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PSEUDOSPECTRAL MAPPING THEOREM II *

S. H. LUIt

Abstract. The pseudospectrum has become an important quantity forzingustability of non-normal systems.
This paper is a continuation of an earlier paper of this auttieere a mapping theorem for pseudospectra was
given, generalizing the spectral mapping theorem for eigleles. The main contribution of this paper consists
of asymptotic expansions of quantities which determine thessbf components of pseudospectral sets. As an
application of this theory, we solve the eigenvalue pesdtidn problem for an analytic function of a matrix. Some
numerical examples illustrate the theory.
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1. Introduction. The properties of a normal matrix can be accurately predibteits
spectrum. Here, normality refers to the matrix having a detegset of orthogonal eigenvec-
tors. The spectrum of a non-normal matrix, however, may eotdyy informative. Thanks
largely to the work of Trefethen and his co-workers, the pgespectrum has emerged as an
appropriate indicator for the stability of non-normal gyss. It has been applied to problems
in hydrodynamic instability, turbulence, magnetohydnoayics, control theory, iterative so-
lution of linear equations, numerical solution of diffeti@h equations, quantum mechanics,
random matrices, etc. Se@ for an authoritative survey and references afidgr an expo-
sition of classical eigenvalue perturbation theory.

For a square matriXd and a non-negative numbegrthee-pseudospectrum of is defined
as the following closed set in the complex plane:

AA)= | MA+E).

Bl <e

HereA() denotes the spectrum of a matrix ahd|| is the matrix2-norm. (This definition is
slightly different from that given in€] where the inequality is replaced by strict inequality.)
An equivalent definition is

A(A)={z€C, ||(zI =AY >t}

where the norm is taken to be infinite if € A(A). When A is a normal matrix, its
e-pseudospectrum is the union of closed disks of radiusth centers at the eigenvalues.
For a non-normal matrix, ite pseudospectrum can be much bigger than this union.

The spectral mapping theorem is a fundamental result intifumal analysis of great
importance. Given a matri¥d and a functionf which is analytic on an open set containing
A(A), the theorem asserts that

f(A(A)) = A(f(A)).

In [5], we discussed a mapping theorem tepseudospectrum which generalizes the
spectral mapping theorem in the sense that wherD, the pseudospectral mapping theorem
becomes the spectral mapping theorem.
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THEOREM 1.1 (pseudospectral mapping theorengt A be a matrix andf be an ana-
lytic function defined on an open set containifigd). For eache, s > 0 sufficiently small,
define

¢(€) = sup inf{r >0, f(¢) € Ar(f(A))}

CEAL(A)
and
P(s)= sup inf{r >0, z € f(A.(A))}.
z€A:(f(A))
Then
F(Ae(A)) C Ay)(f(A)) C F(Ay(a(e)(A))-
Let A be a matrix with distinct eigenvaluds\;, j = 1,--- ,k} each having some pos-

itive algebraic multiplicity. Where is small, A.(A) consists oft disjoint components each
containing an eigenvalue. These components are appratymdisks (B]). In the pseu-
dospectral mapping theorem, the sizes of pseudospectreharacterized by one pair of
functions¢ and+. Our first order of business is to characterize each compdaysiunctions
¢; andy;, offering a sharper bound than the one in the pseudospeatiaping theorem.
While the functionsp; and; are continuous and monotonically increasing, it appeabeto
difficult to derive other properties. The main purpose o$ thaper is to obtain the first term
in the asymptotic expansions @f andq;.

In Section2, we derive the exact expressions tr ande; mentioned in the previous
paragraph. In Sectiod, we determine the size of each component of the pseudospeofr
f(A). This is followed by a derivation of the asymptotic expansioln Sectiorb, we apply
these results to obtain sharp estimates for how the eigeewalf f (A) perturb when there
is a perturbation imd. In fact, we estimate the condition number of the eigenvdiie ) of
f(A) when A is subject to a perturbation. Some numerical experimentisarfinal section
illustrate the theory.

2. A component-wise pseudospectral mapping theorenilhe following is a sharper
version of the pseudospectral mapping theorem for compialkytic functions discussed in
[5]. The proof is the same as that if] [for the original theorem and is included here for
completeness.

