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CONVERGENCE ANALYSIS OF MINIMIZATION-BASED NOISE LEVEL-FRE E
PARAMETER CHOICE RULES FOR LINEAR ILL-POSED PROBLEMS *

STEFAN KINDERMANNT

Abstract. Minimization-based noise level-free parameter choice rideshe selection of the regularization
parameter in linear ill-posed problems are studied. Abstantergence results for spectral filter regularization
operators using a qualitative condition on the (deternig)istata noise are proven. Furthermore, under source
conditions on the exact solution, suboptimal convergentssrand, under certain additional regularity conditions,
optimal order convergence rates are shown. The abstradtsresa examined in more detail for several known
parameter choice rules: the quasi-optimality rules (bothisoous and discrete) and the Hanke-Raus-rules, together
with some specific regularization methods: Tikhonov regaédion, Landweber iteration, and spectral cutoff.
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1. Introduction. The proper choice of the regularization parameter in regaton
methods is one of the most crucial parts of solving ill-popeablems. Several well-known
methods for this task are known. The standard approach éddotghe regularization param-
eter depending on the noise level via a priori or a posterigdes, usually leading to optimal
order convergence rates; see, e §., [However, these rules need the knowledge (or at least a
good guess) of the norm of the noise in the data (noise lewethany cases, the information
on the noise level is not available; thus, from a practicahpaf view, methods which do not
make use of the noise level (so calledise level-freer heuristic parameter choice rules
seem to be most desirable. On the other hand, it has been kioovanlong time that for
ill-posed problems a parameter choice rule that does natraepn the noise level cannot
converge in a worst case scenarld. [Here, a regularization method converges in the worst
case if the regularized solution converges to the true isoldor all noisy dataas the noise
level tends td). The negative result ofl], which sometimes is referred to as tRakushinskii
vetq is a strong argument against noise level-free parametécehules. Nevertheless, such
parameter choice rules are used quite frequently in aggicand simulation, often yielding
reasonable results leaving an unsettling discrepancyesettheory and practice.

Recently, B, 14, 20], a detailed analysis of the quasi-optimality rule, whishai well-
known example of a noise level-free rule, revealed thatitkesipe results of Bakushinskii, a
convergence analysis is possible if ondgtricted noises allowed. An appropriate formula-
tion of the restriction on the noise (the noise conditiorg tentral part of this theory, and was
first established in1[4]. This result can explain the success of noise level-fréesyiecause
in many practical situation, the data noise does satisfytiige condition and hence, the reg-
ularization method converges, even though, by the Bakakhiveto, one can always find (or
construct) cases in which convergence fails. The analgside driven further such that, un-
der the noise condition and smoothness conditions, (inrgearly suboptimal) convergence
rates can be established; s&ég,[20].

In this paper, we extend the results ©fl] 20] to general minimization-based noise level-
free parameter choice rules and general spectral filtezebgegyularization operators. In this
situation, the regularization parameter is selected bymiking a functional depending on
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the regularization parameter and the given data, but ndi®ndise level. Let us mention that
an important source of ideas for the proofs for this artis|R0], where the quasi-optimality
rule was analyzed for general linear regularization methdd this paper, we establish the
convergence and convergence rate resultd@ffpr other parameter choice rules. As particu-
lar examples, we study in detail the Hanke-Raus rules, thsiepptimality rules (continuous
and discrete) and to a lesser extent the L-curve method.

The paper is organized as follows. In Sectiynve state some basic definitions and con-
ditions for general spectral filter-based regularizatiperators and define the minimization-
based parameter choice rules in an abstract setting unoher standard assumptions, which
we impose on the corresponding functionals.

In Section3, we prove in a general framework (i.e., for general rega#idn opera-
tors and general parameter choice functionals) conveegand convergence rates for these
methods.

In Sectiord, we define some specific examples of noise level-free pasarlevice rules
and apply the convergence result of Sectido these cases. The conditions there are stated
for general spectral filter-based regularizations.

In Section5, we verify these conditions for some prototypical reguation methods,
namely Tikhonov regularization, Landweber iteration apdcdral cutoff in connection with
the above mentioned parameter choice rules. Furthermoihjs section, we explain the
drawback of the L-curve method.

Finally, in Section6, we review the results and interpret the stated conditionsm
informal level.

2. Noise level-free parameter choice rulesWe consider linear ill-posed equations in
Hilbert spaces,

Az =y,

whereA : X — Y is an operator between Hilbert spacésy’, with = the unknown solution
andy the given data. Such equations can be approximately solvezblarization operators.
In the following, we study linear spectral filter-based Heguation operators. Suppose that
we are given a family of regularization operators

R,:Y — X, QGMC(0,0C(]},
with M being a set of possible regularization parameters such that
(2.1) M = M u {0},

where M denotes the closure df/. In particular, by this condition) is a limit point of
M. We consider regularization operators defined by specttat functions that satisfy the
general conditions of a regularization methé§l More precisely, we impose the following:
DEFINITION 2.1. Let M satisfy(2.1). A spectral filter is a family of piecewise continuous
functionsg,, : [0, || 4]|?] — R, a € M satisfying
e there exists a constanit, and for all = > 0 a constani - with

(2.2) sup  sup  |Aga(A)] < Cy,
acM AE[O,[|A]?]
(2.3) sup sup  [ga(N)] < G,

aeMN[r,a0] AE[0,]|A]]?]

o forall A € (0, ]| A|]?]

. 1
Mlslgl—m 9a(A) = A
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For a family of spectral filter functions we define the residuactions
Ta(A) =1 = Aga(N).

In all of the following we consider only regularization optars defined by a spectral filter,
i.e,

Ray:/ga()\)dEk A*y.

Using the notation oftf], £\ denotes a spectral family of* A, a spectral family oA A* will
be denoted by, and@ denotes the orthogonal projector oitA).

A convergence rate analysis will be derived for monotonetspkfilters.

DEFINITION 2.2. We say that a functiog, is a monotone spectral filter if for all
A€ (0,147

(2.4) M > a — |g,()\)] is monotonically decreasing,

(2.5) M > a+— |ry ()| is monotonically increasing

An index functior[19] is a functiong : RT — R that is continuous and strictly monotoni-
cally increasing and satisfieg0) = 0. For the convergence rate analysis we will need some

further conditions on the fiItfr functions.
e There is a constartt',. such that

C.
(2.6) 9N < —5 VO <A< AR

e Thereis a constarit< n < || A||? such that for alb < v < 1 there exists a constant
(GF)S such that

C
(2.7) 9aN)| = =22 VO<A<ya 0<ya<y, aeb.

e Thereis a constarit < n < || A||? such that for alb < v < 1 there exists a constant
(), -, such that

Qh,'y 2
(28)  lgaV)| 2 == Vya<A<[A]® 0<qa<n, aeM.

e There is a constait< n < || A]|? such that for alD < v < 1 there exists a constant
D, such that

(2.9) ra(M[>D;, YO<A<ya 0<ya<n, ae€M.

Similar conditions were used i2()]. We also need the concept of qualification; see, e&}., [
and the generalization iri§].

DEFINITION 2.3. We say that an index functignhas a qualification (for the spectral
filter g,,) if there is a constanD,, such that

(2.10) ra(Mlp(N) < Dyp(e)  Va € M, € (0, ]| Al%].

We say thajig € RT is a qualification index ifp(\) = A0 is a qualification and there is a
constant) < n < ||A||? such that for all0 < v < 1 there exists a constati?;, ., ~ such
that

(211)  raN)A° > Ding gt Yya <A< AP 0<ya<n, a€ M.
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Note that the notion of qualification is sometimes used diffily. Many authors simply refer
to the qualification index, in Definition 2.3 as the qualification. In this paper, the qualifi-
cation is an index function as id ], and to distinguish it from the classical qualificatipn
we refer to this number as the qualification index.

For a continuous regularization method, the regularizatiarameter is usually chosen
in some interval

M = MC = (0,0éo),
while for a discrete regularization method the regulaiaraparameter (usually the inverse of
an iteration index) is in a discrete set
o0

M=DM,; = U{O‘i} «; strictly monotonically decreasing withm «; = 0.

