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ON AN SVD-BASED ALGORITHM FOR IDENTIFYING
META-STABLE STATES OF MARKQOV CHAINS *

RYAN M. TIFENBACH!

Abstract. A Markov chain is a sequence of random variables= {xz;} that take on values in a state spate
A meta-stable state with respectXdis a collection of state§ C S such that transitions of the forny € £ and
xi+1 ¢ E are exceedingly rare. In Fritzsche et al. [Electron. TraNsimer. Anal., 29 (2008), pp. 46—69], an
algorithm is presented that attempts to construct the stefale states of a given Markov chain. We supplement the
discussion contained therein concerning the two main tesul
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1. Preliminaries. There is a great deal of interest in the problem of identifyso-
called meta-stable states of Markov chains. {t} be a discrete time, time-homogeneous
Markov chain with finite state space a meta-stable statis a proper subcollection of states
& C S such that transitions frorfi to S \ £ are exceedingly rare. Different researchers have
used different measures to define such collections; seexéonple, theincoupling measure
defined in 7] or the coupling matrixdefined in B]. For the purposes of this note, we will
define meta-stable states in the same way a8]irFpr any states, j € S, let

pij = Plriyr =j o =1
be the probability of transitioning from stat¢o statej. We say that the collectiofi C S is
a meta-stable state if there is some “small” number( such that

1
m Z Zpij < €.
i€E jEE
That is,£ is a meta-stable state if the mean probability of transitigrirom a state € £ to
a statej ¢ £ is small.

When the Markov chain is modelled via a stochastic matrixcareredefine this in terms
of row sums of principal submatrices. Let the Markov chfin} have associated stochastic
matrix M. Let £ be a proper subset of the state space and/€éf) be the corresponding
principal submatrix of\/. Then,£ is a meta-stable state if for some smalt 0, the average
of the row sums of\/ (£) is greater than or equal fo— e.

When a Markov chain has two or more disjoint meta-stableestete refer to it and its
associated stochastic matrix @sarly uncoupledMeta-stable states are sometimes referred
to asalmost invariant aggregates

The identification of the meta-stable states of a nearly uplsal Markov chain is of
great importance in biomolecular research and pharmadatiug design, 4, 9]. In [3, 5],
an approach to this problem using the Perron-Frobenius rénedl, 8], known asPerron
cluster analysisis detailed.

In [6], the authors present an algorithm for uncoupling a stahasatrix that relies
on the singular value decomposition of that matrix, rathantthe spectral decomposition.
However, we have found a pair of counterexamples which iihate the fact that additional
hypotheses concerning the matrices involved are required.
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2. The singular value decomposition approach.

2.1. Summary. Let M be a square matrix. A singular value decompositiod/bfs an
expression

M =USV*,

whereU andV are unitary matrices, and is a diagonal matrix where the diagonal entries
are real and nonnegative and satisfy > o;; for all i < j. When) is real thenU andV/
can be taken to be real matrices as well, in which case we have

M=UxvT.

Theith columns ofU andV are referred to as left and right singular vectors, respelstj of
M associated with the singular valug. If M is real and we let thé&h columns ofU andV
bewu; andv;, respectively, we then have

Muv; = oj;u; andMTui = 0;;V;.

We label the singular values @ff aso;(M) = o;;. The number; (M) is, in fact, equal to
the 2-norm of M; that is,o1 (M) = || M||. See ] for a thorough exposition of the singular
value decomposition.

Below is a brief summary of the algorithm described6h [t receives as inputs a matrix
M and a threshold valug

ALGORITHM 2.1.

1. We identify the left singular vectap, of M associated with the second largest sin-
gular value ofM. We let

& ={ieS|us(i) <0} and&, = {i € S|ua(i) > 0}.

2. If the average row sum of either of the principal submaimatrices\/ (£_) and
M(&;) is less than or equal td — ¢, then we cannot partition the state space any
further and we terminate the algorithm.

3. Otherwise, if the average row sum of each of the principdinsatrices matrices
M(E_) and M (&4) is greater thanl — 4, then&E_ and &, are each meta-stable
states. We then attempt to further partitién and&.,. into even smaller meta-stable
states by applying the algorithm to each/f(£_) and M (£.).

In the worked examples irf], the threshold valué = 1/2 is used.