As already mentioned in the introduction, wheis small,A.(A) is a disjoint union of
sets each containing exactly one eigenvalue. Denote theaoent containing the distinct
eigenvalue\; by A.(A, A;). Throughout this paper, we shall be assuming that the paramet
e is sufficiently small so that the components of pseudosiests are pairwise disjoiniThe
value ofe may need to be restricted further. This point will be elabedaipon later. The same
assumption applies to the parametersed in the context of pseudospectral setsf{ot). In
casef(\;) = f(Ay) for some), # A;, we identify the two components;(f(A), f(A;))
andAs(f(A), f(\g)) forall s > 0.

THEOREM2.1. Let A be a matrix with eigenvalueg\;} and f be an analytic function
defined on an open set containingA). For eachj and eache, s > 0 sufficiently small,
define

¢j(e)= sup inf{r >0, f(¢) € A (f(A), f(A))}

CEN(A,N))
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and

¥;(s) = sup inf{r >0, z € f(Ar(4,)))}-
€A (F(A).F (M)

Then
F(A(A, 7)) C Ay o) (F(A), (X)) C F(Ay;6;00) (A A))).

Proof. Fix somej. We first show that; is well defined. Let( € A.(A4, ;). Then
¢ € A(A + E) for some matrixE such that| E|| < e. By the spectral mapping theorem,

f(Q) e AMf(A+E) = Af(A)+ F)

whereF' = f(A+ E) — f(A). Thusf(¢) € Ayp|(f(A), f(A;)) which implies that the
infimum in the definition ofp; is taken over a non-empty set and thiyds well defined. The
first set inclusion now follows directly from the definitiof @, .

Next, we show thai; is well defined assuming thdtis not a constant. (If is a constant,
theng; = 0 andy;(0) = 0 and the theorem is trivially true.) Lete A (f(A), f();)) for
some small positive. By the Open Mapping Theorem of complex analysis, there amees
r > 0and¢ € B,();), the open disk of radius and center\;, so thatz = f({). (Note
thats must be so small that the Open Mapping Theorem is applicatfl@s a mapping from
B,.()\;) to some open set containidg (f(A), f(A;)).) SinceB,.()\;) C A.(4, A;), we have
z € f(Ar(A,\})). Thus, the infimum in the definition af; is taken over a non-empty set
and soy; is well defined. The second set inclusion now follows digetitbm the definition
of 1;(s) with s = ¢;(e). (Note that the value of may need to be reduced so that ¢;(¢)
is small.) 0

An equivalent conclusion to the above theorem is that, falkm

(21) As(f(A)v f()‘J)) C f(A't/J](s)(Av AJ)) C A(b](wj(s))(f(A)a f()‘j))

Note that by the definitions af; and);, the set inclusions are sharp in the sense that
the functions cannot be replaced by smaller functions.

3. The size of the pseudospectral component ¢{ A). In this section, we estimate the
size of each component of the pseudospectruif( df) wheref is analytic. An eigenvalue is
semi-simple if its algebraic multiplicity coincides wittsigeometric multiplicity. Then x m
identity matrix is denoted by,,. For any setS, the boundary of the set is denoted &y.
The following is a translation of a classical result (see6®in [7] and [3, Theorem 3.1]) to
the language of pseudospectra.

THEOREM 3.1. Suppose\ is a semi-simple eigenvalue dfof multiplicitym > 1. Let

A=QJQ ! where
A,
="

is a Jordan form ofd with A ¢ A(.J2). Lete > 0. Foranyz € 9A (A, \),
|z = Al = €| P + O(e*)

whereP is the projection onto the eigenspace kdr— \I) along the range space of — \I:

(3.1) P=qQ {Im 0} QL.
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Proof. Letz € 9A (A, ). Observe that

roayt =gV e
Now,
oG- a= o[ o va” ] e
- |z“f|/\| +0(1).

This implies that

e[| 7]

Z=N=1700

=¢||P||+0(?). O

We remark that in casg is a simple eigenvalue, then it is well known that=
wherez andy are right and left, respectively, eigenvectors correspantb \.

