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Abstract. Minimization-based noise level-free parameter choice rulesfor the selection of the regularization
parameter in linear ill-posed problems are studied. Abstractconvergence results for spectral filter regularization
operators using a qualitative condition on the (deterministic) data noise are proven. Furthermore, under source
conditions on the exact solution, suboptimal convergence rates and, under certain additional regularity conditions,
optimal order convergence rates are shown. The abstract results are examined in more detail for several known
parameter choice rules: the quasi-optimality rules (both continuous and discrete) and the Hanke-Raus-rules, together
with some specific regularization methods: Tikhonov regularization, Landweber iteration, and spectral cutoff.
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1. Introduction. The proper choice of the regularization parameter in regularization
methods is one of the most crucial parts of solving ill-posedproblems. Several well-known
methods for this task are known. The standard approach is to select the regularization param-
eter depending on the noise level via a priori or a posteriorirules, usually leading to optimal
order convergence rates; see, e.g., [6]. However, these rules need the knowledge (or at least a
good guess) of the norm of the noise in the data (noise level).In many cases, the information
on the noise level is not available; thus, from a practical point of view, methods which do not
make use of the noise level (so callednoise level-freeor heuristic parameter choice rules)
seem to be most desirable. On the other hand, it has been knownfor a long time that for
ill-posed problems a parameter choice rule that does not depend on the noise level cannot
converge in a worst case scenario [1]. Here, a regularization method converges in the worst
case if the regularized solution converges to the true solution for all noisy dataas the noise
level tends to0. The negative result of [1], which sometimes is referred to as theBakushinskii
veto, is a strong argument against noise level-free parameter choice rules. Nevertheless, such
parameter choice rules are used quite frequently in application and simulation, often yielding
reasonable results leaving an unsettling discrepancy between theory and practice.

Recently, [2, 14, 20], a detailed analysis of the quasi-optimality rule, which is a well-
known example of a noise level-free rule, revealed that despite the results of Bakushinskii, a
convergence analysis is possible if onlyrestricted noiseis allowed. An appropriate formula-
tion of the restriction on the noise (the noise condition) isa central part of this theory, and was
first established in [14]. This result can explain the success of noise level-free rules, because
in many practical situation, the data noise does satisfy thenoise condition and hence, the reg-
ularization method converges, even though, by the Bakushinskii veto, one can always find (or
construct) cases in which convergence fails. The analysis can be driven further such that, un-
der the noise condition and smoothness conditions, (in general only suboptimal) convergence
rates can be established; see [14, 20].

In this paper, we extend the results of [14, 20] to general minimization-based noise level-
free parameter choice rules and general spectral filter-based regularization operators. In this
situation, the regularization parameter is selected by minimizing a functional depending on
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the regularization parameter and the given data, but not on the noise level. Let us mention that
an important source of ideas for the proofs for this article is [20], where the quasi-optimality
rule was analyzed for general linear regularization methods. In this paper, we establish the
convergence and convergence rate results of [20] for other parameter choice rules. As particu-
lar examples, we study in detail the Hanke-Raus rules, the quasi-optimality rules (continuous
and discrete) and to a lesser extent the L-curve method.

The paper is organized as follows. In Section2, we state some basic definitions and con-
ditions for general spectral filter-based regularization operators and define the minimization-
based parameter choice rules in an abstract setting under some standard assumptions, which
we impose on the corresponding functionals.

In Section3, we prove in a general framework (i.e., for general regularization opera-
tors and general parameter choice functionals) convergence and convergence rates for these
methods.

In Section4, we define some specific examples of noise level-free parameter choice rules
and apply the convergence result of Section3 to these cases. The conditions there are stated
for general spectral filter-based regularizations.

In Section5, we verify these conditions for some prototypical regularization methods,
namely Tikhonov regularization, Landweber iteration and spectral cutoff in connection with
the above mentioned parameter choice rules. Furthermore, in this section, we explain the
drawback of the L-curve method.

Finally, in Section6, we review the results and interpret the stated conditions on an
informal level.

2. Noise level-free parameter choice rules.We consider linear ill-posed equations in
Hilbert spaces,

Ax = y,

whereA : X → Y is an operator between Hilbert spacesX,Y, with x the unknown solution
andy the given data. Such equations can be approximately solved by regularization operators.
In the following, we study linear spectral filter-based regularization operators. Suppose that
we are given a family of regularization operators

Rα : Y → X, α ∈ M ⊂ (0, α0],

with M being a set of possible regularization parameters such that

(2.1) M = M ∪ {0},
whereM denotes the closure ofM . In particular, by this condition,0 is a limit point of
M . We consider regularization operators defined by spectral filter functions that satisfy the
general conditions of a regularization method [6]. More precisely, we impose the following:

DEFINITION 2.1. LetM satisfy(2.1). A spectral filter is a family of piecewise continuous
functionsgα : [0, ‖A‖2] → R, α ∈ M satisfying

• there exists a constantCg and for all τ > 0 a constantGτ with

sup
α∈M

sup
λ∈[0,‖A‖2]

|λgα(λ)| ≤ Cg,(2.2)

sup
α∈M∩[τ,α0]

sup
λ∈[0,‖A‖2]

|gα(λ)| ≤ Gτ ,(2.3)

• for all λ ∈ (0, ‖A‖2]

lim
M∋α→0

gα(λ) =
1

λ
.
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For a family of spectral filter functions we define the residual functions

rα(λ) := 1 − λgα(λ).

In all of the following we consider only regularization operators defined by a spectral filter,
i.e,

Rαy =

∫

gα(λ)dEλ A∗y.

Using the notation of [6], Eλ denotes a spectral family ofA∗A, a spectral family ofAA∗ will
be denoted byFλ, andQ denotes the orthogonal projector ontoR(A).

A convergence rate analysis will be derived for monotone spectral filters.
DEFINITION 2.2. We say that a functiongα is a monotone spectral filter if for all

λ ∈ (0, ‖A‖2]

M ∋ α 7→ |gα(λ)| is monotonically decreasing,(2.4)

M ∋ α 7→ |rα(λ)| is monotonically increasing.(2.5)

An index function[19] is a functionφ : R
+ → R

+ that is continuous and strictly monotoni-
cally increasing and satisfiesφ(0) = 0. For the convergence rate analysis we will need some
further conditions on the filter functions.

• There is a constantCc such that

(2.6) |gα(λ)| ≤ Cc

α
∀ 0 ≤ λ ≤ ‖A‖2.

• There is a constant0 < η ≤ ‖A‖2 such that for all0 < γ ≤ 1 there exists a constant
Cl,γ such that

(2.7) |gα(λ)| ≥
Cl,γ

α
∀ 0 ≤ λ ≤ γα 0 ≤ γα ≤ η, α ∈ M.

• There is a constant0 < η ≤ ‖A‖2 such that for all0 < γ ≤ 1 there exists a constant
Ch,γ such that

(2.8) |gα(λ)| ≥
Ch,γ

λ
∀ γα ≤ λ ≤ ‖A‖2 0 ≤ γα ≤ η, α ∈ M.

• There is a constant0 < η ≤ ‖A‖2 such that for all0 < γ ≤ 1 there exists a constant
Dl,γ such that

(2.9) |rα(λ)| ≥ Dl,γ ∀ 0 < λ ≤ γα 0 ≤ γα ≤ η, α ∈ M.

Similar conditions were used in [20]. We also need the concept of qualification; see, e.g., [6]
and the generalization in [19].

DEFINITION 2.3. We say that an index functionρ has a qualification (for the spectral
filter gα) if there is a constantDρ such that

(2.10) |rα(λ)|ρ(λ) ≤ Dρρ(α) ∀α ∈ M,λ ∈ (0, ‖A‖2].

We say thatµ0 ∈ R
+ is a qualification index ifρ(λ) = λµ0 is a qualification and there is a

constant0 < η < ‖A‖2 such that for all0 < γ ≤ 1 there exists a constantDind,µ0,γ such
that

(2.11) |rα(λ)|λµ0 ≥ Dind,µ0,γαµ0 ∀ γα ≤ λ ≤ ‖A‖2 0 ≤ γα ≤ η, α ∈ M.
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Note that the notion of qualification is sometimes used differently. Many authors simply refer
to the qualification indexµ0 in Definition 2.3 as the qualification. In this paper, the qualifi-
cation is an index function as in [19], and to distinguish it from the classical qualificationµ0

we refer to this number as the qualification index.
For a continuous regularization method, the regularization parameter is usually chosen

in some interval

M = Mc = (0, α0),

while for a discrete regularization method the regularization parameter (usually the inverse of
an iteration index) is in a discrete set

M = Md =

∞
⋃

i=1

{αi} αi strictly monotonically decreasing withlim
i→∞

αi = 0.

Let us give some examples of regularization operators:
• Tikhonov regularization,Mc = (0, α0)

gα(λ) =
1

λ + α
, rα(λ) =

α

λ + α
,

• Landweber iteration,‖A‖ ≤ 1, Md = { 1
k
, k ∈ N}, α = 1

k
,

gα(λ) = g 1
k
(λ) =

k−1
∑

i=0

(1 − λ)i, r 1
k
(λ) = (1 − λ)k,

• spectral cutoff:Mc = (0, α0) (continuous) orM = Md = {σi} (truncated singular
value decomposition), where theσi are the singular values of the compact operator
A.

gα(λ) =

{

1
λ

λ ≥ α,

0 λ < α,
rα(λ) =

{

0 λ ≥ α,

1 λ < α.

Note that any continuous regularization method can be made adiscrete one by restricting the
set of allowed regularization parameters to a discrete set.

All these regularization operators are defined by monotone spectral filter functions. More-
over, Tikhonov regularization and Landweber iteration satisfy (2.6)–(2.9); spectral cutoff sat-
isfies (2.6), (2.8), (2.9), while (2.7) does not hold; cf. [20].