) i—00
=1

Let us give some examples of regularization operators:
e Tikhonov regularization), = (0, ag)

1 «
= O{A: 5
s T

Ja ()‘)

e Landweber iteration|A|| < 1, My = {1,k € N}, a = 1,

k—

N=> 0-N, r

=0

[u

9a(A) =g () =1 -=NF

Y
el

e spectral cutoff:M,. = (0, o) (continuous) oM = M, = {o;} (truncated singular
value decomposition), where tlag are the singular values of the compact operator
A.

O >l

ga()\){ Az Ta(/\){o A > a,

A< a, 1 A <a.

Note that any continuous regularization method can be malilceete one by restricting the
set of allowed regularization parameters to a discrete set.

All these regularization operators are defined by monotpgeetsal filter functions. More-
over, Tikhonov regularization and Landweber iterationis$a(2.6)—(2.9); spectral cutoff sat-
isfies @.6), (2.9), (2.9), while (2.7) does not hold; cf.ZQ].

Let us furthermore introduce some standard notation. Wedeilote byy € D(A") the
(unknown) exact data, and by = Ay the unknown exact solution. In practice, only a noisy
version ofy is known, which we denote hy;. For a giveny; we define the noise level

lys —ylly =6 y € D(AT)

in the usual way. As already mentioned, for noise level-fraemeter choice rules, knowl-
edge ofé is notused.

For the heuristic rules in this paper the regularizatiompeater is chosen as a minimizer
of a functionale — (v, ys). Let R, be a fixed family of regularization operators witt
as in £.1). We consider rules using certain positive functionalghat satisfy the following
conditions.
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ASSUMPTIONZ2.4.
Al. v is nonnegative:

Y:MxY —RY.
A2. Foralla € M,y €Y, is symmetric:
Y(a, —y) = ¥(a, ).
A3. Foranya € M,
Y(a,.) Y = RE

is continuous.
Ad. Foranyz €Y,

V(,2): M —R$

is lower semicontinuous.
A5. If z € D(AT), then

lim ¢ (a, z) = 0.
a—0

It will be shown that most of the well-known minimizationd® noise level-free param-
eter choice rules correspond to a functionahat satisfies these conditions.

We now state a class of parameter choice rules: Given a nadti) that satisfies As-
sumption2.4, we define a regularization paramet€r(y;) as

(2.12)

. argmin, ¥ (o, y5)  if aminimum in M exists,
olws) = 0 else

In the case that there are multiple global minima, we simglea an arbitrary one; the
convergence properties will not depend on the specific eho@bviously, we do not need
any information on the noise level to choas#y;), but only the given noisy datg.

It is convenient to extend the definition ofto o = 0:

Pla,ys) : M xY — [0, 0]
(2.13) P, ys) = {I/;Ifiﬁilo O v8) ::: z : 8
Note that a realization of the parameter chaicéys) can also be written as
o (y5) = max{argmin, .57 (e, ys)}.

3. Convergence and convergence rated\e analyze the convergence of spectral filter-
based regularization methods with the parameter choies defined in4.12). At first, we
study conditions that yield convergence of such methodsiéiénd the reader thatdenotes
the noise levely;s are the given noisy data, agddenotes the exact data.
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3.1. Abstract convergence result.The main result in this subsection is Theorarfi
ProPOSITION3.1. Let Assumptio2.4hold, and let the parameter* (ys) be defined by
(2.12. Then

(}ii%@(a*(ya)’ ys) = 0.

Proof. Lety € D(AT) be fixed andys, be a sequence of noisy data such that their noise
levels satisfyy, — 0. By definition, for arbitraryn € M fixed, we have

E(O‘*(y(S)a y5k) < w(OL, ytsk)'

By continuity (A3) we have thatims, . (o, ys,) = (e, y); hence for alle € M,

lign s%p@(a*(ya), Ys,) < Yl y).

According to A5) the right-hand side in this inequality tendsitasa — 0; hence

0< liém i%f@(a*(ya),yak) < limsup ¢(a*(ys), ys,) <0,
k—

6 —0

which proves the proposition. O

In order to prove convergence, one has to impose additi@malitons. The first one is
a consistency condition that relat¢go the approximation error.

CONDITION 3.2 (Consistency).Let = € D(AT) be fixed. For alla € M, and all
sequencetuy,), € M, (z,)n € Y withlim,, o, o,, = a andlimy_. ., 2, — z it holds that

lim 9(, 2,) =0 = lim ||Ry, 2 — ATz|| = 0.

n—o0

Second, we need a noise condition, which is the most impopart in the convergence
theory of noise level-free parameter choice rules. Thiglitm has to take into account that
a uniform convergence proof for noise level-free paramgteice rules is impossible.

ConNDITION 3.3 (Noise condition)There exists a sét’, C Y such that for allz,, € N,
with lim,, o 2, = 2

(3.1) (0, 2,) > nggfwa,znx
and for all o,, € M withlim,, o o, =0

(3.2) lim ¥(an,2,) =0= lim ||R4, 2y — Ra, 2

n—oo

| — 0.

We notice that$.1) can only hold if AV, N D(A") = () according to A5) (if we exclude
the degenerate cagg«,z) = 0, Vo € M). The noise condition is a central part of the
analysis in this paper. Let us again emphasize the differémn the conventional worst
case convergence analysis: there, convergence is andlyzseghting the following error for
some parameter choice rulé (ys)

lim [ Ra- (y5)96 — Aly|| Vys € Y with ||lys — y| <,
while in this paper we only consider the error with a noisérietton

%i_r}% | R (ys)¥s — ATyl Vys € Y with [lys — y|| < § andy; € N,
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While the first limit (worst case) cannot tend@dor heuristic parameter choice rules by the
Bakushinskii veto, we will show that the second one (redaoise case) does.

Before we come to the convergence theorem, let us discuss sofficient conditions
for Condition3.2

LEMMA 3.4. Letv) satisfy AssumptioB.4, and for a neighborhood (z) of z € D(A')
let v be lower semicontinuous oW N [r, ag) x U(z), for all 7 > 0. If additionally for all
«a € M it holds that

(3.3) Y(a, 2) >0,

then ConditiorB.2is satisfied forz. Moreover, in this casém;_.o a*(ys) = 0.
Proof. With the notation as in ConditioB.2, it follows from the lower semicontinuity of
1 that

0<9Y(a,2) < ligriighb(am Zn),
which contradicts §.3). Hence, the antecedent in Assumptidd is always false, which
makes the implication always true. Now suppose that_., a*(ys) # 0. Then we can
find a subsequence of (ys) such thatv*(ys5,) — « # 0. With the same argument of lower
semicontinuity and Propositidh1it follows thati(«, y) = 0, which is again a contradiction
to (3.3), hencep*(ys) — 0. a

The positivity ofy in (3.3) is not always satisfied. In such situations the followingihea
is useful.

LEMMA 3.5. Let satisfy AssumptioB.4, and for a neighborhood (z) of z € D(AT)
let ) be lower semicontinuous aW N [, o) x U(z), for all 7 > 0. Forall X € (0, ||A]|?],
let the functiomv — r,(\) be upper semicontinuous at any poine M. If it holds that at
z € D(A") andforalla € M

(3.4) Yo, 2) =0 = Roz = Alz,

then Conditior3.2is satisfied.