COROLLARY 3.2. Supposed is diagonalizable:4 = QDQ~' for some diagonab.
Assumef is analytic on some open set containifgA). Let\ be any eigenvalue of and
m be the multiplicity off (\) as an eigenvalue of(A). Define

zy*

(3.2) P=Q [Lﬁ 0} Q'

assuming all eigenvalugsso thatf(u) = f(\) are placed in the firsin diagonal entries of
D. Lets > 0. Then for any( € 0As(f(A), f(N)),

(3.3) IC = FN)] =s[P] +O(s?).

Proof. Note that

FN) I }
_D =
/(D) [ f(D2)
whereD, is diagonal so thaf () is distinct fromf () for any diagonal entry, of D». The
result now follows from a direct application of Theoré&m. a

In Corollary 3.2, supposg is an eigenvalue oft of multiplicity m. If A has an eigen-
valuey distinct from\ so thatf (u) = f()), thenm > m. Otherwisesn = m.

The index of an eigenvalue is the size of the largest Jordzsklf that eigenvalue. The
following theorem is very similar to results in the litereg([1, Theorem 7.4], (2.8) inq] and
[3, Theorem 3.1]).

THEOREM3.3. Suppose\ is an eigenvalue ofl of indexm > 1 and there is exactly one
Jordan block associated withof sizem. LetA = QJQ~! where

Al

(3.4) J = A

7
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is a Jordan form ofd with the first blockn x m. Lete > 0. Foranyz € A (A, ),
|Z o )\| _ 61/m||]\7m71||1/m + O<62/m)

whereN is the nilpotent matrix associated within the above Jordan decomposition.tf

0 1
(3.5) N=Q 0 1 Q!
0
|0
Proof. Let z € 0A.(A, \). Observe that
=N -N2 e (zenTm
(21 -4 =Q (=N (2= )2 Q.
(z=N""
‘ (ZI — JQ)_l
Since the leading order term in the above matrigis- \)~™,
1 _
—= G- a7
0O --- 0
=lz=A""Q R QM| +O(z = A'™™)
0
|0

= [z = AT INTTH 4+ Oz = AT™).
This implies that
2 =A™ = €[N+ O(e |2 = A|)

and the result now follows. 0

In this theorem, we assume for ease of exposition that tisesaly one Jordan block of
sizem for the eigenvalue\. The result also holds if there ake> 1 such Jordan blocks. In
this case, the first diagonal block i&.5) must be replicated times.

COROLLARY 3.4. Assume the hypotheses of the above theoremjf betanalytic on
some open set containing A) so thatf’(\) # 0. Supposg (\) # f(u) for every eigenvalue
w of A distinct fromA. Lets > 0. For any¢ € 9A,(f(4), f(N)),

|C_ f()\)| _ Sl/m ‘f/<)\)|1_% ||Nm—1H1/m +O<82/m).

Proof. Since¢ € dA,(f(A), f()\)),

é = [T = fANT N =lQCT = f(I)) Q7.
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Let J; be the first diagonal block of3(4) and N; be them x m nilpotent matrix which is
zero everywhere except for ones along the first superdidgBeaall that

FO) F) e e

f(m—l)()\) B . .

F(1) = S I+ f Ny PN = R :
mer f) )

JF(N)

The matrix¢Z,,, — f(J1) can be explicitly inverted and we find that the dominant terniciv
appeatrs in the top right corner is

(36) Fmtam ol
whered = ¢ — f()\). Hence,
1 . I o
S = M THINT T+ oo
which leads to
6™ = s[f'(\)|™ "IN + O(s 16])

from which the desired result follows. 0O

We next indicate briefly what happens in case some of the hgges in the above fail.
Forinstance, assunfé\) = f(u) for some eigenvalug with largest indexn > m. Suppose
f'(p) # 0. Then the dominant behaviour comes from the Jordan blockesponding tq. of
dimensionm. In this case, we obtain

€= SO = 87| )

whereN is the nilpotent matrix associated with the Jordan block of sizer.

