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EVALUATING THE FR ECHET DERIVATIVE OF THE MATRIX PTH ROOT *

JOAO R. CARDOSO'

Abstract. This paper shows that computing theeEnet derivative of the matripth root is equivalent to solve
a sequence gb Sylvester equations. This provides the theoretical sugpatesign an algorithm for the effective
computation of the Fchet derivative. The conditioning of the Sylvester seqaes addressed and some numerical
experiments are carried out to illustrate the results.
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1. Introduction. Let p > 2 be a positive integer. Given a matrix € C"*" with
eigenvalues not belonging to the closed negative real thése is a unique matrixX’ such
that X? = A whose eigenvalues lie on the sector of the complex planeatkbiy

(1.2) ~Ic arg(z) < z,
p p

wherearg(z) denotes the argument of the complex numbéFhis unique matrixX is called

the principal pth root of A and is a primary matrix function od. It is denoted byA'/?. We

refer the reader tolf?] and [14, Ch. 6] for details about the theory of matpixh roots and

primary matrix functions.

The computation of matrixth roots arises in many technical problems. Due to its closed
relation with the matrix sector function, which in turn hggphcations in Control, many
papers have been devoted to finding approximation methedsdanatrixpth root. See, for
instance, §, 9, 13, 15, 17, 19, 24]. Applications of the matrixth rootin other areas such as
Finance and Healthcare are pointed outlif]|

It is well-known that the sensitivity of the matrpth root (and primary matrix functions
in general) to small perturbations in the data is measuretddondition number based on the
norm of the Fechet derivative. In this paper we propose a method for atialy the Fechet
derivative of the matrixpth root which was inspired by the work developed previousty b
Kenney and Laubl6] for the Fiechet derivatives of the matrix exponential and the matrix
logarithm. We first show that the computation of thé&éhet derivative of the power matrix
XP can be reduced to solve a sequence &ylvester equations. Then, by reversing the
procedure, we are able to conclude that the evaluation oFthehet derivative ofd'/? is
also equivalent to solve particular Sylvester equations of the form

AYPX — X (yAYP) = C,

whereC' € C™*™ and~ is a complex scalar. Due to the simplified form of these equati
we can save much work by computing first the Schur decompaditi A to obtain Sylvester
equations involving only triangular matrices on the ledinld side. The resulting method for
the Fiéchet derivative involve® (pn?) operations, which is efficient, at least fenot being

a large prime number. In contrast with the method of Kenney laaub which uses Pade
approximants to the functiotanh(x)/z, an important feature of our method is that it does
not require Pade approximations. As a consequence, ouoth&tliree from the truncation
errors arising in the P&dapproximation.
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The Sylvester equation is a much studied topic, both thisatt and computationally.
For some theoretical background, see for instantjgrid the references therein; for solving
the Sylvester equation, one of the most popular methodsdga®artels and Stewar8],
which is based on the Schur decomposition of matrices. Amorgment of this method was
proposed in§]. See also11] for a study of perturbation of this equation.

In general the methods for approximating thééhet derivative do not need to be highly
accurate (in many cases an error less than' may be satisfactory). However, this in not
the case of our method which performs with very good accurBieys our method is suitable
not only to approximate the Freghderivative, but also for the computation of the matrix
pth root, in the spirit of L6]. As far as we know, no numerical scheme has been previously
proposed in the literature for the&ahet derivative of the matriph root.

This paper is organized as follows. First, we recall soméctfasts about the Erchet
derivatives of the matrix power and matpixh root functions. Some new bounds are pro-
posed. In Sectio, some lemmas are stated in order to provide the theoretipglost of
the main result (Theorer8.4), which enable us to design an algorithm for computing the
Fréechet derivative of the matripth root. Since this algorithm involves a sequence of partic-
ular Sylvester equations, often called a Sylvester caséa@zctiond we analyze the propa-
gation of the error along the sequence and propose an eipréssthe condition number of
each equation. Numerical experiments are carried out itiddegand some conclusions are
drawn in Sectior®.