Let us furthermore introduce some standard notation. We will denote byy ∈ D(A†) the
(unknown) exact data, and byx† = A†y the unknown exact solution. In practice, only a noisy
version ofy is known, which we denote byyδ. For a givenyδ we define the noise level

‖yδ − y‖Y = δ y ∈ D(A†)

in the usual way. As already mentioned, for noise level-freeparameter choice rules, knowl-
edge ofδ is not used.

For the heuristic rules in this paper the regularization parameter is chosen as a minimizer
of a functionalα 7→ ψ(α, yδ). Let Rα be a fixed family of regularization operators withM

as in (2.1). We consider rules using certain positive functionalsψ that satisfy the following
conditions.
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ASSUMPTION2.4.
A1. ψ is nonnegative:

ψ : M × Y → R
+
0 .

A2. For all α ∈ M , y ∈ Y , ψ is symmetric:

ψ(α,−y) = ψ(α, y).

A3. For anyα ∈ M ,

ψ(α, .) : Y → R
+
0

is continuous.
A4. For anyz ∈ Y ,

ψ(., z) : M → R
+
0

is lower semicontinuous.
A5. If z ∈ D(A†), then

lim
α→0

ψ(α, z) = 0.

It will be shown that most of the well-known minimization-based noise level-free param-
eter choice rules correspond to a functionalψ that satisfies these conditions.

We now state a class of parameter choice rules: Given a functionalψ that satisfies As-
sumption2.4, we define a regularization parameterα∗(yδ) as

(2.12) α∗(yδ) :=

{

argminα∈Mψ(α, yδ) if a minimum inM exists,

0 else.

In the case that there are multiple global minima, we simply select an arbitrary one; the
convergence properties will not depend on the specific choice. Obviously, we do not need
any information on the noise level to chooseα∗(yδ), but only the given noisy datayδ.

It is convenient to extend the definition ofψ to α = 0:

ψ(α, yδ) : M × Y → [0,∞]

ψ(α, yδ) :=

{

ψ(α, yδ) if α > 0

lim infτ→0 ψ(τ, yδ) if α = 0.
(2.13)

Note that a realization of the parameter choiceα∗(yδ) can also be written as

α∗(yδ) = max{argminα∈Mψ(α, yδ)}.

3. Convergence and convergence rates.We analyze the convergence of spectral filter-
based regularization methods with the parameter choice rules defined in (2.12). At first, we
study conditions that yield convergence of such methods. Weremind the reader thatδ denotes
the noise level,yδ are the given noisy data, andy denotes the exact data.
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3.1. Abstract convergence result.The main result in this subsection is Theorem3.6.
PROPOSITION3.1. Let Assumption2.4hold, and let the parameterα∗(yδ) be defined by

(2.12). Then

lim
δ→0

ψ(α∗(yδ), yδ) = 0.

Proof. Let y ∈ D(A†) be fixed andyδk
be a sequence of noisy data such that their noise

levels satisfyδk → 0. By definition, for arbitraryα ∈ M fixed, we have

ψ(α∗(yδ), yδk
) ≤ ψ(α, yδk

).

By continuity (A3) we have thatlimδk→0 ψ(α, yδk
) = ψ(α, y); hence for allα ∈ M ,

lim sup
δk→0

ψ(α∗(yδ), yδk
) ≤ ψ(α, y).

According to (A5) the right-hand side in this inequality tends to0 asα → 0; hence

0 ≤ lim inf
δk→0

ψ(α∗(yδ), yδk
) ≤ lim sup

δk→0
ψ(α∗(yδ), yδk

) ≤ 0,

which proves the proposition.
In order to prove convergence, one has to impose additional conditions. The first one is

a consistency condition that relatesψ to the approximation error.
CONDITION 3.2 (Consistency).Let z ∈ D(A†) be fixed. For allα ∈ M , and all

sequences(αn)n ∈ M , (zn)n ∈ Y with limn→∞ αn = α andlimk→∞ zn → z it holds that

lim
n→∞

ψ(αn, zn) = 0 ⇒ lim
n→∞

‖Rαn
z − A†z‖ = 0.

Second, we need a noise condition, which is the most important part in the convergence
theory of noise level-free parameter choice rules. This condition has to take into account that
a uniform convergence proof for noise level-free parameterchoice rules is impossible.

CONDITION 3.3 (Noise condition).There exists a setNz ⊂ Y such that for allzn ∈ Nz

with limn→∞ zn = z

(3.1) ψ(0, zn) > inf
α∈M

ψ(α, zn),

and for allαn ∈ M with limn→∞ αn = 0

(3.2) lim
n→∞

ψ(αn, zn) = 0 ⇒ lim
n→∞

‖Rαn
zn − Rαn

z‖ → 0.

We notice that (3.1) can only hold ifNz ∩ D(A†) = ∅ according to (A5) (if we exclude
the degenerate caseψ(α, z) = 0, ∀α ∈ M ). The noise condition is a central part of the
analysis in this paper. Let us again emphasize the difference from the conventional worst
case convergence analysis: there, convergence is analyzedby treating the following error for
some parameter choice ruleα∗(yδ)

lim
δ→0

‖Rα∗(yδ)yδ − A†y‖ ∀yδ ∈ Y with ‖yδ − y‖ ≤ δ,

while in this paper we only consider the error with a noise restriction

lim
δ→0

‖Rα∗(yδ)yδ − A†y‖ ∀yδ ∈ Y with ‖yδ − y‖ ≤ δ andyδ ∈ Ny.



ETNA
Kent State University 

http://etna.math.kent.edu

NOISE LEVEL-FREE PARAMETER CHOICE RULES 239

While the first limit (worst case) cannot tend to0 for heuristic parameter choice rules by the
Bakushinskii veto, we will show that the second one (restricted noise case) does.

Before we come to the convergence theorem, let us discuss some sufficient conditions
for Condition3.2.

LEMMA 3.4. Letψ satisfy Assumption2.4, and for a neighborhoodU(z) of z ∈ D(A†)
let ψ be lower semicontinuous onM ∩ [τ, α0) × U(z), for all τ > 0. If additionally for all
α ∈ M it holds that

(3.3) ψ(α, z) > 0,

then Condition3.2 is satisfied forz. Moreover, in this caselimδ→0 α∗(yδ) = 0.
Proof. With the notation as in Condition3.2, it follows from the lower semicontinuity of

ψ that

0 < ψ(α, z) ≤ lim inf
n→∞

ψ(αn, zn),

which contradicts (3.3). Hence, the antecedent in Assumption2.4 is always false, which
makes the implication always true. Now suppose thatlimδ→0 α∗(yδ) 6= 0. Then we can
find a subsequence ofα∗(yδ) such thatα∗(yδk

) → α 6= 0. With the same argument of lower
semicontinuity and Proposition3.1it follows thatψ(α, y) = 0, which is again a contradiction
to (3.3), hence,α∗(yδ) → 0.

The positivity ofψ in (3.3) is not always satisfied. In such situations the following lemma
is useful.

LEMMA 3.5. Letψ satisfy Assumption2.4, and for a neighborhoodU(z) of z ∈ D(A†)
let ψ be lower semicontinuous onM ∩ [τ, α0) × U(z), for all τ > 0. For all λ ∈ (0, ‖A‖2],
let the functionα 7→ rα(λ) be upper semicontinuous at any pointα ∈ M . If it holds that at
z ∈ D(A†) and for allα ∈ M

(3.4) ψ(α, z) = 0 ⇒ Rαz = A†z,

then Condition3.2 is satisfied.
Proof. With the notation of Condition3.2 and from lower semicontinuity we find as in

the proof of Lemma3.4thatψ(α, z) = 0. From the assumptions onrα(λ), (3.4) and Fatou’s
lemma we get

lim sup
αn→α

‖Rαn
z − A†z‖2 = lim sup

αn→α

∫

|rαn
(λ)|2dEλ‖A†z‖2

≤
∫

lim sup
αn→α

|rαn
(λ)|2dEλ‖A†z‖2 ≤

∫

|rα(λ)|2dEλ‖A†z‖2 = ‖Rαz − A†z‖2 = 0.

Thus, we arrive atlimn→∞ ‖Rαn
z − A†z‖2 = 0 which validates Condition3.2.

We now come to the main convergence proof:
THEOREM 3.6 (Convergence theorem).LetRα be a regularization operator defined by

a spectral filter, and letψ satisfy Assumption2.4. Let Condition3.2, Condition3.3hold and
for z = y = Ax† let yδ ∈ Ny. Thenα∗(yδ) > 0 and

(3.5) Rα∗(yδ)yδ → A†y for δ → 0.

Proof. With y = Ax† the following decomposition is standard

(3.6) ‖Rα∗(yδ)yδ − A†y‖ ≤ ‖Rα∗(yδ)yδ − Rα∗(yδ)y‖ + ‖Rα∗(yδ)y − A†y‖.
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Let yδk
be a sequence of noisy data with noise levelδk → 0 and letα∗(yδkj

) be an arbitrary
subsequence ofα∗(yδk

). Since this sequence is bounded, it has a converging subsequence
again denoted byα∗(yδkj

): limj→∞ α∗(yδkj
) = α. We distinguish the casesα = 0 and

α > 0.
First, assume thatα = 0. In this case, it follows from the general convergence theory for

regularization methods [6] that

lim
j→∞

‖Rα∗(yδkj
)y − A†y‖ = 0.

From Proposition3.1 we obtain thatψ(α∗(yδkj
), yδkj

) → 0. From (3.1) it follows that

α∗(yδkj
) 6= 0, henceψ(α∗(yδkj

), yδkj
) = ψ(α∗(yδkj

), yδkj
). By (3.2), we conclude that

lim
j→∞

‖Rα∗(yδkj
)yδkj

− Rα∗(yδkj
)y‖ = 0.

