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APPLICATION OF BARYCENTER REFINED MESHES IN LINEAR ELASTIC ITY
AND INCOMPRESSIBLE FLUID DYNAMICS ∗

MAXIM A. OLSHANSKII † AND LEO G. REBHOLZ‡

Abstract. The paper demonstrates that enhanced stability propertiesof some finite element methods on barycen-
ter refined meshes enables efficient numerical treatment of problems involving incompressible or nearly incompress-
ible media. One example is the linear elasticity problem in apure displacement formulation, where a lower order
finite element method is studied which is optimal order accurate and robust with respect to the Poisson ratio param-
eter. Another example is a penalty method for incompressible viscous flows. In this case, we show that barycenter
refined meshes prompt a “first penalize, then discretize” approach, avoiding locking phenomena, and leading to a
method with optimal convergence rates independent of the penalty parameter, and resulting in discrete systems with
advantageous algebraic properties.
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1. Introduction. This article shows that, provided a mild mesh restriction that is simple
to implement using triangular or tetrahedral elements, optimal accuracy can be achieved in
finite element methods for both the classical penalty methodof Temam for the incompressible
Navier-Stokes equations (NSE) using only the velocity variable [22, 38, 39], and the pure
displacement formulation of linear elasticity problems for nearly incompressible media [11].
For both of these problems, locking phenomena and suboptimal accuracy can occur if care is
not taken in the element choice, and in some cases, the integration accuracy may need to be
reduced. For commonly used triangular/tetrahedral elements, however, no simple, practical,
efficient, and optimally accurate method seems to exist, andit is the goal of this work to
derive such a method.

It has been known for some time that the Scott-Vogelius (SV) pair {(Pk)
d, P disc

k−1
} (d = 2

or3 is the space dimension) is an LBB stable Stokes element on thebarycenter refined meshes
provided thatk ≥ d [2, 42] (see Figure1.1for an example of a barycenter refinement). Since
(div (Pk)

d) ⊂ P disc
k−1

, it is an example of a stable element which enforces pointwise the di-
vergence free constraint for the velocity. Recently, this element was extensively applied to
solving those problems where numerical mass conservation is critical [12, 29]. One conse-
quence of pointwise mass conservation and inf-sup stability of the element is that an arbitrar-
ily large penalization of the divergence constraint forany(Pk)

d-based element on barycenter
refined meshes does not lead to overstabilization or lockingphenomena, regardless of the
supplementing pressure space (and in particular it holds for any of the velocity-pressure pairs
((Pk)

d, Pk−1), ((Pk)
d, Pk−2), ...((Pk)

d, {0}) ). This property has been noticed and ex-
ploited for various flow problems with Taylor-Hood (TH) finite elements in [8, 12]. In the
present paper we show that in the limit case of zero pressure space, this approach is closely re-
lated to methods which eliminate or avoid introducing a pressure variable, such as the penalty
method for incompressible flow problems and the solution of the linear elasticity problem in
a pure displacement formulation.
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FIG. 1.1.Shown above is a barycenter refinement of a triangle and a tetrahedra.

Numerically solving the linear elasticity problem is knownto be difficult as the media
becomes nearly incompressible [11]. In such cases, numerical solutions are forced into a
(nearly) divergence free subspace of the discrete solutionspace, which can lead to poor ap-
proximations and even locking phenomena. However, if the pure displacement form is used
with solution spaceXh = (Pk)

d on a barycenter refined mesh andk ≥ d, the divergence
free subspace ofXh is guaranteed to retain optimal approximation properties.Thus in this
setting, optimal accuracy can be expected for nearly incompressible media. In Section 2, we
expand this idea and provide a numerical example demonstrating its effectiveness.

The second problem studied herein is for the Navier-Stokes equations of an incompress-
ible viscous fluid, which couple pressure and velocity variables, and possess well-known nu-
merical stability issues and algorithmic challenges, e.g., [19, 20, 26, 40]. The formal decou-
pling is not possible due to the incompressibility constraint except in some very special cases.
Several ways of numerical decoupling have been suggested inthe literature and successfully
used for practical computations, including artificial compressibility, pseudo-compressibility,
penalty and projection methods, e.g., [13, 14]. The penalty method for the Navier-Stokes
system was introduced by Temam in [38, 39]: Given a (small) penalty parameterε one looks
for a solutionuε, pε to

(1.1)

{

uε
t − ν∆uε + (uε · ∇)uε + 1

2
(divuε)uε +∇pε = f ,

divuε + εpε = 0, uε|t=0 = u0.