Throughout the papér.|| will denote a consistent matrix norm. The Frobenius norm and
the 2-norm will be denoted by.||» and||.||2, respectively.

2. Background on the Fréchet derivative. Let A, E € C**". The Féchet derivative
of a matrix functionf at A in the direction ofE is a linear operatorl.; that mapsE' to
Ls(A,E) such thatf(A + E) — f(A) — Lf(A,E) = O(|E||?), for all E € C™*". The
Fréchet derivative may not exist, but if it does it is uniqueeTondition number of at A is
given by

o LAl
FA =

where

L¢(A)|]| = max ||Ls(A, E)|;
L)) = max |1Ly(4, )|

see [L2, Ch. 3]. If an approximation t@. (A, E) is known, then a numerical scheme like the
power method on Fchet derivative ]2, Algorithm 3.20] can be used to estimafté ;(A)|
and then the condition number; (A).

The following results characterize, respectively, thédret derivative of the functions
XPandX'/?,

LEMMA 2.1. Let A, E € C™*". If L,»(A, E) denotes the Fchet derivative oX? at
A in the direction ofE, then

p—1
(2.1) Lor(AE) =Y AP IEAI,
j=0

Proof. See, for instancel[ Sec. 3]. d
LEMMA 2.2. Let A, E € C™"*™ and assume thatl has no eigenvalues on the closed
negative real axis. If.,.,, (A, E) denotes the Fchet derivative ok '/? at A in the direction
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of £, thenL,.,, (A, E) is the unique solution of the generalized Sylvester eqoatio

(2.2) ,,Z (Al/P)pflfj X (Al/p)j - E.

J=0

Proof. See |2, Problem 7.4] and its solution and?, Sec. 2.5]. See alsa§, Thm. 5.1]
for a similar result for the matrix sector function. 0O

Recently, an iterative method for solving a generalized&gster equation includin@ (2
as a particular case was proposeda][ The method involve®)(pn?) operations and in
exact arithmetic the solution is reached aftériterations, for any given initial guess. We
have implemented the method but conclude that in finite pi@tiarithmetic it seems to
suffer from numerical instability. The convergence is té@xswhich makes the method
impractical for the practical computation of theEhet derivative.

Another characterization of the &het derivativd. 1/, (A, E) is given by means of the
integral bJ:

Loiw(AE) = sin(r/p) / (xf + A E(xl + A) " 2l/P da.
T 0
A problem that needs to be investigated is the approximaifahis integral by numerical
integration.
There is a closed expression for the Frobenius norm of theHet derivative:

-1
p—1

j L
Ly (A)||F = Z {(Al/p)T} “ (Al/P>p 1—j ;
j=0
2

see Probleni.4 and its solution in12]. It is not practical to use this formula directly because
it involves Kronecker products and the inverse ofidnx n? matrix.

If just a rough estimate of the norm of theé€het derivative is required, then some
bounds are available in the literature. Ir8], Higham and Lin have shown that

| AP A7
plL|l

wherelog(A) andLi..(A) denote, respectively, the logarithm.dfand the Fechet derivative
of the matrix logarithm. More bounds are stated in the folfmpemmas.

LEMMA 2.3.Let A € C™*™ with no eigenvalues on the closed negative real axis and let
o(A) denote the spectrum af. Then

1
< N Larsn (A)]] < —elllos/PH) Ly, (A)]),
p

1
(2.3) [ Lar/e (A = o
min AL/PYG (L PyP—1=]
Ry [0

Proof. Use [L2, Th. 3.14] and note that, fox # p,

/e — /e - 1 0
P '

Z()\l/p)j (pt/Pyp—1-3

Jj=0
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From @.3) the following lower bound for the condition number of thetmapth root
can be derived:

1 2]
1p(A) > .
o) = JAT7]

min ALy () L/ Pyp—1=]
i [P

This lower bound may be viewed as a generalizatior{6a3) in [12] and shows that the
condition number of the matrixth root may be large ifA has any eigenvalue near zero or
close to the negative real axis.