Thus, from (3.6) we obtain that (3.5) holds for the subsequence(Rα∗(yδkj
)yδkj

)j .

Now assume thatα > 0. Proposition3.1and Condition3.2 imply that

lim
j→∞

‖Rα∗(yδkj
)y − A†y‖ = 0.

Moreover, from (2.2), (2.3), it follows that forj sufficiently large andτ sufficiently small

‖Rα∗(yδkj
)yδkj

− Rα∗(yδkj
)y‖ ≤

√

CgGτ‖yδkj
− y‖ → 0 asj → ∞.

Together, we can conclude that (3.5) holds for the subsequence(Rα∗(yδkj
)yδkj

)j . In any

case, we have shown that any subsequence ofRα∗(yδ)yδ has a subsequence converging to
A†y, thus, (3.5) must hold.

We note that for Theorem3.6it is not necessary thatψ satisfies (A2) of Assumption2.4.

3.2. Abstract convergence rates.The assumptions onψ in the previous section are not
enough to prove convergence rates. In this section, we studyconvergence rates for subadditive
functionalsψ (i.e., functionals for which Condition3.7below is satisfied). Additionally, we
have to impose quantitative versions of Condition3.2and Condition3.3.

A major simplification is obtained if we assume thatψ is subadditive:
CONDITION 3.7. There exists a constantκs > 0, such that for allα ∈ M , z, e ∈ Y ,

ψ(α, z + e) ≤ κs (ψ(α, z) + ψ(α, e)) .

For subadditive and uniformly continuousψ the following inequality suffices to satisfy Con-
dition 3.2.

CONDITION 3.8. There exists an index functionΦ such that for allα ∈ M , z ∈ D(A†):

(3.7) ‖Rαz − A†z‖ ≤ Φ(ψ(α, z)) .

LEMMA 3.9. Letψ satisfy Assumption2.4, Condition3.7and suppose that for anyτ > 0

(3.8) lim
zk→0

ψ(α, zk) = 0 uniformly inα ∈ M ∩ [τ,∞).

If ψ additionally satisfies Condition3.8then Condition3.2holds for allz ∈ D(A†).
Proof. In the situation of Condition3.2we have that

Φ−1
(

‖Rαn
z − A†z‖

)

≤ ψ(αn, z) ≤ κs (ψ(αn, zn) + ψ(αn, z − zn)) .
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The first term on the right-hand side tends to0 by the hypothesis in Condition3.2while the
second term tends to0 by uniform continuity (3.8). From the properties of the index function,
this means that‖Rαn

z − A†z‖ tends to0.
A quantitative alternative to Condition3.3 is the following
CONDITION 3.10. There exists a setN ⊂ Y with N ∩ D(A†) = ∅ and a constant

κl > 0 such that for allzn − z ∈ N , α ∈ M ,

(3.9) κl‖Rαzn − Rαz‖ ≤ ψ(α, zn − z).

For subadditiveψ, Condition3.10 is indeed sufficient for Condition3.3 as the following
lemma shows:

LEMMA 3.11. Let ψ satisfy Assumption2.4 and let Condition3.7 and Condition3.10
hold. Then Condition3.3holds withNz = z + N . Moreover, in this case we have that

(3.10) lim
α→0

ψ(α, zn − z) = lim
α→0

ψ(α, zn) = ∞.

Proof. From Condition3.7, (A5) and in the situation of Condition3.3 it follows from
(3.9) that

0 ≤ lim
n→∞

‖Rαn
zn − Rαn

z‖ ≤ 1

κl

lim
n→∞

ψ(αn, zn − z)

≤ κs

κl

(

lim
n→∞

ψ(αn, zn) + lim
n→∞

ψ(αn,−z)
)

= 0,

which shows (3.2). To prove (3.1), we observe that sincezn − z 6∈ D(A†), it holds that
limα→0 ‖Rα(zn − z)‖ = ∞ (cf. [6, Prop. 3.6]). With

κl‖Rα(zn − z)‖ ≤ ψ(α, zn − z) ≤ κs (ψ(α, zn) + ψ(α,−z))

and (A5) we conclude that (3.10) and consequently (3.1) holds.
We note that the condition (3.9) was already used for the quasi-optimality rule in [7].

However, finding a specific setN and a constantκl such that (3.9) can be verified is a difficult
task. Such estimates with specific setsN were first established in [14] for the quasi-optimality
rule. We will show in Section4.1 that similar setsN as in [14] can also be used for other
parameter choice rules.

We now come to the main abstract convergence rate result:
THEOREM 3.12 (Convergence rate theorem).Let gα be a monotone spectral filter (i.e.,

(2.4), (2.5) holds). Letψ satisfy Assumption2.4, Condition3.7, Condition3.10 and Con-
dition 3.8. Moreover, for anyz ∈ D(A†) and e ∈ Nz, let there exists a monotonically
increasing functionρ↑,z(α) and a monotonically decreasing functionρ↓,e(α) such that

ψ(α, z) ≤ ρ↑,z(α) ∀α ∈ M,(3.11)

ψ(α, e) ≤ ρ↓,e(α) ∀α ∈ M.(3.12)

If yδ ∈ Ny, then there exists a constantC̃ such that

‖Rα∗(yδ)y
δ − A†y‖ ≤ inf

α>0

{

Φ
[

C̃ (ρ↑,y(α) + ρ↓,y−yδ
(α))

]

+ C̃ (ρ↑,y(α) + ρ↓,y−yδ
(α))

}

.
(3.13)
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Proof. Let M ∋ ᾱ > 0 be arbitrary but fixed. From (2.4) it follows that the propagated
data errorα 7→ ‖Rα(yδ −y)‖ is monotonically decreasing and that for ally ∈ D(A†) the ap-
proximation errorα → ‖Rαy−A†y‖ is monotonically increasing. Suppose thatᾱ ≥ α∗(yδ).
Then, by monotonicity we have

‖Rα∗(yδ)y − A†y‖ ≤ ‖Rᾱy − A†y‖ ≤ Φ(ψ(ᾱ, y)) ≤ Φ(ρ↑,y(ᾱ)) .

Moreover, Condition3.10and Condition3.7 imply

κl‖Rα∗(yδ)(yδ − y)‖ ≤ ψ(α∗(yδ), yδ − y) ≤ κsψ(α∗(yδ), yδ) + κsψ(α∗(yδ),−y)

≤ κsψ(ᾱ, yδ) + κsψ(α∗(yδ),−y) ≤ κ2
sψ(ᾱ, yδ − y) + κ2

sψ(ᾱ, y) + κsρ↑,y(α∗(yδ))

≤ (κ2
s + κs)ρ↑,y(ᾱ) + κ2

sρ↓,yδ−y(ᾱ).

Combining these bounds we obtain a constantC such that

‖Rα∗(yδ)y
δ − A†y‖ ≤ Φ(ρ↑,y(ᾱ)) + C (ρ↑,y(ᾱ) + ρ↓,yδ−y(ᾱ)) .

On the other hand, for̄α ≤ α∗(yδ), we see that

‖Rα∗(yδ)(yδ − y)‖ ≤ ‖Rᾱ(yδ − y)‖ ≤ 1

κl

ρ↓,yδ−y(ᾱ),

and

Φ−1
(

‖Rα∗(yδ)y − A†y)‖
)

≤ ψ(α∗(yδ), y)

≤ κsψ(α∗(yδ), y − yδ) + κsψ(α∗(yδ), yδ)

≤ κsψ(α∗(yδ), y − yδ) + κsψ(ᾱ, yδ)

≤ κsψ(α∗(yδ), y − yδ) + κ2
sψ(ᾱ, yδ − y) + κ2

sψ(ᾱ, y)

≤ κ2
sρ↑,y(ᾱ) + (κ2

s + κs)ρ↓,yδ−y(ᾱ).

Thus, in this case, we obtain that

‖Rα∗(yδ)y
δ − A†y‖ ≤ Φ(C (ρ↑,y(ᾱ) + ρ↓,yδ−y(ᾱ))) +

1

κl

ρ↓,yδ−y(ᾱ).

In either case we have shown (3.13).
As a special case of the previous theorem we obtain order optimal estimates:
THEOREM 3.13 (Optimal order).Let gα be a monotone spectral filter. Letψ satisfy

Assumption2.4 and Condition3.7. Moreover, for anyz ∈ D(A†) and e ∈ Nz, let the
following inequalities hold with some positive constantsκ1, κ2, κ3, κ4

κ1‖Rαz − A†z‖ ≤ψ(α, z)≤ κ3‖Rαz − A†z‖ ∀α ∈ M,(3.14)

κ2‖Rαe‖ ≤ψ(α, e)≤ κ4‖Rαe‖ ∀α ∈ M.(3.15)

If yδ ∈ Ny, then there exists a constantC such that

‖Rα∗(yδ)y
δ − A†y‖ ≤ C inf

α>0

(

‖Rαy − A†y‖ + ‖Rα(y − yδ)‖
)

.

This theorem gives an oracle type estimate, since the total error of the regularization is of the
order of the error for the best possible choice of the regularization parameter.

If subadditivity does not hold we still can prove the following result.
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THEOREM 3.14 (Convergence rate without subadditivity).Let gα be a monotone spec-
tral filter. Letψ satisfy Assumption2.4and suppose that for anyz ∈ D(A†) ande ∈ Nz there
exists a monotonically increasing functionf↑,z(α), and a monotonically decreasing function
f↓,e(α) and there exist an index functionΦ such that for allzn − z ∈ Nz,

‖Rαz − A†z‖ ≤ Φ(ψ(α, zn) + f↓,z−zn
(α)) ,

C̃‖Rαzn − Rαz‖ ≤ ψ(α, zn) + f↑,z(α).(3.16)

Then there is a constant

‖Rα∗(yδ)y
δ − A†y‖ ≤ inf

α>0

{

Φ [ψ(α, yδ) + f↓,y−yδ
(α)]

+ C̃ (ψ(α, yδ) + f↑,y(α)) + f↓,y−yδ
(α)

}

.