Proof. With the notation of Conditiol3.2 and from lower semicontinuity we find as in
the proof of Lemma.4thaty («, z) = 0. From the assumptions on (1)), (3.4) and Fatou’s
lemma we get

limsup || Ra, z — Az|? = limsup/ 7o, (V)| 2dEN|| AT 2|2

Uy — Ay —

< /limsup e, (A)[2dEx | AT 2|2 < / V) PdEy | At 2|2 = [|Roz — AT2]2 = 0.

oy —o

Thus, we arrive alim,, ., || Ra, 2 — AT2||?> = 0 which validates ConditioB.2. d

We now come to the main convergence proof:

THEOREM 3.6 (Convergence theorem)et R, be a regularization operator defined by
a spectral filter, and let) satisfy AssumptioB.4. Let Condition3.2, Condition3.3hold and
for z = y = AxT lety; € N,. Thena*(y;) > 0 and

(3.5) R (ys)ys — Aty fors — 0.
Proof. With y = Az the following decomposition is standard

(3.6) R ys) Y6 — ATyl < | Ra(y5)¥5 — R (ws) Yl + || R i)y — ATy



ETNA
Kent State University
http://etna.math.kent.edu

240 S. KINDERMANN

Lety;, be a sequence of noisy data with noise leyel- 0 and Ieta*(y[;kj) be an arbitrary

subsequence af*(ys, ). Since this sequence is bounded, it has a converging subisegu
again denoted bw*(ys, ): lim; . a*(ys5, ) = «. We distinguish the cases = 0 and
a>0. ’ ’

First, assume that = 0. In this case, it follows from the general convergence théar
regularization method$] that

Jim || Rae g, yy = ATyl = 0.

From Propositior3.1 we obtain that@(a*(y(;kj),y(;kj) — 0. From @.1) it follows that
a*(ys,,) # 0, hencezZ(oz*(y(;kj ):ysr;) = (@™ (ys,, ), sk, )- BY (3.9, we conclude that

JILHC}O HRa*(yakj)yékj - Ra*(y(;kj)y” =0.

Thus, from 38.6) we obtain that$.5) holds for the subsequen(:Ra*(yék VYo, )j-
Now assume that > 0. Proposition3.1and Conditior3.2imply that

lim || Roe g5, yy = ATyl = 0.

J—0o0

Moreover, from 2.2), (2.3), it follows that for; sufficiently large and- sufficiently small
HR(x*(yakj)y&cj - Ra*(yékj)yH < V CgGTHy(skj - y” —0 asj— oo.

Together, we can conclude th&.%) holds for the subsequen@%a*(ydk )Ysi,,)i- I any
LS

case, we have shown that any subsequenck.of,,)ys has a subsequence converging to
ATy, thus, 8.5 must hold. O
We note that for Theorer®.6it is not necessary that satisfies A2) of Assumption2.4.

3.2. Abstract convergence ratesThe assumptions os1 in the previous section are not
enough to prove convergence rates. In this section, we stutlyergence rates for subadditive
functionalsy (i.e., functionals for which Conditio8.7 below is satisfied). Additionally, we
have to impose quantitative versions of ConditbbBand Conditior3.3.

A major simplification is obtained if we assume thiais subadditive:

CONDITION 3.7. There exists a constanrt, > 0, such that for all € M, z,e € Y,

(o, z+e) < ks (Y(a,2) +P(a,e)).

For subadditive and uniformly continuousthe following inequality suffices to satisfy Con-
dition 3.2
CONDITION 3.8. There exists an index functidnsuch that for alle € M, z € D(AT):

(3.7) |Raz — ATz|| < ® (1p(a, 2)).
LEMMA 3.9. Let satisfy AssumptioB.4, Condition3.7and suppose that for any> 0

(3.8) limow(mzk) =0 uniformly ine € M N [r,00).
Zp—

If » additionally satisfies ConditioB.8then Conditior8.2 holds for allz € D(AT).
Proof. In the situation of Conditio.2we have that

(I>71 (”Ranz - ATZ”) < w(ana Z) < Kg (U](O‘nazn) + ¢(a7u z— Zn)) .
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The first term on the right-hand side tend9tby the hypothesis in ConditioB.2 while the
second term tends by uniform continuity 8.8). From the properties of the index function,
this means thatR,,, = — ATz tends toD. O

A quantitative alternative to Conditidgh3is the following

CONDITION 3.10. There exists a set/ C Y with ' N D(A") = () and a constant
k; > O suchthatforallz, —z € N, a € M,

(3.9) Kil|Razn — Razl] < ¥(a, 2, — 2).

For subadditiveyy, Condition3.10is indeed sufficient for Conditio3.3 as the following
lemma shows:

LEMMA 3.11. Let satisfy Assumptioi.4 and let Condition3.7 and Condition3.10
hold. Then Conditior3.3 holds with\, = z + A. Moreover, in this case we have that

(3.10) lin}) Y(a,zy —2) = lin%) (o, zp) = 00.

Proof. From Condition3.7, (A5) and in the situation of Conditio8.3 it follows from
(3.9 that

1
| < — lim ¢(an, 2, — 2)

K] n—0o0

< 2 (Tim (e, ) + Tim (o, —2)) =0,
n—oo

K] \n—oo

0 < lim ||Ra,2n — Ra, 2
n—oo

which shows 8.2). To prove B.1), we observe that sincg, — z ¢ D(AT), it holds that
limy 0 ||Ra(zn — 2)|| = oo (cf. [6, Prop. 3.6]). With

Rl Ra(2n = 2)I| < ¢(@, 20 = 2) < ks ((a, 2n) + Pla, —2))

and (A5) we conclude that3.10 and consequenthd(1) holds. a

We note that the conditior3(9 was already used for the quasi-optimality rule 7. [
However, finding a specific s&f and a constant; such that8.9) can be verified is a difficult
task. Such estimates with specific skfsvere first established il for the quasi-optimality
rule. We will show in Sectior.1 that similar setsV" as in [L4] can also be used for other
parameter choice rules.

We now come to the main abstract convergence rate result:

THEOREM 3.12 (Convergence rate theorenhet g, be a monotone spectral filter (i.e.,
(2.4), (2.9 holds). Lety satisfy Assumptio.4, Condition3.7, Condition3.10and Con-
dition 3.8. Moreover, for anyz ¢ D(A") ande € M., let there exists a monotonically
increasing functiorp; . («)) and a monotonically decreasing functipn. («) such that

(3.11) (o, z) < ppala) Yae M,
(3.12) P(a,e) < ppe(a) Yae M.

If y5 € N,, then there exists a constafitsuch that
| Raeuoyv” = ATyl < inf {@ [ (p14(@) + 1.y ()]

(3.13) i
+ C(p1y(@) + pLy-us(@)) } -
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Proof. Let M > a > 0 be arbitrary but fixed. Fron2(4) it follows that the propagated
data errony — || R, (ys — )| is monotonically decreasing and that forgk D(AT) the ap-
proximation errorx — || R,y — ATy|| is monotonically increasing. Suppose that a*(ys).
Then, by monotonicity we have

1Rar(ys)y — ATyl < | Ray — ATy|| < @ ((a,y)) < @ (p1,4(a)) -

Moreover, Conditior8.10and Conditior3.7 imply

Ktl| Rox (ys) (s — 9)I| < (@™ (ys), ys — v) < ksb(a™(ys), ys) + w0 (™ (ys), —y)
< kb (@,ys) + k(0 (ys), —y) < K29(aQ,ys — y) + K20(Q,Y) + Kspry(a®(ys))
< (“g + HS)pT,y(@) + ""gpbyafy(d)'

Combining these bounds we obtain a constastch that

1Ras (ysyy° = Alyll < @ (p1,4(@) + C (p1.4(@) + P15 —4(@)) -

On the other hand, fok < o*(ys), we see that

1 _
| Rax(ys) (s — Il < [[Ralys — )|l < o Pl —y(@),

and
O (| Ro (v — AMy)l) < v(a*(ys),y)
< st( ( 0)7y y5)+’€91/}( ( )7y5)
< k(@™ (ys),y — ys) + sz(a Ys)
< k(@ (ys),y — ys) + K2Y(@, ys — y) + KIY(A, y)

S“iPTy(@)‘F(HE‘F“ )Plya ( )-

Thus, in this case, we obtain that

1 )
| Ra(y)y” — Alyll < @ (C (p1(@) + pys—y(a @) + - AR y(@).

In either case we have shows. (3. a
As a special case of the previous theorem we obtain ordenapéstimates:
THEOREM 3.13 (Optimal order).Let g, be a monotone spectral filter. Lét satisfy
Assumptior2.4 and Condition3.7. Moreover, for anyz € D(A") ande € N, let the
following inequalities hold with some positive constantsks, k3, k4

(3.14) #1||Raz — ATz|| <t9(a, 2)< K3||Raz — ATz|| Va € M,
(3.15) ko||Rae| <to(ar, €)< kal|Rael| Yo € M.