LEMMA 2.4.LetA € C™*" and letB := 1 — AL If | B|| < 1, then

_p+1
[

[ L1 (A < = (1= |IBJ|)

S

Proof. If |z| < 1, the functionf(z) = (1 — x)~'/? has the following Taylor expansion

— 1 /1)
flz) = JZ:;) ﬁ <P)j z’,
where the symbala); denotes the rising factorial:
(a)o=1and(a); :=ala+1)...(a+j—1).
Let £ € C™*™. The Féchet derivative of can be written as

N o=
<) ZBJ*HEBZ.
p .

J =0

o0

Li(B,E)=>

=0

1
jt

Since the coefficients of the expansionf@i) are positive and E|| = 1, one has

L1\ o
Lol <Y 5 (3) s

J

and then the result follows. 0O

3. Computation of the Fréchet derivative. First, we shall recall some basic facts about
Kronecker products and thec operator. The Kronecker product df B € C"*" is defined
by A® B = [a;; B] € C""*" and the Kronecker sum byt & B = A® I + 1 ® B. The
notationvec stands for the linear operator that stacks the columns oftaxmato a long
vector. If A\, andus denote the eigenvalues df and B, respectively, then the eigenvalues

of the matrifojZO a;; A* ® B7 are of the formejZO ;A\t for somer, s = 1,...,n.
The following properties also hold: '
(3.2) (A® B)(C® D)= AC ® BD

(3.2) vec(AXB) = (BT ® A) vec(X),
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whereA, B,C, D, X € C"*". We refer the reader to/] and [14] for more details about
Kronecker products.

Applying thevec operator to both sides of equatioh 1) and using 8.2), a Kronecker
product-based form of the &chet derivative of.,» (A, E') can be obtained:

vec (Lyr (A, E)) = K(A) vec(E),

where

|
—

P j 2 2
(3.3) K(A) =Y (AT)Y @ Ar=1=i e Cm X,
J

I
=)

Another expression foi(A) is given in the following lemma. Sed§, Sec. 2] and 12,
Th. 10.13] for a similar result to the matrix exponential.
LEMMA 3.1.Assume thatl € C"**™ is nonsingular and thaf{(A) is given by 8.3). If

arg(\) # (2];%1)” forany\ € o(A) andk =0,1,...,p — 2, then
K(A) = (AT @ A7) (AT @ A7),
where

kTR IR |
aP~t 41 '

(3.4) ¢(z) =

Proof. The assumption thatg(\) # (2’;%})”, forany\ € o(A)andk =0,1,...,p—2,
ensures thab(AT @ A~1) is well defined. Since

the result follows from the following identities, where maproperties of Kronecker sums
and products are used:

K(A) = (I®AP7Y) i(AT ® A1)
j=0
=AY (ATeA )P+ 1) (AT @ A7)
= ((ATYP ' @I+I® A ) p(AT @ A7)
= (AT oA Y pATeA™Y. O

REMARK 3.2. Note that ifr # 1, ¢(=) can be simplified to)(z) = =557 71

A representation of the functiap(x) in terms ofpth roots ofl and(p — 1)th roots of—1
is given in the next lemma.
LEMMA 3.3.Let¢(x) be asin 8.4). Then

. €T) = a:i e - = s
5 1 m 1)\ -1
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where
(36) QR =¢€ P 17 5]@ — e p-1 ‘,

for k = 1,...,p — 1, are respectively theth roots of1 (with the exception of) and the

(p — 1)th roots of—1.
Proof. Sinceg(x) = @71%7;}1” a simple calculation leads to the result. 0O

Now we have the theoretical support to show that computiegRiechet derivative of
L.»(A, E) is equivalent to solving a set of recursive Sylvester eguaati Assuming that the
conditions of Lemma.1 are satisfied, we can write

vec (Ly» (A, E))

(AT @ AP7Y) ¢(AT @ A7) vec(E)
= (AP YT @I +1® AP vee(Y),

whereY is ann x n matrix such that
(3.7) vec(Y) = ¢(AT @ A7) vec(E).
Then, by 8.2),

Lo (A E) = AP7lY 4 Y APTL,

From 3.5 and @3.7),

vee(Y) = (AT@Al—I)_l (AT@Al—I>

ﬁpfl Qp_1

T -1 -1 T -1
...<A®A_I> (A®A_I> "
Bo o

_ -1 _
. <AT<§A - 1) <AT®A - I) veo(E).
1

aq

Let Xy := F andX; be ann x n complex matrix such that

(3.8) vee(Xy) = ( 5

851

AT @ A1 L /AT 9 A
®—1> <®—I> vee(Xo).

