the preconditioned problem. There
are many papers in which the mortar method was studied for coupling nonmatching meshes
for discretizations of second order problems; see, e.g., [4, 5, 7, 36]. The mortar technique
for discretizations of fourth order problems is considered in [2, 21, 29]. The domain de-
composition methods and especially the FETI-DP methods form a class of fast and efficient
iterative solvers for algebraic systems of equations arising from the finite element discretiza-
tions of PDEs of second and fourth order, cf. [20, 24, 26, 27]. There are many works about
iterative solvers for mortar method for second order problem; see, e.g., [1, 8, 9, 15, 23] and
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the references therein. But there are only few papers investigating fast solvers for mortar
discretizations of fourth order elliptic problems, cf. [28, 31, 37]. Recently a few FETI-DP
type algorithms have been presented for mortar discretization of second order problems, cf.
[12, 14, 16, 17, 18, 19, 22, 33].

The formulation of the FETI-DP system of equations for the same discrete problem was
presented in a proceedings paper [32]. Some condition number estimates for another precon-
ditioner were also given there without proofs under very restrictive assumptions, e.g., the ratio
hy, /by remain constant for the mesh sizes on the edge Ty; = 9Qy, N 9. To our knowledge
there are no FETI type algorithms for solving systems of equations arising from a mortar
discretization of a fourth order problem in the literature.

The remainder of the paper is organized as follows. In Section 2 the mortar discretization
of a model problem is presented. The FETI-DP method is presented in Section 3. In Section 4
we present a Neumann-Dirichlet preconditioner, and finally in Sections 5 and 6 we prove our
main theorem.

In this paper the following notation is used. © < v, z > y and w < z mean that there
exist positive constants ¢ and C independent of the parameter of the fine triangulation of any
substructure and the number of subdomains, such that

cu<v < Cu, z>cy and w <C z, respectively.

2. Discrete problem. Let (2 be a bounded polygonal domain in 2D. We assume that we
have a geometrically conforming decomposition of 2 into polygonal subdomains, i.e.,

N
o= )%
k=1

with Q,NQ; = B, a common edge or a common vertex. The decomposition will be further
referred to as the coarse triangulation and we assume its shape regularity in the sense of [10,
Section 2, page 5]. The interface I' is defined as the sum of all open edges of substructures
which are not contained in 0€2.

Our model problem is to find u* € HZ (), such that

a(u*,v) = f(v) Vv € Hy (),

where f € L2(2), H2(Q) = {v € HX() : v = 8v = 0 on 99}, and a(u,v) =
SN | ag(u,v) with

Qg (U,U) = / Pk [uzlzlv-'n-'n +2 Uz o Vaizs T uzzwzvz2z2] dz.
Qp

Here pj, are positive constants, 0, represents the outward normal derivative to 0f2, and
Ugiz; = %,forz’,j =1,2.

From the Lax-Milgram theorem, the continuity and ellipticity of the bilinear form af(-, -)
yield the existence and uniqueness of the solution; see, e.g., [11] or [13].

We introduce in each subdomain €2} a quasiuniform triangulation made of triangles
Th (%) with parameter hy, = max,cr, (q,) diam 7 (e.g., cf. [11]) and let Hy, = diam(Q).
On each 0}, we introduce local reduced Hsieh-Clough-Tocher (RHCT) macro finite element
spaces (see [13]) as follows: let the local RHCT space W"(€2;) € H? () be formed by C*
continuous functions, such that v € W"(Qy,), where for each triangle 7 € Tp,(Q4),

() v, € P3(m;) for three subtriangles 7; C 7, i = 1,2, 3, formed by connecting the

vertices of T to its centroid; see Figure 2.1,
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FI1G. 2.1. RHCT macro element.