The pressure may be eliminated from the system (1.1), resulting in

(1.2) uε
t − ν∆uε + (uε · ∇)uε +

1

2
(div uε)uε − ε−1∇divuε = f , uε|t=0 = u0.

The method was further studied in the literature, see, e.g.,[9, 16, 19, 21, 27, 31, 36]. In
particular,O(ε) convergence ofuε, pε to the Navier-Stokes solutionu, p was proved in [36]:

√
t‖u(t)− uε(t)‖+

√
νt‖∇(u(t)− uε(t))‖(1.3)

+

(
∫ t

0

s2‖p(s)− pε(s)‖2ds
)

1

2

≤ Cε, ∀t ∈ (0, T ].

Although the approach is straightforward, simple, and enjoys a solid mathematical justifica-
tion it has not received as much attention as artificial compressibility and projection methods
by practitioners. The likely reason is the following shortcomings of the method: For small
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values ofε, a Galerkin finite element method applied to (1.2) may lead to a locking phenom-
ena similar to that of the elasticity problem. Moreover, small values ofε make the algebraic
system ill conditioned, since it is dominated by theε−1∇div type term with possibly large
non-trivial kernel. The latter leads to poor convergence ofmost of available iterative solvers,
prompting us to look for a direct solvers/factorizations rather than iterative. We point, how-
ever, to papers [6, 15, 35], where special multigrid and domain decomposition methods show
promising results in certain cases. Otherwise, the question of efficient algebraic solvers for
discrete velocity system, resulting after elimination of pressure, seems to be largely over-
looked in the literature.

The natural way around the first difficulty would be first to discretize (1.1) and then to
eliminate pressure from the discrete system. In this case locking does not occur for small
values ofε, however, the choice of an efficient algebraic solver remains problematic. In
particular, it is shown in [7] that at least for certain finite element pairs this “first discretize,
then eliminate” approach leads to algebraic systems with (significantly) larger fill-in patterns
than direct discretization of (1.2), thus making algebraic solvers significantly more expensive.

In the recent paper [31] it is proved that the specific choice of the Crouzeix-Raviart
nonconforming P1 finite element leads to optimal orderε-independent convergence if applied
directly to (1.2) (i.e., “first penalize then eliminate and discretize” approach). In the present
paper we show that with barycenter refined meshes andk ≥ d, direct discretizations of (1.2)
will provide optimal accuracy (no locking or overstabilization) and keep the sparsity structure
of matrices reasonable for direct solvers to be successful.Thus, the paper extends the results
of [31] to higher order and conforming finite elements. We also provide the computational
evidence of the effectiveness and reliability of the approach by considering several standard
2D and 3D benchmark problems.

We note that on general triangular/tetrahedral meshes, LBBstability of SV elements is
not known to be LBB unlessk ≥ 2d [2, 44] , which is a prohibitive restriction. To use smaller
k, special types of meshes that allow the correct ratio of the local sizes of the velocity and
pressure spaces, can be shown to satisfy LBB by following arguments of Stenberg [37]. To
our knowledge, the barycenter refined mesh is the simplest type of mesh where LBB holds
for ‘reasonable’k. With this mesh condition, however, comes some mild restrictions. The
minimum angle of the pre-refined mesh will be cut in half, and so the pre-refined mesh must
have a large minimum angle condition to avoid ‘flat’ elementsafter the barycenter refinement
is applied. Also, mesh refinement must be performed more carefully than usual by first
refining the coarser (non-barycenter refined) mesh, and thenapplying a barycenter refinement.
The ideas presented in this work can be extended tok < d if somewhat more elaborate (and
more restrictive) meshes are used; for example,k = 2, d = 3 andk = 1, d = 2 are possible
choices provided meshes with appropriate macro-element structure are chosen [43, 45].

The remainder of the paper is organized as follows. In section 2, we study the linear
elasticity problem in displacement formulation with barycenter meshes. Here we find optimal
accuracy can be achieved and provide numerical evidence of it, and that on general meshes
accuracy is suboptimal. Section 3 applies the methodology to the incompressible, viscous
Navier-Stokes equations, and several numerical experiments are given that demonstrate both
the efficiency and accuracy of the proposed method.