Then, by 8.2), equation 8.8) is equivalent to the following Sylvester equation:

AXq — X1é =AXy — Xoé.
B1 aq

Due to the assumptions on the matAxthis Sylvester equation has a unique solution because
g(A)No(A/B1) = 0. Proceeding as above, it follows that thééhet derivative ofX? can
be expressed as

3.9 Lop(AE)=AP7IX, | + X, | AP7L,
P P
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whereX,_; arises after solving the following — 1 recursive Sylvester equations:

Xo=F
A A

AX] — X1 = = AXy — Xo—
p1 aq
A A

AXy — Xo— = AXy — X1 —
B2 o)

A A
71ﬁ = AXp72 - Xp72
p—

Obviously, the explicit formula3.9) is not recommended for computational purposes because
there are more attractive formulae, for instance,

AX, | — X,

Qp_2

LTP(AvE) = ZP )
whereZ,, is obtained by the recurrence

Yy = AE, Z, = E

Vit =AY

Zj+1 = ZJA + }/j,
j=1,...,p— 1, which can be obtained fron2 (1); see also], (3.4)] for a similar formula.
Our interest in deriving3.9) is that the sequence of Sylvester equations involved can be
reversed. This enables us to show that computing teetfet derivative of the matripth root
is equivalent to solving a set pfrecursive Sylvester equations. This is the main result®f th
paper and is stated in the next theorem.

THEOREM 3.4. Let A, ' € C™*™ and assume thatl has no eigenvalue on the closed
negative real axis. lfy;, and 3, are as in 8.6) and if B := A'/?, then

(3.10) L10(A E) = Xo,
where X results from the following sequencepo$ylvester equations:

BPF'X, 1+ X, 1B '=E

B B
BX, s —X,_ =BX, 1—X, 1—
p—2 P 2()4p_1 p—1 p lﬂl
(3.11)
B B
BX, — X;— = BXy — Xo—
(€3] B2
B B
BXo - Xo— = BX; — X1 —.
a B

Proof. SinceA has no eigenvalues lying on the closed negative real axsitenvalues
of B satisfy the condition-7/p < arg(\) < m/p, and then the assumptions of Lem3a
hold. This also guarantees that all the Sylvester equatismdved in 3.11) have a unique
solution. From Lemma&.2and @3.9) the result follows. a

The strategy of reversing a sequence of Sylvester equatioobtain the derivative of
the inverse function has also been put forwardlifj [for the matrix exponential and the
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matrix logarithm. The main difference is that the sequerfcgytvester equations3(1]) is
derived from the exact rational functiaei{x) defined in 8.4) while Kenney and Laub used
sequences of Sylvester equations arising from(&h&) Pade approximants ofanh(x)/x.
Some advantages of our method are: the matrioes not have to be close to the identity
(no square rooting or squaring is necessary) and we do netteadeal with the truncation
errors arising from the P&dapproximation.

The method of Theorerf.4 is summarized in the following algorithm. Sincg/? is
required, it is recommended to combine the algorithm witheshrod for computing the prin-
cipal pth root based on the Schur decomposition (for instance thbade of Smith 23] or
Guo and Higham§]). Once the Schur decomposition dfis known, no more Schur decom-
positions need to be evaluated in the algorithm.

ALGORITHM 3.5. Let A € C™*™ with no eigenvalue on the closed negative real axis

and letay, and 3;, be given as in%.6). Assume in addition that the matricEsand7'/? in
the decompositiom!/? = UT/PU*, with U unitary andT" upper triangular, are known.
This algorithm computes the &het derivative. .1/, (4, E).