Proof. As before, let̄α be arbitrary. Then ifα∗(yδ) ≤ ᾱ we obtain the inequalities

‖Rα∗(yδ)y − A†y‖ ≤ ‖Rᾱy − A†y‖ ≤ Φ(ψ(ᾱ, yδ) + f↓,y−yδ
(ᾱ)) ,

and

‖Rα∗(yδ)yδ − Rα∗(yδ)y‖ ≤ ψ(α∗(yδ), yδ) + f↑,y(α∗(yδ))

≤ ψ(ᾱ, yδ) + f↑,y(ᾱ).

In the casēα ≤ α∗(yδ) we find in a similar manner

‖Rα∗(yδ)yδ − Rα∗(yδ)y‖ ≤ ‖Rᾱyδ − Rᾱy‖ ≤ 1

C̃
(ψ(ᾱ, yδ) + f↑,y(ᾱ)) ,

and

‖Rα∗(yδ)y − A†y‖ ≤ Φ(ψ(α∗(yδ), yδ) + f↓,y−yδ
(α∗(yδ), y − yδ))

≤ Φ(ψ(ᾱ, yδ) + f↓,y−yδ
(ᾱ, y − yδ)) .

If upper bounds onψ(α, yδ) similar to (3.11), (3.12) and onf↓,y−yδ
(α), f↑,y(α) can be

found, then convergence rates can be established.
We use the abstract results in this section to study some specific examples of noise level-

free parameter choice rules in the next section.

4. Analysis of specific parameter choice rules.In this section we describe some well-
known parameter choice rules: since a parameter choice ruleis fixed by stating a specific
functionalψ, we will in the following always refer to this functional as the parameter choice
rule. Some well-known functionals are as follows:

• theHanke-Raus ruleswith parameterτ ∈ (0,∞],

(4.1) ψHR,τ (α, yδ) =

√

1

α

∫

|rα(λ)|2+ 1
τ dFλ‖Qyδ‖2,

• thequasi-optimality rule

(4.2) ψQO(α, yδ) =

√

∫

rα(λ)2λgα(λ)2dFλ‖yδ‖2,
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• for discrete regularization methods with a fixed sequenceβi < αi, βi ∈ Md, the
discrete quasi-optimality rule

(4.3) ψDQO(αi, yδ) =

√

∫

(gαi
(λ) − gβi

(λ))2λdFλ‖yδ‖2,

• the(modified) L-curve methodwith parameterµ > 0,

(4.4) φµL(α, yδ) =

(
∫

λgα(λ)2dFλ‖yδ‖2

)

µ
2

√

∫

rα(λ)2dFλ‖Qyδ‖2.

The Hanke-Raus rules were introduced in [11] with a slightly more general definition as here.
The parameterτ is fixed and usually (but not necessarily) chosen as the qualification indexµ0

of the method. The special choiceτ = ∞ yields a particular simple functionalψ, since ifA
is injective,ψHR,∞ = 1√

α
‖Axα,δ − yδ‖ is nothing but the residual weighted withα− 1

2 .
The quasi-optimality rulesψQO andψDQO are the oldest ones and were introduced by

Tikhonov and Glasko [23, 24] for Tikhonov regularization. In these papers, the rules were de-
fined using the functionalψ(α, yδ) = ‖α d

dα
Rαyδ‖, but for Tikhonov regularization this def-

inition is identical to the one given above. In fact, the formof the functionalψQO as in (4.2),
which does not require the spectral filter to be differentiable, goes back to Neubauer [20]. The
rule (4.2) agrees with the classical quasi-optimality rule for Tikhonov regularization, but it
should be noted that, e.g., for iterated Tikhonov regularization it is different to‖α d

dα
Rαyδ‖.

The ruleψDQO can be understood as a discretization ofψQO. Again this rule goes back
to Tikhonov and Glasko [23, 24] who usedαi = qi, βi = qi+1 with q < 1 for Tikhonov
regularization. With this sequence, it is not difficult to understandψDQO as a discrete version
of the original quasi-optimality rule of Tikhonov and Glasko, where the derivative is replaced
by a difference quotient on a logarithmic scale ofα. Moreover, it was shown in [20] that for
Landweber iteration, withαi = 1

k
, βi = 1

2k
, ψDQO coincides withψQO. This justifies the

notion of discrete quasi-optimality rule. Further references on quasi-optimality rules can be
found in [2, 3].

The L-curve method was introduced by Lawson and Hanson [15] and further studied by
Hansen [12] and Hansen and O’Leary [13]. It was cast into the minimization form (4.4) (and
generalized to the modified L-curve method) by Regińska [22].

An overview of noise level-free parameter choice rules can be found in [6, 10], and in
particular in [21]. Further rules not stated above are listed in [21], e.g., the generalized cross
validation [25] and the Brezinksi-Rodrigues-Seatzu rule [5]. A numerical comparison of
some rules was preformed in [10], [21], and, recently, in [4]. In [21] also efficient numerical
improvements are tested, some of which can be found as well in[8, 9].

We note that the functionals in (4.1)–(4.3) have the formψ(α, yδ) = ‖Sαyδ‖ with an
appropriate operatorSα, in particular, they satisfy the subadditivity Condition3.7.

Let us look at Assumption2.4for the above mentioned rules.
PROPOSITION4.1.
1. Let the spectral filtergα be continuous onM with respect toα. Then Assumption2.4

is satisfied forψQO, ψDQO, ψµL.
2. If rα(λ) is lower semicontinuous, and if forτ ∈ R

+ ∪∞ a positive numberǫ exists
such that

(4.5) the functionρ(x) = x
1

2+ 1
τ

−ǫ is a qualification.

Then Assumption2.4 is satisfied forψHR,τ .
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Proof. The conditions (A1)–(A3) are obvious. Ifgα(λ) is continuous inα then so is
rα(λ); from the Lebesgue dominated convergence theorem it follows thatψ(., yδ) is continu-
ous, thus (A4) holds. Ifrα is merely lower semicontinuous, (A4) is a consequence of Fatou’s
lemma forψHR,τ . Concerning (A5) we observe that ifz ∈ D(A†),

ψQO(α, z)2 =

∫

rα(λ)2λ2gα(λ)2dEλ‖A†z‖2;

and the functionrα(λ)2λ2gα(λ)2 is uniformly bounded and tends to0 pointwise, thus by the
dominated convergence theorem we obtain that (A5) holds forψQO. In a similar way we can
show this forψµL. Using (4.5) for ψHR,τ , by the dominated convergence theorem we obtain

ψHR,τ (α, z)2 =

∫

|rα(λ)|2+ 1
τ

λ

α
dEλ‖A†z‖2 ≤ Dρ

∫

|rα(λ)|ǫdEλ‖A†z‖2,

which implies (A5). ForψDQO we observe that

ψQO(α, z) ≤ ‖Rαi
z − A†z‖2 + ‖Rβi

z − A†z‖2.

Both terms tend to0 asαi → 0 βi → 0, thus (A5) holds forψDQO as well.
It is easy to see that all the regularization methods mentioned in Section2 are continuous

except for spectral cutoff. In the continuous case,M = Mc, its residual function is not
continuous but only lower semicontinuous so that the secondcase in Proposition4.1applies.
Of course, since the ruleψQO is 0 for spectral cutoff, it is of no use here, even though
Assumption2.4holds (but of course not the Conditions3.2and3.3).

Concerning Condition3.2 it is obvious that it holds forψQO, ψµL, ψHR,τ for any reg-
ularization for whichgα, rα are continuous inα and satisfygα(λ)rα(λ) 6= 0 for all λ. If
gβi

(λ) − gαi
(λ) 6= 0 for all λ, then the same is true forψDQO. All this can be shown by

Lemma3.4, which covers already a majority of regularization methods, except Landweber
iteration when‖A‖ = 1 and spectral cutoff. However, these cases are settled by Lemma3.5.

PROPOSITION 4.2. For Tikhonov regularization and Landweber iteration, Assump-
tion2.4and Condition3.2are satisfied forψHR,τ (for all τ ∈ (0,∞]), ψQO, ψDQO, ψµL. For
spectral cutoff, Assumption2.4and Condition3.2are satisfied forψHR,τ (for all τ ∈ (0,∞]),
and forψµL.

Proof. We notice thatgα for Tikhonov regularization, Landweber iteration and spectral
cutoff satisfies one of the conditions in Proposition4.1, so that Assumption2.4 holds in all
cases. Moreover, ifA†y 6= 0, then for Tikhonov regularization and Landweber iteration
with ‖A‖ < 1 for all functionals in the proposition the positivity ofψ, (3.3) holds, thus
Lemma3.4 yields the result in this case. IfA†y = 0 or ‖A‖ = 1 for Landweber iteration,
and in the case of spectral cutoff withψHR,τ , Lemma3.5can be applied, where (3.4) can be
shown elementary.

We note that for spectral cutoff, Condition3.2 is never satisfied forψQO and usually
(without restrictive condition onA†y) not satisfied forψDQO.

4.1. Convergence analysis.We have established all ingredients for the abstract conver-
gence theorem except Condition3.3. Its verification is at the heart of a convergence proof
and turns out to be the most difficult part.