2.2. Counterexamples.In [6], Theorem2.2and?2.3 given below, are used to support
Algorithm 2.1. We show that these theorems require further assumptieeumnterexamples
that meet their respective conditions are constructible.

A digraph issimply connected for all distinct vertices; andy, there is either a directed

path from: to j or a directed path fromj to <.
THEOREM2.2. [6, TheorenB.2] Let A be a block-stochastic matrix of the form

A=diag(A1,...,An)
with m simply connected diagonal blocks of order, . . . , n,,, denoted by
Ay, A,

LetS; be the set of; indices corresponding to the blogk, 7 =1, ..., m. Let
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A=UxvT
be a singular value decomposition.dfand leta, . .., @, be the left singular vectors corre-

sponding to the largest singular value of each of the blotks . ., A,,, respectively. Asso-
ciate with every state; its sign structure

sign(s;) = [sgn (41); .., sgn (tm),] -

Then,
1. states that belong to the same bloclda#xhibit the same sign structure, i.e., for any
Ajandallk,l € S;, we have

sign(sy) = sign(s;) ;

2. states that belong to different blocksfexhibit different sign structures, i.e., for
anyA;, A; withi # jand allk € S;, 1 € S; we have

sign(sy) # sign(si) -

We provide the following counterexample to Theor2r Let A = diag A1, As), where

00 1/3 1/3 1/3

10 0 0 0 0 1/2 1/2
Ai=|10 0 0 0 |anddy=|1 0 0

01 0 0 0 1 0 0

01 0 0 0

The diagonal blocks oft are simply connected; the associated digraph is:

A
3

L
\

G b0 <~—— i
\]
o
0

A singular value decomposition of is A = USV7, where

[0 0 0 0 1 0 0 0
1/vV6 1/V/12 1/2 0 0 1/V2 0 0
1/vV6 1/V/12 1/2 0 0 —1/V2 0 0
7= 1/V6 —1/v/3 0 0 0 0 1/V2 0
T l1V6 —-1/3 0 0 0 0 —1/V2 0 '
0 0 0 10 0 0 0
1/vV6 1/y/12 —1/2 0 0 0 0 1/v2
L 1/v6 1/V/12 —1/2 0 0 0 0 —1/v2 |
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V2 0 0 0 0 0 0 07
0 V2 0 0 0 0 0 0
0 0 V2 0 0 0 0 0
s_| 0 0 0 1/v2 0 0 0 0
0 0 0 0 1/¥V3 00 0]’
0 0 0 0 0 0 00
0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0
and
[ 1Vv3 16 1/vV2 0 0 0 0 0 |
1/vV3 —2/V6 0 0 0 0 0 0
0 0 0 0 1/vV3 2/V6 0 0
7= 0 0 0 0 1/vV/3 —1/v6 1/V2 0
N 0 0 0 0 1/V/3 —1/vV6 —1/v2 0
0 0 0 0 0

1/V3 1/vV6  —1/V2
0 0 0 1/vV2 0 0 0 1/V2
0 0 0 1/v2 0 0 0 -1/v2 |

The largest singular values of the two blocks are both equgx Therefore, the sign
structure ofs; can be defined, as in Theoreh?®, to be theith row of

0 O
1
1
-1

— = O = = e
|
—_

since the first two columns df,

-0 0 -
1/vV6 1/V12
1/vV6 1/V12
1/V6 —1/V3
1/vV6 —1/V3 |’
0 0
1/V6 1/v12

L 1/V6 1/V12 |

are both left singular vectors correspondingt@. Note that the states, ands, are in the
same block but have different sign structures,

sign(sy) = 1 1] and signss)=[1 —1].
Further, the states, ands; are in different blocks but have the same sign structure,

sign(sz) =sign(s;) =1 1].
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If we apply the algorithm to a small perturbation.4f the vecton:, obtained could be a
small perturbation of a linear combination of the first twdwrons of V. This could lead the
algorithm to make two different types of error: it might f&il associate, ands, with each
other or it might mistakenly associate ands-.

Theoren®.3(in a very similar way t@.2) requires further assumptions a@n(or possibly
T(€)).