Next, assume that the hypotheses of Corollary 3.4 holdsptxbat/'(A) = 0 and
f"(\) # 0. First assume that the index afis odd: m = 2k + 1. It can be checked
that the dominant term of¢Z,,, — f(J1))~! again occurs in the top right corner and is
27k f(N)FSTE=1 + O(|§|7%) wheres = ¢ — f(\). This leads to

NP L O™, ¢ e OAL(F(A), FN),

IC = f(A)] = s/ F+D (|f”2()\)|>k/(k+1) [NV D) 4 o2/ (D)
¢ € OAs(f(A), fF(N)).

If the index of \ is even:m = 2k, then the dominant term &t 7,,, — f(J1)) "' is O(]5]7%)
and it occurs at th€l, m — 1), (2, m) and(1,m) entries of the matrix itn > 4. If m = 2,
then the dominant term occurs at tfie2) entry.

4. Asymptotic expansions.In this section, we give asymptotic expansions for the func-
tions¢; andy; in Theorem2.1 We first discuss the case of a diagonalizable matrix.
THEOREM4.1. Let\; be an eigenvalue of multiplicity. > 1 of a diagonalizable matrix
A = QDQ~! whereD is diagonal:
o )\1]m
oM )
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and D is diagonal withA; ¢ A(D-). Let f be a function which is analytic in some open set
containingA(A). For smalle > 0,

FODHFF e+ 0@, /() £0;

LOOEE 2 1 O(e3), /(M) =0, (M) #0

1(€) =

where P and P are as defined ir(3.1) and (3.2) with /7 the multiplicity of f(\,) as an
eigenvalue off (A). For smalls > 0,

wl(s) = ‘f/(s)‘l)lHilﬁ;H+O<s2)7 f/(Al) 7507

pit/2 g1/2
DAL i +0(s), /() =0, f"(\) £0.

Proof. By definition,

¢1(e) = sup inf{r >0, f(z) € A(f(4), F(M))}

ZzEAN(AN)

sup inf{r >0, [|(f(z)] — f(A) "] =r"}
2€N (A1)

= sup  [(f(2)] — F(A))!

ZEA(A A1)

= swp Q) - f(D)Q™H™

ZzEAN(AN)

= sup  [QUf(:)] — F(D)TIQTHIT

2€A(AN)

Defined = f(z) — f(A\1) which has a small magnitude where A.(A, \;). Note that

0l
FOE=IOI= 10 s sy

whereDjs is diagonal so thaf (i) # f(A1) for every diagonal entry of Ds. Hence,

1QU()I - F(D)'Q | = ﬁuﬁn +0(1).

If f'(\1) # 0, thend = f'(\)(z — M) + O(lz — MI?) = f'(\)e|P|l 4+ O(e?) by
Theorem3.1 Hence,

[ QD)2 2

€)= ———=———c+ O(e”).
S TR
Now assume that’(\;) = 0 andf” (A1) # 0. Thend = (A1) (z—X1)?/2+O(]z — X\ [?).
The expansion foo, (¢) follows easily from Theorer. 1

Next, we find the asymptotic expansion for assuming first thayf’/(\;) # 0. Let
G = f(A) and¢ = f(z) for z € A.(A4, \) for some small- > 0. The inverse function
theorem states that the inversefofs well defined neai;. Even thoughf~—!(¢) in general
is a set containing possibly several elements, we defing¢) as the unique element in



ETNA
Kent State University
http://etna.math.kent.edu

PSEUDOSPECTRAL MAPPING THEOREM I 175
Ar(A N). Lets = f71(¢) — f1(¢). By definition,

Yi(s)= sup  inf{r>0, ¢ € f(A(4 \))}
CeAL(f(A),C1)

= sup  inf{r>0, f71() € A (A N)}
CeAS(f(A),Cr1)

= sup  inf{r >0, |(f 1O - A7 >r"1)
CEAS(f(A)C1)

= sup (PO -4

CeAS(f(A),C)
_ M -
Q(f 1(@1{ ' DzD Q™

Q" gr-py] @

_ m —1
T entitane) d HQ [ S(fHOT - Dz)l] ¢

1)
— s Lo
cen.(f(A)e) 1Pl

¢ — ¢ 2
= s Sl 00— ¢
e TFoone Teleal)
_ slP|
TP

—1

= sup
CeAL(f(A),C1)

-1
= sup
CEAs(f(A),C1)

+0(s?).