(ii) Onv are linear 1D polynomials on each edge e € O7,
(iii) v = 9,v = 0 on 9 N ON.
The degrees of freedom of RHCT macro elements are given by

(21) {U(pi)auw1(pi)avz2(pi)}a 1= 17253a

for the three vertices p; of any 7 € T}, (2); see Figure 2.1. We further call all vertices the
nodal points or nodes.
Next we introduce an auxiliary global space

N
whQ) = [ W (@)
k=1

We define W"(€) as the subspace of W"(€2) formed by all functions which are con-
tinuous at the crosspoints (i.e., the common vertices of the subdomain) and have continuous
gradients at the crosspoints.

Since the triangulations of two adjacent subdomains {2 and €; are independent, their
common edge, denoted by I'y;, inherits two independent one dimensional meshes T,f (Tri)
induced by T}, (Q) and T} (Ty;,) induced by T (€;); see Figure 2.2. Thus we have to distin-
guish between the two sides (or meshes) of the interface I'y;. According to the rule pg > py,
we name the side on the hy mesh as the mortar (master) side and denote it by 7yg;, and name
the other side associated with the h; mesh the slave (nonmortar) side denoted by d;,. Let vy, 5
be the set of all nodal vertices of elements of the T,f (Tx:) on the open edge I'g;, and Vri,n bE
the set of nodes of the same triangulation on T, respectively. Similarly, the sets d;x 5 and
glk, n consist of nodes of the h; triangulation of I';;, and T, respectively.

We also introduce two test function spaces associated with T} (&;x) : M} (&%) represents
the space of C'! smooth functions that are piecewise cubic on T,lz (&11) and are piecewise linear
on the two end elements of T} (0;x,), and M}, (8;) represents the space formed by continuous
functions that are piecewise linear on T,ll (611) and are piecewise constant on the two end
elements of T} (&1,) -

Our discrete space V" is defined as the subspace of wh (Q) which satisfy two mortar
conditions on each interface I';y, C T" with §;, its slave side and -yg; master side:

(2.2a) / (up —up)pds =0 Yo € M (o),
dik
(2.2b) / (Onup, — Opw)thds =0 Ve € ML (511,).
O1x
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Y. o

F1G. 2.2. Nonconforming meshes.

We can now formulate our discrete problem: find u}, € V", such that
(2.3) a(u},v) = f(v) YveVh

We see that a(u,u) = 0 implies that w is linear over each subdomain. Then the continuity of
u and Vu at crosspoints yields that u is linear over (2. Finally, the boundary conditions yields
that w = 0. Hence the discrete problem has a unique solution.

We introduce the space M = []; -p My, where My, = M{(8x) x ML (6y,), and

define the bilinear form b(u, 1) on W"(Q) x M by: letu = (uy,...,ux) € WH(Q) and
¥ = Ww)ow = Yk, Yin,2)on € M,

b(u,zb) = z Z blk,s(u7¢lk,s)7

01, CI s=1,2

bik,1 (u, Yi,1) = / (ur — up)Yug,1 ds,

273

bik,2(w, Yig2) = / (Onuk — Onuy) Y2 ds.
Otk
We can rewrite (2.3) as the following saddle point problem (cf. [30]): find a pair
(up, A*) € Wh(Q) x M, such that

aul,v) + b, \*) = fv)  VueWh(Q),

24) bui,d) = 0 Vo e M.

We see that u} is a solution of (2.3), cf. [30]. In this paper we use the same notation to
represent both a function and the vector containing the values of degrees of freedom of this
function.

3. FETI-DP systems of equations. In this section, we formulate a FETI-DP operator
for problem (2.4). We follow the approach taken in [22] and [26] for the formulation of the
FETI-DP problem and the construction of the preconditioner.



