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APPLICATION OF BARYCENTER REFINED MESHES IN LINEAR ELASTIC ITY
AND INCOMPRESSIBLE FLUID DYNAMICS *

MAXIM A. OLSHANSKII ¥ AND LEO G. REBHOLZ

Abstract. The paper demonstrates that enhanced stability propeftisne finite element methods on barycen-
ter refined meshes enables efficient numerical treatmemnbbfgms involving incompressible or nearly incompress-
ible media. One example is the linear elasticity problem puee displacement formulation, where a lower order
finite element method is studied which is optimal order aatiand robust with respect to the Poisson ratio param-
eter. Another example is a penalty method for incompressitdcous flows. In this case, we show that barycenter
refined meshes prompt a “first penalize, then discretizetaamh, avoiding locking phenomena, and leading to a
method with optimal convergence rates independent of thalfyeparameter, and resulting in discrete systems with
advantageous algebraic properties.
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1. Introduction. This article shows that, provided a mild mesh restricticat th simple
to implement using triangular or tetrahedral elementsintgdtaccuracy can be achieved in
finite element methods for both the classical penalty mettidémam for the incompressible
Navier-Stokes equations (NSE) using only the velocityalale 22, 38, 39], and the pure
displacement formulation of linear elasticity problemsriearly incompressible media].
For both of these problems, locking phenomena and suboldicoaracy can occur if care is
not taken in the element choice, and in some cases, the atimgaccuracy may need to be
reduced. For commonly used triangular/tetrahedral elésnéowever, no simple, practical,
efficient, and optimally accurate method seems to exist,iaisdthe goal of this work to
derive such a method.

It has been known for some time that the Scott-Vogelius (S¥){{ Py, )¢, P3¢} (d = 2
or 3 is the space dimension) is an LBB stable Stokes element dyatlyeenter refined meshes
provided that: > d [2, 42] (see Figurel.1for an example of a barycenter refinement). Since
(div (P)?) c Pfsc, it is an example of a stable element which enforces poiettvis di-
vergence free constraint for the velocity. Recently, tiésrent was extensively applied to
solving those problems where numerical mass conservatioritical [L2, 29]. One conse-
guence of pointwise mass conservation and inf-sup stabilithe element is that an arbitrar-
ily large penalization of the divergence constraintday ( P, )?-based element on barycenter
refined meshes does not lead to overstabilization or locklmgnomena, regardless of the
supplementing pressure space (and in particular it holdsryp of the velocity-pressure pairs
(P)4, Pe—1), ((Pe)?, Pe—2), ...((Px)%,{0}) ). This property has been noticed and ex-
ploited for various flow problems with Taylor-Hood (TH) fiaielements ing, 12]. In the
present paper we show that in the limit case of zero prespaesthis approachiis closely re-
lated to methods which eliminate or avoid introducing a pues variable, such as the penalty
method for incompressible flow problems and the solutiorneflinear elasticity problem in
a pure displacement formulation.
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FiG. 1.1.Shown above is a barycenter refinement of a triangle and ahetira.

Numerically solving the linear elasticity problem is knowmbe difficult as the media
becomes nearly incompressiblel]. In such cases, numerical solutions are forced into a
(nearly) divergence free subspace of the discrete solspace, which can lead to poor ap-
proximations and even locking phenomena. However, if thre plisplacement form is used
with solution spaceX;, = (P;)? on a barycenter refined mesh ahd> d, the divergence
free subspace ok, is guaranteed to retain optimal approximation propertigsus in this
setting, optimal accuracy can be expected for nearly incesgible media. In Section 2, we
expand this idea and provide a numerical example demoingfiitg effectiveness.

The second problem studied herein is for the Navier-Stogaattons of an incompress-
ible viscous fluid, which couple pressure and velocity Jalga, and possess well-known nu-
merical stability issues and algorithmic challenges,, ¢1®, 20, 26, 40]. The formal decou-
pling is not possible due to the incompressibility constrakcept in some very special cases.
Several ways of numerical decoupling have been suggestae literature and successfully
used for practical computations, including artificial caegsibility, pseudo-compressibility,
penalty and projection methods, e.gl3[14]. The penalty method for the Navier-Stokes
system was introduced by Temam 88[ 39]: Given a (small) penalty parametepbne looks
for a solutionu®, p° to

(1.1 0

uf — vAu® + (u® - V)u® + J(divu®)u® + Vp© =f,
divu® 4+ ep® =0, ul—p=u".

The pressure may be eliminated from the systém)(resulting in
1
(1.2) uf —vAu 4+ (u®-V)u® + §(div u)u — e 'vdivu® =f, ul—o = u’.