(-G
J'(A1)
that /(A1) = 0 andf” (A1) # 0. Note that

S )z = M)?
2

In the above, we used the fatt= + O(|¢ — ¢1/*) and Corollary3.2. Now assume

(=G =[f(z)=f(M) = +0(lz = MP?).

Given(¢ in a small neighbourhood of()\; ), there are two elements. of f~1(¢) in a small
neighbourhood oA;. They satisfy

¢ — G2
4.1 — M| = ————+O(|C — .
( ) |Zi 1‘ |f”(/\1)‘/2 + (|< Cl‘)
Consequently,
P1(s) = sup min{|[(z41 — A)*lel}

CEAL(F(A),¢1)
1)
= sup min{| | + 0O(]6]?), 5zi)\1}
CEAL(f(A),C1) Pl
= Sup ‘C — C1|1/2
cena(f(A)c) VI (A)I/2 |IP)]

1/2 ||P||1/2 O(s)

~ VIO IP

+O(¢ =Gl
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using @.1) and Corollary3.2 a

An immediate corollary of the above theorem is that

(4-2) ¢1(¢1(8))={ Zigg 3;2)’ ?/( ) O f//( )7£()7

and

P1(g1(e)) = € + O(e?)

aslong ag’(A\1) andf” (A1) are not both zero.

THEOREM 4.2. Let \; be an eigenvalue of the matrit of indexm > 2, and let
A = QJQ ! whereJ is a Jordan form of4 of the form(3.4). Let f be a function which is
analytic in some open set containidg A) satisfyingf’(\1) # 0. Supposef (A1) # f();)
for any other eigenvalug; distinct from;. For smalle > 0,

$1(e) = |f (A1)le + O(e+ ).

For smalls > 0,

Proof Letd = f(z) — f(A1) = f/(M)(z — A1) + O(]z — A\1]?) for z € Ac(A, \p). Let
N be as defined in3(5). Then

¢i(e)= sup QU — fF(I)TQ7HIT

zEA(AN1)
(m—1) -1 -1
R O B (i

. ; )
= su
zeAe(E,)\l) @ o *f})‘l) @

[ = f(J2)

_ sup |5| O(‘(5|m+1)

A PO N

Lf (A1) (2 — A0)|™ +1

= sup +O(lz — \M|™)
I AT = I

= |/ (M)l e+ O(e )

by (3.6) and Theoren3.3.

Next, we find an asymptotic expansion fog(s). Letd = f=1(¢) — f~1(¢1) where
¢ € As(f(A),¢) and(y = f(A\1). Again, definef~1(¢) as the unique element in a small
neighbourhood of\;. Now
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dils) = sup QIO =)

CeEAS(f(A)C1)
_ 3 -1
0 —1
= _.sw o @ 5o—1 Q™
CeEAS(f(A),C1) 5
L | O = T,
[ o=t 52 ... §gm -1
= sup Q . 52 Qfl
CeA(f(A),C1) :
571
L (fTHOI—Jo) 7!
o™ +1
= sup o+ O([6]™)
cen.(f(A)c) IN™H|
¢ —Gl™ +1
= sup — +O(]¢ = Gu[™™)
cen.(f(A)) [/ A [N™=1
S 1
= +O(sttm
Fow o

using Corollary3.4. 0
An immediate corollary of the above theorem is that

(4.3) Di(¢1(€)) = e+ O(+7) and ¢ (¥1(s)) = s + O(sF 7).

Again for ease of exposition, we assumed that that therdysooe Jordan block correspond-
ing to \; of sizem. The result also holds in the general casé of 1 such Jordan blocks.
Using the facts discussed immediately following Corollarg; a similar analysis also works
for the other cases wheffg\;) = f()\;) for j # 1 or whenf’(\;) = 0.