1. SetB :=TY? andE = U*EU;

2. ComputeB := BP~1! by solving the triangular matrix equatioBX = T’

3. FindY in the Sylvester equatioRY + Y B = E;

4. SetY,_1:=Y;

5. fork=p—1,...,2,1,findYj;_, in the Sylvester equation

B B
BYk_l — Yk_lf = BYk - Yk*;
g Bk

6. L,1/»(A, E) =UYU* ; see @3.12 below.
Cost.(4p + 19/3)n?

To derive the above expression for estimating the cost obrgm 3.5, we have based the
flop counts on the tables given ifig, p. 336-337]. We note that the effective cost may be
higher than that estimate because the algorithm involvesptex arithmetic. Step is based
on the following identity involving the Fachet derivative and the Schur decomposition:

(3.12) Lyi»(A,E) = UL, (T,U*EU)U,

which can be easily derived fror2.Q) ; see also]2, Problem 3.2].

A drawback of Algorithn.5is that the number of Sylvester equations involved increase
with p which makes it quite expensive for large values of bo#mdp, especially whem is a
large prime number. However,jifis large but is composite, say= p1p2, then onlyp; + po
Sylvester equations are involved because

(3.13) Loo(AE) = Ly (A, E)AYP2 4 AVPL L0 (AVE)

see [L2, Th. 3.3]. At first glance it seems that fprlarge, finding(m, m) diagonal Paé
approximants tas(x), with m < p, would avoid the use of a large number of Sylvester
equations. It happens that this strategy does not work lsecBaé approximants t@(x)

of some orders may not exist or may coincide. This phenomeeems to be typical for
Pack approximants to rational functions, as analyzed in détedughout 2, Ch. 2]. See in
particular the so-called Gragg example on page 13 and its Rédde on page 23. By virtue
of [2, Th. 2.2], we also note that, for &llm > p — 1, Pad approximants tg(x) of order

(¢, m) coincide withg(x).
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Algorithm 3.5is also suitable for real matrices, though it involves caerprithmetic
because they, andg; are not real. A possible strategy to overcome this probletm verite
¢(x) in (3.4) as a product of rational functions involving real quadrgtolynomials in the
numerator and in the denominator. This holds onlyf@dd, which is the case that matters
by virtue of 3.13. Thus, assuming thatis odd, we can rearrange the factors 3n5{ and
write ¢(x) as

_ a% —1 a:—l -1 a(pi)/z -1 a(pf1>/2 -1
m 1 i ey Bora T
1 p—1 (p—1)/2 (p+1)/2
_ (xz — (it ap1)r+ 1> (1’2 — (@12 +apin2)T + 1)
22— (B1+Bp-1)z+1)  \ 22— (Byp-1)2+Bpry)z+1/)

Proceeding as before, some calculation enables us to denttiat computind.,» (A4, F) is
equivalent to solvingp — 1)/2 recursive Sylvester equations of the form

(314) XkA27(ﬂk+ﬂp_k)AXkA+A2Xk = Xk_lAz7(ak+ap_k)AXk_1A+A2Xk_1,

with & = 1,...,(p — 1)/2. Sinceay + ap—j and B + 5, are real, the problem of
computingL..» (A, E') can be reduced to solvirig — 1) /2 real quadratic Sylvester equations.
By reversing the procedure, a similar conclusion can be drfawthe Féchet derivative of
the matrixpth root. This is a topic that needs further research becaus@ot clear how to
solve efficiently an equation of the forr.(4).

We end this section by noting that Algorithi5 with minor changes is appropriate for
solving a generalized Sylvester equation of the form

p—1
> BrlIXB =,

j=0
with B having eigenvalues satisfyingr /p < arg(\) < =/p andC € C**™ ; see p].