ETNA

Kent State University
http://etna.math.kent.edu

FETI-DP MORTAR 4TH ORDER 5

3.1. Trace spaces. In this subsection we introduce the trace (in H? sense) of functions
in Wh(Qy). For any u € W"(Qy,), let Tr 5, u be a linear trace operator mapping W " (£2y,)
onto the triple L?(9€) x L?*(0%) x L*(0), defined by T'r|sq, u = (ujs0,, Va0, )s
where v|gg, is the trace of v € H' () onto the boundary of 2. Note that Vur,,(s) =
(Oyu(s), Onu(s)) overanedge T'y; C O, thus we get T'r s, u(s) = (u(s), dyu(s), Onu(s))
for s € T'y;. Because 0;u(s) along this edge is uniquely defined by u, we can define the trace
onto an edge T’y by Trp,, u = (Ujry,, Ontery,) C L?(Try) x L*(Tpy).

We also define the spaces

Wi(Tr) = Trp,, WHQ) and Wy = (Trg,) W"(Q),
and
W:W1X...XWN.

Note that W, (Ty;) = W,i’3(1“kl) X W,?’I(Fkl), where W,i’3(1"kl) is the space of C*
continuous piecewise cubic functions on the 1D triangulation T/ (T'y;), and W,? (D) is a
space of continuous piecewise linear functions on T,f (T'ks). Thus a function in Wy, is defined
by all degrees of freedom associated with all nodal points, i.e., vertices on 9, cf. (2.1).

We also introduce

B0 Wy (Tw) = Wy (Tw) NHG(Tw),  Woy (Tr) = W (Tha) N Hy (Twa),
i.e., the subspaces of the trace spaces with zero boundary conditions in H? and H' sense,
respectively.

3.2. Matrix form of mortar conditions. We introduce matrix forms of mortar condi-
tions. On a slave §;x C €Yy, us,, and O,us,, are split into two vectors representing tangential
and normal traces

(3.2) Usy, = Uu§) +uf)
Onus,, = 6nu((52 + Bnugfz,

where uglrz represents the respective degrees of freedom of the tangential trace function at

interior nodal points (interior to ;) and ugz four degrees of freedom at the ends of this

slave. We have also an analogous splitting of two vectors representing tangential and normal
traces onto the master yg;.
We can now rewrite (2.2a) and (2.2b) in a matrix form using nodal basis functions as

(3.3) Bt;’Y}clu’Ykl - Btaélku‘;lk =0,
B",’thanu’m - Bn,élkanuélk =0.
Using the splitting (3.2) we get

(3.4) BM w4 B ) _ g ) _gla) o _

[ 2T Rt 7] 2 T Raia7¥] t,dlkuélk t,5lku51k -
(r) (r) (c) (o _ g (r) _ gla () _
Bna')’klanu')’kl + Bn,’wcza”u’wcl Bn,élkanu(ﬁk Bn,élkanualk - 07

where the matrices By s,, , By s, are mass matrices resulting by substituting standard nodal
basis functions of Wll’3 (O1k)s Wlo’1 (81r,) and M} (011,), ML (81 into (2.2a) and (2.2b), respec-
tively, i.e.,

Btaélk = {(¢z,s; ¢y,7‘)}m,y€51k,h ¢z,s € Wll’S ((Slk); wy,r S MZ (5lk)7

s,7=0,1

Bn,(;lk = {(¢z7¢y)}z,y€61k,h ¢z 6 Wlo,l(élk);wy 6 Mr,ll((slk)a
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where ¢;,; and 9,5 are nodal basis functions of Wll’3 (61) and M] (1), respectively, as-
sociated with a node x of d;,,. They represent a value degree of freedom if s = 0, or a
derivative degree of freedomif s = 1, i.e., e.g.,

d’!‘

[ 1, if r=sandy=u, _ <
%%’s(y) a { 0, otherwise, forr=0,1, ¥ € du,n,

or € Wlo’l((Slk) and v, € M! (&) are nodal basis function of these respective spaces,
which equal one at the node z and zero at all remaining nodal points of d;,. The matri-
ces By ,,, Bn ., are defined analogously by replacing the basis functions of Wll’3(6lk) by
the nodal basis of W,:’3 (k1) and the basis of Wlo’l(élk) by the basis of W,S’l(fykl), respec-
tively. The matrices with superscripts (¢) and (r) are submatrices of respective mass matrices
corresponding to the splitting (3.2).