THEOREM 2.3. [6, Theorem4.7] Let B = A + ¢R for ¢ > 0 where A and B are
stochastic. Lef’'(¢) = BBT have two largest eigenvalugs(¢) > \z(¢). Suppose that the
unperturbed matrix’ = 7'(0) can be permuted t& = PTPT such thatl’ hasm uncoupled
irreducible blocks. Let; > Xs > ... > A, be the largest eigenvalues corresponding to
each of the blocks. Then, the perturbed orthonormal eiggove, corresponding to the
perturbed singular value(e) is of the form

pa(e) =Y (ay+€B) iy +e <<Pjv<ﬁgl)><ﬂj+(9(€2),

j=1 j=m+1

whered; are the eigenvectors in Theoreéh?and«;, 5, are suitable coefficients.
We now produce a matrix that contradicts Theorz® Let

0 0 1/5 1/5 1/5 1/5 1/5 0

0 0 1/5 1/5 1/5 1/5 1/5 0

10 0 O O 0 0 0
i_|to o0 0o 0o o o0 o0

10 0 O O 0 0 0

01 0 0 0 0 0 0

01 0 0 0 0 0 0
oo 0 0 0 0 0 1|

and

[0 01 -1 00 0 0]

001 -1 000 0

000 0 0O0O0 O
p_|0 00 0 0000

000 0 0000

000 0 0O0O0 O

000 0 0O0O0 O

(000 0 000 0

Then,

N N N
T(e):(A—i—eR) (A—i—eR) — AAT + @RR”
[ 1/5+2¢2 1/54+22 0 0 0 0 0 0]
1/5+2¢ 1/54+22 0 0 0 0 0 0

0 0 1 11000
- 0 0 1 11000
- 0 0 1 11000

0 0 000110

0 0 000110
0 0 00000 1]
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(We have choseR so thatART = RAT = 0.)

The matrixB = A + eR is stochastic as long as< 1/5. The nonzero eigenvalue of the
first block isA = 2/5 + 4e? < 14/25. So, the two largest eigenvaluesBfe) are3 and2,
with the eigenvector

O OO oo

p2 =

1/v2

1/v2
0

corresponding to the eigenval2eThe stochastic matrid has two irreducible blocks whose
largest singular values a3 and1, respectively. The left singular vectors dfcorrespond-
ing to these values (described in Theor2rd) are

0

0
1/V/3
N RVAVE]
Uy = 1/\/5

0

0
0

anduy =

_— o OO oo o oo

Clearly, ¢4 is not a perturbation of a linear combinatiomaf andus.

3. Discussion. The counterexamples were constructed by noting that trarigign re-
lies on two assumptions that do not necessarily hold truengihe assumptions concerning
the unperturbed stochastic blocks.

Let

A=diagAy, ..., Ay),

where eachyd; is a stochastic matrix and lé&8 = A + ¢R. In order for Algorithm2.1to
correctly recover the blockd; from B, we need each of the followingassumptions to be
satisfied:
1. them largest singular values of must beo; (A41),...,01(4n);
2. any left singular vector ofi associated with one of the largest singular values
must have the form

G1U1(A1)

Ul (Am)

whereu; (A;) is a left singular vector ofl; associated witlr (A4;);

3. every left singular vecton;(A4;), above, associated withy (A;) must have every
entry positive, or every entry negative; and

4. the value must be small enough that the perturbatiorc®ydoes not alter the sign
structure of the singular vectors.



ETNA

Kent State University
http://etna.math.kent.edu

ON AN SVD-BASED ALGORITHM 23

Using real analysis, it is somewhat straightforward to shioat if the first three condi-
tions hold, there i$ > 0 such that if0 < e < ¢, the fourth condition holds (as i®]).

We explore assumptions concerning the unperturbed sttchdascks A; that will guar-
antee the truth of conditioris 2 and3, above.