2. Application to linear elasticity. Consider the linear elasticity problem, written in
displacement variables,

−2µ divD(u)− ν

1− 2ν
∇(divu) = f in Ω,(2.1)

u = g on ∂Ω,(2.2)
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whereu is the displacement,f is the body force,D(u) is the strain (deformation) tensor,g is
the Dirichlet boundary condition (results can easily be extended to other common boundary
conditions),ν denotes Poisson’s ratio andµ is the shear modulus given by

µ =
E

2(1 + ν)
,

whereE is Young’s modulus. Of particular interest is nearly-incompressible media, when
the Poisson ratioν ≈ 0.5. In this case, although it is known that the problem (2.1) and (2.2)
is well-posed for all0 ≤ ν < 0.5 [1], standard methods often fail or provide sub-optimal
accuracy [11, 17]. Consider the standard finite element formulation of (2.1)and (2.2), where
for simplicity g = 0, andγ := ν

1−2ν
(so of interest is nowγ → ∞): Find uh ∈ Xh ⊂

(H1
0 (Ω))

d satisfying

(2.3) 2µ(D(uh), D(vh)) + γ(divuh, div vh) = (f ,vh), ∀ vh ∈ Xh.

As shown in [11], a naive choice of element and triangulation can lead to disastrous results; if
Xh = (P1)

d and a uniform triangulation of the unit square is used, enforcing incompressibil-
ity and homogeneous Dirichlet boundary conditions leaves only u = 0 as a possible solution,
and thus for nearly-incompressible media, one cannot expect any degree of accuracy. On
general meshes, only forXh = (Pk)

d with k ≥ 4 in 2D andk ≥ 8 in 3D optimal accuracy
can be expected [28, 34], since in these cases the divergence free subspace ofXh retains
optimal approximation properties. However, as discussed in the introduction, on a barycenter
refined quasi-uniform mesh, we need onlyk ≥ 2 in 2D andk ≥ 3 in 3D. This is a conse-
quence of the result in [42]. Indeed, let̃ph = −γdivuh, ε = γ−1. Thanks to the embedding
(div (Pk)

d) ⊂ P disc
k−1

, the elasticity problem (2.3) is equivalent to the penalized finite element
Stokes problem

2µ(D(uh), D(vh))− (p̃h, div vh) = (f ,vh), ∀ vh ∈ Xh = (Pk)
d,(2.4)

(div uh, qh) + ǫ(p̃h, qh) = 0, ∀ qh ∈ Qh = P disc
k−1 .(2.5)

Since the resulting finite element pair(Xh, Qh) is conforming and LBB stable, the standard
results, see, e.g., [10], lead to the optimal order convergence ofuh, p̃h to the corresponding
solution of the penalized continuous Stokes problemuε, pε:

(2.6) µ‖∇(uε − uh)‖+ ‖pε − p̃h‖ ≤ chk(‖uε‖k+1 + ‖pε‖k)

with a constantc independent ofε. Lemma 1.1 from [9] yields that for domains with suffi-
ciently regular boundary the norm on the right-hand side of (2.6) is uniformly bounded inε.
Sinceuε also solves (2.1) and (2.2) with g = 0, the above discussion implies that for largeγ,
if k ≥ d and a barycenter refined mesh is used, solutions of (2.3) will have optimal accuracy,
independent ofγ, in the energy norm

‖φ‖e :=
√

µ‖φ‖21 + γ‖divφ‖2.

2.1. Numerical experiment: Convergence rates for Poisson ratio ≈ 0.5. We now
demonstrate the effectiveness of the method (2.3) with a test problem used in [18], by testing
the method (2.3) on a problem with largeγ and known analytical solution usingXh = (P2)

2,
a barycenter refined mesh, a uniform mesh, and a mesh created from a Delaunay triangulation.
From the above discussion, we expect optimal accuracy when computing with the barycenter
refined mesh, and suboptimal accuracy in the other two cases.We find precisely this.
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The known solution is given by

u(x) =

(

− γ + 3µ

4πµ(γ + 2µ)
log ‖x− x0‖I+

γ + µ

4πµ(γ + 2µ)

(x− x0)(x − x0)
T

‖x− x0‖2
)(

1
0

)

.

