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ON AN SVD-BASED ALGORITHM FOR IDENTIFYING
META-STABLE STATES OF MARKOV CHAINS ∗

RYAN M. TIFENBACH†

Abstract. A Markov chain is a sequence of random variablesX = {xt} that take on values in a state spaceS.
A meta-stable state with respect toX is a collection of statesE ⊆ S such that transitions of the formxt ∈ E and
xt+1 /∈ E are exceedingly rare. In Fritzsche et al. [Electron. Trans.Numer. Anal., 29 (2008), pp. 46–69], an
algorithm is presented that attempts to construct the meta-stable states of a given Markov chain. We supplement the
discussion contained therein concerning the two main results.
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1. Preliminaries. There is a great deal of interest in the problem of identifying so-
called meta-stable states of Markov chains. Let{xt} be a discrete time, time-homogeneous
Markov chain with finite state spaceS; a meta-stable stateis a proper subcollection of states
E ⊂ S such that transitions fromE to S \ E are exceedingly rare. Different researchers have
used different measures to define such collections; see, forexample, theuncoupling measure
defined in [7] or the coupling matrixdefined in [3]. For the purposes of this note, we will
define meta-stable states in the same way as in [6]. For any statesi, j ∈ S, let

pij = P [xt+1 = j : xt = i]

be the probability of transitioning from statei to statej. We say that the collectionE ( S is
a meta-stable state if there is some “small” numberǫ > 0 such that

1

|E|
∑

i∈E

∑

j /∈E

pij < ǫ.

That is,E is a meta-stable state if the mean probability of transitioning from a statei ∈ E to
a statej /∈ E is small.

When the Markov chain is modelled via a stochastic matrix, wecan redefine this in terms
of row sums of principal submatrices. Let the Markov chain{xt} have associated stochastic
matrix M . Let E be a proper subset of the state space and letM(E) be the corresponding
principal submatrix ofM . Then,E is a meta-stable state if for some smallǫ > 0, the average
of the row sums ofM(E) is greater than or equal to1 − ǫ.

When a Markov chain has two or more disjoint meta-stable states we refer to it and its
associated stochastic matrix asnearly uncoupled. Meta-stable states are sometimes referred
to asalmost invariant aggregates.

The identification of the meta-stable states of a nearly uncoupled Markov chain is of
great importance in biomolecular research and pharmaceutical drug design [2, 4, 9]. In [3, 5],
an approach to this problem using the Perron-Frobenius Theorem [1, 8], known asPerron
cluster analysis, is detailed.

In [6], the authors present an algorithm for uncoupling a stochastic matrix that relies
on the singular value decomposition of that matrix, rather than the spectral decomposition.
However, we have found a pair of counterexamples which illuminate the fact that additional
hypotheses concerning the matrices involved are required.
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2. The singular value decomposition approach.

2.1. Summary. Let M be a square matrix. A singular value decomposition ofM is an
expression

M = UΣV ∗,

whereU andV are unitary matrices, andΣ is a diagonal matrix where the diagonal entries
are real and nonnegative and satisfyσii ≥ σjj for all i < j. WhenM is real thenU andV
can be taken to be real matrices as well, in which case we have

M = UΣV T .

Theith columns ofU andV are referred to as left and right singular vectors, respectively, of
M associated with the singular valueσii. If M is real and we let theith columns ofU andV
beui andvi, respectively, we then have

Mvi = σiiui andMT ui = σiivi.

We label the singular values ofM asσi(M) = σii. The numberσ1(M) is, in fact, equal to
the2-norm ofM ; that is,σ1(M) = ‖M‖. See [8] for a thorough exposition of the singular
value decomposition.

Below is a brief summary of the algorithm described in [6]. It receives as inputs a matrix
M and a threshold valueδ.

ALGORITHM 2.1.
1. We identify the left singular vectoru2 of M associated with the second largest sin-

gular value ofM . We let

E− = {i ∈ S |u2(i) < 0} andE+ = {i ∈ S |u2(i) > 0} .

2. If the average row sum of either of the principal submatrices matricesM(E−) and
M(E+) is less than or equal to1 − δ, then we cannot partition the state space any
further and we terminate the algorithm.

3. Otherwise, if the average row sum of each of the principal submatrices matrices
M(E−) and M(E+) is greater than1 − δ, thenE− andE+ are each meta-stable
states. We then attempt to further partitionE− andE+ into even smaller meta-stable
states by applying the algorithm to each ofM(E−) andM(E+).

In the worked examples in [6], the threshold valueδ = 1/2 is used.

2.2. Counterexamples.In [6], Theorems2.2and2.3, given below, are used to support
Algorithm 2.1. We show that these theorems require further assumptions, as counterexamples
that meet their respective conditions are constructible.