The method was further studied in the literature, see, 2916, 19, 21, 27, 31, 36]. In
particular,O(e) convergence ofi®, p° to the Navier-Stokes solutiom, p was proved in 36]:

L3)  VElul) - w)] + VI V() - u )]
n ( | s p€<s>|2ds)2 < C= vt € (0,7

Although the approach is straightforward, simple, and ynpsolid mathematical justifica-
tion it has not received as much attention as artificial casgibility and projection methods
by practitioners. The likely reason is the following shortings of the method: For small
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values ofs, a Galerkin finite element method applied fod) may lead to a locking phenom-
ena similar to that of the elasticity problem. Moreover, Bwalues ofe make the algebraic
system ill conditioned, since it is dominated by the' Vdiv type term with possibly large
non-trivial kernel. The latter leads to poor convergencmost of available iterative solvers,
prompting us to look for a direct solvers/factorizationthea than iterative. We point, how-
ever, to papersg, 15, 35, where special multigrid and domain decompaosition meshaitbw
promising results in certain cases. Otherwise, the questi@fficient algebraic solvers for
discrete velocity system, resulting after elimination oégsure, seems to be largely over-
looked in the literature.

The natural way around the first difficulty would be first toatitize (.1) and then to
eliminate pressure from the discrete system. In this caddrig does not occur for small
values ofe, however, the choice of an efficient algebraic solver resm@iroblematic. In
particular, it is shown in7] that at least for certain finite element pairs this “firstadetize,
then eliminate” approach leads to algebraic systems wigimificantly) larger fill-in patterns
than direct discretization of.(2), thus making algebraic solvers significantly more expensi

In the recent paper3[l] it is proved that the specific choice of the Crouzeix-Raviar
nonconforming P1 finite element leads to optimal ord@rdependent convergence if applied
directly to (1.2) (i.e., “first penalize then eliminate and discretize” aygwh). In the present
paper we show that with barycenter refined meshestandi, direct discretizations ofl(2)
will provide optimal accuracy (no locking or overstabiliian) and keep the sparsity structure
of matrices reasonable for direct solvers to be succesBfuis, the paper extends the results
of [31] to higher order and conforming finite elements. We also jg®the computational
evidence of the effectiveness and reliability of the apphday considering several standard
2D and 3D benchmark problems.

We note that on general triangular/tetrahedral meshes, &tBBility of SV elements is
not known to be LBB unlesk > 2d[2, 44] , which is a prohibitive restriction. To use smaller
k, special types of meshes that allow the correct ratio of dleallsizes of the velocity and
pressure spaces, can be shown to satisfy LBB by followingraemts of Stenber@[]. To
our knowledge, the barycenter refined mesh is the simplpst @y mesh where LBB holds
for ‘reasonablek. With this mesh condition, however, comes some mild regtns. The
minimum angle of the pre-refined mesh will be cut in half, aodre pre-refined mesh must
have a large minimum angle condition to avoid ‘flat’ elemeaitsr the barycenter refinement
is applied. Also, mesh refinement must be performed morefudgréhan usual by first
refining the coarser (non-barycenter refined) mesh, anchiglying a barycenter refinement.
The ideas presented in this work can be extendéd4od if somewhat more elaborate (and
more restrictive) meshes are used; for example,2, d = 3 andk = 1, d = 2 are possible
choices provided meshes with appropriate macro-elemerttste are choserd, 45].

The remainder of the paper is organized as follows. In se@iowe study the linear
elasticity problem in displacement formulation with bagyter meshes. Here we find optimal
accuracy can be achieved and provide numerical evidendearfd that on general meshes
accuracy is suboptimal. Section 3 applies the methodolodlié incompressible, viscous
Navier-Stokes equations, and several numerical expetgaea given that demonstrate both
the efficiency and accuracy of the proposed method.

2. Application to linear elasticity. Consider the linear elasticity problem, written in
displacement variables,

(2.2) —2pdivD(u) — V(divu)=f in

v
1-2v
(2.2) u=g on 09,
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whereu is the displacement,is the body forceD(u) is the strain (deformation) tenseyijs
the Dirichlet boundary condition (results can easily beeeged to other common boundary
conditions) denotes Poisson’s ratio apds the shear modulus given by

E

F=oi+oy

where E' is Young's modulus. Of particular interest is nearly-inqgmessible media, when
the Poisson ratio = 0.5. In this case, although it is known that the probleii) and .2

is well-posed for al0 < v < 0.5 [1], standard methods often fail or provide sub-optimal
accuracy 11, 17]. Consider the standard finite element formulation2fifand @.2), where
for simplicity g = 0, andvy := %5 (so of interest is nowy — oo0): Findu;, € X, C
(H($2))? satisfying

(2.3) 2u(D(up), D(vp)) + y(divug, divvy) = (f,vy), Vv € Xp.