Note that Bt(ré)l W BS’()S”C are positive definite square matrices, cf. [29]. But in general

B,S’TW)M , Bg}m and all other matrices in (3.3) and (3.4) are rectangular. Then we can define

block-diagonal matrices

BY o (")
(3.5) I e IR R I
0 Bn,élk ' 0 Bnﬂ’k,l

and analogously B((;lcz and Bgi),l replacing (r) by (c), and By, and B,, , removing the super-
script (7).

For a mortar ~yj; let wﬁl denote the vector representing all degrees of freedom related to
nodes in 7y, and wfk in 0y, x. Then (3.3) can be rewritten as

kl ke _
B’Yklwk — By, wp” = 0.

Let us define R’,gl : Wi — Wi (Tk) as the restriction operator, and Ey; : M — My, the
extension by zero operator, and

(3.6) B; = Z Ei;By; Rl — Z E;Bs,, Ry,
vi; COQ; 03 COQ;
The matrices Bzm and BZ(C) are defined analogously by adding respective superscripts.

3.3. Elimination of variables. Here we eliminate all variables related to degrees of
freedom of the u} component in the solution of (2.4) and obtain a FETI-DP system of equa-
tions.

We split any function u € W () into two parts

u = Hu + Pu,
where Pu = (P1u,. .., Pyu) with Pru € HZ(Qr) N W"(Qy,), such that
ar(Pru,v) = (f,0) Vo € Hy () NW" (),

and Hu = u — Zszl ‘Pru, which is a discrete biharmonic part of u, equivalently defined by
Hu = (Hau, ..., Hyu), where Hyu € WH(Qy) satisfies

3.7) { ar(Hru,v) =0 Yv € Hg(Qk) NWh (),

Tris0, Hiu = Trsq,u on 0.
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We also have the so called the minimal property of discrete biharmonic functions, i.e.,
|Hku|H2(Qk) = min{|U|H2(Qk) TV € Wh(ﬂk), T7’|3Qk’u = TT‘anu}.

Thus we split the solution u* of (2.3) into the discrete biharmonic part and the local
solutions:

* __ 0% *
up, = uyy, + Puy,.

where uy;, = Huj,.

Note that a discrete biharmonic function w = Hw is uniquely defined by the values of
all degrees of freedom at nodes in T'. Thus it remains to find the values degrees of freedom of
u}, related to the nodes on T.

If we represent a local matrix of the local bilinear form ay (4, v) in the standard basis of
RHCT as K‘%) and reorder the unknowns into interior and boundary unknowns, i.e.,

x| K Ky
- K(k) K(k) ’
bi bb

then we can define a Schur complement matrix S*) by
k k E)y—1 - (k
St = Klgb) - Kb(i)(Ki(z' )) le'(b)‘

. w
For any vector w € Wy (0€) we can write w = [ wr ] , where w,. represents the
[«

values of degrees of freedom associated with the crosspoints and w, the remaining degrees of
freedom related to nodes interior to edges on 0€2. We order the matrix S (k) in the following
way:

gk — S s
| s s |

Next we introduce
Wcw
formed by functions with continuous degrees of freedom at crosspoints. Equivalently we can

say that W is the space formed by all local traces of functions from wh (). We can split a

Wy

vector w € W into w = [ where w, = (w1,r, ..., wn,r) and w, represents the values

c
of degrees of freedom at crosspoints (global vertices of subdomains). Here w; , represents

the values of degrees of freedom related to nodes in 0€2; which are not vertices of €2;.
Let L? represents a matrix made of zeros and ones, such that Lw, restricts the values
of degrees of freedom of w, to the respective degrees of freedom at the vertices of 9€2;,

ie., for any w € W we can write w = (wy,...,wN) with w, € Wy (9Qy), such that

Wk, r
WE = ’ .
* [ Lew, ]