In this section we restrict ourselves to subadditive functionals, i.e., toψHR,τ , including
the caseτ = ∞, andψQO, ψDQO. By the triangle inequality it is obvious that

LEMMA 4.3. ψHR,τ for τ ∈ (0,∞], ψQO(α, yδ), ψDQO(αi, yδ) satisfy Condition3.7.
In view of Lemma3.11, we can focus on Condition3.10and (3.9) to verify Condition3.3.

A condition on the noise such that (3.9) holds was stated in [14] for (iterated) Tikhonov and
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the quasi-optimality rule. This has been generalized to other regularizations methods in [20].
We will show that similar conditions are useful for other parameter choice rules as well.

DEFINITION 4.4. For p ≥ 1, t1, ν > 0 fixed, we define the set of restricted noisy data
Np as

Np := {e ∈ Y | such that(4.6) holds},

where

(4.6) tp
∫ ∞

t

λ−1dFλ‖e‖2 ≤ ν

∫ t

0

λp−1dFλ‖e‖2 ∀0 < t ≤ t1.

It is elementary to see that forp1 ≤ p2, the inclusionNp2
⊂ Np1

is valid. Using the setNp

we can establish (3.9) for some of the parameter choice rules.
PROPOSITION4.5. Letgα be a spectral filter.
• Let (2.9), (2.6) hold and let there existst1, ν such thatQ(yδ − y) ∈ N1. Then(3.9)

is satisfied forψHR,τ for anyτ ∈ (0,∞].
• Let (2.9), (2.7) hold and let there existst1, ν such thatyδ − y ∈ N2. Then(3.9) is

satisfied forψQO.
• Let (2.9), (2.7) hold and let there existst1, ν such thaty − yδ ∈ N2. If additionally

a constant0 < η ≤ ‖A‖ exist, such that for all0 < γ ≤ 1 there exists a constant
CDQO,l,γ > 0 with

(4.7) |gβi
(λ) − gαi

(λ)| ≥ CDQO,l,γ |gαi
(λ)| ∀0 ≤ λ ≤ γαi, 0 ≤ γα ≤ η,

then(3.9) is satisfied forψDQO.
Proof. Denote byC a generic constant and fixγ ≤ 1 such thatγα ≤ min{η, t1}, for

all α ∈ M . Here,η is always understood as the minimum of theη such that the imposed
conditions in (2.6)–(2.9) and (4.7) hold. Then,

ψHR,τ (α, y − yδ)
2 ≥(2.9) C

1

α

∫ γα

0

dFλ‖Q(y − yδ)‖2

≥(4.6) C

∫ ∞

γα

1

λ
dFλ‖Q(y − yδ)‖2 ≥(2.2) C

∫ ∞

γα

λgα(λ)2dFλ‖y − yδ‖2.

Furthermore, we obtain
∫ γα

0

λgα(λ)2dFλ‖y − yδ‖2 ≤(2.2) C

∫ γα

0

|gα(λ)|dFλ‖Q(y − yδ)‖2

≤(2.6) C
1

α

∫ γα

0

dFλ‖Q(y − yδ)‖2 ≤(2.9) C
1

α

∫ γα

0

rα(λ)2+
1
τ dFλ‖Q(y − yδ)‖2.

Since‖Rαy−Rαyδ‖2 =
∫ ∞
0

λgα(λ)2dFλ‖y−yδ‖2 we have shown the result for theψHR,τ .
ForψQO we observe that

ψ2
QO(α, y − yδ) ≥(2.9) C

∫ γα

0

λgα(λ)2dFλ‖y − yδ‖2 ≥(2.7) C
1

α2

∫ γα

0

λdFλ‖y − yδ‖2

≥(4.6) C

∫ ∞

γα

1

λ
dFλ‖y − yδ‖2 ≥(2.2) C

∫ ∞

γα

λgα(λ)2dFλ‖y − yδ‖2.

On the other hand, we get
∫ γα

0

λgα(λ)2dFλ‖y − yδ‖2 ≤(2.9) C

∫ γα

0

λgα(λ)2rα(λ)2dFλ‖y − yδ‖2,
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which shows the result forψQO. Finally, forψDQO we can estimate

ψ2
DQO(α, y − yδ) ≥(4.7) C

∫ γαi

0

λ(gαi
(λ))2dFλ‖y − yδ‖2

≥(2.7) C
1

α2
i

∫ γαi

0

λdFλ‖y − yδ‖2 ≥(4.6) C

∫ ∞

γαi

1

λ
dFλ‖y − yδ‖2

≥(2.2) C

∫ ∞

γα

λ(gαi
(λ))2dFλ‖y − yδ‖2.

As before, we get

∫ γαi

0

λ(gαi
(λ))2dFλ‖y − yδ‖2 ≤(4.7) C

∫ γα

0

λ(gβi
(λ) − gαi

(λ))2dFλ‖y − yδ‖2.

This result implies the convergence of the mentioned parameter choice rules. Concerning
(4.7) it will be shown below that if there is aq < 1 such that

(4.8) βi ≤ qαi ∀i,

then (4.7) holds for the (discrete) Tikhonov regularization and for Landweber iteration. This
gives the convergence result for the example regularization methods in this paper.

THEOREM 4.6. Let yδ − y ∈ N2, and forψDQO let (4.8) hold. Then the parameter
choicesψQO, ψDQO, ψHR,τ converge for Tikhonov regularization and Landweber iteration.
Let yδ − y ∈ N1, then the parameter choice withψHR,τ converges for Tikhonov regulariza-
tion, Landweber iteration, and spectral cutoff.

Proof. The conditions (2.9), (2.6) and (2.7) hold for Tikhonov regularization and Landwe-
ber iteration. For spectral cutoff, (2.6) and (2.9) hold. Altogether, convergence follows from
Propositions4.2, 4.5 and Theorem3.6. It remains to prove that (4.7) is implied by (4.8) for
Tikhonov regularization and Landweber iteration. For Tikhonov regularization, inequality
(4.7) holds forλ ∈ [0, γαi] if αi − βi ≥ CDQO,l,γ(γαi + βi) is satisfied. Condition (4.8)
suffices for this inequality withCDQO,l,γ = γ+q

1−q
. For Landweber iteration, the monotonicity

in λ of the left hand side in (4.7) yields forλ ∈ [0, γαi]

g 1
βi

(λ) − g 1
αi

(λ) ≥ g 1
βi

(γαi) − g 1
αi

(γαi) =
1

γαi

(

(1 − γαi)
1

αi − (1 − γαi)
1

βi

)

≥ 1

γαi

(

(1 − γαi)
1

αi − (1 − γαi)
1

qαi

)

=
1

γαi

(

(

(1 − γαi)
1

γαi

)γ

−
(

(1 − γαi)
1

γαi

)

γ
q

)

.

Takeη = 1
2 , so that0 ≤ γαi implies(1 − γαi)

1
γαi ∈ [14 , 1

e
], which yields the estimate

g 1
βi

(λ) − g 1
αi

(λ) ≥ 1

q

(

min
x∈[ 1

4
, 1

e ]
(xγ − x

γ
q )

)

1

αi

≥ C
1

αi

,

with a positive constantC. With (2.6) we arrive at (4.7).
For the quasi-optimality rule, this theorem and the previous propositions have been

shown in [20] and for (iterated) Tikhonov regularization in [14]. The new results in this
paper are extensions toψHR,τ , ψDQO.
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4.2. Convergence rate analysis.Let us now consider the conditions for convergence
rates and optimal order convergence using Theorem3.12. Since in this section we only
considerψQO, ψHR,τ , ψDQO, we can use subadditivity (Condition3.7). In the previous
section, we have already considered premises when (3.9) of Condition3.10is satisfied. This
section is concerned with Condition3.8, in particular (3.7), and the upper estimates (3.11)
and (3.12). For the optimal order theorem we additionally have to show(3.14), (3.15). More
precisely, we establish conditions for the following estimates for the functionalsψ with some
generic constantsC and index functionΦ:

ψ(α, yδ − y) ≤ C
δ√
α

∀α ∈ M,(4.9)

ψ(α, y) ≤ C‖Rαy − A†y‖ ∀α ∈ M,(4.10)

ψ(α, yδ − y) ≤ C‖Rαyδ − Rαy‖ ∀α ∈ M,(4.11)

ψ(α, y) ≥ Φ−1‖Rαy − A†y‖ ∀α ∈ M.(4.12)

For some of these inequalities we need some additional conditions. We list them for later
reference. For the discrete quasi-optimality rule we require the following in addition to (4.7)

|gβi
(λ) − gαi

(λ)| ≤ CDQO,c|gαi
(λ)| ∀λ ∈ (0, ‖A‖2],(4.13)

|rβi
(λ) − rαi

(λ)| ≤ DDQO,c|rαi
(λ)| ∀λ ∈ (0, ‖A‖2],(4.14)

and that there exists a constant0 < η < ‖A‖2 such that for all0 < γ ≤ 1

(4.15) |rβi
(λ) − rαi

(λ)| ≥ DDQO,h|rαi
(λ)| ∀‖A‖2 ≥ λ ≥ γαi 0 ≤ γαi ≤ η.

We furthermore need conditions on the exact solution:x† = A†y:
• there exists a constantη > 0 and an index function such that for all0 ≤ t ≤ η,

(4.16)
∫ t

0

rt(λ)2dEλ‖x†‖2 ≤ Ψ

(

∫ ‖A‖2

t

rt(λ)2dEλ‖x†‖2

)

,

• there exists a constantη > 0 and an index function such that for all0 ≤ t ≤ η,

(4.17)
∫ t

0

rt(λ)2dEλ‖x†‖2 ≤ Ψ

(

1

t

∫ ‖A‖2

t

rt(λ)2λdEλ‖x†‖2

)

,

• there exists a constantθ1 such that for allt ∈ M ,

(4.18)
∫ ∞

t

r2
t (λ)λd‖x†‖2 ≤ θ1 t

∫ ∞

t

r2
t (λ)d‖x†‖2.