As shown in [L1], a naive choice of element and triangulation can lead tastisus results; if
X, = (Pp)? and a uniform triangulation of the unit square is used, aifigrincompressibil-
ity and homogeneous Dirichlet boundary conditions leaveégg @ = 0 as a possible solution,
and thus for nearly-incompressible media, one cannot éxggcdegree of accuracy. On
general meshes, only fof;, = (P;,)¢ with & > 4 in 2D andk > 8 in 3D optimal accuracy
can be expected?B, 34], since in these cases the divergence free subspadg, okttains
optimal approximation properties. However, as discusseide introduction, on a barycenter
refined quasi-uniform mesh, we need oRkly> 2 in 2D andk > 3 in 3D. This is a conse-
quence of the result in4g]. Indeed, lety, = —ydivuy, e = v~ 1. Thanks to the embedding
(div (P)4) C Pdisc, the elasticity problem(3) is equivalent to the penalized finite element
Stokes problem

(24) QM(D(uh)’D(Vh)) - (ﬁh,div Vh) = (f)vh)7 VV}L S Xh = ([—-)k)d7
(25) (divun,qn) + €(Bn,qn) =0, Vaqn € Qn = P,

Since the resulting finite element péiX,,, );,) is conforming and LBB stable, the standard
results, see, e.g.1(], lead to the optimal order convergencewf, p;, to the corresponding
solution of the penalized continuous Stokes problenp©:

(2.6) pllV (0 = an) |+ [lp* = pull < A ([0 s + 19°]lk)

with a constant independent of. Lemma 1.1 from 9] yields that for domains with suffi-
ciently regular boundary the norm on the right-hand sided) (s uniformly bounded irz.
Sinceu, also solvesZ.1) and .2 with g = 0, the above discussion implies that for large
if £ > d and a barycenter refined mesh is used, solution8.8f ill have optimal accuracy,
independent of;, in the energy norm

1@lle = /I3 +Aldiv ]2

2.1. Numerical experiment: Convergence rates for Poissomatio ~ 0.5. We now
demonstrate the effectiveness of the mettbd)(with a test problem used iri§], by testing
the methodZ.3) on a problem with large and known analytical solution using;, = (P»)?,

a barycenter refined mesh, a uniform mesh, and a mesh created Delaunay triangulation.
From the above discussion, we expect optimal accuracy wh@pating with the barycenter
refined mesh, and suboptimal accuracy in the other two c¥¢eéind precisely this.
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The known solution is given by

v+ 3p THp (x—x0)(x =%)"Y [ 1
u) ( dmp(y +2m) 0 e =ol[T+ drp(y +2p)  flx—x0|? 0

We compute on the domail = (—1/2,1/2)?, and takex, =< 1,0 >7, E = 1 and

v = 0.49999, which gives the parametetis= 0.3333 andy = 1.6667E + 4, f = 0, and use
the known solution’s boundary values as Dirichlet boundata for the computed solutions
enforced at every boundary node.

Using successively finer meshes, we compute errors and igenee rates for the method
(2.3. The results are given in Tabklfor the barycenter refined triangular mesh, and in Ta-
ble 2.2 for the uniform triangular mesh and the mesh created by aubelatriangulation.
As expected, in Tabl2.1 we see optimal convergence rates for the mettiog (vhen the
barycenter refined mesh is used. For the uniform mesh andeflaibay triangulation com-
putations, we observe from Talile? that the convergence rate deteriorates as the mesh width
decreases. Moreover, a simple comparison of accuracyseesyrees of freedom between
the tables show a dramatic gain in accuracy when a barycesfteed mesh is used.

TABLE 2.1

Convergence of the solution 1@.3) with X;, = (P2)? on a barycenter refined uniform mesh of the
(—1/2,1/2)? square. The convergence rate is optimal.

h dim(Xn)  Jlup — utrueHe rate

1/4 466 9.2464E-3 -
1/8 1,914 2.2137E-3  2.06
1/16 7,258 5.8160E-4  1.93

1/32 29,370 1.5266E-4 1.93
1/64 117,106 3.8387E-5 1.99

TABLE 2.2

Convergence of the solution (@.3) with X;, = (P2)? on a uniform mesh of the-1/2, 1/2)2 square (left),
and on Delaunay triangulations (right). Both rates appesub-optimal.