4. Perturbation analysis. We have seen that the computation of thédfret derivative
involves a sequence @p — 1) Sylvester equations of the form

BXj 1 — Xk—lE = BXy — XkE7
ag Bk
where B, «ay, §; are as in Theoren3.4. The right-hand side of this equation is known
and we need to solve the equation in order to fiig ;. Since X results from solving
the previous Sylvester equation, it may be affected by aor ¢hiat propagates through the
Sylvester cascade. We would like to know how this error &ffébe solutionX, ;. To
simplify the notation, we work instead with the equation

(4.1) Bx-x2 :BY—YE,
ag Bk
where we assume thatis known whileX has to be found. Consider the following perturbed
version of equation4.1):
(B+AB)(X + AX) — (X + AX) (aik(B + AB)) -

= (B+AB)(Y + AY) — (Y + AY) (i(B + AB)) .
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Ignoring second order terms, we obtain

BAX — “AX B = AB(Y - X) + <1X - 1Y> AB+BAY — AV B.
g Qg B Br

Applying thevec operator and using its properties,
(19 B~ 55 1) vec(AX) =

:[[®<a%—ﬁ—i)—(X—Y)T®L I®B—g—:®[} {veC(AB) ]7

vec(AY)

which can be written in the form

a1 vec(AB)
VeC(AX) =M [Nl N2] |: VEC(AY) s
where
T
g
X Y
N=Ie|——=—)-X-YT®I,
! (Oék ﬂk) ( )
T
B
Since

vee(AX) = M7 [|Blle N1 ||Vl N | { vec(AB)/|| Bl ] |

vec(AY)/|[Y ||

it follows that

(42) |AX]p < V2| M BlR N ||Y||FN2]H2max{”AB”F ”AYF}7

I1Bllr " YFr
and therefore

[AX]|r
X1

(4.3) <V260,

where

5 max {JABle 1Y)
1Bls " Wir |

|pr= (1Bl 1¥IEN:] |,
- IX1r '

Inequality @.3) gives a bound for the relative error of the solutisirof the Sylvester equation
(4.1) in terms of the relative errors affecting andY. According to [L1, Sec. 4], where a
similar perturbation analysis was performed, this bounshirp (to first order i) and ®
can be seen as the condition number for the Sylvester equ@tit). Thus, if® is small an
accurate result is expected after solving the Sylvesterackes
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To obtain a better understanding into how the error propagttrough the Sylvester
equations, we simplify slightly the problem by assumingt tBais known exactly, that is,
AB = 0. Then @.2) becomes

IAX||p < [MTIN|, IAY | p,

with
BT BT
(4.4) M=I®B——®®I, N=I1®B—-—®I,
Qg Bk
and @.3) simplifies to
[AX|F [AY|[F
(4.5) <o :
1 X1l e 1Yle
with
AN Y
X117

We have computed the value &fin (4.5) for several matrice® with eigenvalues satisfying
(1.1D) and have observed that for several examglas small (more precisely, < & < 2),
but it can be large (see SectiGh To understand why, let us assume in addition thas
normal. Then the matrice® andN given in @.4) are also normal. Moreover, they commute
and can be written as

The productd/ ~' N is also normal and hence

IM~IN|> = Al

max
Aeo(M—1N)
Since the eigenvalues af —' N are of the form

BrXi — Aj
ak:)\'r - )\s’

for some\;, A\;, A, A\s € o(B), we can see that if the eigenvalues®fare close to zero
or have arguments close ter /p, then|| A/ ~' N ||, may be large, and then a large condition
numberd is expected.

5. Numerical experiments. Algorithm 3.5 has been implemented in MATLAB, with
unit roundoffu ~ 1.1 x 10716, For the numerical experiments we first consider the folhgwi
8 pairs(A, E) of real and complex matrices combined wijth= 5, p = 19 andp = 53:

e Pair 1: A =hilb(8), E =rand(8); A is an8 x 8 Hilbert matrix which is almost
singular and¥ is a randomized matrix of the same size, with uniformly distred
pseudorandom entries on the open intef9al;

e Pair 2: A = gallery('frank’,8), E = rand(8); A is a Frank8 x 8 matrix taken
from the MATLAB gallery which is very ill conditioned;
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e Pair 3:A = gallery(3), E = rand(3); A is an3 x 3 badly conditioned matrix;
e Pair4: A = SQS~!, where

e® 0 0 0 12 3 4
0 et 0 0 g— 5 6 7 8
@= 0 0 cos(3.14) —sin(3.14) |’ 0 0 9 10|’