Note that (4.16) implies (4.17) with the sameΨ. However, using (4.17) enables us in the case
of ψHR,∞ to get a better estimate than that for (4.16).

The Hanke-Raus rules require an additional condition on thenoise besides (4.6): There
exists a constantη andθ2 such that for all0 ≤ t ≤ η,

(4.19)
∫ t

0

dFλ‖Qyδ − y‖2 ≤ θ2
1

t

∫ t

0

λdFλ‖Qyδ − y‖2.

The first lemma concerns (4.9).
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LEMMA 4.7. Letgα be a spectral filter. Then(4.9) holds
• for ψHR,τ with anyτ ∈ (0,∞],
• for ψQO if (2.6) is satisfied,
• for ψDQO if (2.6) and (4.13) are satisfied.

Proof. This follows fromrα(λ) ≤ (1 + Cg), |λgα(λ)| ≤ Cg, and (2.6). In the case of
ψDQO we additionally need (4.13).

Now we proceed to show the estimate (4.10).
LEMMA 4.8. Letgα be a spectral filter. Then(4.10) holds
• for ψHR,τ if τ < ∞ andρ(x) = xτ is a qualification,
• for ψHR,∞, if (4.18) holds,
• for ψQO,
• for ψDQO if (4.14) is satisfied.

Proof. For ψQO, the result follows from (2.2) and for ψHR,τ from the qualification
conditionrα(λ)

1
τ |λ

α
| ≤ Cρ. ForψDQO, it follows from

λ2|gαi
(λ) − gβi

(λ)|2 = |rαi
(λ) − rβi

(λ)|2,

together with (4.14). ForψHR,∞, we obtain by (4.18)

ψHR,∞(α,Ax†)2 ≤
∫ α

0

r2
α(λ)dEλ‖x†‖2 +

∫ ‖A‖2

α

r2
α(λ)

λ

α
dEλ‖x†‖2

≤(4.18)

∫ α

0

r2
α(λ)dEλ‖x†‖2 + θ1

∫ ‖A‖2

α

r2
α(λ)dEλ‖x†‖2

≤ max{1, θ1}‖Rαy − A†x†‖2.

Concerning (4.11) we have the following result.
LEMMA 4.9. Letgα be a spectral filter. Then(4.11) holds
• for ψHR,τ with τ ∈ (0,∞], if ρ(x) = x

τ
2τ+1 is a qualification,(2.7) holds,(4.19) is

satisfied, andyδ − y ∈ N1,
• for ψQO,
• for ψDQO, if (4.13) holds.

Proof. The result forψQO follows immediately from|rα(λ)| ≤ 1 + Cg and forψDQO

from (4.13). For the Hanke-Raus rules, we chooseγ such thatγα ≤ min{t1, η}, whereη is
the minimum of the constants in (4.19), (2.7). Then

ψHR,τ (α, yδ − y)

≤(2.2),(2.10) (1 + Cg)
2+ 1

τ
1

α

∫ γα

0

dFλ‖Qyδ − y‖2 + C3,ρ

∫ ∞

γα

1

λ
dFλ‖Qyδ − y‖2

≤(4.6) C
1

α

∫ γα

0

dFλ‖Qyδ − y‖2 ≤(4.19) C
1

α2

∫ γα

0

λdFλ‖Qyδ − y‖2

≤(2.7) C

∫ γα

0

λgα(λ)2dFλ‖Qyδ − y‖2 ≤ ‖Rα(yδ − y)‖2.

Finally we come to (4.12).
LEMMA 4.10.Letgα be a spectral filter. Then(4.12) holds
• for ψHR,τ , if τ < ∞, τ = µ0, whereµ0 is the qualification index, and(4.16) is

satisfied,
• for ψHR,∞, if τ = ∞ and (4.17) is satisfied,
• for ψQO, if (2.8) and (4.16) is satisfied,
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• for ψDQO, if (4.16) and (4.15) holds.
The index functionΦ in (4.12) is in all cases related to the index functions(4.16) or (4.17),
respectively, by

Φ(x) =
√

Ψ(C1x2) + C2x2,

whereC1, C2 are constants.
Proof. Let γ ≤ 1 be such thatγα ≤ η with η being the minimum of the constants

appearing in the required conditions. ForψHR,τ with τ being the qualification index, and for
ψQO, ψDQO, we obtain lower bounds

ψHR,µ0
(α,Ax†)2 ≥(2.11) Dind,µ0

∫ ‖A‖2

γα

rα(λ)2dFλ‖x†‖2,

ψQO(α,Ax†)2 ≥(2.8) Ch,γγ2

∫ ‖A‖2

γα

rα(λ)2dFλ‖x†‖2,

ψDQO(α,Ax†)2 ≥
∫ ‖A‖2

γαi

λ2(gβi
(λ) − gαi

(λ))2dEλ‖x†‖2

=

∫ ‖A‖2

γαi

|rβi
(λ) − rαi

(λ)|2dEλ‖x†‖2 ≥ D2
DQO,h

∫ ‖A‖2

γαi

r2
αi

(λ)dEλ‖x†‖2.

On the other hand, from (4.16) with γ ≤ 1, we get

∫

rα(λ)2dEλ‖x†‖2 ≤
∫ α

0

rα(λ)2dEλ‖x†‖2 +

∫ ‖A‖2

α

rα(λ)2dEλ‖x†‖2

≤(4.16) (Ψ + id)

(

∫ ‖A‖2

α

rα(λ)2dEλ‖x†‖2

)

≤ (Ψ + id)

(

∫ ‖A‖2

γα

rα(λ)2dEλ‖x†‖2

)

,

which establishes the result for three cases. ForψHR,∞, we can estimate

ψHR,∞(α,Ax†)2 ≥ 1

α

∫ ‖A‖2

α

rα(λ)2λdFλ‖x†‖2,

and with (4.17) in place of (4.16), andλ ≥ α, the result follows also in this case.
We note that the estimates in these lemmas have been proven byNeubauer [20] for the

case ofψQO.

5. Case studies.In this section we discuss the convergence rate result for the typical
cases of a) a regularization method with finite qualificationindex; b) the case of Landweber
iteration, which does not have a finite qualification index, but still has a generalized saturation
of qualification; and c) the case of spectral cutoff, which does not show such a saturation.
Since convergence rates are impossible without a source condition, in the following we will
impose a Ḧolder type source condition

(5.1) A†y ∈ R((A∗A)µ).
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5.1. Methods with finite qualification index. We consider the case thatµ0 < ∞ is a
qualification index of the regularization method. Tikhonovregularization is a typical example
of the methods we discuss here. The convergence of these methods is a simple consequence of
Theorem3.6and we omit the details here. Let us just mention that Condition (4.5) for ψHR,τ ,
which was sufficient for Assumption2.4, is only a restriction onτ for a low saturating method
with µ0 < 1

2 , andτ can be chosen arbitrarily otherwise, in particular, the latter is the case for
Tikhonov regularization.

The main benefit of a finite qualification index comes within the convergence rate anal-
ysis, because (4.16) and (4.17) is satisfied for allx† with a functionΨ depending on the
qualification index. We have the following theorem, extending the results of [20].

THEOREM 5.1. Letgα be a continuous, monotone spectral filter, with finite qualification
indexµ0 such thatρ(λ) = λµ is a qualification for allµ ∈ (0, µ0]. Moreover, assume that

x† satisfies a source condition with some0 < µ ≤ µ0 and let
∫ ‖A‖2

η
dEλ‖x†‖2 6= 0 for some

η > 0. The following convergence rate estimate is valid

(5.2) ‖Rα∗(yδ)yδ − x†‖ ≤ Cδ
2µ

2µ+1

µ
µ0

in the following cases,
• for ψHR,τ , if (2.9), (2.6) hold,yδ − y ∈ N1, and with the choiceτ = µ0,
• for ψQO, if (2.9), (2.6), (2.7), (2.8) hold, andyδ − y ∈ N2,
• for ψDQO, if (2.9), (2.6), (2.7) hold,yδ −y ∈ N2, and if (4.7), (4.13), (4.14), (4.15)

holds.
Moreover, let(2.9), (2.6) hold andyδ − y ∈ N1. If µ0 > 1

2 , then we obtain forψHR,∞
with µ̃ = min{µ, µ0 − 1

2}

‖Rα∗(yδ)yδ − x†‖ ≤ Cδ
2µ̃

2µ̃+1
min{ µ̃−

1
2

µ0−
1
2

,1}
.

Proof. We apply Theorem3.12. According to Proposition4.1, Assumption2.4 is au-
tomatically satisfied forψQO, ψDQO, ψHR,µ0

and forψHR,∞ by µ0 > 1
2 . Condition3.7

trivially holds. Condition3.10was shown in Proposition4.5. Lemma4.7 implies that (3.12)
holds in the respective cases withρ↓,yδ−y(α) = δ√

α
. The source condition (5.1) implies the

estimate

(5.3) ‖Rα − yδ‖ ≤ Cαµ

for µ ≤ µ0. Together with Lemma4.8we obtain (3.11) with ρ↑,y(α) = αµ for all cases ex-
ceptψHR,∞. However, with (5.1) it is standard that forψHR,∞ ρ↑,y(α) = αµ for µ ≤ µ0 − 1

2 .
It remains to verify Condition3.8. This is a consequence of Lemma4.10. We only have

to show that (4.16), or (4.17) (in the caseψHR,∞) holds. However, this is a consequence of
(5.3) and the following argument: With the qualification assumption, (4.16) is satisfied since

∫ γα

0

rα(λ)2dEλ‖x†‖2 ≤ Cα2µ,

while
∫ ‖A‖2

γα

rα(λ)2dEλ‖x†‖2 ≥ α2µ0
1

η2µ0

∫ ‖A‖2

η

dEλ‖x†‖2;

thus, (4.16) holds with Ψ(x) = Cx
µ

µ0 . Moreover, a similar argument shows that (4.17)

holds withΨ(x) = Cx
µ

µ0−
1
2 . Using Lemma4.10, we obtain forψQO, ψHR,µ0

, ψDQO that
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Condition3.8 holds withΨ = Cx
min{ µ

µ0
,1} and forψHR,∞ with Ψ(x) = Cx

min{ µ−
1
2

µ0−
1
2

,1}
.