We equip the space W with the norm

N
lwllg = llwelge-
k=1
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Taking B, = Ef;l BZ(C)Lf and B, = (BY), cee, BJ(\;)), the second equation in (2.4) has
the following matrix form (cf. (3.6)):

B,w, + B.w, = 0.
Thus we can rewrite the system (2.4) as

Srrwy + Spewe + BqTA = 9r,
Scrwr + Sccwc + BZA = e,
B,w, + B,w, =0,

where w € W is the vector representing the degrees of freedom of uj, corresponding to
all nodal points on I'. The vectors g,, g. are the respective Schur complement right hand

side vectors, Sy = diagy—;, (Sﬁlﬁ)), SZ; =8, = ((Lf)TSgi), cee (LﬁV)TSgV)), and
See = XN (£)TSH L.

Since S, is block diagonal and positive definite, we can eliminate w, and obtain the
new system

Fccwc + FC)\A = dc;
Fyewe + FazA = dy,

where Fy\, = B,S.'BT, F., = Fl = S.,.S;'!BT — BT, F.. = Se+S;;'Sre — See,
d. = —g. + S-S5t gr, and dy = B,.S;,!g,. Finally, we eliminate w, and get

(3.8) Fpp\ =dy — Fx.F'd,,

where Fpp = Fyxy — F).F_,' F., is the FETI-DP operator.

4. Preconditioner. Before defining the preconditioner we introduce some auxiliary spaces
and operators. For a slave d;, we define Wo ; (&) = W&’f(I‘kl) X Wg’ll(I‘kl), cf. (3.1), let

Wa =I5, cr Wo i (dix)

and let WA C W be the space of functions extended from functions in W by zero onto the
trace spaces corresponding to mortars. Note that the dimensions of both W and W are the
same as the dimension of M. We equip Wa with the norm

lwllsa = (Saw,w) = [[@]]s,

where Sa = diag;, (ch)), and S(Ak) is the matrix built locally from S*) by proper restrictions

and extensions and w € W is the extension of w by zero onto the trace spaces associated with

mortars. We could equivalently define Wa as the subspace of W of all functions, which equal
zero on both master nodes and vertices of subdomains. Note that Sa is block diagonal with

nonsingular blocks due to the fact that functions in WA equal zero on the vertices.
We also define, cf. (3.5),

Note that for any A = (A1, A2) € My, and w = (w1, w2) € Wo,1(dix) we have

@.1) w, (BN = (B w, ) = / w;); ds.
Tk

j=1,2
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Hence, BA,BZ are block diagonal matrices with invertible blocks, cf. [29], Finally, we
introduce the inverse of the preconditioner as:

MDN = BASZIBZ,
which is nonsingular, and thus we choose
Mph = BxTSaBL!

as the preconditioner for problem (3.8). Note that MB}V is a fully parallel preconditioner;
application of MEV to a vector involves solving N local independent Dirichlet type prob-
lems.

5. Technical tools. In this section we present some technical results needed for the
proof of the main theorem. For the analysis we need an equivalent definition of the precondi-
tioner defined in the terms of a dual norm in Wa.

LEMMA 5.1. For any A € M we have

i)\i ds b(’lf) )\)
Mpy A, VY2 = su S E:ﬁuﬁw—: su A
MonA N P Twllsa P Tl

weEWaA\{0} &;,CT i=1,2. weEWa\{0}

where (A1, X2) € My, and (w1, ws) € Wy (d1) are the respective restrictions of A\ € M
and w € W to the slave dyy, cf. (4.1), and W € W is an extension of w by zeros.

Proof. The second equality follows from the definition of b(-,-). The proof of the first
equality follows from the definitions of Ba and Sa, (4.1), and a standard algebraic argument;
see, e.g., [35]. 0

The formula in the next lemma is analogous to the one in [22, Lemma 4.2], and it can be
proved similarly; see, e.g., the proof of [34, Lemma 37].