We compute on the domainΩ = (−1/2, 1/2)2, and takex0 =< 1, 0 >T , E = 1 and
ν = 0.49999, which gives the parametersµ = 0.3333 andγ = 1.6667E + 4, f = 0, and use
the known solution’s boundary values as Dirichlet boundarydata for the computed solutions
enforced at every boundary node.

Using successively finer meshes, we compute errors and convergence rates for the method
(2.3). The results are given in Table2.1for the barycenter refined triangular mesh, and in Ta-
ble 2.2 for the uniform triangular mesh and the mesh created by a Delaunay triangulation.
As expected, in Table2.1 we see optimal convergence rates for the method (2.3) when the
barycenter refined mesh is used. For the uniform mesh and the Delaunay triangulation com-
putations, we observe from Table2.2that the convergence rate deteriorates as the mesh width
decreases. Moreover, a simple comparison of accuracy versus degrees of freedom between
the tables show a dramatic gain in accuracy when a barycenterrefined mesh is used.

TABLE 2.1
Convergence of the solution to(2.3) with Xh = (P2)2 on a barycenter refined uniform mesh of the

(−1/2, 1/2)2 square. The convergence rate is optimal.

h dim(Xh) ‖uh − utrue‖e rate
1/4 466 9.2464E-3 -
1/8 1,914 2.2137E-3 2.06
1/16 7,258 5.8160E-4 1.93
1/32 29,370 1.5266E-4 1.93
1/64 117,106 3.8387E-5 1.99

TABLE 2.2
Convergence of the solution to(2.3) with Xh = (P2)2 on a uniform mesh of the(−1/2, 1/2)2 square (left),

and on Delaunay triangulations (right). Both rates appearssub-optimal.

h dim(Xh) ‖uh − utrue‖e rate
1/2 50 2.258E-0 -
1/4 162 4.726E-1 2.26
1/8 578 1.127E-1 2.07
1/16 2,178 2.870E-2 1.97
1/32 8,450 7.906E-3 1.86
1/64 33,282 2.468E-3 1.68
1/96 74,498 1.301E-3 1.58
1/128 132,098 8.253E-4 1.58

h dim(Xh) ‖uh − utrue‖e rate
1

2
50 2.258E-0 -

1/4 162 4.726E-1 2.25
1/8 682 3.197E-2 2.07
1/16 2,506 4.260E-3 3.09
1/32 9,962 8.270E-4 2.38
1/64 39,378 1.934E-4 2.11
1/96 87,786 8.979E-5 1.91
1/128 157,554 5.894E-5 1.44

2.2. Numerical experiment: Mixed boundary conditions. We now numerically test
the estimate (2.6) for the case of mixed boundary conditions, where the boundary is divided
into pieces,∂Ω = ΓN ∪ ΓD, ΓN ∩ ΓD = ∅, with a Dirichlet condition enforced onΓD and
the natural boundary condition (described in [1], arising from integration by parts),

(−γ(∇ · uh) + 2µD(uh))n = s,

is enforced onΓN . To our knowledge, the convergence result (2.6) has not been extended to
the case of mixed boundary conditions. This is likely due to the proof of (2.6) using a Stokes
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regularity result, and thus it is not clear how to extend to a boundary condition for Stokes that
includes a nonzero divergence term. Still, whether optimalaccuracy still holds on barycenter
refined meshes, when such boundary conditions are used in linear elasticity is an important
question, and thus we consider it numerically.

This numerical experiment uses the same test problem and data as used above in the first
numerical experiment, except here we apply Dirichlet boundary conditions to the top, bottom
and left-hand sides of the square, and letΓN be the right side of the square,ΓN = {(x, y) ∈
∂Ω, x = 1/2}. We compute the functions from the true solution forn = 〈1, 0〉T , and use
the same barycenter refined meshes from the first experiment.Results are given in Table2.2,
and show that optimal convergence appears to hold, at least for this test example.

TABLE 2.3
Convergence of the solution to(2.3) with Xh = (P2)2 on a barycenter refined uniform mesh of the

(−1/2, 1/2)2 square, with mixed Dirichlet and natural boundary conditions. The convergence rate appears to
be optimal.

h ‖uh − utrue‖e rate
1/4 7.321E-3 -
1/8 1.986E-3 1.88
1/16 5.395E-4 1.88
1/32 1.460E-4 1.89
1/64 3.741E-5 1.97

3. Application to incompressible fluid flow. Consider the classical penalty method for
the incompressible Navier-Stokes equations given in the introduction by (1.1),

(3.1)

{

uε
t − ν∆uε + (uε · ∇)uε + 1

2
(divuε)uε +∇pε = f ,

divuε + εpε = 0, uε|t=0 = u0.