If ys € NV, then there exists a constafitsuch that
| Ba-(uoyy” = ATyl < C inf (| Bay — ATyl + [ Ray — 5)]]) -

This theorem gives an oracle type estimate, since the total @ the regularization is of the
order of the error for the best possible choice of the regaddon parameter.
If subadditivity does not hold we still can prove the folloiresult.
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THEOREM 3.14 (Convergence rate without subadditivityet g, be a monotone spec-
tral filter. Let1) satisfy Assumptio.4and suppose that for anyc D(A'") ande € N, there
exists a monotonically increasing functighn . («:), and a monotonically decreasing function
f1.e(a) and there exist an index functidnsuch that for allz,, — z € AV,

| Raz — ATZ” <@ (P, zn) + flzmz, (@),
(3.16) C||Razn — Raz| < ¥, z0) + f1.2(a).

Then there is a constant
| Ras oyt = ATyl < inf {® (e, 5) + F1.y-0a ()]
+ C (@ ys) + fr9(0)) + fryus(@) }.
Proof. As before, letv be arbitrary. Then itv*(ys) < @ we obtain the inequalities

[ Ra(ys)y — ATyl < |Ray — ATyl < @ (v(@, ys) + fly—ys (@),

and

[ Rox(ys)Ys — Rax(us)yll < (@ (ys),ys) + fry(a”(ys))
< 1/}(5‘7%5) + fT,y(a)~

In the casex < a*(ys) we find in a similar manner

1 B _
”Ra*(yg)y& - Ra*(ys)y” < ”Rdyé - R&yH < 5 (w(aayﬁ) + nyy(O‘)) )
and

R (ys)y — ATyl < @ (v( (ys), Ys) + fly—ys (" (Ys),y — s))
< (I>(w(0_‘ay6)+fl7y*y5(o_‘vy_y5))' o

If upper bounds o (v, y5) similar to 3.11), (3.12 and onf| ,_,, (), f1,, () can be
found, then convergence rates can be established.

We use the abstract results in this section to study soméfisgaamples of noise level-
free parameter choice rules in the next section.

4. Analysis of specific parameter choice rulesin this section we describe some well-
known parameter choice rules: since a parameter choicastileed by stating a specific
functional«, we will in the following always refer to this functional aset parameter choice
rule. Some well-known functionals are as follows:

e theHanke-Raus rulewith parameter € (0, o],

4.1) Yur-(0,ys) = \/i/|ra(>\)|2+idFA||stll2,

e thequasi-optimality rule

(4.2) Ygo(a, ys) = \//Ta()‘)2)‘ga(>‘)2dF>\”y5H27
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o for discrete regularization methods with a fixed sequefice: «;, 8; € My, the
discrete quasi-optimality rule

(4.3) Ypgo(i,ys) = \//(gai(/\) — 95, (A))2AdFx]ys|2,

¢ the(modified) L-curve methodith parametey;, > 0,

(44 burlonys) = ( / Agam“‘danyﬂf ¢ [razarsiiQusle

The Hanke-Raus rules were introducedid][with a slightly more general definition as here.
The parameter is fixed and usually (but not necessarily) chosen as thefopzdion indexug

of the method. The special choice= o yields a particular simple functional, since if A

is injective, Yy oo = ﬁ”A.’L‘a’g — ys| is nothing but the residual weighted With = .

The quasi-optimality rule® oo andy pgo are the oldest ones and were introduced by
Tikhonov and Glaskod3, 24] for Tikhonov regularization. In these papers, the rulesanke-
fined using the functionab(c, y5) = [la-= R.ys||, but for Tikhonov regularization this def-
inition is identical to the one given above. In fact, the fasfrihe functionak)go as in @.2),
which does not require the spectral filter to be differedéapoes back to Neubau&(]. The
rule (4.2) agrees with the classical quasi-optimality rule for Tikbg regularization, but it
should be noted that, e.g., for iterated Tikhonov reguédian it is different tOHO{%RayZSH.

The ruley)pgo can be understood as a discretizationygh. Again this rule goes back
to Tikhonov and Glasko23, 24] who useda; = ¢°, 3; = ¢'t! with ¢ < 1 for Tikhonov
regularization. With this sequence, it is not difficult tademstand)pgo as a discrete version
of the original quasi-optimality rule of Tikhonov and Glaskvhere the derivative is replaced
by a difference quotient on a logarithmic scalenofMoreover, it was shown ir2[j] that for
Landweber iteration, witly; = +, 8; = 5, ¥pgo coincides withygo. This justifies the
notion of discrete quasi-optimality rule. Further refexes on quasi-optimality rules can be
found in [2, 3].

The L-curve method was introduced by Lawson and Han&6hend further studied by
Hansen 12] and Hansen and O’LearyL B]. It was cast into the minimization forna(4) (and
generalized to the modified L-curve method) by Rega R2].

An overview of noise level-free parameter choice rules carfoboind in B, 10], and in
particular in R1]. Further rules not stated above are listed4f]] e.g., the generalized cross
validation P5] and the Brezinksi-Rodrigues-Seatzu ru. [ A numerical comparison of
some rules was preformed ih(], [21], and, recently, in4]. In [21] also efficient numerical
improvements are tested, some of which can be found as wdl)] 8.

We note that the functionals irt(1)—(4.3) have the formy (o, ys) = ||Says|| with an
appropriate operatd,, in particular, they satisfy the subadditivity Conditidry.

Let us look at AssumptioB.4 for the above mentioned rules.

PROPOSITION4. 1.

1. Letthe spectral filteg, be continuous o/ with respect tav. Then Assumptiod.4
is satisfied forvgo, ¥pgo, Yur-

2. Ifro(N) is lower semicontinuous, and if farc R+ U oo a positive numbet exists
such that

(4.5) the functionp(z) = = **+ < is a qualification.

Then AssumptioB.4is satisfied for) i -.
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Proof. The conditions £1)—(A3) are obvious. Ifg, () is continuous inn then so is
r«(\); from the Lebesgue dominated convergence theorem it feltaty (., ys) is continu-
ous, thus £4) holds. Ifr,, is merely lower semicontinuousi{) is a consequence of Fatou’s
lemma foryz r .. Concerning £5) we observe that it € D(AT),

vao(a,2 = [ ra(\PXgu(VAAEN AL

and the function, (\)?\2g,,(A\)? is uniformly bounded and tends @gpointwise, thus by the
dominated convergence theorem we obtain th&) folds forygo. In a similar way we can
show this fory,, .. Using @.5) for v r -, by the dominated convergence theorem we obtain

1A
(67

P (a,2) = / oV 2+ 2 dEy|AT2)? < D, / [ra()[<dEs | AT 2],

which implies A5). Forypgo we observe that
Yqo(a,2) < |Ra,z — Alz|? + || R 2 — AT2||.

Both terms tend t0 asc; — 0 8; — 0, thus @A5) holds forypgo as well. 0

It is easy to see that all the regularization methods meetiom Sectior? are continuous
except for spectral cutoff. In the continuous cadé, = M., its residual function is not
continuous but only lower semicontinuous so that the secasd in Propositios.1 applies.
Of course, since the rulégo is 0 for spectral cutoff, it is of no use here, even though
Assumption2.4 holds (but of course not the ConditioB and3.3).

Concerning Conditior.2 it is obvious that it holds fowgo, V.1, ¥ H R, - for any reg-
ularization for whichg,,, r., are continuous irv and satisfyg, (A)r.(A) # 0 for all A. If
98;(A) — ga,(A) # 0 for all A, then the same is true farpgo. All this can be shown by
Lemma3.4, which covers already a majority of regularization methagsept Landweber
iteration when| A|| = 1 and spectral cutoff. However, these cases are settled bynaghb.

PrRopPoOSITION4.2. For Tikhonov regularization and Landweber iteration, Asgu
tion 2.4and ConditiorB.2are satisfied foix r - (for all 7 € (0, o)), Yo, ¥pgo, Y. For
spectral cutoff, Assumptich4and ConditiorB3.2are satisfied for i, (for all 7 € (0, o)),
and fori,, 1.