3.1. Graph theory definitions. We introduce some graph theoretic constructions to aid
in our discussion.
Let G be an undirected graph with vertex $&€tand letz,y € W. We use the notation
x ~ y to represent the presencethof the undirected edge with endpointaindy. A walk
in G of length! is a sequence df+ 1 vertices (not necessarily distinct), . . ., x; such that
x; ~ x41 fOor0 < i <[ —1. Ifthere is a walk inG of length greater than or equal tavith
endpointst andy we use the notatiom ~» y; we label such awalk as : = ~» y.
A connected componeot G is a collection of vertice§’ C W such that
1. forallz,y € C, we haver ~ y; and
2. ifx € C andy € W satisfyz ~ y, we then have € C.
An undirected graph isonnectedf its entire vertex set forms a single connected component.
An isolated vertexe € W is a vertex that is not incident to any edge (i.e. foriake
W,z ~ y). Some authors consider a single isolated vertex to be aemd@d component;
however, we will not follow this convention. If the vertexs isolated, we do not have~ «
and sar cannot be a member of a connected component (under the efiwié use here).
The graphG is bipartite if its vertex set can be partitioned into disjosetsX andY
such that ifx ~ y thenz andy are not contained in the same séborY'.
Let M be a symmetric matrix of order. Theundirected graplassociated withd/ is the
graphG (M) that has vertex set

W:{wl,...,wn},

and hasw; ~ w; if and only if m;; # 0. A symmetric matrix)/ is irreducibleif G(11) is
connected.

We define another graph associated with a malfixLet M be anm x n matrix (m and
n are possibly distinct). Let

X =Az1,...,zpn} andY ={y1,...,yn}.

Thebigraphassociated witd/ is the undirected bipartite graph on vertidés= X U Y that
hasz; ~ y; if and only if m;; # 0.

We refer to the labellings of the vertex sets@{M ) and B(M) given above as the
canonicalvertex sets of these graphs.

3.2. Irreducibility of symmetric products. We first consider conditiol. Let A be
a stochastic matrix. It is a straightforward applicatiortled well-known Perron-Frobenius
theorem to show that every left singular vector associatéuay (A) has constant sign if and
only if AAT is irreducible; moreover, when this holds the multipliaitf/o; (A) as a singular
value of A is 1. The matrixAA™ is irreducible exactly when its associated grapm A”) is
connected. We produce necessary and sufficient conditiras$tochastic matrixd to have
G(AAT) connected.

PrOPOSITION3.1. Let A be a stochastic matrix. Thed,AT is irreducible if and only if
B(A) contains exactly one connected component. Moreai/ed is irreducible if and only
if B(A) is connected.

Proof. Letn be the order ofd. We first consider the reducibility of the matrikA”'. Let
G = G(AAT), B = B(A) and letlW andX UY be the canonical vertex labellings Gfand
B, respectively. Thejth entry of AAT is
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n

(AAT)ij = (A)a(AT)rg =D aimajp.
k=1

k=1

It is clear that(AAT)ij # 0 if and only if there is some indek such thata;;, # 0 and
a;i, # 0. Thus,w; ~ w; if and only if, for somek, we haver; ~ y;, andz; ~ y;. Any walk
in B of length2 will have one of two forms:

T ~ Y ~ T 0Ny, ~ T ~ Yj.

Therefore, the edge; ~ w; is present in¢ if and only if there is a walk of lengtl from x;
to z; in B. Clearly, this implies that there is a walk; : w; ~ w; in G if and only if there
isawalkwp : x; ~ x; in B. Thus,AA” is irreducible if and only if every member of is
contained in the same connected componer.of

Note that sinced is stochastic, for every indexthere is some indek such that;;, # 0.
Thus, for everyr € X there is at least ong € Y such thatr ~ y (in B); so, X contains
no isolated vertices. As well, every edge ihhas the formz ~ y for somex € X and
somey € Y. Thus, every connected component®fcontains at least one member &f
and every member oX is contained in a connected componenBofThis implies that every
member ofX is contained in the same connected component if and orbyhfs only one
connected component. ThereforeA” is irreducible if and only ifB(A) contains exactly
one connected component, possibly together with some anobisolated vertices.

In the exact same mannet! A is irreducible if and only if every member af is con-
tained in a single connected component®f= B(A). As before, every connected com-
ponent of B contains at least one member¥f However, unlike the members &f, some
members oft” may be isolated vertices. (It is entirely possible that¢hisran index such
that for all k, ar; = 0.) So, AT A is irreducible if and only ifB(A) contains exactly one
connected component and no isolated vertiges.