h dim(Xn)  |Jup — el rate h dim(Xpn)  |Jun — wruel,  rate
1/2 50 2.258E-0 - % 50 2.258E-0 -
1/4 162 4.726E-1 2.26 1/4 162 4.726E-1 2.25
1/8 578 1.127E-1 2.07 1/8 682 3.197E-2 2.07
1/16 2,178 2.870E-2 1.97 1/16 2,506 4.260E-3 3.09
1/32 8,450 7.906E-3 1.86 1/32 9,962 8.270E-4 2.38
1/64 33,282 2.468E-3 1.68 1/64 39,378 1.934E-4 2.11
1/96 74,498 1.301E-3 1.58 1/96 87,786 8.979E-5 191

1/128 132,098 8.253E-4 1.58 1/128 157,554 5.894E-5 1.44

2.2. Numerical experiment: Mixed boundary conditions. We now numerically test
the estimateZ.6) for the case of mixed boundary conditions, where the boynidadivided
into piecesP) = 'y UT'p, 'y NT'p = 0, with a Dirichlet condition enforced ofi, and
the natural boundary condition (described1h prising from integration by parts),

(=v(V -up) +2uD(up))n =s,

is enforced o . To our knowledge, the convergence reslt has not been extended to
the case of mixed boundary conditions. This is likely duéheproof of .6) using a Stokes
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regularity result, and thus it is not clear how to extend toartdary condition for Stokes that
includes a nonzero divergence term. Still, whether optaealiracy still holds on barycenter
refined meshes, when such boundary conditions are usecear lasticity is an important
question, and thus we consider it numerically.

This numerical experiment uses the same test problem aaddatsed above in the first
numerical experiment, except here we apply Dirichlet b@updonditions to the top, bottom
and left-hand sides of the square, andlgtbe the right side of the squaféy = {(z,y) €
0Q, = = 1/2}. We compute the functios from the true solution fon = (1,0)7, and use
the same barycenter refined meshes from the first experifRentilts are given in Tab2,
and show that optimal convergence appears to hold, at leati$ test example.

TABLE 2.3
Convergence of the solution {@.3) with X;, = (P»)? on a barycenter refined uniform mesh of the
(—1/2,1/2)2 square, with mixed Dirichlet and natural boundary conditio The convergence rate appears to
be optimal.

h llup, — upell, rate
1/4 7.321E-3 -
1/8 1.986E-3 1.88
1/16  5.395E-4  1.88
1/32 1.460E-4 1.89
1/64 3.741E-5 1.97

3. Application to incompressible fluid flow. Consider the classical penalty method for
the incompressible Navier-Stokes equations given in ttreduiction by (..1),

(3.2) 0

uf — VAU + (uf - V)uf + 1(divu®)u® + Vp© =1,
divu® +ep® =0, ul—g=u’.

There are several ways to approach the equations numegriCalé is to apply a finite element
method directly to§.1): Given an LBB stable velocity-pressure pair

(Xh; Qh) C ((Hol(Q))da Lg(Q))v

on a regular triangular (tetrahedral) mesh of a polygonalyredral) domairf2 C R¢, find
(uj,,p5,) € (Xn,Qn) x (0,T] satisfying

(3 2) ((ui>ta Vh) + b(u‘}i’ uivvh) - (p(}ia div Vh) + V(Vu?w vvh) - (fa Vh)v
' (divu(}iaqh) +€(piaqh) = 0;

forall vy, € Xy, qn € Qp With
1
b(u,w,v) := (u-Vw,v) + 5((div u)w,v), and uj |;—o = I (uo),

wherel}, (u) is an appropriate interpolant. The finite element formala{B.2) is convenient
for error analysis; in particular, convergence to the sotubf (3.1), uniformly in ¢, can be
proved, seed]1] for analysis in 2D. However,3.2) may be impractical from the computa-
tional point of view. Indeed, eliminating the pressure &hté from (8.2) leads to the system
of algebraic equations which involves the matrix of the farm BT M —' B, whereB is the
finite element divergence matrix aidd is the mass matrix fo€);,. Except for a few special
casesM ! is nota sparse matrix. Thus solving the system becomes too exgensin for
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a moderate number of unknowns. One may alter the problem emsider a sparse (e.g.,
diagonal) approximation af/ —!, hence deviating from the finite element formulatiGrd.
This would reduce the cost significantly, however, in terfatrix fill-in, the approach still
remains inferior to the direct discretization df.#): Given a velocity finite element space
X, C (H} ()4, findus, € X, x (0, 7] satisfying

(33) ((u?L)t?vh) + b(uiv uia Vh) + 6_1(diV uia div Vh) + V(Vuia vvh) - (fv Vh);

forall v, € Xy, qn € Qi anduj|.—o = I(up). Below we compare the fill-in properties
and solver timings for3.2) vs. (3.3). Concerning the accuracy d.¢9), we note that for ar-
bitrarily chosen finite element spaces, the method may @thibloss of accuracy for small
values ofs due to the same phenomena as locking in linear elasticityavdad locking we
assume:

(Al): the mesh is created as a barycenter refinement of a regaagtdiation (tetrahedral-
ization),

(A2): the velocity space is chosen to be piecewise polynomialsgifetk, with £ at least as
large as the space dimensioXi;, = (P;)¢, with k& > d.