5. Eigenvalue perturbation theory for f(A). We give an application of our pseu-
dospectral mapping theorem for the eigenvalue pertunbatioblem off (A). Given a square
matrix A, a non-constant functiofi analytic on an open set containingA) and a positive
¢, we wish to estimate how the eigenvaluesf¢fl) change whe! is perturbed by another
matrix of norm at most. The relevant set is

{Af(A+E), Bl < e} = {f(MA+E)), |Ell < e} = f(Ac(A)).

Note the distinction between the above set apdf(A)) which has already been estimated
in Corollaries3.2and3.4. Using @.1) with j = 1 ands = ;' (¢),

(5.1) As(f(A), f(A1)) C f(Ae(A, M1)) C Ay, (o (F(A), f(A)),

we obtain sharp lower and upper bounds on the size of the coempaontaining a particular
eigenvalue\;. (From the expansion af; in Theorem4.1 or 4.2 and the fact thaf is non-
constantg); (s) is a strictly increasing function for > 0 and small and s@); * is uniquely
defined.) Observe that in the setting of the previous thesrem

s+ O0(s?) ors + O(s%?), in Theorem4.1

(5:2)  dile) = n(¥nls)) = { s+ O(s ), in Theoremd. 2
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by (4.2 and @.3). Hence, the desired s¢fA (A, \;)) is sandwiched between two sets of
the same size to leading ordersn
Assuming the hypotheses of Theorém, we have from Corollar.2and 6.1) that

sup ¢ — f(A)] = ¢ile) | Pl + O(¢3(e)).

Cef(Ae(AA1))

From the expansion af, in Theoren¥.1, we have

/ 1P| , .
s:qpl—l(g): |f' (A1) me—l—O(eQ), F(A\1) # 0;

QAP 2 4 O(e), (M) =0, F/(0) #0.

We combine the above ané.p) to obtain a sharp perturbation result for the eigenvalue

f().
THEOREMb5.1. Assume the hypotheses of Theotein Then

S A)IPlle+0(€),  f'(\) #0;

sup |< - f(/\l)‘ = { \f”(2>\1)| ||P||262 +O(63), f/(/\l) -0, f//()\l) £0.

Cef(Ae(AA)

In the literature, the leading order term of the right-haide ©f the above is called the
condition number of the eigenvalyé)\; ) whenA is subject to a perturbation of size at mast
It is interesting that this condition number is independ&frany information about another
eigenvalue\, in casef(\;) = f(A1). The next term in the expansion can be interpreted as
the departure from non-normality of the eigenvalue.
In the same way, we have
THEOREM5.2. Assume the hypotheses of Theotefh Then

sup (¢ = F)] = [ Q) [N Y™™ 4 O™,
Cef(Ac(AN)

6. Examples and numerical results.In this section, we work out two examples ana-
lytically and supply three numerical experiments to confile theoretical estimates for the
functions¢; ande; as well as two numerical experiments for the eigenvalueupeation
problem.

1 0
0 -1
out analytically. The eigenvalues axg = 1, Ay = —1. Takef(z) = 22 + 2z. First consider
A1 = 1 and observe that'(1) = 4.

¢1(e) = sup [I(f(2)I — f(A) 7

2€A (A1)

EXAMPLE 6.1. LetA = { } . This matrix is normal and everything can be worked

-1

= sup
z€A(A,T)

= sup |22 +2z2—3
2= 1]<e

= sup (% +4¢|
I¢I<e

= de + €.

22422-3 -t
2242241
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Next,

di(s) = sup (ST AT

2€As(f(A),3)
—1)—1
1+2z-2
- .
|z—3|<s “
= sup |[V1+z-—2]
|2—3|<s
= sup |24/1+4 (/4 -2
I¢I<s