REMARK 3.2. Recall that isolated vertices are not considered toaegh a connected
component. Thus, Propositi@linforms us thati(AA”) is connected exactly whefi(A)
consists of one connected component together with any anfown more) of isolated ver-
tices and, further, that(A” A) is connected whe(A) contains one connected component
and no isolated vertices.

We included the discussion of the reducibility 4f A in Proposition3.1to address the
issue of using right singular vectors in Algorithnl, rather than left singular vectors.

We note that a stochastic mattikmay be reducible even thoughA” is irreducible —
for example, consider the matrices

Al:[1}2 1(/)2}""”0"42:“ 8]

Both are clearly reducible; but, examination of their bigta shows that; A7 and A, AT
are both irreducible.

T Y1 T1

B(Ay) = / andB(4y) = /

T2 Y2 T2 Y2

Y1

The bigraphB(A;) contains one connected component (and no isolated vertitesma-
trices A; AT and AT A; are both irreducible. The bigrapf(A,) contains one connected
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component and one isolated vertex; the mam_»«lg is irreducible, but the matrixlgAQ is
reducible.

Although the construction of the bigragh(M ) associated with\/ is somewhat coun-
terintuitive, the graptB(M) is the most straightforward way of clearly visualising tlee
binatorial properties oM M ”'. Consider, for example, the stochastic matrices

00 1/2 1/2 0 1/2 0 1/2

00 1/2 1/2 0 1/2 0 1/2
My=1 1 é é andMz = | é 0 é

01 0 0 0 0 1 0

These matrices are both irreducible. Using the ideas fonijt]j one can show that each of
these matrices hdsas a simple eigenvalu@/; has—1 as a simple eigenvalud/{, does not)
and that the remaining eigenvalues of both matrices sdti$fy: 1. However, the matrices
M, M and M, M are, in fact, identical, are reducible and hadvas a singular value with
multiplicity three.

1/2 1/2 0

1/2 1/2 0

MM = MyM] = é é .
0

0 0

_ o O O

These facts become apparent when examidd/; ) and B(M>), but are somewhat
obfuscated by more traditional graph representations/pfnd M-:

Z1 Y2 x1 Y3

X2 Ya X2 Ya
B(Ml) = andB(MQ) =

x3 Y1 x3 Y1

Ty Y3 T4 Y2

In [6], the authors propose a preprocessing step that first aggegembers of large
cycles, or clusters, withig/() by considering only the edges ~ w; such thatn,; > x,
wherey is some chosen tolerance value. It seems likely that,ig well-chosen, this will
address most counterexamples involving irreducible tBa¢kwhere AAT is reducible or
“nearly” reducible. However, it is unclear whether this precessing step will address the
second issue, which we discuss in the next section.

3.3. Interlacing of singular values. We now consider assumptioris and 2: Let
A1, ..., A, be stochastic matrices with largest singular valae&4,) and corresponding
left singular vectors:; (4;). Let

A=diag Ay, ..., Ay)

and letB = A + €R be stochastic. Lep;(¢) be a left singular vector associated with one of
them largest singular values d@8. Under what conditions must;(¢) necessarily be a small
perturbation of a vector of the form
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Oélul(Al)

amUl (Am)

We show that if the singular values of the matricgsnterlace in undesirable ways, this
condition is not satisfied.

LEMMA 3.3.Let M # 0 be a square, real matrix and Igtbe a real vector of the same
order asM . Then, there i$ > 0 such thatif0 < € < ¢, then

(1= e)2MM7T + EyyT|| < M|

Proof. Let
F&) = (L=t)* || M|J* + £ ||y))*.
Note that

4

=—2|M|? <o0.
at|,_, M|~ <

Thus, there i$ > 0 such that ifd < ¢ < ¢, then
2
f() < f(0) = [[M]”.
Via the triangle inequality concerning the norm of an operdf ¢ is real, we have
10 —e2MMT + gy < (1= [MMT][ + e gy

= (1= |M|* +€ |yl

= f(o.

So,if0 < € < 8, we have|(1 — €)2MM7T + 2yyT| < f(e) < £(0) = || M|*.0O

We will make use of the following theorem and lemma, takemfii@]. Lemma3.4
is a straightforward corollary of the Rayleigh-Ritz Thewrd[8, Theorem4.2.2]). In our
following discussion, we will often make reference to theykst eigenvalue);, of a matrix;
we emphasise that this is in the sense that> )\, for any other eigenvalug,, and not
necessarilyA;| > |Az].