A digraph issimply connectedif for all distinct verticesi andj, there is either a directed
path fromi to j or a directed path fromj to i.

THEOREM 2.2. [6, Theorem3.2] LetA be a block-stochastic matrix of the form

A = diag(A1, . . . , Am)

with m simply connected diagonal blocks of ordern1, . . . , nm, denoted by

A1, . . . , Am.

LetSi be the set ofni indices corresponding to the blockAi, i = 1, . . . , m. Let
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A = ŨΣṼ T

be a singular value decomposition ofA and letũ1, . . . , ũm be the left singular vectors corre-
sponding to the largest singular value of each of the blocksA1, . . . , Am, respectively. Asso-
ciate with every statesi its sign structure

sign(si) = [sgn (ũ1)i , . . . , sgn (ũm)i] .

Then,
1. states that belong to the same block ofA exhibit the same sign structure, i.e., for any

Aj and allk, l ∈ Sj , we have

sign(sk) = sign(sl) ;

2. states that belong to different blocks ofA exhibit different sign structures, i.e., for
anyAi, Aj with i 6= j and allk ∈ Si, l ∈ Sj we have

sign(sk) 6= sign(sl) .

We provide the following counterexample to Theorem2.2. LetA = diag(A1, A2), where

A1 =













0 0 1/3 1/3 1/3
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0













andA2 =





0 1/2 1/2
1 0 0
1 0 0



 .

The diagonal blocks ofA are simply connected; the associated digraph is:
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A singular value decomposition ofA is A = ŨΣṼ T , where

Ũ =

























0 0 0 0 1 0 0 0

1/
√

6 1/
√

12 1/2 0 0 1/
√

2 0 0

1/
√

6 1/
√

12 1/2 0 0 −1/
√

2 0 0

1/
√

6 −1/
√

3 0 0 0 0 1/
√

2 0

1/
√

6 −1/
√

3 0 0 0 0 −1/
√

2 0
0 0 0 1 0 0 0 0

1/
√

6 1/
√

12 −1/2 0 0 0 0 1/
√

2

1/
√

6 1/
√

12 −1/2 0 0 0 0 −1/
√

2

























,
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Σ =

























√
2 0 0 0 0 0 0 0

0
√

2 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0

0 0 0 1/
√

2 0 0 0 0

0 0 0 0 1/
√

3 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























,

and

Ṽ =



























1/
√

3 1/
√

6 1/
√

2 0 0 0 0 0

1/
√

3 −2/
√

6 0 0 0 0 0 0

0 0 0 0 1/
√

3 2/
√

6 0 0

0 0 0 0 1/
√

3 −1/
√

6 1/
√

2 0

0 0 0 0 1/
√

3 −1/
√

6 −1/
√

2 0

1/
√

3 1/
√

6 −1/
√

2 0 0 0 0 0

0 0 0 1/
√

2 0 0 0 1/
√

2

0 0 0 1/
√

2 0 0 0 −1/
√

2



























.

The largest singular values of the two blocks are both equal to
√

2. Therefore, the sign
structure ofsi can be defined, as in Theorem2.2, to be theith row of

























0 0
1 1
1 1
1 −1
1 −1
0 0
1 1
1 1

























,

since the first two columns of̃U ,
























0 0

1/
√

6 1/
√

12

1/
√

6 1/
√

12

1/
√

6 −1/
√

3

1/
√

6 −1/
√

3
0 0

1/
√

6 1/
√

12

1/
√

6 1/
√

12

























,

are both left singular vectors corresponding to
√

2. Note that the statess2 ands4 are in the
same block but have different sign structures,

sign(s2) =
[

1 1
]

and sign(s4) =
[

1 −1
]

.

Further, the statess2 ands7 are in different blocks but have the same sign structure,

sign(s2) = sign(s7) =
[

1 1
]

.
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If we apply the algorithm to a small perturbation ofA, the vectoru2 obtained could be a
small perturbation of a linear combination of the first two columns ofV . This could lead the
algorithm to make two different types of error: it might failto associates2 ands4 with each
other or it might mistakenly associates2 ands7.

Theorem2.3(in a very similar way to2.2) requires further assumptions onA (or possibly
T (ǫ)).