Proof. We notice thay,, for Tikhonov regularization, Landweber iteration and gpec
cutoff satisfies one of the conditions in Propositibf, so that Assumptio.4 holds in all
cases. Moreover, ifify # 0, then for Tikhonov regularization and Landweber iteration
with ||A|| < 1 for all functionals in the proposition the positivity af, (3.3) holds, thus
Lemma3.4 yields the result in this case. §y = 0 or |A|| = 1 for Landweber iteration,
and in the case of spectral cutoff with; r -, Lemma3.5can be applied, where&(4) can be
shown elementary. 0O

We note that for spectral cutoff, Conditidh2 is never satisfied fot)go and usually
(without restrictive condition oniy) not satisfied for)pgo.

4.1. Convergence analysisWe have established all ingredients for the abstract cenver
gence theorem except Conditi@3. Its verification is at the heart of a convergence proof
and turns out to be the most difficult part.

In this section we restrict ourselves to subadditive fuordis, i.e., tapr -, including
the caser = oo, andygo, Ypgo- By the triangle inequality it is obvious that

LEMMA 4.3.¢ g, for 7 € (0,00, Yoo (o, ¥s), ¥pgo (e, ys) satisfy ConditiorB.7.

In view of Lemma3.11, we can focus on Conditio® 10and @3.9) to verify Condition3.3.

A condition on the noise such th&.f) holds was stated inLf] for (iterated) Tikhonov and
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the quasi-optimality rule. This has been generalized teratbgularizations methods i&()].

We will show that similar conditions are useful for othergaeter choice rules as well.
DEFINITION 4.4. For p > 1, t1, v > 0 fixed, we define the set of restricted noisy data

N, as

N, := {e € Y | such that(4.6) holds},

where
e} t

(4.6) tp/ A HdFy el < u/ NTLARy el YO <t <t.
t 0

It is elementary to see that fpi < p,, the inclusionV,,, C N, is valid. Using the sel,,
we can establish3(9) for some of the parameter choice rules.
PROPOSITION4.5. Let g, be a spectral filter.
e Let(2.9), (2.6) hold and let there exists , v such thatQ(ys — y) € N;. Then(3.9
is satisfied forny g g, for anyr € (0, oo].
e Let(2.9), (2.7) hold and let there exists, v such thatys — y € N>. Then(3.9) is
satisfied for)go.
e Let(2.9), (2.7) hold and let there exists, v such thaty — y; € No. If additionally
a constan) < n < ||A]| exist, such that for ald < + < 1 there exists a constant
Cpoo,,~ > 0with

(47) ‘gﬁl(/\) ~ Yo, ()‘)| 2 QDQO,[,'ngOéi(A)‘ V0 < A < Y, 0 < o < 1,

then(3.9) is satisfied for)pgo.
Proof. Denote byC' a generic constant and fix < 1 such thatyae < min{#,¢;}, for
all « € M. Here,n is always understood as the minimum of theuch that the imposed
conditions in .6)—(2.9) and @.7) hold. Then,

1 [«
vins oy~ w5 Ze9 Cyp [ dRIQW o)
0

1 o0
209 C | TARQW —us)I* 22 C | Aga(N)*dFxlly — us]*.

Yo Yo

Furthermore, we obtain

Yo Yo
/ Ma(N2dEly - vsl2 <@ C / 90V IQ — a) 12
0 0
’ya

1 /e 1 1
<26 CE/O dF\|Q(y — ys)1* <9 Ca/o ro (N2 dF[|Qy — vs)||>-

Since||Ray — Rays||? = [;° Aga(N)2dF)|ly—ys||* we have shown the result for thig; . ..
Forvygo we observe that

Yo 1 Yo
Vool y —ys) >@9 0/0 Aga (N2 dFxly — ysl* =@ C?/o MdF) |y — s |?

1 o0
2@o C | ARy —usll* Zea C | Aga(N)?dRAly — ysl*.
Yo Yo

On the other hand, we get

e Yo
/ AoV dBy — usl1? <eo C / Aga (N 2ra (VN 2AE [y — 512,
0 0
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which shows the result fapgo. Finally, for¢poo we can estimate

Y
ooy — ) 2an C / Ao (\)2dEly — w32

1 e <1

>2.9 C?/ MFy |y — ys||> >@g C XdFA”y — ys]?
1 0 Y&

>3 C [ Aga,(N)*dFally — ys]|°.
vy

As before, we get

Y Yo
/ Agas () dExly — sl <@ C/ Mgg:(N) = ga; (V) ?dErly —ysl®. DO
0 0

This result implies the convergence of the mentioned pa@mboice rules. Concerning
(4.7) it will be shown below that if there is@ < 1 such that

then @.7) holds for the (discrete) Tikhonov regularization and fandweber iteration. This
gives the convergence result for the example regularizatiethods in this paper.

THEOREM 4.6. Letys — y € Ns, and forypgo let (4.8) hold. Then the parameter
choicesyqo, ¥pgo, Y r,~ converge for Tikhonov regularization and Landweber itenat
Letys — y € N, then the parameter choice withy r » converges for Tikhonov regulariza-
tion, Landweber iteration, and spectral cutoff.

Proof. The conditionsZ.9), (2.6) and @.7) hold for Tikhonov regularization and Landwe-
ber iteration. For spectral cutoff2 ) and @.9) hold. Altogether, convergence follows from
Propositionst.2, 4.5and TheorenB.6. It remains to prove that(7) is implied by @.8) for
Tikhonov regularization and Landweber iteration. For Tkbv regularization, inequality
(4.7 holds for\ € [0,y if i — B; > Cpgo,~(yai + Bi) is satisfied. Condition4(8)
suffices for this inequality witl' o ; , = V%g For Landweber iteration, the monotonicity

1
in A of the left hand side in4.7) yields for A € [0, yay]

L
o

1 1
91 =92 () 2 95 (a0) =~ g1 () = ~ = (1= 70)) ™ — (1 =700 % )
>

> (19005 = (1= 0 ™)

= ((a=ra0™) = (@-na)) 7).

Taken = 1, so that) < o, implies (1 — ya;) 7 € [, 1], which yields the estimate

1 7 1 1
A) — A) > = i Y —gxa) | —>C—
91N =gl Lq(éﬁflé](x x4)> o 2o
with a positive constant’. With (2.6) we arrive at 4.7). a

For the quasi-optimality rule, this theorem and the presipuopositions have been
shown in 0] and for (iterated) Tikhonov regularization ii4]. The new results in this
paper are extensions @z, -, ¥'pgo-
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4.2. Convergence rate analysisLet us now consider the conditions for convergence
rates and optimal order convergence using TheoBeh2 Since in this section we only
considerygo, Yur,- ¥Ypoo, We can use subadditivity (Conditidh7). In the previous
section, we have already considered premises wBé&hdf Condition3.10is satisfied. This
section is concerned with Conditidhg, in particular 8.7), and the upper estimate3.{1)
and @.12. For the optimal order theorem we additionally have to sk@&i4), (3.15. More
precisely, we establish conditions for the following esties for the functionalg with some
generic constants’ and index functionp:

(4.9) V(o ys —y) < C\% Va e M,

(4.10) P(o,y) < C||Ray — Aly| Vo€ M,
(4.11) Y(a,ys —y) < C|Rays — Rayll Va € M,
(4.12) Y(a,y) > @ Ray — Aly|| Va € M.

For some of these inequalities we need some additional tonsli We list them for later
reference. For the discrete quasi-optimality rule we negjthie following in addition t04.7)

(413) |g,31()‘) — YJo, (/\)
(414) |T5i ()‘) —Tay (>‘)

9o (M| VA € (0,1 4]%],
Tal (>‘)| V)‘ € (07 ||A||2]7

| < Cpgo.c
| <D

Dpgo,c
and that there exists a constant < || A||? such thatforald < v <1
(4.15)  [r5,(\) = ra,(N)] = Dpgonlra V| VIAI? = A > 50 0<q0; <.