The infimum in Theorem3.12can easily be calculated by balancing the terms, which finally
yields the result.

This theorem shows that in general we only get suboptimal rates for heuristic parameter
choice rules. Optimal order rates are established if the index of the source condition equals
the qualification indexµ0, or, for theψHR,∞ rule, equalsµ0 − 1

2 . We can therefore interpret
(4.16) or (4.17) as a quantitative condition on how far the smoothness ofx† = A†y is away
from the qualification index of the method. Note that while the quasi-optimality rules and the
Hanke-Raus rules withτ = µ0 behave similarly, the Hanke Raus rule withτ = ∞ behaves
differently. Depending on the smoothness it is possible that the latter rule might gives better
result than the others, while in other cases this situation might be reversed.

A similar analysis is of course possible for other types of source conditions, like logarith-
mic ones. Since in this case the solution smoothness is much weaker than the qualification
index, we expect very weak convergence rates if no further condition onx† are used.

Let us now turn to optimal order convergence. In the case of finite qualification, the
condition (4.16) with Ψ(x) = x reduces to

(5.4)
∫ t

0

1

λ2µ
dEλ‖x†‖2 ≤ Ct2(µ0−µ)

∫ ∞

t

1

λ2µ0
dEλ‖x†‖2, ∀0 < t < η,

and (4.17) with Ψ(x) = x reduces to

(5.5)
∫ t

0

1

λ2µ
dEλ‖x†‖2 ≤ Ct2(µ0−µ)−1

∫ ∞

t

1

λ2µ0−1
dEλ‖x†‖2, ∀0 < t < η.

THEOREM 5.2. Letgα be a continuous monotone spectral filter, with finite qualification
indexµ0 such thatρ(λ) = λµ is a qualification for allµ ∈ (0, µ0].

Assume thatx† satisfies a source condition(5.1) and the decay condition(5.4). Then the
optimal order estimate

(5.6) ‖Rα∗(yδ)yδ − x†‖ ≤ C inf
α

‖Rα∗(yδ)yδ − Rα∗(yδ)y‖ + ‖Rα∗(yδ)y − x†‖

holds in the following cases,
• for ψQO, if (2.9), (2.7), (2.8) hold, andyδ − y ∈ N2,
• for ψDQO, if (2.9), (2.7), hold,yδ − y ∈ N2, and additionally(4.7), (4.13), (4.14),

(4.15), hold,
• for ψHR,τ , if (2.9), (2.6) hold,Q(yδ − y) ∈ N1, τ = µ0, and(4.19) holds.

Moreover, ifx† satisfies a source condition and(5.5), µ0 ≥ 1
2 , (2.9), (2.6) (4.19), and(4.18)

hold, thenψHR,∞ satisfies the optimal order estimate(5.6).
Proof. This theorem is a consequence of Theorem3.13, Propositions4.1 and4.5, and

Lemmas4.8, 4.9, and4.10.
We notice thatψQO andψDQO need similar conditions. ForψHR,µ0

we need an addi-
tional noise condition (4.19), which means that the noise should not be too irregular. This
condition is not needed for the quasi-optimality rules.

In the case ofψHR,∞ we need the rather restrictive condition (4.18). This condition
can only be satisfied if the smoothness index of the source condition obeys the inequality
µ ≤ µ0 − 1

2 .
We also notice that if for some constantsp, q < 1,

pαi ≤ βi ≤ qαi ∀i

is valid, then all the conditions (4.7), (4.13), (4.14), (4.15) for ψDQO are satisfied in the case
of Tikhonov regularization.
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5.2. Landweber iteration. We now discuss the convergence rate results for Landweber
iteration.

The results on convergence rates are different from the previous sections. Note that
Landweber iteration does not have a finite qualification index; every functionxµ is a qualifi-
cation. For Landweber iteration, however, we can find a substitute for the qualification index.
Indeed, it can be shown that if‖A‖ < 1 then

(5.7) |rα(λ)| ≥ e−C 1
α , 1 > ‖A‖2 > λ ≥ γα,

for some constantC. The convergence rates for Landweber iteration with a source condition
(5.1) are established in the following theorem.

THEOREM 5.3. Let ‖A‖ < 1 and the regularization method be Landweber iteration
and letx† satisfy a source condition(5.1). Then the following convergence rate holds with
constantsC1, C2,

‖Rα∗(yδ)yδ − x†‖ ≤ C1

(

C2

− log(δ)

)µ

in the following cases,
• for ψHR,τ , if Q(yδ − y) ∈ N1, for anyτ ∈ (0,∞],
• for ψQO, if yδ − y ∈ N2,
• for ψDQO, if yδ − y ∈ N2, and constantsp, q < 1 exists with

pαi ≤ βi ≤ qαi ∀i.

Proof. Let us first assume that (4.7), (4.13), (4.14) and (4.15) hold for ψDQO. As in
the previous section we can establish (4.9), and with a source condition it follows easily that
ψ(α, y) ≤ Cαµ in all cases (forψDQO we need (4.14) here). Proposition4.5 implies (3.9)
under the stated noise conditions. In view of Theorem3.12 it remains to show (3.7) for
w = Ax†. From the source condition it follows that‖Rαy − A†y‖ ≤ Cαµ. Using that
(2.8) holds for Landweber iteration, (or (4.15) for ψDQO) it can be shown that in all cases the
inequality

ψ(α, y)2 ≥
∫

γα

rα(λ)ζdEλ‖x†‖2

is valid with ζ ∈ {2, 2 + 1
τ
}, depending on the method. Now using (5.7) yields that

ψ(α, y) ≥ C3e
−C4

α .

We thus can choseΦ−1(x) = C3 exp(− C4

x1/µ ) to get (3.7). Let us now verify all the required
conditions forψDQO. In Theorem4.6we already showed that (4.8) implies (4.7). From

|rβi
(λ) − rαi

(λ)| = rαi
(λ)(1 − (1 − λ)

1
βi

− 1
αi ),

(4.14) follow straightforwardly fromβi < αi. We observe that for1 > ‖A‖2 < λ ≥ γα,

1 − (1 − λ)
1

βi
− 1

αi ≥ 1 − (1 − γαi)
( 1

q −1) 1
αi ≥ 1 −

(

(1 − γαi)
1

γαi

)γ( 1
q −1)

,

and (4.15) follows as in the proof of Theorem4.6. The inequality (4.13) is equivalent to

(1 − λ)
1

αi − (1 − λ)
1

βi

1 − (1 − λ)
1

αi

≤ CDQO,c,
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and withβi ≥ pαi the left-hand side can be bounded by

(1 − λ)
1

αi − (1 − λ)
1

βi

1 − (1 − λ)
1

αi

≤ (1 − λ)
1

αi − (1 − λ)
1

qαi

1 − (1 − λ)
1

αi

.

Since(1 − λ)
1

αi ∈ (0, 1] and x−x
1
q

1−x
with q < 1 is uniformly bounded forx ∈ [0, 1], (4.13) is

proven.
This shows that for methods with high or infinite qualification index, only slow conver-

gence rates can be expected. Of course, with the appropriateconditions, we can prove again
optimal order rates in the same line as before. However, in the case of Landweber iteration,
the decay conditions (4.16) are more restrictive compared to the finite qualification case.

5.3. Spectral cutoff. The case of the spectral cutoff (or truncated singular valuedecom-
position) is different in several aspects. The quasi-optimality ruleψQO is not applicable here,
because it is0 (Condition3.2 is violated). Also, the discrete versionψDQO is not appropri-
ate, because Condition3.2cannot be verified in general. However, Hanke-Raus rules canbe
analyzed. We notice that in the case of spectral cutoff,ψHR,τ is independent ofτ .

The convergence rate result are stated in the following theorem.
THEOREM 5.4. LetQ(yδ − y) ∈ N1 and the regularization method be spectral cutoff.
• If a source condition is satisfied and if there is an index function such that

(5.8)
∫ t

0

dEλ‖x†‖2 ≤ Φ

(

1

t

∫ t

0

λdEλ‖x†‖2

)

∀t ∈ (0, α0],

then forψHR,τ we obtain

‖Rα∗(yδ)yδ − x†‖ ≤ Φ(δ
2µ

1+2µ ).

• If (5.8) is satisfied withΨ(x) = x, then the optimal error bound(5.6) holds.
Proof. For spectral cutoff, (2.6) and (2.9) holds so that by Corollary4.2, Proposition4.5,

Lemmas4.7, 4.8, and4.9 all conditions of Theorem3.12 and Theorem3.13 are satisfied
except for (3.7). However, the condition (5.8), which is used instead of (4.16) or (4.17) is
exactly (3.7).

The difference to the previous methods is that for spectral cutoff we cannot proof conver-
gence rates only by using a source condition. The reason is, as already mentioned, the lack
of a saturation of qualification.