THEOREM 2.3. [6, Theorem4.7] Let B = Â + ǫR for ǫ > 0 whereÂ and B are
stochastic. LetT (ǫ) = BBT have two largest eigenvaluesλ1(ǫ) ≥ λ2(ǫ). Suppose that the
unperturbed matrixT = T (0) can be permuted tõT = PTPT such thatT̃ hasm uncoupled
irreducible blocks. Letλ1 > λ2 > . . . > λm be the largest eigenvalues corresponding to
each of the blocks. Then, the perturbed orthonormal eigenvector ϕ2 corresponding to the
perturbed singular valueλ2(ǫ) is of the form

ϕ2(ǫ) =

m
∑

j=1

(αj + ǫβj) ũj + ǫ

n
∑

j=m+1

〈

ϕj , ϕ
(1)
2

〉

ϕj + O(ǫ2),

whereũj are the eigenvectors in Theorem2.2andαj , βj are suitable coefficients.
We now produce a matrix that contradicts Theorem2.3. Let

Â =

























0 0 1/5 1/5 1/5 1/5 1/5 0
0 0 1/5 1/5 1/5 1/5 1/5 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1

























and

R =

























0 0 1 −1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























.

Then,

T (ǫ) =
(

Â + ǫR
)(

Â + ǫR
)T

= ÂÂT + ǫ2RRT

=

























1/5 + 2ǫ2 1/5 + 2ǫ2 0 0 0 0 0 0
1/5 + 2ǫ2 1/5 + 2ǫ2 0 0 0 0 0 0

0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1

























.
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(We have chosenR so thatART = RAT = 0.)
The matrixB = Â + ǫR is stochastic as long asǫ ≤ 1/5. The nonzero eigenvalue of the

first block isλ = 2/5 + 4ǫ2 ≤ 14/25. So, the two largest eigenvalues ofT (ǫ) are3 and2,
with the eigenvector

ϕ2 =

























0
0
0
0
0

1/
√

2

1/
√

2
0

























corresponding to the eigenvalue2. The stochastic matrixA has two irreducible blocks whose
largest singular values are

√
3 and1, respectively. The left singular vectors ofA correspond-

ing to these values (described in Theorem2.2) are

u1 =

























0
0

1/
√

3

1/
√

3

1/
√

3
0
0
0

























andu2 =

























0
0
0
0
0
0
0
1

























.

Clearly,ϕ2 is not a perturbation of a linear combination ofu1 andu2.

3. Discussion.The counterexamples were constructed by noting that the algorithm re-
lies on two assumptions that do not necessarily hold true, given the assumptions concerning
the unperturbed stochastic blocksAi.

Let

A = diag(A1, . . . , Am),

where eachAi is a stochastic matrix and letB = A + ǫR. In order for Algorithm2.1 to
correctly recover the blocksAi from B, we need each of the following4 assumptions to be
satisfied:

1. them largest singular values ofA must beσ1(A1), . . . , σ1(Am);
2. any left singular vector ofA associated with one of them largest singular values

must have the form

ϕ =







α1u1(A1)
...

αmu1(Am)






,

whereu1(Ai) is a left singular vector ofAi associated withσ1(Ai);
3. every left singular vectorui(Ai), above, associated withσ1(Ai) must have every

entry positive, or every entry negative; and
4. the valueǫ must be small enough that the perturbation byǫR does not alter the sign

structure of the singular vectors.
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Using real analysis, it is somewhat straightforward to showthat if the first three condi-
tions hold, there isδ > 0 such that if0 < ǫ < δ, the fourth condition holds (as in [6]).

We explore assumptions concerning the unperturbed stochastic blocksAi that will guar-
antee the truth of conditions1, 2 and3, above.

3.1. Graph theory definitions. We introduce some graph theoretic constructions to aid
in our discussion.

Let G be an undirected graph with vertex setW and letx, y ∈ W . We use the notation
x ∼ y to represent the presence inG of the undirected edge with endpointsx andy. A walk
in G of lengthl is a sequence ofl + 1 vertices (not necessarily distinct)x0, . . . , xl such that
xi ∼ xi+1 for 0 ≤ i ≤ l − 1. If there is a walk inG of length greater than or equal to1 with
endpointsx andy we use the notationx ; y; we label such a walk asω : x ; y.

A connected componentof G is a collection of verticesC ⊆ W such that
1. for all x, y ∈ C, we havex ; y; and
2. if x ∈ C andy ∈ W satisfyx ; y, we then havey ∈ C.

An undirected graph isconnectedif its entire vertex set forms a single connected component.
An isolated vertexx ∈ W is a vertex that is not incident to any edge (i.e. for ally ∈

W , x ≁ y). Some authors consider a single isolated vertex to be a connected component;
however, we will not follow this convention. If the vertexx is isolated, we do not havex ; x
and sox cannot be a member of a connected component (under the definition we use here).

The graphG is bipartite if its vertex set can be partitioned into disjoint setsX andY
such that ifx ∼ y thenx andy are not contained in the same setX or Y .

Let M be a symmetric matrix of ordern. Theundirected graphassociated withM is the
graphG(M) that has vertex set

W = {w1, . . . , wn} ,

and haswi ∼ wj if and only if mij 6= 0. A symmetric matrixM is irreducible if G(M) is
connected.