2
S S
—o_9o/1_sd="4+5 4.
sMA=7teat

Next, consider the eigenvalug = —1 wheref’(—1) = 0 andf”(—1) = 2. We find

—1

224+922-3 -t
92(e) = zeAi?E—n [ 2 +22+1
= sup |2 4+2z+1]
|z+1|<e
= 62
and
_1y-1
V1i4+z—2
Pa(s) = sup [ i ]
2€AL(F(A),~1) +2z
= sup |1+ 2|12
|z4+1|<s
= s1/2,
These results agree with Theordm.
EXAMPLE 6.2. LetA = 8 (1)} The eigenvalue\; = 0 has indexm = 2. Take

f(z) = 2% + z. Observe thaf’(0) = 1 and f(A) = A. Now

¢1(e) = sup  [[(f()I = f(A)T™

2€A(A,0)
—1 _92 —1
. ’ {f(Z) f(Z)_l}
2€A.(A,0) f(2)
= sup |21+ 4---
|z]<Ve+e2
—e+232 4o

In the calculation of); below, let¢ = f~1(z) = (=1 ++/1+ 42)/2 ~ 2 — 22 for a smallz.
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TABLE 6.1

f1 ‘ #1(€) ¥1(€)
a=1,e=10"3 [ 2.0002 x 1072 (2 x 1073) | 5.0051 x 10~% (5 x 107%)

(

(

a=1e=10"% | 2.0000 x 1074 (2 x 10~%) | 5.0005 x 10~° (5 x 10~5)
a=10,e=10"% | 2.0005 x 10~* (2 x 10=4) | 5.0053 x 10~ (5 x 10~?)

P #1(e) Y1 (e)
a=1,e=10"3 | 1.7321 x 1075 (1.7321 x 1075) | 2.4037 x 1072 (2.4028 x 10~2)
a=1,e=10"% | 1.7321 x 1078 (1.7321 x 1078) | 7.5986 x 1073 (7.5984 x 10~3)
a=10,e =10"% | 1.4177 x 1077 (1.4177 x 10~7) | 2.6576 x 1073 (2.6558 x 10~3)

Then

P1(s) sup —[[(¢T—A)7H ™

2€A:(f(A),0)

o
N
sup 21— 22+

|z|<V/s+s2
=s+25%% 4.,

—1

sup
z€A;(A,0)

This example illustrates the correctness of Theofien
EXAMPLE 6.3. Leta be any real number and

0 0

(6.1) A= 0

= 2

Note thatA is diagonalizable with an eigenvalug = 0 of multiplicity two. A calculation
leads toA = QDQ~! where

Q

I
—
—Q
!
Il
e}

The projection onto the eigenspace corresponding to thenesduel is

1 1 —a
P=Q 1 Q= 1 —a
0 0

We find that|| P|| = v/2a? + 1. Results of numerical computations for the eigenvalaed
f1(z) = 22 + 2z and f2(z) = 2?2 are shown in Tablé.1 Note thatf](0) = 2, f4(0) = 0,
7/(0) = 2andP = P for both functions. In the table, the numbers in parenthdseste the
values predicted by first order expansions in Theofen ¢, (¢) ~ 2¢, 11 (s) ~ s/2 for f,
andei () = ||P|| €, vi(s) = /5/||P|]'/? for fo.
EXAMPLE 6.4. Consider the same matrix as in the above example. fidke = 22 — =
andfy(z) = 2* — 22. Observe thaf3(0) = 0 = f3(1), f4(0) = =1 andf4(0) = 0 = f4(1),
f1(0) =0, f7(0) = —2. For bothf; and f4, we haveP = I. Table6.2 shows the results of
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TABLE 6.2

f3 | b1(€) | P1(e)
a=1,e=10"3 [ 1.7351 x 1073 (1.7321 x 10~3) | 5.7754 x 10~* (5.7735 x 10~%)
a=1,e=10"% | 1.7324 x 107* (1.7321 x 10™%) | 5.7737 x 1072 (5.7735 x 107°)
a=10,e=10"* | 1.4198 x 1073 (1.4177 x 1073) | 7.0535 x 1075 (7.0535 x 107)

Ja $1(€) | Y1(€)
a=1,e=103 3.0000 x 1076 (3 x 107%) | 1.8252 x 10~2 (1.8257 x 107 2)
a=1,e=10"* | 3.0000 x 1078 (3 x 1078) | 5.7733 x 1072 (5.7735 x 10~?)
a=10,e=10"* | 2.0100 x 1076 (2.01 x 107) | 7.0533 x 10~ (7.0535 x 10~%)