The following result is the key to an obtaining optimaliniform error estimate for the
penalty finite element metho@.Q. It is the simple consequence of the LBB stability of the
Scott-Vogelius element, but to our knowledge has not yet baéten down in the literature.
For all estimates below, we assume the family of meshedisatiminimum angle condition,
and denote by, the maximum element diameter for a fixed mesh.

LEMMA 3.1. AssumgAl), (A2), and( is convex. For anw € H**' N H}, k > d,
there exists a finite element functiep € X, such that

(3.4) IV =il + RV = vi)ll < B V],
(3.5) |div (v — vp)|| < ch¥||divv|y.

Proof. ComplementX,, with the pressure spacg, of PZ¢ elements. Under the assump-
tions of the lemmd X}, @), form the LBB stable Stokes element atig X;, C Q5. Con-
siderv;, as the velocity solution to the discrete Stokes type problem

(3.6) (Vvi, V) — (qn, divapy,) + (div vy, &) = (Vv, Vb)) + (divv, &),

Vap, € Xy, &, € Q. Thanks to the LBB stability of X3, @1,) and regularity assumption on
Q, the standard error estimate for the finite element solutidhe Stokes problem yields the
estimate 8.4). Moreover, the inclusiodiv X;, C @, and @.6) imply div v, = Py divv,
whereP, is the L? orthogonal projector ofy;,. Therefore,

Idiv (v — vp)|| = ||divv — Podivv]| = incf2 |divv — qn| < ch¥||divv]s. d
qn€Qn

Lemma3.1shows that the divergence free subspac& pis rich enough to provide the
optimal approximation properties in the divergence frdespace. This means thatlocking
occurs. For P1 nonconforming elements the result stateldeiteimma appears with = 1
in [31] as inequalities (3.11) and (3.12) (page 269) and is the mdance where specific
properties of nonconforming P1 elements were used in enalysis. Thus, the analysis of
that paper may be applied to conforming elements satisg&sgmptions (A1) and (A2), with
the simplification that no inter-element non-consisterecynts occur. Repeating arguments of
[31] shows the following result for the proposed scheme.
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THEOREM 3.2. Lete be sufficiently smalk < ¢, where the constant, depends only
on the domairnf2, and the dataiy andf is sufficiently small to guarantee that the solution of
(1.2) is unique (in3D). Then for the solutions t(1.2) and(3.3) it holds

B.7) lu*(t) —up ()] < Ch%, |div(u(t) —wj (1)) < C(h+t7h%) Vte[o,T],

with a constant” independent of, but dependent on norms af andf.

Recover finite element pressure throygh:= —¢~'divuj. The bound 8.7) can be
combined with the result of Shen ii.@) to estimate the convergence of the finite element
penalized solution to the true Navier-Stokes solution:

(3:8) [u(t)—ui()] < C (W +12¢), /O s?[lp(s) —pi(s)l dt < C (hte), Vi € [0,T].

Clearly, for P* (k > d) conforming elements the theoretically justified estirad8e?), (3.9
are suboptimal in terms of convergence order. The optintehates would likely read

(3.9) [[uc(t) — us ()] < Ch* T and|ju(t) — g (t)|| < C (Kt +¢73¢), V¢ € [0, 7).

There are technical difficulties to generalize the analfmighe caset > 1 in the optimal
way: standard approximation properties of finite elememsld/involve higher order norms
of u® in the definition of the constadt in the right-hand sides 08(9). To show that” does
not depend on one needs-independent bounds of the higher order norms<aby the given
data. We are not aware of such bounds available in the literaHowever, in sectiof.1, we
show results of numerical experiments which suggest tha} folds.