We define another graph associated with a matrixM . LetM be anm×n matrix (m and
n are possibly distinct). Let

X = {x1, . . . , xm} andY = {y1, . . . , yn} .

Thebigraphassociated withM is the undirected bipartite graph on verticesV = X ∪ Y that
hasxi ∼ yj if and only if mij 6= 0.

We refer to the labellings of the vertex sets ofG(M) andB(M) given above as the
canonicalvertex sets of these graphs.

3.2. Irreducibility of symmetric products. We first consider condition3. Let A be
a stochastic matrix. It is a straightforward application ofthe well-known Perron-Frobenius
theorem to show that every left singular vector associated with σ1(A) has constant sign if and
only if AAT is irreducible; moreover, when this holds the multiplicityof σ1(A) as a singular
value ofA is 1. The matrixAAT is irreducible exactly when its associated graphG(AAT ) is
connected. We produce necessary and sufficient conditions for a stochastic matrixA to have
G(AAT ) connected.

PROPOSITION3.1. LetA be a stochastic matrix. Then,AAT is irreducible if and only if
B(A) contains exactly one connected component. Moreover,AT A is irreducible if and only
if B(A) is connected.

Proof. Let n be the order ofA. We first consider the reducibility of the matrixAAT . Let
G = G(AAT ), B = B(A) and letW andX ∪ Y be the canonical vertex labellings ofG and
B, respectively. Theijth entry ofAAT is



ETNA
Kent State University 

http://etna.math.kent.edu

24 R. M. TIFENBACH

(AAT )ij =
n

∑

k=1

(A)ik(AT )kj =
n

∑

k=1

aikajk.

It is clear that(AAT )ij 6= 0 if and only if there is some indexk such thataik 6= 0 and
ajk 6= 0. Thus,wi ∼ wj if and only if, for somek, we havexi ∼ yk andxj ∼ yk. Any walk
in B of length2 will have one of two forms:

xi ∼ yk ∼ xj or yi ∼ xk ∼ yj.

Therefore, the edgewi ∼ wj is present inG if and only if there is a walk of length2 from xi

to xj in B. Clearly, this implies that there is a walkωG : wi ; wj in G if and only if there
is a walkωB : xi ; xj in B. Thus,AAT is irreducible if and only if every member ofX is
contained in the same connected component ofB.

Note that sinceA is stochastic, for every indexi, there is some indexk such thataik 6= 0.
Thus, for everyx ∈ X there is at least oney ∈ Y such thatx ∼ y (in B); so,X contains
no isolated vertices. As well, every edge inB has the formx ∼ y for somex ∈ X and
somey ∈ Y . Thus, every connected component ofB contains at least one member ofX
and every member ofX is contained in a connected component ofB. This implies that every
member ofX is contained in the same connected component if and only ifB has only one
connected component. Therefore,AAT is irreducible if and only ifB(A) contains exactly
one connected component, possibly together with some amount of isolated vertices.

In the exact same manner,AT A is irreducible if and only if every member ofY is con-
tained in a single connected component ofB = B(A). As before, every connected com-
ponent ofB contains at least one member ofY . However, unlike the members ofX , some
members ofY may be isolated vertices. (It is entirely possible that there is an indexj such
that for all k, akj = 0.) So,AT A is irreducible if and only ifB(A) contains exactly one
connected component and no isolated vertices.

REMARK 3.2. Recall that isolated vertices are not considered to be part of a connected
component. Thus, Proposition3.1informs us thatG(AAT ) is connected exactly whenB(A)
consists of one connected component together with any amount (0 or more) of isolated ver-
tices and, further, thatG(AT A) is connected whenB(A) contains one connected component
and no isolated vertices.

We included the discussion of the reducibility ofAT A in Proposition3.1 to address the
issue of using right singular vectors in Algorithm2.1, rather than left singular vectors.

We note that a stochastic matrixA may be reducible even thoughAAT is irreducible –
for example, consider the matrices

A1 =

[

1 0
1/2 1/2

]

andA2 =

[

1 0
1 0

]

.

Both are clearly reducible; but, examination of their bigraphs shows thatA1A
T
1 andA2A

T
2

are both irreducible.

B(A1) =

x1 y1

x2

||||||||
y2

andB(A2) =

x1 y1

x2

||||||||
y2

.

The bigraphB(A1) contains one connected component (and no isolated vertices); the ma-
tricesA1A

T
1 andAT

1 A1 are both irreducible. The bigraphB(A2) contains one connected
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component and one isolated vertex; the matrixA2A
T
2 is irreducible, but the matrixAT

2 A2 is
reducible.

Although the construction of the bigraphB(M) associated withM is somewhat coun-
terintuitive, the graphB(M) is the most straightforward way of clearly visualising the com-
binatorial properties ofMMT . Consider, for example, the stochastic matrices

M1 =









0 0 1/2 1/2
0 0 1/2 1/2
1 0 0 0
0 1 0 0









andM2 =









0 1/2 0 1/2
0 1/2 0 1/2
1 0 0 0
0 0 1 0









.