We furthermore need conditions on the exact solutign:= Afy:
e there exists a constant> 0 and an index function such that for alk< ¢ < n,

¢ ]2
(4.16) / re(A\)2dEy||zT)?> < ® (/ rt()\)2dE,\||;z:T||2> ,
0 t

e there exists a constant> 0 and an index function such that for alk< ¢ <,

¢ 1 A
(4.17) / re(A)2dE||2T|? < w (t / re (AP AE |z |
0 t
e there exists a consta#t such that for alk € M,
(4.18) | oMl <ot [ s
t t

Note that ¢.16) implies @.17) with the samel. However, using4.17) enables us in the case
of YR, t0 get a better estimate than that féri(©).

The Hanke-Raus rules require an additional condition omtlige besidesi(6): There
exists a constant andd, such that for alb <t <,

t 1 t
(4.19) [ dmsiQus ol <6y [ drlQus - ol
0 0

The first lemma concerng ).
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LEMMA 4.7.Letg, be a spectral filter. The(®.9) holds
o for ¢y g - with anyr € (0, oo},
e forygo if (2.6) is satisfied,
e forypgo if (2.6) and(4.13 are satisfied.
Proof. This follows fromr,(A) < (1 + Cy), [Aga(X)| < C4y, and @.6). In the case of
Ypoo we additionally need4.13. a
Now we proceed to show the estimatel(0).
LEMMA 4.8. Letg, be a spectral filter. The(.10 holds
o forypp, if 7 < coandp(x) = 27 is a qualification,
o for Y p, oo, if (4.18 holds,
e foryqo,
o for¢pgo if (4.14) is satisfied.
Proof. For ¢go, the result follows from .2) and for¢xr » from the qualification
conditionra()\)%|g| < C,. Forypgo, it follows from

X1 (V) — g5, VI = [ra (A) — 75, (V) 2,
together with 4.14). For¢ i r ~, we obtain by .18
a 14J? \
Brtpoo(a, AaT)? < / P2 (\dEx || + / P2 (\) 2 dEy 2|2
0 « «

o LAl
<wn [ PN 400 [ ZOWE ol
0 a

< max{l,91}||Ray_AT$T”2' o

Concerning 4.11) we have the following result.
LEMMA 4.9. Letg, be a spectral filter. The(%.11) holds
e for iy p.. with € (0, 00], if p(z) = 22771 is a qualification,(2.7) holds,(4.19) is
satisfied, and;s — y € N7,
e foryqo,
e for ¢pgo, if (4.13 holds.
Proof. The result for)go follows immediately fromir, (\)| < 1+ C, and forypgo
from (4.13. For the Hanke-Raus rules, we choessuch thatya < min{¢y,n}, wheren is
the minimum of the constants id.(L9), (2.7). Then

Yupr(a,ys —y)

oo

11 [ 1
<@2.@e19 (1+Cy)* = > / dFy|Qus — y|* + C3,p/ XdFAHQZ/& —y|?
0 Yo

1 [« 1 T
<@g C— dF)\||Qys — ylI* <@19 C— MF [ Qus — yl1?
a Jo a? Jy

Yo

<enC Ao (N)dF)[[Qys —ylI” < |Ra(ys — )|, O
0

Finally we come to4.12.
LEMMA 4.10.Letg, be a spectral filter. The(.12) holds
o for Yyp -, if T < 0o, T = o, Wherepy is the qualification index, an(.16) is
satisfied,
o for Y p oo, if 7 = co and(4.17) is satisfied,
e forygo, if (2.8) and(4.16) is satisfied,
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e for ¢ pgo, if (4.16 and(4.15 holds.
The index functior® in (4.12) is in all cases related to the index functio@s16) or (4.17),
respectively, by

(I)(I) =\ \11(011’2) + Cgl?2,

whereC4, Cs are constants.

Proof. Let~y < 1 be such thatya < n with n being the minimum of the constants
appearing in the required conditions. kogr - with 7 being the qualification index, and for
Yoo, ¥ poo, we obtain lower bounds

Al
i (00 AT >0 19 Dinet o / ra(\)2dF) 2|2,
Yo
|l AJ2

Yoola, Axt)? 2 g Qh,ﬂg/ ra(A)2dFy [,
Yo
a2

Yol Arh)? > / N2(g5, (\) — g (\)2dEs [l
Y
| A2

Il
= [ 1) = ra OB = Doy [ 72 (MBI
Y

(623 pler
On the other hand, from1(16) with v < 1, we get

2

a Al
/ ro(\)2dE, |21 ? < / ro(\)2dE, |]? + / ro(\)2dE, |21
0 «
Al
<ass (Vi) ([ raWE ol

Pk
< (U +id) (/ TaO\)QdE)\HmTlF) ;

[0

which establishes the result for three cases.ih9f ., we can estimate

LA
ViR, AcT)? > / ra(\2AdE, |21])%,
a «

and with @.17) in place of .16, and\ > «, the result follows also in this case. 0O
We note that the estimates in these lemmas have been provgaubauer 20] for the
case ofiygo.

5. Case studies.In this section we discuss the convergence rate result étyical
cases of a) a regularization method with finite qualificatimex; b) the case of Landweber
iteration, which does not have a finite qualification index, diill has a generalized saturation
of qualification; and c) the case of spectral cutoff, whicleslmot show such a saturation.
Since convergence rates are impossible without a souraditmom in the following we will
impose a Hlder type source condition

(5.1) ATy € R((A*A)M).
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5.1. Methods with finite qualification index. We consider the case thay < o is a
qualification index of the regularization method. Tikhomegularization is a typical example
of the methods we discuss here. The convergence of thesedsatha simple consequence of
TheorenmB.6and we omit the details here. Let us just mention that Caml{}.5) for Vi -,
which was sufficient for Assumptiah4, is only a restriction o for a low saturating method
with pg < % andr can be chosen arbitrarily otherwise, in particular, thietas the case for
Tikhonov regularization.

The main benefit of a finite qualification index comes withia tonvergence rate anal-
ysis, because4(16) and ¢.17) is satisfied for allz" with a function¥ depending on the
qualification index. We have the following theorem, extagdihe results of40].

THEOREMbS. 1. Letg, be a continuous, monotone spectral filter, with finite quediion
index uo such thatp(A) = M is a qualification for allx € (0, up]. Moreover, assume that

2
x! satisfies a source condition with some: 1 < 1 and Ietfrl‘A” dEy||zt||? # 0 for some
n > 0. The following convergence rate estimate is valid

(5.2) [ Rae ()95 — a1 || < COT5T75

in the following cases,
o for yp -, if (2.9), (2.6) hold,ys — y € N, and with the choice = 1,
e for ¢, if (2.9), (2.6), (2.7), (2.8) hold, andys — vy € N5,
e for¢Ypgo, if (2.9, (2.6), (2.7 hold,ys —y € N>, and if (4.7), (4.13), (4.19), (4.19
holds.
Moreover, let(2.9), (2.6) hold andys — y € Ni. If ug > % then we obtain fol) i r

with i = min{s, o — 4}

228 min{ A2 1
| Ra gyt — || < 0677 ™=

Proof. We apply Theoren3.12 According to Propositiost.1, Assumption2.4 is au-
tomatically satisfied fowgo, ¥pgo, Yur,u, and forygp o by o > % Condition3.7
trivially holds. Condition3.10was shown in Propositiof.5. Lemma4.7 implies that 8.12
holds in the respective cases wjth,, _, () = -9 The source conditiorb(1) implies the

) Ve
estimate
(5.3) [Ra = ys|| < Co

for u < po. Together with Lemma.8we obtain 8.11) with p; , () = a* for all cases ex-
cepty s r,o. However, with 6.1) itis standard that fop ;7 g o0 p1.y (@) = for p < po — 3.