We now consider five test problems to demonstrate the effswdiss of the proposed
method. The first test is a numerical verification of the hizesized convergence rates for
(3.3 on a model problem. Next, we compare accuracy and complekihe method §.3)
with that of 3.2) with both Scott-Vogelius and Taylor-Hood elements. Thedtexperiment
is for the 2d benchmark problem of flow over a step, where wepasmthe solution of3.3)
with that of 3.2), again with both Scott-Vogelius and Taylor-Hood elemefitise final two
experiments are for the 3D driven cavity and 3D channel floar aforward-backward step.
For both of these larger tests, we show that the metBA&) (emains accurate and efficient.
All computations were performed using the second authanitefielement codes written in
Matlab, and all timings were made on a Macbook Pro with 2x Z6& Intel Quad-Core 2
Xeon with 12GB 10 MHz DDR3 memory. All linear solves were penied directly with
sparse banded Gaussian elimination (Matlab’s “backs)ash”

3.1. Numerical experiment: convergence rateslt is shown above that for conforming
elements, provided (A1) and (A2) hold, the estim&&)(holds, which leads to the hypothe-
sized error estimate

(3.10) u(t) —u, ()] < C(R*' +t77e), Vit € 0,T].

As discussed above, proving this estimate appears to eesjginificant technical effort. We
now provide numerical evidence that suggests a discrete@péit to hold. With a Crank-
Nicolson temporal discretization and fixed endtifighe discrete analog becomes

(3.11) [w(T) — us ()| < C(hF! 4 & 4+ At?),

whereC' depends on the data, includifig= O(1). We note that, for a fixed", mesh, and
time step, the(e) convergence has been shown numericallylif].[
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We determine approximations of the exact solutions,

(3.12) (e, y,t) = (1+0.01t) ( ng(( ~ f;jgff 1_);2)8 _ Bz) . P=Y,

of the 2D model problem studied i2%]: A plot of the true solution in given in Figurg.1
Usingry = 1, T = 0.1, f is calculated from the NSE and solution, and using the domain
Q = (0,1)%, we solve 8.3 with X}, = (P%)? (i.e.,k = 2). The meshes used are barycenter
refined meshes; also shown in Fig#d. is the mesh used fot = 1/8. Note that both
assumptions (Al) and (A2) are satisfied.

/

”4‘\“ ()"4’\‘«» I3
r&»ﬂ \‘) }‘. 0 ‘\‘t

\/
\’ét\\%) F

}
iv NN NF AV}N/(

osf ISR NN
L /////,.A\\\\ N \

/

FIG. 3.1. Shown above is: (left) the velocity vector field of true golufor convergence rate numerical
experiment , and (right) the = 1/8 barycenter refined mesh.

We compute the error for solutions resulting from succesdgivefined meshes, time
steps, and. We successively refine the meshes, and tie the time steptarttis refinement
so that the hypothesized error@$h 1) (i.e., withk = 2, if h gets cut in halfe gets cut in
eighth, andAt gets cut in third). Results are shown in TaBl&, and the hypothesized rate is
observed.

TABLE 3.1
Errors and rates for varyindr, €, and At. Optimal convergence is observed.

ho At dim(X) e |u(T) —us(T)|| rate
/4 T 466 1/100 1.480E-3

1/8 T/3 1,914 1/800 1.375E-4 3.42
1/16 T/9 12,604  1/6,400 1.651E-5 3.06
1/32 T/27 29,370  1/51,200 2.029E-6 3.02
1/64 T/81 117,106 1/409,600 2.533E-7 3.00

3.2. Numerical experiment: comparison of methods.We discuss two methods for
eliminating the pressure: ‘first penalize, discretize teiéminate pressure’ and ‘first penalize,
eliminate then discretize’. They lead t8.9) and (3.3, respectively. The metho& (3 solves
directly for velocity only, and the system resulting frof2) can be manipulated to solve
for only the velocity. As discussed above, for this secondha to be efficient, a sparse
approximation toB” M ~' B must be made, wherB is the matrix arising from the inner
product(div uy, ¢,) and M is the pressure mass matrix arising frépa,, ¢»). A common
choice is to replacé” M~ B by B (diag(M))~! B, and we use this “approximation” in
this experiment.
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We consider again the NSE spinning eddy problé&mii®, but for simplicity now in
the steady case. We compu3d) with X;, = (P»)2, and 8.2 with both ((P)?, Pisc)
Scott-Vogelius elements andPz)?, P1) Taylor-Hood elements, using = 0.01, and the
h = 1/32 barycenter refined mesh. As was noted already in Se&iatue to the em-
bedding(div (P;)?) C Pd¢, the Scott-Vogelius element is the special element wheh bot
approaches, i.e., discretizing.8) or first discretizing 8.2) and then eliminating pressure, are
equivalent and lead to the same system of algebraic eqsdtiothis caséB” M —! B appears
to be sparse). This is, howevantthe case for the majority of elements used in practice. Fur-
ther, in the tables, “SV for3.2)” stands for the following simplification: For Scott-Voges
element (similar to Taylor-Hood) the matrig” M ~' B is replaced byB” (diag(M)) ™! B.