These matrices are both irreducible. Using the ideas found in [1], one can show that each of
these matrices has1 as a simple eigenvalue,M1 has−1 as a simple eigenvalue (M2 does not)
and that the remaining eigenvalues of both matrices satisfy|λ| < 1. However, the matrices
M1M

T
1 andM2M

T
2 are, in fact, identical, are reducible and have1 as a singular value with

multiplicity three.

M1M
T
1 = M2M

T
2 =









1/2 1/2 0 0
1/2 1/2 0 0
0 0 1 0
0 0 0 1









.

These facts become apparent when examiningB(M1) andB(M2), but are somewhat
obfuscated by more traditional graph representations ofM1 andM2:

B(M1) =

x1

BB
BB

BB
BB

y2

x2

||||||||
y4

x3 y1

x4 y3

andB(M2) =

x1

BB
BB

BB
BB

y3

x2

||||||||
y4

x3 y1

x4 y2

.

In [6], the authors propose a preprocessing step that first aggregates members of large
cycles, or clusters, withinG(M) by considering only the edgeswi ∼ wj such thatmij ≥ χ,
whereχ is some chosen tolerance value. It seems likely that, ifχ is well-chosen, this will
address most counterexamples involving irreducible blocks A whereAAT is reducible or
“nearly” reducible. However, it is unclear whether this preprocessing step will address the
second issue, which we discuss in the next section.

3.3. Interlacing of singular values. We now consider assumptions1 and 2: Let
A1, . . . , Am be stochastic matrices with largest singular valuesσ1(Ai) and corresponding
left singular vectorsu1(Ai). Let

A = diag(A1, . . . , Am)

and letB = A + ǫR be stochastic. Letϕi(ǫ) be a left singular vector associated with one of
them largest singular values ofB. Under what conditions mustϕi(ǫ) necessarily be a small
perturbation of a vector of the form
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ϕ =







α1u1(A1)
...

αmu1(Am)






?

We show that if the singular values of the matricesAi interlace in undesirable ways, this
condition is not satisfied.

LEMMA 3.3. LetM 6= 0 be a square, real matrix and lety be a real vector of the same
order asM . Then, there isδ > 0 such that if0 < ǫ < δ, then

∥

∥(1 − ǫ)2MMT + ǫ2yyT
∥

∥ < ‖M‖2
.

Proof. Let

f(t) = (1 − t)2 ‖M‖2
+ t2 ‖y‖2

.

Note that

df

dt

∣

∣

∣

∣

t=0

= −2 ‖M‖2
< 0.

Thus, there isδ > 0 such that if0 < t < δ, then

f(t) < f(0) = ‖M‖2
.

Via the triangle inequality concerning the norm of an operator, if ǫ is real, we have
∥

∥(1 − ǫ)2MMT + ǫ2yyT
∥

∥ ≤ (1 − ǫ)2
∥

∥MMT
∥

∥ + ǫ2
∥

∥yyT
∥

∥

= (1 − ǫ)2 ‖M‖2 + ǫ2 ‖y‖2

= f(ǫ).

So, if 0 < ǫ < δ, we have‖(1 − ǫ)2MMT + ǫ2yyT ‖ ≤ f(ǫ) < f(0) = ‖M‖2.
We will make use of the following theorem and lemma, taken from [8]. Lemma3.4

is a straightforward corollary of the Rayleigh-Ritz Theorem ([8, Theorem4.2.2]). In our
following discussion, we will often make reference to the largest eigenvalue,λ1, of a matrix;
we emphasise that this is in the sense thatλ1 ≥ λ2 for any other eigenvalueλ2, and not
necessarily|λ1| ≥ |λ2|.

LEMMA 3.4. Let M be a Hermitian matrix and letλ1 be the largest eigenvalue ofM .
Then, for any vectory with ‖y‖ = 1,

y∗My ≤ λ1,

with equality if and only ify is an eigenvector associated withλ1.
THEOREM 3.5. [8, Theorem 4.3.8]Let M be a symmetric matrix of ordern, y be a

vector of ordern anda be a real number. Let

M̂ =

[

a y∗

y M

]

.
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Let the eigenvalues ofM andM̂ be{λi} and{λ̂i}, respectively, and arrange them in
decreasing order:

λ1 ≥ λ2 ≥ . . . ≥ λn andλ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n+1.