0 0 sin(3.14) cos(3.14) 0 0 11 12

andE = rand(4); This matrix has eigenvalues very close to the negativearal
and was taken fromilg, Ex. 6];

e Pairs 5 t0 8. A = expm(2 * randn(10) + 2 * i * randn(10)), E = rand(10)+
i * rand(10); Both A andE are complex with siz&0 x 10.

To study the quality of the computedé@het derivativel, ~ L./, (A, E), we evaluated the

relative residual of the? x n? linear system that results from applying the: operator to
the generalized Sylvester equati@n?):

| M vec(L) — vec(E)| r
5.1 AE) = . .
& A ) = el vee D)l e

The results are displayed in Figutel, where we can observe that the computeéchet
derivative is very satisfactory in the sense th@g, E') < u for each pair and eaghconsid-
ered. The Sylvester equations in Algoritt# have been solved by the Bartels and Stewart
method B], whose codes are available in the Matrix Function Toolbdy.[ For the compu-

tation of the principal matrixth root 7'/ in step 1, we have modified the Schur-Newton
Algorithm 3.3 in [8] in order to run it with complex arithmetic.

x 10
3 T
— % —p=5
£ - © —p=19
a5l n — © —p=53]]
I
I\
el
2r WY
ot
= Iy \\\‘ JdN
S I v N\
S 15 Iy \\“ h T
3 Vo
= i/ \\ ) N
I Vo
1 0 \ o A g
1 \ Y P N
I \ // /%\\\\\ ~
I 5" e~ 7
0.5 I - ~ 1
I
L4
JLo==¢="" ‘ ‘ ‘ ‘
1 2 3 4 5 6 7 8
pair

Fic. 5.1.Values ofp(A, E) for the8 pairs of matriceg A, E') combined with the valugs= 5,19, 53.
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Given an algorithm for computing a matrix functigh the Féchet derivative can be
obtained using the following relationa1, Thm. 2.1], [L2, Eq. (3.16)])

o AL

by reading off thg(1, 2) block of the matrix in the right-hand side in a single invaécatof
any algorithm that computes Formula 6.2) has the advantage of providing a very simple
algorithm for the Fechet derivative. A drawback ob(2) is that it involves argn x 2n
matrix, and then the cost of evaluatidg (A, E) is about8 times the cost off (A), unless
the particular block structure is exploited. Moreover, ainfed out in [L, Sec. 6], this
formula is not suitable to be combined with techniques widsled for some matrix functions
such as scaling and squaring the matrix exponential, iev&aling and squaring the matrix
logarithm, and square rooting and squaring the mattixoot. The main reason is that when
[IE|l > || A]|l, algorithms based orb(2) may require the computation of unnecessary scalings
(respectively, square rootings) to bring the matrix in thi-hand side close to zero (resp.,
close to the identity). This unpleasant situation has beleinessed in many papers ; see for
instance 16] and the references therein. Sintg(A,aF) = aLf(A, E), an algorithm for
computingZ ;(A, E) should not be influenced by the norm Bf

We have carried out some numerical experiments Vith) (n order to compare it with
Algorithm 3.5. For comparison purposes, we have assumed that the compuidt Schur
decomposition and ongth root is included in AlgorithnB.5. For the computation of the
matrix pth root we have considered the algorithms of Sm#8, [Algorithm 4.3] and of Guo
and Higham §, Algorithm 3.3]. Both algorithms are based on the Schur dgmusition
and are available in10)]. Due to the reasons mentioned above, we have not consittezed
algorithm of Higham and LinJ3] which involves square rooting and squaring.