TABLE 6.3

I5 ¢1(e) | Y1(e)
a=1,e=10"% [2.0333 x 1073 (2 x 1073) | 5.2025 x 10~* (5 x 10~*
a=1,e=10"* | 2.0115 x 107* (2 x 107%) | 5.0634 x 107° (5 x 10~ )
a=10,e=10"% | 2.0183 x 107* (2 x 107%) | 5.7814 x 107° (5 x 107°)

numerical computations for the eigenvalue= 0. They agree with the first order expansions
of Theoremd.1: 1 (€) ~ [|Plle, t1(s) = s/|[P| for fs andés(e) ~ [[P|? €2, v (s) =~
Vs/||P| for fa.

EXAMPLE 6.5. Leta be any real number and

0 a
(6.2) A= 0 a

1

Note thatA is not diagonalizable with an eigenvalde = 0 of algebraic multiplicity two and
geometric multiplicity one. A calculation leads tb= QJQ ! where

1 0 a 01
Q= /a 11|, J= 0
0 1/a 1

N = 0

We find that|N|| = Va2 + a*. Define f5(z) = 22 + 2z and note thatf;(0) = 2. The
numerical results are shown in Talile3. They agree with the first order expansions predicted
by Theorem4.2 ¢ (€) = 2¢, 11(s) =~ s/2.

EXAMPLE 6.6. Take the matrix in6.1) with « = 10 and f(z) = 2® — 2. Note that
f(0) = f(1) = 0andf’(0) = —1, f/(1) = 2. With e = 1073, the curvef(9A.(4, \;))
and its approximation by a disk of radius given by the firsirt&f the expansion given in
Theorem5.1 are shown in Figuré.1 For f(z) = 2* — 22 where f(0) = 0 = f(1) and
1/(0) =0, f”(0) = —2, see Figurés.2. In both instances, there is excellent agreement with
the theoretical estimate, demonstrating that indeed #wing order behaviour is determined
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T T T T T T T T T T
0.025 4
0.01F 1 0.02 1
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0.005 4 001 4
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oF 4 o 4
-0.005 4
-0.005 4 -oo0if 4
-0.015 4
-0.01F 4 -002f 4
-0.025 4

L L ! . L L L L L L . L L L

-0.015 -0.01 -0.005 0 0.005 0.01 0.015 -0.03 -0.02 -0.01 0 0.01 0.02 0.03

FIG. 6.1. f(2) = 23 — 2z and A given by(6.1). The dotted curve denotes the circle given by the first term of
the expansion in Theorem1 while the solid curve denotgg0Ac (A, A;)).

-0.005

-0.01f

-0.015F

-0.02|

-0.025F

L L L ] L L
x10™ -0.03 -0.02 -0.01 0 0.01 0.02 0.03

FIG. 6.2. f(2) = 2% — 22 and A given by(6.1). The dotted curve denotes the circle given by the first term of
the expansion in Theorem1 while the solid curve denotggoAc (A, A;)).

06

0.4

0.2

FIG. 6.3. f(z) = 22 + 2z and A given by(6.2). The dotted curve denotes the circle given by the first term of
the expansion in Theorem2 while the solid curve denotggdAc (A, X;)).
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by the eigenvalue\; in question and independent of the other eigenvalygdor which
Fw) = f(A)).

EXAMPLE 6.7. Take the matrix ind.2) with a = 10 andf(z) = 22+2z. Withe = 1073,
the curvef (0A((A4, \;)) and its approximation by a disk of radius given by the firstierf
the expansion given in Theorem2 are shown in Figuré.3. The discrepancy between the
actual and predicted curves is more significant ¥oe= 0. This can be attributed to the
large value of|N|| ~ O(a?) and the fact that the error behaves liRée). The discrepancy
decreases as the valuewflecreases or asdecreases.

Acknowledgment. | am grateful to two anonymous referees for their carefutlireg of
the manuscript and suggestions which have improved themieson.
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