Then, the eigenvalues ofM andM̂ interlace: for all1 ≤ i ≤ n, λ̂i ≥ λi ≥ λ̂i+1.
PROPOSITION3.6. Let X andY be stochastic matrices. Let the two largest singular

values ofX beσ1(X) ≥ σ2(X) and let the largest singular value ofY beσ1(Y ). Suppose
thatσ2(X) ≥ σ1(Y ). Then, there is a matrixR and a valueδ > 0 such that if0 < ǫ < δ, the
matrix

B =

[

X 0
0 Y

]

+ ǫR

satisfies the properties:
1. B is stochastic;
2. the second singular value (in magnitude) ofB is σ2(B) = σ2(X); and
3. any left singular vector ofB associated withσ2(B) is of the form

ϕ2 =

[

u2(X)
0

]

,

whereu2(X) is a left singular vector associated withσ2(X).
Proof. Let the orders ofX andY bem andn, respectively.
It is well-known that

M =
∑

σiuiv
∗
i

is an orthonormal singular value decomposition ofM if and only if

MMT =
∑

σ2
i uiu

∗
i

is an orthonormal eigenvalue decomposition ofMMT and for alli,

vi =
1

‖MT ui‖
MT ui.

Thus, we will recast this as an eigenvalue problem. We will produce a matrixR and a
valueδ > 0 such that if0 < ǫ < δ, the matrix

B =

[

X 0
0 Y

]

+ ǫR

satisfies the properties:
1. B is stochastic;
2. the second eigenvalue value ofBBT is λ2(BBT ) = σ2(X)2; and
3. any eigenvector ofBBT associated withλ2(BBT ) is of the form

ϕ2 =

[

u2(X)
0

]

,

whereu2(X) is an eigenvector ofXXT associated withσ2(X)2.
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Let α1 = σ1(X), α2 = σ2(X) andβ = σ1(Y ).
The matrixXXT is symmetric and nonnegative and its two largest eigenvalues are

α2
1 ≥ α2

2. By an application of the well-known Perron-Frobenius Theorem (see [1], for
example), there is an eigenvectoru1 of XXT associated withα2

1 such that the entries ofu1

are nonnegative and‖u1‖ = 1. Let

v1 =
1

α1
XT u1 andv =

1

vT
1 1

v1,

where1 is the column vector with every entry equal to1. Sinceu1 is entrywise nonnegative,
v1 is entrywise nonnegative. Thus,v is a nonnegative vector and the sum of the entries inv
is 1. Note that

Xv1 = α1u1, XT u1 = α1v1, Xv =
α1

vT
1 1

u1 andvT
1 v =

1

vT
1 1

.

Let

R =

[

0 0
1vT −Y

]

.

We have

B =

[

X 0
0 Y

]

+ ǫ

[

0 0
1vT −Y

]

=

[

X 0
ǫ1vT (1 − ǫ)Y

]

.

The matrixB is clearly stochastic as long as0 ≤ ǫ ≤ 1: it is nonnegative, the sum of
the entries in any row of the(2, 1)th block isǫ and the sum of the entries in any row of the
(2, 2)th block is1 − ǫ. We expressB as a sum of two matrices,B = B1 + B2, where

B1 =

[

α1u1v
T
1 0

ǫ1vT (1 − ǫ)Y

]

andB2 =

[

X − α1u1v
T
1 0

0 0

]

.

We note that

B1B
T
2 =

[

α1u1v
T
1 XT − α2

1u1u
T
1 0

ǫ1vT XT − ǫα11vT v1u
T
1 0

]

=

[

α2
1u1u

T
1 − α2

1u1u
T
1 0

ǫα1

vT

1
1
1uT

1 − ǫα1

vT

1
1
1uT

1 0

]

= 0.

Thus,B2B
T
1 = (B1B

T
2 )T = 0 and so

BBT = (B1 + B2)
T

(B1 + B2) = B1B
T
1 + B2B

T
2 ,

whereB1B
T
1 andB2B

T
2 are orthogonal:

(

B1B
T
1

) (

B2B
T
2

)

=
(

B2B
T
2

) (

B1B
T
1

)

= 0.

Thus, the nonzero eigenvalues ofBBT are the nonzero eigenvalues ofB1B
T
1 together

with the nonzero eigenvalues ofB2B
T
2 .

We calculate
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B2B
T
2 =

[

XXT − α1Xv1u
T
1 − α1u1v

T
1 XT + α2

1u1u
T
1 0

0 0

]

=

[

XXT − α2
1u1u

T
1 − α2

1u1u
T
1 + α2

1u1u
T
1 0

0 0

]

=

[

XXT − α2
1u1u

T
1 0

0 0

]

.

The largest eigenvalue ofB2B
T
2 is α2

2 and we haveB2B
T
2 y = α2

2y if and only if

y =

[

u2

0

]

,

whereXXT u2 = α2
2u2.