There are several ways to approach the equations numerically. One is to apply a finite element
method directly to (3.1): Given an LBB stable velocity-pressure pair

(Xh, Qh) ⊂ ((H1
0 (Ω))

d, L2
0(Ω)),

on a regular triangular (tetrahedral) mesh of a polygonal (polyhedral) domainΩ ⊂ R
d, find

(uε
h, p

ε
h) ∈ (Xh, Qh)× (0, T ] satisfying

(3.2)

{

((uε
h)t,vh) + b(uε

h,u
ε
h,vh)− (pεh, div vh) + ν(∇uε

h,∇vh) = (f ,vh),
(divuε

h, qh) + ε(pεh, qh) = 0,

for all vh ∈ Xh, qh ∈ Qh with

b(u,w,v) := (u · ∇w,v) +
1

2
((div u)w,v), and uε

h|t=0 = Ih(u0),

whereIh(u0) is an appropriate interpolant. The finite element formulation (3.2) is convenient
for error analysis; in particular, convergence to the solution of (3.1), uniformly in ε, can be
proved, see [21] for analysis in 2D. However, (3.2) may be impractical from the computa-
tional point of view. Indeed, eliminating the pressure variable from (3.2) leads to the system
of algebraic equations which involves the matrix of the formε−1BTM−1B, whereB is the
finite element divergence matrix andM is the mass matrix forQh. Except for a few special
cases,M−1 is not a sparse matrix. Thus solving the system becomes too expensive even for
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a moderate number of unknowns. One may alter the problem and consider a sparse (e.g.,
diagonal) approximation ofM−1, hence deviating from the finite element formulation (3.2).
This would reduce the cost significantly, however, in terms of matrix fill-in, the approach still
remains inferior to the direct discretization of (1.2): Given a velocity finite element space
Xh ⊂ (H1

0 (Ω))
d, finduε

h ∈ Xh × (0, T ] satisfying

(3.3) ((uε
h)t, vh) + b(uε

h,u
ε
h,vh) + ε−1(divuε

h, div vh) + ν(∇uε
h,∇vh) = (f ,vh),

for all vh ∈ Xh, qh ∈ Qh anduε
h|t=0 = Ih(u0). Below we compare the fill-in properties

and solver timings for (3.2) vs. (3.3). Concerning the accuracy of (3.3), we note that for ar-
bitrarily chosen finite element spaces, the method may exhibit the loss of accuracy for small
values ofε due to the same phenomena as locking in linear elasticity. Toavoid locking we
assume:
(A1): the mesh is created as a barycenter refinement of a regular triangulation (tetrahedral-
ization),
(A2): the velocity space is chosen to be piecewise polynomials of degreek, with k at least as
large as the space dimension:Xh = (Pk)

d, with k ≥ d.

The following result is the key to an obtaining optimalε-uniform error estimate for the
penalty finite element method (3.3). It is the simple consequence of the LBB stability of the
Scott-Vogelius element, but to our knowledge has not yet been written down in the literature.
For all estimates below, we assume the family of meshes satisfies minimum angle condition,
and denote byh the maximum element diameter for a fixed mesh.

LEMMA 3.1. Assume(A1), (A2), andΩ is convex. For anyv ∈ Hk+1 ∩ H1
0, k ≥ d,

there exists a finite element functionvh ∈ Xh such that

‖v − vh‖+ h‖∇(v − vh)‖ ≤ c hk+1‖v‖k+1,(3.4)

‖div (v − vh)‖ ≤ c hk‖divv‖k.(3.5)

Proof. ComplementXh with the pressure spaceQh of P disc
k−1

elements. Under the assump-
tions of the lemma(Xh, Qh), form the LBB stable Stokes element anddivXh ⊂ Qh. Con-
sidervh as the velocity solution to the discrete Stokes type problem

(3.6) (∇vh,∇ψh)− (qh, divψh) + (div vh, ξh) = (∇v,∇ψh) + (div v, ξh),

∀ψh ∈ Xh, ξh ∈ Qh. Thanks to the LBB stability of(Xh, Qh) and regularity assumption on
Ω, the standard error estimate for the finite element solutionto the Stokes problem yields the
estimate (3.4). Moreover, the inclusiondivXh ⊂ Qh and (3.6) imply div vh = PQ div v,
wherePQ is theL2 orthogonal projector onQh. Therefore,

‖div (v − vh)‖ = ‖divv − PQdiv v‖ = inf
qh∈Qh

‖div v − qh‖ ≤ c hk‖divv‖k.