It remains to verify Conditior.8. This is a consequence of Lemma.Q We only have
to show that4.16), or (4.17) (in the case)y r ) holds. However, this is a consequence of
(5.3) and the following argument: With the qualification assuimpt(4.16) is satisfied since

Yo
/ ra(V2dEx[21|2 < Ca?,
0

while

1Al 1 lA|?
ra(A?dEy ||| > a2 / 4B, |21 |
n

21
Jya fr]lo

thus, @.16) holds with ¥ (z) = Cz7s. Moreover, a similar argument shows th&t1(7)

holds with®¥(z) = Cz#o~z. Using Lemma4.1Q we obtain forgo, YrR L, Ypoo that
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-
Condition3.8 holds withw = Cz™"{%1 and fory .o With U(z) = C’xmm{ Ho—3 ’1}.
The infimum in Theoren3.12can easily be calculated by balancing the terms, which finall
yields the result. a

This theorem shows that in general we only get suboptimatrmr heuristic parameter
choice rules. Optimal order rates are established if thexirad the source condition equals
the qualification index, or, for they g o rule, equalg.y — % We can therefore interpret
(4.16 or (4.17) as a quantitative condition on how far the smoothness'of Aty is away
from the qualification index of the method. Note that while tjuasi-optimality rules and the
Hanke-Raus rules with = ¢ behave similarly, the Hanke Raus rule with= co behaves
differently. Depending on the smoothness it is possiblettilatter rule might gives better
result than the others, while in other cases this situatimhtive reversed.

A similar analysis is of course possible for other types aifree conditions, like logarith-
mic ones. Since in this case the solution smoothness is meeakew than the qualification
index, we expect very weak convergence rates if no furthedition onz' are used.

Let us now turn to optimal order convergence. In the case defoualification, the
condition @.16) with ¥ (z) = x reduces to

t 1 B 0o 1
(5.4) /0 B a7 < Cle “)/t Bl V0 <t <,

and @.17) with ¥(z) = x reduces to

t <]
(5.5) /0WdE,\lleHQSCtQ(“O_“)_l/t WdEAHxTH?, YO <t <.

THEOREMS.2. Let g, be a continuous monotone spectral filter, with finite quatiimn
index o such thatp(A) = \* is a qualification for allx € (0, uo].

Assume that! satisfies a source conditiqf.1) and the decay conditiofb.4). Then the
optimal order estimate

(56) HRa*(ys)yﬁ - 'TTH < Clgf ||Ra*(y5)y5 - Ra*(ya)yH =+ ”Ra*(ya)y - xT”

holds in the following cases,
e for ygo, if (2.9, (2.7), (2.8) hold, andys — y € N>,
e for ¢Ypgo, if (2.9), (2.7), hold,ys — y € N>, and additionally(4.7), (4.13), (4.14),
(4.15, hold,

o for Yup.-, if (2.9, (2.6) hold, Q(ys — y) € N1, 7 = uo, and(4.19 holds.
Moreover, if2" satisfies a source condition arf.5), 1o > 3, (2.9), (2.6) (4.19, and (4.19
hold, theny i r o Satisfies the optimal order estimgte6).

Proof. This theorem is a consequence of Theof2dB Propositionst.1 and4.5, and
Lemmas4.8, 4.9, and4.10 a

We notice that)go andypgo need similar conditions. Fafgr ., we need an addi-
tional noise condition4.19, which means that the noise should not be too irregulars Thi
condition is not needed for the quasi-optimality rules.

In the case ofy;r .. We need the rather restrictive conditioh18. This condition
can only be satisfied if the smoothness index of the sourcditiom obeys the inequality
< po — 3

We also notice that if for some constaptg < 1,

pa; < B < qay Vi

is valid, then all the conditions}(7), (4.13), (4.14), (4.19 for ¢ pgo are satisfied in the case
of Tikhonov regularization.
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5.2. Landweber iteration. We now discuss the convergence rate results for Landweber
iteration.

The results on convergence rates are different from theiqus\sections. Note that
Landweber iteration does not have a finite qualification xne@eery functionz* is a qualifi-
cation. For Landweber iteration, however, we can find a switstor the qualification index.
Indeed, it can be shown that|ifd|| < 1 then

(5.7) ra(V)] > e %2, 1> A2 > A > 7a,

for some constant’. The convergence rates for Landweber iteration with a socondition
(5.2) are established in the following theorem.

THEOREM 5.3. Let ||A]] < 1 and the regularization method be Landweber iteration
and letz" satisfy a source conditio(b.1). Then the following convergence rate holds with
constants’, Cs,

IR —:cT||<C’ & 8
a*(ys)Ys >~ U1 —log(é)

in the following cases,
o foryup -, if Q(ys — y) € Ny, foranyr € (0, ],
o for Yoo, if ys —y € Na,
e for Ypgo, if ys — y € N>, and constantg, ¢ < 1 exists with

pa; < B < qay Vi

Proof. Let us first assume tha# (), (4.13, (4.14) and @.15 hold for ¢pgo. Asin
the previous section we can establighB), and with a source condition it follows easily that
Y(ao,y) < Co in all cases (forypgo we need 4.14) here). Propositiod.5implies (3.9
under the stated noise conditions. In view of Theorgi2 it remains to show3.7) for
w = Az'. From the source condition it follows thif?,y — Afy|| < Ca*. Using that
(2.8 holds for Landweber iteration, (o# (15 for 1'poo) it can be shown that in all cases the
inequality

blayy) > / ra (NS By |2 |

Yo
is valid with ¢ € {2,2 + 1}, depending on the method. Now usirig?) yields that
Cyq
w(aa y) > 036_7'

We thus can chosé ! (z) = Cs exp(—-5% ) to get @.7). Let us now verify all the required
conditions forpoo. In Theoren¥.6we already showed thad @) implies @.7). From

76, (0) = e V] = ra, ()(1 = (1= N7 20,
(4.14) follow straightforwardly from3; < «;. We observe that far > || 4[| < A > ya,

s

)

1 (L_1)L 1 \(5-1)
1= (1= NE T 21— (1= 70 % 21— (1= a0) )

and @.19 follows as in the proof of Theored.6. The inequality 4.13) is equivalent to

S

(1= M) —(1—\)
1 (1—\)=

i

< 617@0,(:,
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and with3; > pa; the left-hand side can be bounded by

(1— N5 —(1- A% § (1— N — (1— )
1—(1-N= 11— (1-\™

1
Since(1 — )\)a% € (0,1] and #==>
proven. 0

This shows that for methods with high or infinite qualificatiodex, only slow conver-
gence rates can be expected. Of course, with the appropdatétions, we can prove again
optimal order rates in the same line as before. However,drcése of Landweber iteration,
the decay conditiongi{16) are more restrictive compared to the finite qualificatioseca

with ¢ < 1 is uniformly bounded for: € [0,1], (4.13 is

5.3. Spectral cutoff. The case of the spectral cutoff (or truncated singular vdéeom-
position) is different in several aspects. The quasi-oglityrule oo is not applicable here,
because it i$) (Condition3.2is violated). Also, the discrete versiaipgo is not appropri-
ate, because Conditidh2 cannot be verified in general. However, Hanke-Raus ruledean
analyzed. We notice that in the case of spectral cuteify - is independent of.

The convergence rate result are stated in the followingréreo

THEOREM5.4. LetQ(ys — y) € N7 and the regularization method be spectral cutoff.

o If a source condition is satisfied and if there is an index fiomcsuch that

t 1 t
(5.8) / dEy||zt|> < @ (t/ AdEA||xT|2) vt € (0, ag],
0 0
then fory ;7 - We obtain
2
| Ra(ys)0s — 2| < @(07578 ).

o If (5.8 is satisfied withl (x) = x, then the optimal error boun¢b.6) holds.

Proof. For spectral cutoff,Z.6) and £.9) holds so that by Corollarg.2, Propositior4.5,
Lemmas4.7, 4.8, and 4.9 all conditions of Theoren3.12 and TheorenB.13 are satisfied
except for 8.7). However, the conditiony(8), which is used instead oft(16) or (4.17) is
exactly 8.7). 0

The difference to the previous methods is that for spectitaiftwe cannot proof conver-
gence rates only by using a source condition. The reasos eyeady mentioned, the lack
of a saturation of qualification.