LEMMA 3.4. Let M be a Hermitian matrix and lek; be the largest eigenvalue of .
Then, for any vectog with ||y|| = 1,

y*My S )\11

with equality if and only ify is an eigenvector associated with.
THEOREM 3.5. [8, Theorem 4.3.8lLet M be a symmetric matrix of ordet, y be a
vector of ordem anda be a real number. Let

o ay*
M_[yM}
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Let the eigenvalues df/ and M be {\;} and {)\;}, respectively, and arrange them in
decreasing order:

M= > >N andh > A > > Ay

Then, the eigenvalues 8f and M interlace: foralll <i < n, \; > A\ > \iy1.

PROPOSITION3.6. Let X andY be stochastic matrices. Let the two largest singular
values ofX beo(X) > 02(X) and let the largest singular value &f beos;(Y'). Suppose
thatoo(X) > 01(Y). Then, there is a matri® and a valued > 0 such that ifd < ¢ < §, the
matrix

X 0
B—[O Y]—l—eR

satisfies the properties:
1. Bis stochastic;
2. the second singular value (in magnitude)®fs o2 (B) = 02(X); and
3. any left singular vector aB associated witlr, (B) is of the form

Py = { UQE)X) }

whereuy(X) is a left singular vector associated with (X).
Proof. Let the orders ofX andY bem andn, respectively.
Itis well-known that

*
M = E iU V;

is an orthonormal singular value decompositioméfif and only if
MMT = Z oFuul

is an orthonormal eigenvalue decompositioméf/ 7 and for alli,

1

=My,
M

Vg

Thus, we will recast this as an eigenvalue problem. We wilidoice a matrix? and a
valued > 0 such that if0 < e < §, the matrix

X 0
B:[O Y]-i—eR

satisfies the properties:
1. Bis stochastic;
2. the second eigenvalue valueRB” is Ao (BBT) = 02(X)?; and
3. any eigenvector aB BT associated with, (BB7) is of the form

P2 = { uQE)X) }

whereuz(X) is an eigenvector ok X7 associated witlry (X )2.
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Leta; = Ul(X), Qo = UQ(X) andﬁ = Ul(Y).
The matrix X X7 is symmetric and nonnegative and its two largest eigensgatue
a? > a3. By an application of the well-known Perron-Frobenius Tite@o (see {], for

example), there is an eigenvectorof X X7 associated withv? such that the entries af;
are nonnegative anfl; || = 1. Let

1
v = — X Tuy ando = —F U1,
(651 (% 1
wherel is the column vector with every entry equalitoSinceu; is entrywise nonnegative,

vy IS entrywise nonnegative. Thusjs a honnegative vector and the sum of the entries in
is 1. Note that

_ T, _ _ v, 1
Xvi =aqur, X up =aqvy, Xv= vlT—llul andv; v = vlT—ll
Let
0 0
k= { 10T —-Y
We have

X 0 0 0 X 0
B_[o Y]*E{M —Y]__EﬂvT (1—6)Y]'
The matrix B is clearly stochastic as long 8s< ¢ < 1: it is nonnegative, the sum of

the entries in any row of th€, 1)th block ise and the sum of the entries in any row of the
(2,2)th block is1 — e. We express3 as a sum of two matrice®} = By + By, where

T T
| aqugg 0 | X —ajwv; O
B = [ T (1- oY ] andB; = [ 0 0

We note that

ajuvl XT — dugul 0
elvTXT — ealllUTvlu{ 0

a%ululT — a%ululT 0
= (251 ]lu’{’_ caL q T 0

'U;‘FIL UTIL 1

Thus,B; BT = (B:BI)T = 0and so
BBT = (By + B>)" (By + Bz) = BiB] + B2BY
whereB; Bl and B, BI are orthogonal:
(B1BY) (B2B3) = (B2B3 ) (B1B{) =0.
Thus, the nonzero eigenvalues BB are the nonzero eigenvalues Bf B together

with the nonzero eigenvalues 8% B .
We calculate



ETNA

Kent State University
http://etna.math.kent.edu

ON AN SVD-BASED ALGORITHM 29

B,BY

[ XXT — aleluf — alulv?XT + a%uluf 0 }
0 0

[ XXT — a%uluf — a%ululT + a%uluf 0
0 0

[ XXT —2uul 0
0 0|

The largest eigenvalue @, B! is o and we haveB, By = o2y if and only if
_ | w2
y - |: O :| 9

whereX X Tuy = a3us.
Next, we calculaté?; By :