Lemma3.1shows that the divergence free subspace ofXh is rich enough to provide the
optimal approximation properties in the divergence free subspace. This means thatno locking
occurs. For P1 nonconforming elements the result stated in the lemma appears withk = 1
in [31] as inequalities (3.11) and (3.12) (page 269) and is the onlyinstance where specific
properties of nonconforming P1 elements were used in error analysis. Thus, the analysis of
that paper may be applied to conforming elements satisfyingassumptions (A1) and (A2), with
the simplification that no inter-element non-consistency terms occur. Repeating arguments of
[31] shows the following result for the proposed scheme.
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THEOREM 3.2. Let ε be sufficiently small,ε < cΩ, where the constantcΩ depends only
on the domainΩ, and the datau0 andf is sufficiently small to guarantee that the solution of
(1.2) is unique (in3D). Then for the solutions to(1.2) and(3.3) it holds

(3.7) ‖uε(t)− uε
h(t)‖ ≤ C h2, ‖div (uε(t)− uε

h(t))‖ ≤ C (h+ t−1h2) ∀ t ∈ [0, T ] ,

with a constantC independent ofε, but dependent on norms ofu0 andf .
Recover finite element pressure throughpεh := −ε−1divuε

h. The bound (3.7) can be
combined with the result of Shen in (1.3) to estimate the convergence of the finite element
penalized solution to the true Navier-Stokes solution:

(3.8) ‖u(t)−uε
h(t)‖ ≤ C (h2+t−

1

2 ε),

∫ t

0

s2‖p(s)−pεh(s)‖ dt ≤ C (h+ε), ∀ t ∈ [0, T ].

Clearly, forP k (k ≥ d) conforming elements the theoretically justified estimates (3.7), (3.8)
are suboptimal in terms of convergence order. The optimal estimates would likely read

(3.9) ‖uε(t)− uε
h(t)‖ ≤ C hk+1 and‖u(t)− uε

h(t)‖ ≤ C (hk+1 + t−
1

2 ε), ∀ t ∈ [0, T ].

There are technical difficulties to generalize the analysisfor the casek > 1 in the optimal
way: standard approximation properties of finite elements would involve higher order norms
of uε in the definition of the constantC in the right-hand sides of (3.9). To show thatC does
not depend onε one needsε-independent bounds of the higher order norms ofuε by the given
data. We are not aware of such bounds available in the literature. However, in section3.1, we
show results of numerical experiments which suggest that (3.9) holds.

We now consider five test problems to demonstrate the effectiveness of the proposed
method. The first test is a numerical verification of the hypothesized convergence rates for
(3.3) on a model problem. Next, we compare accuracy and complexity of the method (3.3)
with that of (3.2) with both Scott-Vogelius and Taylor-Hood elements. The third experiment
is for the 2d benchmark problem of flow over a step, where we compare the solution of (3.3)
with that of (3.2), again with both Scott-Vogelius and Taylor-Hood elements. The final two
experiments are for the 3D driven cavity and 3D channel flow over a forward-backward step.
For both of these larger tests, we show that the method (3.3) remains accurate and efficient.
All computations were performed using the second author’s finite element codes written in
Matlab, and all timings were made on a Macbook Pro with 2x 2.66GHz Intel Quad-Core 2
Xeon with 12GB 10 MHz DDR3 memory. All linear solves were performed directly with
sparse banded Gaussian elimination (Matlab’s “backslash”).

3.1. Numerical experiment: convergence rates.It is shown above that for conforming
elements, provided (A1) and (A2) hold, the estimate (3.7) holds, which leads to the hypothe-
sized error estimate

(3.10) ‖u(t)− uε
h(t)‖ ≤ C (hk+1 + t−

1

2 ε), ∀ t ∈ [0, T ] .