We will see that this alteration results in an approach withpprties similar tog.3), although
slightly less efficiently.

Errors and solve times for this experiment are given in Takke We find that the pro-
posed method3(3 and the method3(2) with Scott-Vogelius elements gave solutions that
had comparable accuracy, but the methdd)(with Taylor-Hood elements was significantly
worse. For solve times, the methagld) was slightly faster than3(2) with Scott-Vogelius
elements, but both of these were much faster tt&a# (vith Taylor-Hood elements. Fur-
ther investigation of the sparsity structures revealettti@resulting matrix used in Taylor-
Hood had significantly more nonzeros, which led to its sigaifitly worse solve times (see
Table 3.2 and Figure3.2). Although the B matrix for Taylor-Hood is smaller than for
Scott-Vogelius (due to continuous versus discontinuoesqure space), its density causes
BT (diag(M))~! B to be a much denser matrix than in the Scott-Vogelius case.

TABLE 3.2

Errors, solve times, and number of system matrix nonzemthédifferent methods for computing the 2D
spinning eddy on thé = 1/32 barycenter refined mesh.

Method |lu—uj| average solvetime nonzeros in system matrix

(3.3 1.722E-4 0.461 sec. 667,936
(3.2,SV 1.683E-4 0.475 sec. 670,671
(3.2, TH 1.098E-3 39.61 sec. 4,570588

3.3. Numerical experiment: 2D channel flow over a forward-bakward step. For
the next test, we consider the benchmark problem of 2D flow aferward and backward
facing step. This problem is time dependent, and we choeskidarly extrapolated Crank-
Nicolson (CNLE) method of BakeB] for the temporal discretization. This is a hatural choice
due to its unconditional stability with respect to time ss&ge, and second order accuracy.

This problem has been studied iB0[ 24, 32], and consists of @0 x 10 rectangular
channel with a x 1 step on the bottom of the channel, 5 units in. The inflow bowidaset
as a Dirichlet parabolic condition,

u(0,y,t) = [y(10 — y)/25,0]",

the top, sides and step have no-slip boundary conditiorts aathe outflow boundary the
‘do-nothing’ condition is enforced. The viscosity is chonge ber = WIO, and the forcing
is taken to be zerd; = 0. The simulation is run from an initial condition of fully paolic
flow throughout the channel, with the step being insertetfreg ¢ = 0, and then the problem
is run toT" = 40. The correct physical behavior is for eddies to form behhaldtep, then
detach and move down the channel, with new eddies forming.
We compute solutions to this problem usirgyd with X, = (P)?, and with 8.2 by

eliminating pressure and replaciif M —! B with B (diag(M)~1) B for both((P;)?, P{is¢)
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Fill-in for (3.3), 2D Fill-in for (3.2) (TH), 2D

Fill-in for (3.3), 3D Fill-in for (3.2 (TH), 3D

FI1G. 3.2.Fill-in patterns for the system matrices arising frgt3) (left), and(3.2) with Taylor-Hood elements
after eliminating pressure (right). Top pictures: the 2Bttproblem of Section 3.1.2 with= 3% Bottom pictures:

The 3D cavity problemt, = 1.
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F1G. 3.3.The barycenter refined mesh used for the 2D channel flow ovepaegperiment.

Scott-Vogelius elements and?)?, P;) Taylor-Hood elements. In all schemes we choose
e = 1074, time stepAt = 0.01, and use the mesh in FiguBe3 which provides 7,414 ve-
locity degrees of freedom fqP;)? velocities and 5,418 degrees of freedom for fPEsc
discontinuous pressure space, and 915 degrees of freeddimefé continuous pressure
space.

Average solve times and number of nonzeros in the systemaasiare given in Table
3.3 We see that the method.Q) is faster than the methods &3.9): about 20% faster than

268



ETNA
Kent State University
http://etna.math.kent.edu

(3.2 with Scott-Vogelius elements and 10 times faster than Wétylor-Hood elements.

TABLE 3.3
Solve times for the different methods for computing 2D flosv awstep.

Method average solve time (4,000 solves) nonzeros in systatnx

(3.3 0.081 sec. 166,588
(3.2, SV 0.115 sec. 167,224
(3.2, TH 1.1041 sec. 1,089,882

T=40 Speed Contours and Velocity Streamlines, (3.2) scheme

FiG. 3.4.Shown above are the speed contours and velocity streanfitindse solutions to the 2D step bench-
mark problem at T=40: (TOP) th3.3) solution, and (BOTTOM) th€3.2) solution with Taylor-Hood elements.