BBT — a%uluf ealulvaﬂT
! earlvTvul  E10TvlT + (1 — €)2YY7T

2 T 25t T
- ajuuy T url

= [S?i]lulT 2117 + (1 - 2y YT

Let U be a unitary matrix such thatu, = e,,, wheree,, is the column vector, of order

m, with its mth entry equal td and every other entry equal @ since||u:|| = |le..|| = 1,
such a matrix exists. Then, we have
U 0], pr[U 0 T | afemen, e 1T
0 1|70 1] T g1el )Pt 4 (1 - e2yy?
1
0 0 0
-0 o %]IT

Ch1
0 741 e llv]]*11” + (1 —€)2YYT
So, the nonzero eigenvaluesBf BY are the nonzero eigenvalues of

2 eay T
of _{1]1

M=1 g 2117+ (1 - 2yy?
1

~ We will show that ife > 0 is sufficiently small, then the largest eigenvalueidfis
A1 > o2 and that the second largestis < 32. Recall that the largest eigenvalue®f B
is a3 and that

2 2 2
B <a; <ay.

Thus, we will have shown that the second largest eigenvdlue o

BB" = B,BT + B,BY
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is a3, wherea3 is an eigenvalue of

XXT - ?uu? 0
T __ 141ty
BaBy = 0 0
and is not an eigenvalue & B . This will imply that any eigenvector associated with this
eigenvalue has the desired form.
Let

be the eigenvalues dff and let

be the eigenvalues of
Ellv)P11” 4+ (1 — )*vY™T.
We note that Lemma.3implies that ife > 0 is sufficiently small,
A= ||€l]P1T + (1 - )Y YT || < Y YT = 8%

Now, if € # 0, thene? Me; = a2 but Me; # a2ei. Thus, by Lemma&.4, A, > a2,
Finally, Theorem3.5 implies that\; > A1 > \o. Therefore,\; > «of and
Ao <A1 < 62. a

3.4. Subdominant singular values of nearly uncoupled stoastic matrices. We can
now see the conditions under which Algorittiri can reliably be applied. Led,, ..., A,,
be stochastic matrices, let

A =diagAy, ..., Ay)

and letB = A + ¢R be stochastic. In addition to assuming thé small enough that it does
not significantly alter the singular vector sign structunecag them largest singular values,
we must have
1. the bigraphB(4;) associated with eacl; contains exactly one connected compo-
nent; and
2. foralli 75 7 UQ(Aj) < O’l(Ai).

If we are using right singular vectors, we must replace cooil with the (slightly)
stronger condition that eacB(A;) is connected. We will examine, briefly, the problem of
satisfying the second condition above. First, we produdeearem concerning the largest
singular value of a stochastic matrix.

A doubly stochastic matrils a nonnegative square matrix that has the sum of the entries
in any row or column equal td. That is, A is doubly stochastic if botbd and A” are
stochastic.

THEOREM3.7.Let A be a stochastic matrix and let (4) be the largest singular value
of A. Then,o1(A) > 1. Further,o1(A) = 1 if and only if A is doubly stochastic.

Proof. A simple fact concerning the eigenvalues and singularesbf a matrix\/ is
that for any eigenvalua of M, we have|\| < o1(M). Thus, for a stochastic matriA,

1 S 01 (A)
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Suppose that is doubly stochastic. Then, the matuikA” is a product of stochastic
matrices and so is, itself, stochastic. So, the largeshe@ee of AA” is 1 and so we have
g1 (A) = \/T =1.

Suppose thatl is stochastic and that; (A) = 1. Then, for any vectoy,

[Ay[l < o (Allyll = llyll-

Letv” = 17 A, wherel is the column vector with every entry equalitoTherefore,
oIl =17 A1 = n,
wheren is the order ofA. Further,
[l = [I7All < J|1]| = V.
We apply the Cauchy-Schwarz inequality: for real vectoesndy,

2Tyl < [y,

with equality if and only ify = ax for some real number. We have
n=ov"1 < |p]|[Lll = Valoll < n.