Next, we calculateB1B
T
1 :

B1B
T
1 =

[

α2
1u1u

T
1 ǫα1u1v

T
1 v1T

ǫα11vT v1u
T
1 ǫ21vT v1T + (1 − ǫ)2Y Y T

]

=

[

α2
1u1u

T
1

ǫα1

vT

1
1
u11

T

ǫα1

vT

1
1
1uT

1 ǫ2‖v‖2
11

T + (1 − ǫ)2Y Y T

]

.

Let U be a unitary matrix such thatUu1 = em, whereem is the column vector, of order
m, with its mth entry equal to1 and every other entry equal to0; since‖u1‖ = ‖em‖ = 1,
such a matrix exists. Then, we have

[

U 0
0 I

]

B1B
T
1

[

U 0
0 I

]T

=

[

α2
1emeT

m
ǫα1

vT

1
1
em1

T

ǫα1

vT

1
1
1eT

m ǫ2‖v‖2
11

T + (1 − ǫ)2Y Y T

]

=







0 0 0
0 α2

1
ǫα1

vT

1
1
1

T

0 ǫα1

vT

1
1
1 ǫ2‖v‖2

11
T + (1 − ǫ)2Y Y T






.

So, the nonzero eigenvalues ofB1B
T
1 are the nonzero eigenvalues of

M =

[

α2
1

ǫα1

vT

1
1
1

T

ǫα1

vT

1
1
1 ǫ2‖v‖2

11
T + (1 − ǫ)2Y Y T

]

.

We will show that if ǫ > 0 is sufficiently small, then the largest eigenvalue ofM is
λ̂1 > α2

1 and that the second largest isλ̂2 < β2. Recall that the largest eigenvalue ofB2B
T
2

is α2
2 and that

β2 ≤ α2
2 ≤ α2

1.

Thus, we will have shown that the second largest eigenvalue of

BBT = B1B
T
1 + B2B

T
2
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is α2
2, whereα2

2 is an eigenvalue of

B2B
T
2 =

[

XXT − α2
1u1u

T
1 0

0 0

]

and is not an eigenvalue ofB1B
T
1 . This will imply that any eigenvector associated with this

eigenvalue has the desired form.
Let

λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n+1

be the eigenvalues ofM and let

λ1 ≥ λ2 ≥ . . . ≥ λn

be the eigenvalues of

ǫ2‖v‖2
11

T + (1 − ǫ)2Y Y T .

We note that Lemma3.3implies that ifǫ > 0 is sufficiently small,

λ1 =
∥

∥ǫ2‖v‖2
11

T + (1 − ǫ)2Y Y T
∥

∥ <
∥

∥Y Y T
∥

∥ = β2.

Now, if ǫ 6= 0, theneT
1 Me1 = α2

2 butMe1 6= α2
2e1. Thus, by Lemma3.4, λ̂1 > α2

1.
Finally, Theorem3.5 implies that λ̂1 ≥ λ1 ≥ λ̂2. Therefore, λ̂1 > α2

1 and
λ̂2 ≤ λ1 < β2.

3.4. Subdominant singular values of nearly uncoupled stochastic matrices. We can
now see the conditions under which Algorithm2.1can reliably be applied. LetA1, . . . , Am

be stochastic matrices, let

A = diag(A1, . . . , Am)

and letB = A + ǫR be stochastic. In addition to assuming thatǫ is small enough that it does
not significantly alter the singular vector sign structure among them largest singular values,
we must have

1. the bigraphB(Ai) associated with eachAi contains exactly one connected compo-
nent; and

2. for all i 6= j, σ2(Aj) < σ1(Ai).
If we are using right singular vectors, we must replace condition 1 with the (slightly)

stronger condition that eachB(Ai) is connected. We will examine, briefly, the problem of
satisfying the second condition above. First, we produce a theorem concerning the largest
singular value of a stochastic matrix.

A doubly stochastic matrixis a nonnegative square matrix that has the sum of the entries
in any row or column equal to1. That is,A is doubly stochastic if bothA and AT are
stochastic.

THEOREM 3.7. LetA be a stochastic matrix and letσ1(A) be the largest singular value
of A. Then,σ1(A) ≥ 1. Further,σ1(A) = 1 if and only ifA is doubly stochastic.

Proof. A simple fact concerning the eigenvalues and singular values of a matrixM is
that for any eigenvalueλ of M , we have|λ| ≤ σ1(M). Thus, for a stochastic matrixA,
1 ≤ σ1(A).
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Suppose thatA is doubly stochastic. Then, the matrixAAT is a product of stochastic
matrices and so is, itself, stochastic. So, the largest eigenvalue ofAAT is 1 and so we have
σ1(A) =

√
1 = 1.

Suppose thatA is stochastic and thatσ1(A) = 1. Then, for any vectory,

‖Ay‖ ≤ σ1(A)‖y‖ = ‖y‖.