LEMMA 5.2. For any A € M, we have

b(w, A)

F, )\,)\1/2= su —_—
WFord A P 7

weW\{0}

The next three lemmas are well known. The first lemma is a discrete analog of the
extension theorem for Sobolev spaces.
LEMMA 5.3. Let v € W,(882y,). Then there exists Ext(v) € W"(Qy,), such that

Tr|39kE$t(v) =v and |E$t(v)|Hz(Qk) < |VU|H1/2(8Qk),

where TT‘|3Qk’U = (U|3Qk,v1}|39k)f0r7} S H2(Qk)
Proof. See [25, Theorem 4.4]. a
LEMMA 5.4. For any w = (ws;;) € Wa, we have

N

a2 3 (ol )

bolsa = 200 2, (Wligege,y = Il )
- ik J

where ws;; = (w1, ws) € Wollf (Try) x Wg’kl(f‘kl) is the restriction of w onto a slave 6;; C
T.
Proof. Letw € Wa be an extension of w to W by zero. Then by the definition ||w||%, =

&

|@]|%. Letu € W"(Q) be a discrete biharmonic function, such that Tr oo, ur =
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on 90y for k = 1,...,N. Here W is the unique function corresponding to the vector
w (denoted by the same symbol). Thus by the definition of Schur complement we have
|0k || g = pz/ % g | m2(2,)- Next by Lemma 5.3 and the minimal property of the discrete
biharmonic functions we get

N N
wl|z, = ll®lls = Zpﬂuﬁﬁ(gj) = Zﬂjwuﬁp/z(mj)
j=1 j=1
N
< . 2 112 A
- Zp] Z (Hatwl”Héé?(ij) + ||w2||H;éz(Fk_7)) 0
j=1 05 COQ;

The following lemma gives an estimate of the H, é({ ? norm over an edge by H'/? and L®
norms; see [25, Lemma 4.1].
LEMMA 5.5. Ifu € Héf(f‘kl) satisfies ||Opul| poo vy < g, |l oo (ryy). then

ol 0y = Foli ey + (1 gl Bl e,
where Uy is an edge of U,.

The next result is a Sobolev like inequality; see, e.g., [38, Lemma 4.2.2].
LEMMA 5.6. For any functionu € W"(€y,), we have

|ulfy.00 ) 2 (1 + log(Hi/ht)) (H;:2|U|%11(Qk) + |U|fr{2(9k)) .

Next we introduce two auxiliary operators and show their stability properties in the trace
norms. We first define an operator associated with a slave &y, C I'jx, which is a common
edge of 0}, and (;a, and show its stability property which is crucial for the analysis of our

preconditioner.
DEFINITION 5.7. Let w}y, = L?(0) = W32 (Twi), cf. (3.1), be defined by

(5.1) / w;kwds:/ upds Vo € Ml ().
6lk 5lk

The following lemma states the stability of 7}, ; see the proof of [29, Lemma 6].
LEMMA 5.8. The following estimate holds for the operator wl,,:

¢ 3/2
0ty = 100l sy Vo € H2 )
We also introduce another operator 7% = L?(&;x) — Hg (1x), cf. [3].

DEFINITION 5.9. Let wl} : L*(0y,) — Wg”ll (Tri), be a linear operator defined by, cf.
(3.1),

(5.2) / Wﬁcuzﬁds:/ uypds V€ M (o).

6lk élk

The stability of 7]}, is stated in the following lemma, cf. [3, Lemma 1].
LEMMA 5.10. For the operator m}},, we have

1/2
Ifiall sz sy = Ml oy Vu € Hob (G-
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We also need the following technical lemmas. For any u € W"(£2;), we define a cubic
interpolant Iy su € L?(T'y;), by I su(z) = uk(z) and 8, g su(z) = Oyu(z), for z being
an end of T'y;. Note that 9y (u|r,, — Im sux) € Héé2(I‘kl).