5.4. The L-curve method. Let us finally discuss the drawback of the L-curve method.
We want to argue that the analysis in this paper does not apphis method. We have seen
that the central ingredient for a convergence proof is aenc@dition (Conditior8.3). For
convergence rates a quantitative version has to be usece 8ia L-curve is not subadditive
(Condition3.7does not hold) conditior(16) was used to prove convergence or convergence
rates. We now argue that such an estimate does not hold istieahses. First, let us note
that one has some freedom in choosingf ¢ satisfies Assumptio.4, then so doe®(v)),
where® is an index function withb(co) = co. The choice ofb, however, should be related
to estimates such a3.(L6) in the sense that the left- and right-hand sides should thesvsame
degree of homogeneity. The left-hand side3nl@) is homogeneous of degree 1 in the noise
ys — . ||[RaA(ys —y)|| = M| Ra(ys — y)||, which suggests that should be homogeneous of
degreel as well. If this condition holds, then the s¥t is scaling invariant, which means that
the noise conditios — y € N, does not need any information on the noise léjgl— y||.
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With this argument it is clear that the functional for the @ified) L-curve method should be
homogeneous of degree 1, i.e.,

_1
w;J,L,scaled(av yzS) = "p;;L (aa yé) e, p> 0.

However, for the scaled version the bouBdl@ does not hold.

PrROPOSITIONS.5. Letg, be a spectral filter. For the functional, r, scqicq there cannot
be a setV, with A, N D(A") = §) such that(3.16) holds for allae € M with C > 0 and
f(a) bounded.

Proof. We have the bound

o
wuL,scaled(aa?ﬂS) S wuL,scaled(aayé - y) + ||Ra (y6 - y)H Trw 01,6 + 02,67

where( 5, Cs 5 denote constants, independentoof Suppose that3(16) holds for a data
errorys —y € N, ¢ D(A"). Then itis well known thatim,, ¢ || R.(ys — y)|| = oo, hence,
for sufficiently smallo, ||R.(ys — v)|| # 0 and we get

Jra(N)?dFx|lys — ylI? )"’*2” Cis Cos
[ Ra(

0<C< ( — + .
S Aga(N)2dFxlys — yl|? vs — )| 77 [Ralys — )l

Taking the limit and using; — y ¢ D(AT), we obtain that

( [ ra(AN)2dF)]lys — yl|? )’“2“
J Aga(N)2dEN]lys — yl|?

However, the numerator in this fraction is bounded (and ¢srds td)), and the denominator
tends to infinity asy — 0; thus, the right-hand side in this inequality tend$)tavhich is a
contradiction. a

This proposition shows that the modified L-curve (at leasttated in this paper) has a
serious flaw. We note that it has been suggestéfitp let 1 depend on the regularization
parameter as well which could be a way to avoid a negativétrideaiProposition5.5.

Another ad-hoc suggestion for a repair of the L-curve methodld be to compensate
with a negative power ok and use, e.gy(«, y5) = ﬁw@(a, Ys)-

0 < C <liminf

a—0

6. Discussion.We have established a rather general framework for the cgemee
analysis of minimization-based noise level-free param&teice rules. It is not possible in
one paper to cover all cases in detail, but the methodolodkisnwork can, of course, be
applied to other situations.

The assumptions in this paper, the noise conditiagh6),( (4.19 and the decay con-
ditions @.16—(4.18 are the main tools for the proofs. This type of conditiongevirst
used in [L14] and later in R0]. Other authors have used different conditions for a con-
vergence proof, e.g., lower and upper bounds on the Fouoefficients of the noise: if
(04, u;,v;) denotes the singular system of a compact operator, thenafiggs of the form
ceinP < (ys — y,vn) < conP can be of value; see, e.gl7, 18]. Assuming such inequal-
ities and a certain decay of the singular valuésg)(can be verified 14]. However, such
decay rate conditions are not as general as the noise comliti this paper; moreover, the
rate conditions usually need multiple constants and paemneln this sense, the conditions
in this paper are more economical. The same holds for theittamslonz:t, where a certain
fixed decay rate of its Fourier coefficients usually implies decay conditions. We note that
in [2] scaling conditions were used in place of the noise conafitidt can be shown that the
noise condition4.6) can be rephrased into such scaling condition.
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Of course, there is no way to verify the noise condition anchgteconditions in reality,
unless the noise and the exact solution are known. Coneeth@noise condition, this is
similar to the usual parameter choice rule, where one asstimenoise level to be known.
In noise level-free parameter choice rules, we replace $seraption of a knowrd by a
gualitative assumption on the noise. The interpretatiadh®@hoise condition is that the noise
has to be sufficiently “nonsmooth”, or, more precisely, ibsld not be in inR(A). In fact,
this agrees with the Bakushinskii veto, where a countergiaior the convergence of noise
level-free parameter choice rules is constructed by usaiserthat is inR(A). The noise
condition is usually satisfied for random noise; howeveshibuld be noted thati(6) also
depends on the smoothing propertiesAofThe more smoothing (in terms of the decay of the
singular values) the operator is, the less restrictiveasihise condition. Again, this fits our
interpretation that the noise should not beiif4), because for a highly smoothing operator
it is quite unlikely that noise is smooth enough to be clos&d). The noise condition is
central to the convergence of parameter choice rules, teueast desirable setup for noise
level-free parameter choice rule is an operator that is onilgly ill-posed together with data
noise that is smooth.

Without additional conditions on the exact solution, thesedevel-free parameter choice
rules only yield suboptimal convergence rates, unlessydemaditions &.16) or (4.17) hold.
These are assumptions on the exact solution that have to de smailar to (and together
with) a source condition. While a source condition is a smoes$is condition stated inde-
pendently of the regularization method, the interpretatibthe decay condition is that the
smoothness aff should be close to the qualification of the regularizatiorthoeé (or close
to o — % in the case of/ 7 r ). Note that if the smoothness index coincides with the qual-
ification index then the decay conditions are trivially sé¢id. It is an important fact that
the convergence rates for noise level-free parameter ehales depend on the regulariza-
tion method in a crucial way, which is different frofabased rules. From the analysis in
this paper, we observed that low saturating methods yidteébeonvergence rates in case of
Holder source conditions. The worst scenario for noise {&e&l parameter choice rules in
terms of convergence rates is a regularization method @b finite qualification index
(such as Landweber iteration, or spectral cutoff) togetithr an exact solution that has low
smoothness. At least fary r  this can be seen from the numerical resultii [Table 34].

Comparing the methodsgo, Yoo, Y r,-, We have seen that with regard to conver-
gence they behave quite similar. The Hanke-Raus rulesreeguwieaker noise condition, but
the difference between the set§ and N is probably not important in practice. In view
of convergence rates, we have observedthat, ' pgo, Vrr,,., Yield similar convergence
rates (in the finite qualification case), whilg; r - behaves differently. There is not a general
answer for which of the rules is better; rather the choiceeddp on the smoothness:df. If
the smoothness indgxof = is close to the qualification, then the first rules are betthile
if 11 is close toug — % the ruley o is better. In this respect the residual-based method
Y R,co Dehaves similarly to the discrepancy principle, which alses not yield the best
convergence rates in the whole rang€ 1, but saturates befor€][ The rulesy o, ¥pgo
behave quite similarly in many respect, which justifies ti@wof 'poo as a discretized
version ofyygo. Moreover, the rule)pgo is probably the easiest one to implement.

Let us finally note that our analysis reveals the reason #réjported success of noise
level-free parameter choice rules in practice. As far as mank most of the numerical
comparisons of these rules have used random noise and regjudair exact solutions, which
means that the noise conditions and decay conditions wésisd. Moreover, our analysis
can also be used to explain and understand “inverse crintdgds been proposed that a fair
comparison of parameter choice rules should not exclysiv& random noise, but also, e.g.,
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the error due to different discretizations. This fits inta analysis since random noise is
the good case (the noise condition is satisfied), while disation errors in the data can be
instances where the noise condition is not necessarilsfiati

In conclusion, it can be said that noise level-free paramgteice rules are a useful
enrichment to the arsenal of classical parameter choies.ridowever, they should be used
only with a good understanding of the structure of the naisa given problem and of the
possible limited convergence properties.
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