Plots of solutions ai’ = 40 are shown in Figur8.4 as velocity streamlines over speed
contours. The metho®3(3) and @.2) with SV elements both give good solutions that are
visually indistinguishable (and so only a plot &8 is shown), although they are slightly
different:

luzg.sv —ueyll =2.722E -4  for T = 40.

The solution from 8.2) with TH elements, on the other hand, is visibly less reslvVEhe
likely reason is its poor mass conservation compared totther solutions: af” = 40,

1V U3, = . —

divug gy = 5.296F — 5
HdiV U(3_2)7svH =2.839F -5
||d1V u(3.2),THH =1.210E -0

3.4. Numerical experiment: 3D driven cavity benchmark prodem. This numerical
test is for the 3D driven cavity problem &e = 100, 400, and 1,000. This problem is well
studied B0, 33, 41], and consists of 3D flow in the unit box where the sides andobot
have prescribed no-slip boundary conditions and the toprifmydid) is given the Dirichlet
conditionu = [1,0,0]7. There is no forcing with this problemf = 0, and kinematic
viscosities are taken to be= Re~!. The solution is known to be steady for each of these
Reynolds numbers.
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We computed on a barycenter refinement of a quasi-uniforrattetiral mesh using
X, = (P3)? velocity elements, which gives 185,115 velocity degreefreédom. We
compute only with 8.3 for this experiment, and note that thigP;)?, Psi*c) SV element
implementation has 306,753 total dof. Again we take 10~%, and use Newton’s method
(without relaxation) to solve the nonlinear problem. Thmear solves averaged 20.3 seconds!
For a problem of this size, such a solve time is competitivia wiost preconditioned itera-
tive methods applied to the mixed method’s saddle poinesyst although the direct solve is
certainly more robust.

Plots of the solutions are shown in Figueé as midplane velocities. The results agree
well with simulation data given inJ0, 41], and thus we see again that the proposed method
(3.3 is accurate as well as efficient.

As expected, mass conservation by each of the solutionsle@sery good:

Re= 100 : |divuy| =1.917E — 5,
Re= 400 : |divu,| =7.764F — 6,
Re= 1,000 : |/divuy,| =4.395E — 6.

FiG. 3.5. Shown above are the midplane velocity vector fields for thepeed solution with TOP ROW:
Re=100, MIDDLE ROW: Re=400, BOTTOM ROW: Re=1,000.

3.5. Numerical experiment: 3D flow over a forward-backward facing step. The
final numerical experiment is for 3D channel flow over a fordvand backward facing step.
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This problem was computed by V. John and A. LiakosA8][ and consists of &0 x 40 x 10
rectangular channel with®) x 1 x 1 block step on the bottom of the channel, 5 units in. As
in [23], we take a constant inflow = [0, 1, 0], no slip boundary conditions on the channel
walls, a zero traction outflow condition, and use viscosity= 1/20. Computations were
performed on a barycenter refined tetrahedral mesh ugiggwith ¢ = 1074, X}, = (P3)?
with 376,500 velocity dof (the corresponding SV problem lWiduave 602,060 total dof). It
took 6 iterations to converge for the Newton method, and ttezage time per linear solve
was 61.4 seconds.

The results obtained are in agreement with those foun&3dh Plots of the solution are
shown in Figure3.6, as a sliceplane of streamlines and speed contours, ancezbionmand a
plot of the reattachment line.

4. Conclusions and Future Directions.By using a barycenter refined triangular / tetra-
hedral mesh antl > d, accurate approximations can be found for the linear eigsproblem
in pure displacement formulation with Poisson rati®).5, and incompressible flow problems
can be accurately and efficiently computed with ‘velocityyodlinear solves. The results ex-
tend tok < d in some situations, provided that more elaborate macnoeié structures are
used, with the key requirement being that the SV elementipaiBB stable.

Of particular interest for future work is extending the apability of the developed in-
compressible flow methods to larger problems. We have shanrerical examples where
these methods are accurate, very efficient, provide extellass conservation, and are highly
competitive with state of the art preconditioned iterativethods (e.g.4, 5, 6]) applied to
the associated saddle point problems. The excellent maseo@tion and compliance with
robust of-the-shelf direct solvers (such as Matlab’s “Istagh”) makes the properly designed
penalty method an attractive alternative to other presseceupling approaches such as pro-
jection and artificial compressibility methods. Howevkg problem size where the methods
are currently applicable appears limited to about 1 milljonso) dof in 3D, and thus find-
ing ways around this limitation would be also of interest tany CFD practicioners. For
example, different matrix structuring or factorizatiormutd lead to easier direct solves. The
iterated penalty methodiB] could also be used, which would lower the effective artici
compressibility parameter and allow for iterative solydyst with the cost of tripling (or
more) the total number of linear solves needing done.
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