LEMMA 5.11. For any u € W"(Qy,), we have

Hy,
19 (uiry, = I3l g o, ) 3 (1 +log (hk )) |ul 2 (au)-

Proof. Letw = u—1Ig 3zu. Note thatif we replace u by u+py, for any linear polynomial
p1, then w is unchanged since I 3p; = p;. Lemma 5.5 yields that

1002172 g,y = 18603/, + (L + 10B(H /M) 900,
Note that by a scaling argument we have

10 Ter, 3wl i (ryy + Hrzulwice (rg) =< Hy 2llullpe(,) + lulwioe )

Hence using a triangle inequality we get
||atw||i13/2(r ) = |atu|H1/2(1"k,)
+(1 + log(Hy /1)) (Hy 14l = (@) + [ufdyimqan) ) -

We estimate the first term by the trace theorem, the second one by the embedding H? —

L™ and a scaling argument, and the last term by Lemma 5.6 and again a scaling argument,
which all together gives

2
||8tw||fqé,2(r = (1 + log(Hk/hk 2 (Z Hk4+2s|u|%15(9k)> )

s=0

Finally, a scaling argument and a quotient space argument yield that

||at’U)||2Héé2(FM) j (1 + IOg(Hk/hk))2|u|%12(Qk) O

The next lemma can be shown following the lines of the proof of the previous lemma, cf.
also [26, Lemma 5.1].

LEMMA 5.12. For any u € Wh(Qy), we have

Hy,
||6Tbu|rk1 - IHa"u|Fkl||Héé2(FM) j (1 + log (E)) |“|H2(Qk)a

where IgOnur,, is a linear interpolant of Opur,, € W,S’l (Tr1) defined by the values of the
function at the ends of T'y;.

The following lemma is crucial for our analysis.
LEMMA 5.13. For any w € W and any slave é;y, C T, we have

@ 2 2
pu (ll0eff),, - 00w Wirags o,y * 10500, = 05 g, )

(1+log< )) ZIIw;IISm,

=k,
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where (wylg,)ykl,wél‘?kl) € Wi (Typ) is the restriction of wy, € Wy to the mortar vy, and

(wi%lk w;llzslk) € Wi(Tyx) is the restriction of w; € W to the slave by, Here H = maxy, hy,
and h = miny, hy,.
Proof. Letu € W"(Q) be a discrete biharmonic function, such that Trs0,u; = w; on
01;, for any subdomain €2;. Then, in particular, we have
k k
Trl’)’)cluk = (ukl’)’kl’anukl"y’kl) - ( ](-"3%1 wé&kl)a

( (U0 )

Trléucul = (ul|61k7a"ullalk) wl\é,k 2‘6%

and |lw; |5, = pj|uj|%{2(9j), cf. the definition of Schur complement and (3.7). Note that

atukm, - 8tul\6”c € Héé2(rkl) and 5‘nuk|%, — anu”(;”c € Héé2(Fkl).

By the continuity of all degrees of freedom of w at the ends of this edge we also have
Igsur = Igsw and IgOpur = Ig0Onu on I'yy. Here Iy 3 is defined as in Lemma 5.11,
and Ig is from Lemma 5.12.

We first estimate the first term: Pl”atwlml — O w

2
160 5

130,y . We have

0) —
pll|6tw1|’¥kt - 6tw1|51k”Hgé2(ij) - pl”atuk - 6tul”Hég2(sz)

< 2 ald(uy = Imsug)llare -
=k,

Then Lemma 5.11 and the assumption p; < py, for the master «yg; and the slave d;y,, yield that

(5.3) pil|Our — 6tul||§{é/z(F o= (1 + log ( )) Z PJ|UJ|H2

=k,
Next we estimate the term corresponding to the normal derivative and get

(k) w® _
pl||w2ml - 2|61k||H362(ij) = p1||Onur — anul||Héé2(Fkl)