5.4. The L-curve method. Let us finally discuss the drawback of the L-curve method.
We want to argue that the analysis in this paper does not applyto this method. We have seen
that the central ingredient for a convergence proof is a noise condition (Condition3.3). For
convergence rates a quantitative version has to be used. Since the L-curve is not subadditive
(Condition3.7does not hold) condition (3.16) was used to prove convergence or convergence
rates. We now argue that such an estimate does not hold in realistic cases. First, let us note
that one has some freedom in choosingψ: if ψ satisfies Assumption2.4, then so doesΦ(ψ),
whereΦ is an index function withΦ(∞) = ∞. The choice ofΦ, however, should be related
to estimates such as (3.16) in the sense that the left- and right-hand sides should havethe same
degree of homogeneity. The left-hand side in (3.16) is homogeneous of degree 1 in the noise
yδ − y: ‖Rαλ(yδ − y)‖ = λ‖Rα(yδ − y)‖, which suggests thatψ should be homogeneous of
degree1 as well. If this condition holds, then the setNz is scaling invariant, which means that
the noise conditionyδ − y ∈ Ny does not need any information on the noise level‖yδ − y‖.
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With this argument it is clear that the functional for the (modified) L-curve method should be
homogeneous of degree 1, i.e.,

ψµL,scaled(α, yδ) = ψµL(α, yδ)
1

1+µ , µ > 0.

However, for the scaled version the bound (3.16) does not hold.
PROPOSITION5.5. Letgα be a spectral filter. For the functionalψµL,scaled there cannot

be a setNz with Nz ∩ D(A†) = ∅ such that(3.16) holds for all α ∈ M with C > 0 and
f(α) bounded.

Proof. We have the bound

ψµL,scaled(α, yδ) ≤ ψµL,scaled(α, yδ − y) + ‖Rα(yδ − y)‖ µ
1+µ C1,δ + C2,δ,

whereC1,δ, C2,δ denote constants, independent ofα. Suppose that (3.16) holds for a data
erroryδ − y ∈ Nz 6∈ D(A†). Then it is well known thatlimα→0 ‖Rα(yδ − y)‖ = ∞, hence,
for sufficiently smallα, ‖Rα(yδ − y)‖ 6= 0 and we get

0 < C ≤
(

∫

rα(λ)2dFλ‖yδ − y‖2

∫

λgα(λ)2dFλ‖yδ − y‖2

)

1
2+2µ

+
C1,δ

‖Rα(yδ − y)‖ 1
1+µ

+
C2,δ

‖Rα(yδ − y)‖ .

Taking the limit and usingyδ − y 6∈ D(A†), we obtain that

0 < C ≤ lim inf
α→0

(
∫

rα(λ)2dFλ‖yδ − y‖2

∫

λgα(λ)2dFλ‖yδ − y‖2

)

1
2+2µ

.

However, the numerator in this fraction is bounded (and eventends to0), and the denominator
tends to infinity asα → 0; thus, the right-hand side in this inequality tends to0, which is a
contradiction.

This proposition shows that the modified L-curve (at least asstated in this paper) has a
serious flaw. We note that it has been suggested [16] to let µ depend on the regularization
parameter as well which could be a way to avoid a negative result like Proposition5.5.

Another ad-hoc suggestion for a repair of the L-curve methodwould be to compensate
with a negative power ofα and use, e.g.,ψ(α, yδ) = 1√

α
ψµL(α, yδ).

6. Discussion. We have established a rather general framework for the convergence
analysis of minimization-based noise level-free parameter choice rules. It is not possible in
one paper to cover all cases in detail, but the methodology inthis work can, of course, be
applied to other situations.

The assumptions in this paper, the noise conditions (4.6), (4.19) and the decay con-
ditions (4.16)–(4.18) are the main tools for the proofs. This type of conditions were first
used in [14] and later in [20]. Other authors have used different conditions for a con-
vergence proof, e.g., lower and upper bounds on the Fourier coefficients of the noise: if
(σi, ui, vi) denotes the singular system of a compact operator, then inequalities of the form
c1n

−p ≤ (yδ − y, vn) ≤ c2n
−p can be of value; see, e.g., [17, 18]. Assuming such inequal-

ities and a certain decay of the singular values, (4.6) can be verified [14]. However, such
decay rate conditions are not as general as the noise conditions in this paper; moreover, the
rate conditions usually need multiple constants and parameters. In this sense, the conditions
in this paper are more economical. The same holds for the conditions onx†, where a certain
fixed decay rate of its Fourier coefficients usually implies the decay conditions. We note that
in [2] scaling conditions were used in place of the noise conditions. It can be shown that the
noise condition (4.6) can be rephrased into such scaling condition.
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Of course, there is no way to verify the noise condition and decay conditions in reality,
unless the noise and the exact solution are known. Concerning the noise condition, this is
similar to the usual parameter choice rule, where one assumes the noise level to be known.
In noise level-free parameter choice rules, we replace the assumption of a knownδ by a
qualitative assumption on the noise. The interpretation ofthe noise condition is that the noise
has to be sufficiently “nonsmooth”, or, more precisely, it should not be in inR(A). In fact,
this agrees with the Bakushinskii veto, where a counterexample for the convergence of noise
level-free parameter choice rules is constructed by using noise that is inR(A). The noise
condition is usually satisfied for random noise; however, itshould be noted that (4.6) also
depends on the smoothing properties ofA. The more smoothing (in terms of the decay of the
singular values) the operator is, the less restrictive is the noise condition. Again, this fits our
interpretation that the noise should not be inR(A), because for a highly smoothing operator
it is quite unlikely that noise is smooth enough to be close toR(A). The noise condition is
central to the convergence of parameter choice rules, thus the least desirable setup for noise
level-free parameter choice rule is an operator that is onlymildly ill-posed together with data
noise that is smooth.

Without additional conditions on the exact solution, the noise level-free parameter choice
rules only yield suboptimal convergence rates, unless decay conditions (4.16) or (4.17) hold.
These are assumptions on the exact solution that have to be made similar to (and together
with) a source condition. While a source condition is a smoothness condition stated inde-
pendently of the regularization method, the interpretation of the decay condition is that the
smoothness ofx† should be close to the qualification of the regularization method (or close
to µ0 − 1

2 in the case ofψHR,∞). Note that if the smoothness index coincides with the qual-
ification index then the decay conditions are trivially satisfied. It is an important fact that
the convergence rates for noise level-free parameter choice rules depend on the regulariza-
tion method in a crucial way, which is different fromδ-based rules. From the analysis in
this paper, we observed that low saturating methods yield better convergence rates in case of
Hölder source conditions. The worst scenario for noise level-free parameter choice rules in
terms of convergence rates is a regularization method that has no finite qualification index
(such as Landweber iteration, or spectral cutoff) togetherwith an exact solution that has low
smoothness. At least forψHR,∞ this can be seen from the numerical results in [21, Table 34].

Comparing the methodsψQO, ψDQO, ψHR,τ , we have seen that with regard to conver-
gence they behave quite similar. The Hanke-Raus rules require a weaker noise condition, but
the difference between the setsN1 andN2 is probably not important in practice. In view
of convergence rates, we have observed thatψQO, ψDQO, ψHR,µ0

yield similar convergence
rates (in the finite qualification case), whileψHR,∞ behaves differently. There is not a general
answer for which of the rules is better; rather the choice depends on the smoothness ofx†. If
the smoothness indexµ of x† is close to the qualification, then the first rules are better,while
if µ is close toµ0 − 1

2 , the ruleψHR,∞ is better. In this respect the residual-based method
ψHR,∞ behaves similarly to the discrepancy principle, which alsodoes not yield the best
convergence rates in the whole rangeµ ≤ µ0, but saturates before [6]. The rulesψQO, ψDQO

behave quite similarly in many respect, which justifies the view of ψDQO as a discretized
version ofψQO. Moreover, the ruleψDQO is probably the easiest one to implement.

Let us finally note that our analysis reveals the reason for the reported success of noise
level-free parameter choice rules in practice. As far as we know, most of the numerical
comparisons of these rules have used random noise and ratherregular exact solutions, which
means that the noise conditions and decay conditions were satisfied. Moreover, our analysis
can also be used to explain and understand “inverse crimes”:it has been proposed that a fair
comparison of parameter choice rules should not exclusively use random noise, but also, e.g.,
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the error due to different discretizations. This fits into our analysis since random noise is
the good case (the noise condition is satisfied), while discretization errors in the data can be
instances where the noise condition is not necessarily satisfied.

In conclusion, it can be said that noise level-free parameter choice rules are a useful
enrichment to the arsenal of classical parameter choice rules. However, they should be used
only with a good understanding of the structure of the noise in a given problem and of the
possible limited convergence properties.
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[8] U. HÄMARIK , R. PALM , AND T. RAUS, On minimization strategies for choice of the regularization parame-

ter in ill-posed problems, Numer. Funct. Anal. Optim., 30 (2009), pp. 924–950.
[9] , Extrapolation of Tikhonov regularization method, Math. Model. Anal., 15 (2010), pp. 55–68.

[10] M. HANKE AND P. C. HANSEN, Regularization methods for large-scale problems, Survey Math. Indust., 3
(1993), pp. 253–315.

[11] M. HANKE AND T. RAUS, A general heuristic for choosing the regularization parameter in ill-posed prob-
lems, SIAM J. Sci. Comput., 17 (1996), pp. 956–972.

[12] P. C. HANSEN, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34 (1992),
pp. 561–580.

[13] P. C. HANSEN AND D. P. O’LEARY, The use of theL-curve in the regularization of discrete ill-posed
problems, SIAM J. Sci. Comput., 14 (1993), pp. 1487–1503.

[14] S. KINDERMANN AND A. NEUBAUER, On the convergence of the quasioptimality criterion for (iterated)
Tikhonov regularization, Inverse Probl. Imaging, 2 (2008), pp. 291–299.

[15] C. L. LAWSON AND R. J. HANSON, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ,
1974.
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