We first compare the cost. Since the Schur decomposition af am matrix involves
about25n? flops, much work can be saved if the block structure of theimitthe left-hand
side of 6.2) is respected:

(5.3) {A E}:[U oHT U*EUHU o}*

' 0 A 0 U 0 T 0o U |’
whereA = UTU*, with T upper triangular an@ unitary. Using §.3), the Schur decompo-
sition of the2n x 2n matrix in (5.2) can be computed througi9n? flops, instead o200n?
if computed directly. Combining the algorithms of Smith aBdo and Higham withX.3)
we can say that these algorithms in general requires sfifgatler flops than Algorithn3.5.
However, this does not mean that algorithms of Smith and GuoHigham are faster than
Algorithm 3.5. Indeed, in tests carried out witha prime number betweenand100 and sev-
eral matrices with sizel) < n < 100 we have measured the CPU times (in seconds) of the
three algorithms and noticed that Algoritt8rbis the fastest. The differences become more
significative when we fiy and increase. Table5.1displays the average CPU times required
for computing the Fechet derivative. 1/, (A, E), for 4 pairs of matriceg A, E) (pairs9 to
12) obtained usingt = rand(n)"2 andE = randn(n), for n = 10, 50,80, 100 andp = 19.
It is clear that the algorithm of Smith is much slower thandtieers and that Algorithr3.5
performs much faster than the algorithm of Guo and Higharne @the reasons for this may
be related with storage. While AlgorithEn5requires the storage afx n matrices, the other
algorithms deal witt2n x 2n matrices that may require larger storage. However, we\aelie

that using formulaXg.2) to derive new algorithms for the &chet derivative by exploiting the
block structure may be a promising topic for further reskaktfe recall that some work has
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Pair size Algorithn8.5  Smith ~ Guo and Higham

9 10 x 10 0.0059 0.3897 0.0255

10 50 x 50 0.1027 9.5072 0.9854

11 80 x 80 0.3682 22.1088 2.9212

12 100 x 100 0.6439 39.2173 4.1325
TABLE 5.1

CPU times (in seconds) required by Algoritti® and algorithms of Smith and Guo and Higham, with- 19.

already been done for the&ahet derivative of the matrix square rott Sec. 2] and for the
matrix sector function8, Thm. 5.3], though implementation issues have not beensssd.

We have also analysed the residu&ls) produced by the two algorithms based &1
with several pairs of matrices, including pairs 1 to 12 nmmed above. Although in some
tests Algorithm3.5 produced slightly smaller residuals, the residuals wergeimeral of the
same order.

We saw above that the Sylvester equations in the sequaric® (ay be ill conditioned
when the eigenvalues of are close to the negative real axis. To illustrate this phesron,
we have considered the matrik = SQ(0)S~!, where

ez 0 0 0
0 e 2 0 0

@) = 0 0 cos(f) —sin(d) |’
0 0 sin(d) cos(d)

S = randn(4),

andE = rand(4). Figure5.2 displays the values of the condition numliegiven by @.3)

for each of the equations involved in the Sylvester sequéndd), for p = 19. There are
exactly19 Sylvester equations involved in this sequence. Both gcspinse a linear scale in
thez axis and a log-scale in theaxis. The plot in the left-hand side concerns to the value
of § = 3.14 in A and the one in the right-hand sidefte= /2. As expected, in the extreme
case ofA having eigenvalues very close to the negative real akis (3.14) the Sylvester
equations may be badly conditioned. However, this does ajppén with other values of

as illustrated in the right-hand side picture.

6. Conclusions. The Féchet derivative is the key to understand the effects olipert
bations of first order in primary matrix functions. For thetpaular case of the matrixth
root we have derived an effective method for the computaifats Frechet derivative, which
involves O(pn?) operations and is based on the solution of a certain sequériggvester
equations. Both theory and computation of Sylvester eqoatare well understood. Numer-
ical experiments we have carried out showed that the praposghod is faster than methods
based on%.2) and has relative residuals close to the unit roundoff. Ssiges that need
further research, as for instance the restriction of Aliponi 3.5 to the real case involving
only real arithmetic, were pointed out.
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Fic. 5.2. The condition numbe® in (4.3) of each equation involved in the Sylvester sequence
(3.11), withp = 19.
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