<Y pullOnu; — Indnujll g, -
=k

Applying twice Lemma 5.12 to the two terms on the right-hand side of this inequality
and using the assumption p; < pg, we have

pul|Onur — Onui|? HI2 () = (1+log( )) ZPJ|UJ|H2(Q)

=k,
This and (5.3) completes the proof. a
We define a projection Pa : W — Wa by
(5.4) (Paw)s,, = (nh(w = wil) ), wh(wy) —wil) ) on &,

where (wglzr ’wélzn ) € W;(7;;) and (wﬁg 7wéj|()5 ) € W;(6;) are the restriction of w € w
to the mortar ;; and the slave §;; of an interface I';;.
LEMMA 5.14. Forallw € W, we have

[Pawl|ss = (1 +log(H/h))l[wl]s,
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where H = maxy, hy and h = minyg, hy.
Proof.  Take any w € W and consider its components associated with an interface

I';; C I'. We have four trace functions w( ) = (wi")W ,wé’ll ) and wl(g) = (ng‘(); ,wéjlgﬂ)
By the continuity of degrees of freedom at crosspomts, we have “’ﬁl)v - wﬁ; € HZ(Ty;)
and wé’% U)gjlg € HOI (F”)

Letw € W be the extension of Paw by zero, and let the pair (wy,2) denotes the
restriction of @ to a slave §;;. By Lemma 5.4 we get

N
IPawld, =185 <> > pi(lowns, |12

H1/2(Fi )
J=16;; COQ; 00 Y

+ ||w

: )
1/2 .
‘ Hoé (Tij)

By the definition of @ and Lemmas 5.8 and 5.10 we get

NN AV PN AV
j=16,:COQ;

@) 2
= > o (l0ts ), = w3 )2z, +

6;iCT
+||7T”(w§’|)% —wzw I 1/2(r,-j>)

< Z pi (0w, = 0w N2y o+ 0 = w3 e )
Finally, using Lemma 5.13 and summing over all slaves we conclude that

. H
IPswlss = lalls < (1+10g (5)) fulls. ©

6. Condition number bounds. In this section we give the condition number estimate
of the preconditioned operator in the following main theorem of this paper.
THEOREM 6.1. For any A € M, we have

(MoaA ) < (Fpp, A) < (1 +1log (%))2 (MpaA A,

where H = maxy, hy and h = minyg, hy.
Proof. Lower bound. For any nonzero w € Wa, define w € Wa as the extension of w
by zero. Then we have ||w||s, = ||@]||s. Thus by Lemmas 5.1 and 5.2, we have

(MpNI, W2 = sup RGN sup 7b(w~, a)
ey Twllsa = L 2 Tals
sup b(w, ) 1/2
up - WL A) oA W)Y,
werioy ~Jlls PP

Upper bound. For any w € W we have four trace functions associated with the in-

terface T;; C T w|(f,)1 = (wﬁ?y ,wé’lzy ) and w‘(gj) = (wijl()s ,wg‘g ). Then by (5.4), and



ETNA

Kent State University
http://etna.math.kent.edu

14 L. MARCINKOWSKI

Definitions 5.7 and 5.9 we have

)= 3 3 [ il = ul, s ds
Li;Cl k=1,2"Tii
= ¥ [ i, - o onds+ [ mpwld, - ol e ds
r;;cr’Li Ty
= Z Z/ (Paw)js;; Akjs;; ds-
Ti;CT k=1,2 YL

Hence by Lemmas 5.2 and 5.1 we conclude that

<FDP)\;)\)1/2 — sup M

weW\{0} [[wlls

Paw)kis.. Apls.. ds
= sup Z Z frij( AW) k655 k|65
“”EVT/\{O} T;; CT k=1,2 ||w||S
[[Pawllss
llwl|s

IN

(MbnA, )\)1/2 sup
weW\{0}

< (1 +log(H/h)){(MpNA, N2
The last estimate follows from Lemma 5.14. 0
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