We have equality in the Cauchy-Schwarz inequality and soéogorv is a scalar multiple
of 1. Howeverp”1 = n implies that, in fact, we have = 1. Thus, the sum of the entries in
each columnofdis1.0

This theorem provides a rough estimate as to the number af-stable states the state
space of a Markov chain may contain. Afis stochastic and has singular values greater
than1, then we expect to fin¢h or fewer meta-stable states.

Now, the condition thatrs(A4;) < o1(A4;) is somewhat difficult to work with — it con-
cerns collections of stochastic matrices, rather thanviddal matrices. We propose the
following conditions on the unperturbed blocks of a blocagtinal stochastic matrix.

ProOPOSITION3.8.Let Ay, ..., A,, be stochastic matrices and let

A =diag(A1, ..., An).

Under the extra assumptions that for @Jl B(A;) contains only one connected component
andoq(A;) < 1, the conclusions of Theorerd2 and2.3hold true.

Proof. The extra assumption guarantees that we havel;) < 1 < 0;(A4;) whenever
i#4.0

Let A be a stochastic matrix; we refer g (A) as thesubdominant singular valuef A.
We present a result concerning the case that the subdonsmayutlar value is strictly less
thanl.

THEOREM 3.9. Let A be a stochastic matrix. Thens; (A) = 1 andoy(A) < 1if and
only if A is doubly stochastic anf¥(A) is connected.

Proof. First, suppose that is doubly stochastic and tha&t(A) is connected. Then, by
Theorem3.7 and Propositior8.1, we haveAA” irreducible and stochastic, and (A) = 1.
By the Perron-Frobenius Theorem, the multiplicityloés an eigenvalue olA” is 1. So,
the multiplicity of 1 as an singular value of is 1 and we havera(A) < 1.

So, suppose that is stochastic and that;(A) < 01(A4) = 1. By Theorem3.7, the
matrix A is doubly stochastic. ThusiA” andA” A are both symmetric stochastic matrices
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that have their second eigenvalues strictly less thafihis implies thatAA” and A” A are
both irreducible and so we hav&( A) connected (again, by Propositiri). O

Identifying exactly when a stochastic matrix has subdomisagular value strictly less
than1 is an interesting and possibly important open problem. Heaurtidentifying exactly
what probabilistic qualities the subdominant singulaueabf a stochastic matrix measures
could lead to new insights in Markov chain analysis.

3.5. n-Pentane analysis.In [6], Algorithm 2.1is applied, successfully, to experimental
data concerning the state space ofitheentane molecular structure. We examine the singular
values of one of the matrices involved, with our previousasbations in mind.

One of the data sets analyséth300, is a stochastic matrix of ordes5. The algorithm
successfully constructed seven meta-stable states, efs#d, 42, 47, 46, 24, 36 and 40.

We calculate the seven principal submatrice$?d800 on these meta-stable states and label
themMy, ..., M;. We then calculate, using MLAB, the two largest singular values of each
of these principal submatrices,

g1 (Ml) = 1.5322, UQ(Ml) = 0.6845, g1 (Mg) = 1.5915, UQ(MQ) = 0.9578,
o1(Ms) = 1.6322, o9(M3) = 0.9756, o1 (M) = 1.3912, oo(M,) = 0.7853,
o1(Ms) = 1.2959, o9(Ms) = 0.4724, o1(Mg) = 1.5370, o2(Mg) = 0.9025,

o1 (]\/[7) = 1.7787 andUg(M7) = 1.1035.

These calculated singular values satisfyM ;) < o1 (M;) forall i # j; moreover, in all
cases except= 7, they satisfy the stronger condition that(1/;) < 1. These results seem
to support our proposed extra assumptions on the unpedinbeksA;. An examination of
the data sePh500 used in p] yields similar results.

The SVD algorithm is a useful and robust algorithm. It pemfisiwell, for example on the
data presented irf], precisely because, in practical problems, the additiassumptions we
present here are usually satisfied. However, we presergupislemental discussion to show
that applications of this algorithm require care, as thesm@ssumptions are not necessarily
true of the general stochastic matrix.
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