Let vT = 1
T A, where1 is the column vector with every entry equal to1. Therefore,

vT
1 = 1

T A1 = n,

wheren is the order ofA. Further,

‖v‖ = ‖1T A‖ ≤ ‖1‖ =
√

n.

We apply the Cauchy-Schwarz inequality: for real vectorsx andy,

|xT y| ≤ ‖x‖‖y‖,

with equality if and only ify = ax for some real numbera. We have

n = vT
1 ≤ ‖v‖‖1‖ =

√
n‖v‖ ≤ n.

We have equality in the Cauchy-Schwarz inequality and so thevectorv is a scalar multiple
of 1. However,vT

1 = n implies that, in fact, we havev = 1. Thus, the sum of the entries in
each column ofA is 1.

This theorem provides a rough estimate as to the number of meta-stable states the state
space of a Markov chain may contain. IfA is stochastic and hasm singular values greater
than1, then we expect to findm or fewer meta-stable states.

Now, the condition thatσ2(Aj) < σ1(Ai) is somewhat difficult to work with – it con-
cerns collections of stochastic matrices, rather than individual matrices. We propose the
following conditions on the unperturbed blocks of a block diagonal stochastic matrix.

PROPOSITION3.8. LetA1, . . . , Am be stochastic matrices and let

A = diag(A1, . . . , Am).

Under the extra assumptions that for alli, B(Ai) contains only one connected component
andσ2(Ai) < 1, the conclusions of Theorems2.2and2.3hold true.

Proof. The extra assumption guarantees that we haveσ2(Aj) < 1 ≤ σ1(Ai) whenever
i 6= j.

Let A be a stochastic matrix; we refer toσ2(A) as thesubdominant singular valueof A.
We present a result concerning the case that the subdominantsingular value is strictly less
than1.

THEOREM 3.9. Let A be a stochastic matrix. Then,σ1(A) = 1 andσ2(A) < 1 if and
only if A is doubly stochastic andB(A) is connected.

Proof. First, suppose thatA is doubly stochastic and thatB(A) is connected. Then, by
Theorem3.7and Proposition3.1, we haveAAT irreducible and stochastic, andσ1(A) = 1.
By the Perron-Frobenius Theorem, the multiplicity of1 as an eigenvalue ofAAT is 1. So,
the multiplicity of1 as an singular value ofA is 1 and we haveσ2(A) < 1.

So, suppose thatA is stochastic and thatσ2(A) < σ1(A) = 1. By Theorem3.7, the
matrix A is doubly stochastic. Thus,AAT andAT A are both symmetric stochastic matrices
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that have their second eigenvalues strictly less than1. This implies thatAAT andAT A are
both irreducible and so we haveB(A) connected (again, by Proposition3.1).

Identifying exactly when a stochastic matrix has subdominant singular value strictly less
than1 is an interesting and possibly important open problem. Further, identifying exactly
what probabilistic qualities the subdominant singular value of a stochastic matrix measures
could lead to new insights in Markov chain analysis.

3.5. n-Pentane analysis.In [6], Algorithm 2.1is applied, successfully, to experimental
data concerning the state space of then-Pentane molecular structure. We examine the singular
values of one of the matrices involved, with our previous observations in mind.

One of the data sets analysed,Ph300, is a stochastic matrix of order255. The algorithm
successfully constructed seven meta-stable states, of orders20, 42, 47, 46, 24, 36 and40.
We calculate the seven principal submatrices ofPh300 on these meta-stable states and label
themM1, . . . , M7. We then calculate, using MATLAB , the two largest singular values of each
of these principal submatrices,

σ1(M1) = 1.5322, σ2(M1) = 0.6845, σ1(M2) = 1.5915, σ2(M2) = 0.9578,

σ1(M3) = 1.6322, σ2(M3) = 0.9756, σ1(M4) = 1.3912, σ2(M4) = 0.7853,

σ1(M5) = 1.2959, σ2(M5) = 0.4724, σ1(M6) = 1.5370, σ2(M6) = 0.9025,

σ1(M7) = 1.7787 andσ2(M7) = 1.1035.

These calculated singular values satisfyσ2(Mj) < σ1(Mi) for all i 6= j; moreover, in all
cases excepti = 7, they satisfy the stronger condition thatσ2(Mi) < 1. These results seem
to support our proposed extra assumptions on the unperturbed blocksAi. An examination of
the data setPh500 used in [6] yields similar results.

The SVD algorithm is a useful and robust algorithm. It performs well, for example on the
data presented in [6], precisely because, in practical problems, the additional assumptions we
present here are usually satisfied. However, we present thissupplemental discussion to show
that applications of this algorithm require care, as these extra assumptions are not necessarily
true of the general stochastic matrix.
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