As discussed above, proving this estimate appears to require significant technical effort. We
now provide numerical evidence that suggests a discrete analog of it to hold. With a Crank-
Nicolson temporal discretization and fixed endtimeT , the discrete analog becomes

(3.11) ‖u(T )− uε
h(T )‖ ≤ C (hk+1 + ε+∆t2),

whereC depends on the data, includingT = O(1). We note that, for a fixedT , mesh, and
time step, theO(ǫ) convergence has been shown numerically in [12].
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We determine approximations of the exact solutions,

(3.12) u(x, y, t) = (1 + 0.01t)

(

2x2(x− 1)2y(2y − 1)(y − 1)
−2x(x− 1)(2x− 1)y2(y − 1)2

)

, p = y,

of the 2D model problem studied in [25]: A plot of the true solution in given in Figure3.1.
Using ν = 1, T = 0.1, f is calculated from the NSE and solution, and using the domain
Ω = (0, 1)2, we solve (3.3) with Xh = (P2)

2 (i.e.,k = 2). The meshes used are barycenter
refined meshes; also shown in Figure3.1 is the mesh used forh = 1/8. Note that both
assumptions (A1) and (A2) are satisfied.
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FIG. 3.1. Shown above is: (left) the velocity vector field of true solution for convergence rate numerical
experiment , and (right) theh = 1/8 barycenter refined mesh.

We compute the error for solutions resulting from successively refined meshes, time
steps, andǫ. We successively refine the meshes, and tie the time step andǫ to this refinement
so that the hypothesized error isO(hk+1) (i.e., withk = 2, if h gets cut in half,ǫ gets cut in
eighth, and∆t gets cut in third). Results are shown in Table3.1, and the hypothesized rate is
observed.

TABLE 3.1
Errors and rates for varyingh, ǫ, and∆t. Optimal convergence is observed.

h ∆t dim(Xh) ǫ ‖u(T )− uǫ
h(T )‖ rate

1/4 T 466 1/100 1.480E-3
1/8 T/3 1,914 1/800 1.375E-4 3.42
1/16 T/9 12,604 1/6, 400 1.651E-5 3.06
1/32 T/27 29,370 1/51, 200 2.029E-6 3.02
1/64 T/81 117,106 1/409, 600 2.533E-7 3.00

3.2. Numerical experiment: comparison of methods.We discuss two methods for
eliminating the pressure: ‘first penalize, discretize theneliminate pressure’ and ‘first penalize,
eliminate then discretize’. They lead to (3.2) and (3.3), respectively. The method (3.3) solves
directly for velocity only, and the system resulting from (3.2) can be manipulated to solve
for only the velocity. As discussed above, for this second method to be efficient, a sparse
approximation toBTM−1B must be made, whereB is the matrix arising from the inner
product(div uh, qh) andM is the pressure mass matrix arising from(ph, qh). A common
choice is to replaceBTM−1B by BT (diag(M))−1B, and we use this “approximation” in
this experiment.
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We consider again the NSE spinning eddy problem (3.12), but for simplicity now in
the steady case. We compute (3.3) with Xh = (P2)

2, and (3.2) with both ((P2)
2, P disc

1 )
Scott-Vogelius elements and((P2)

2, P1) Taylor-Hood elements, usingν = 0.01, and the
h = 1/32 barycenter refined mesh. As was noted already in Section2, due to the em-
bedding(div (Pk)

d) ⊂ P disc
k−1 , the Scott-Vogelius element is the special element when both

approaches, i.e., discretizing (3.3) or first discretizing (3.2) and then eliminating pressure, are
equivalent and lead to the same system of algebraic equations (in this caseBTM−1B appears
to be sparse). This is, however,not the case for the majority of elements used in practice. Fur-
ther, in the tables, “SV for (3.2)” stands for the following simplification: For Scott-Vogelius
element (similar to Taylor-Hood) the matrixBTM−1B is replaced byBT (diag(M))−1B.
We will see that this alteration results in an approach with properties similar to (3.3), although
slightly less efficiently.

Errors and solve times for this experiment are given in Table3.2. We find that the pro-
posed method (3.3) and the method (3.2) with Scott-Vogelius elements gave solutions that
had comparable accuracy, but the method (3.2) with Taylor-Hood elements was significantly
worse. For solve times, the method (3.3) was slightly faster than (3.2) with Scott-Vogelius
elements, but both of these were much faster than (3.2) with Taylor-Hood elements. Fur-
ther investigation of the sparsity structures revealed that the resulting matrix used in Taylor-
Hood had significantly more nonzeros, which led to its significantly worse solve times (see
Table 3.2 and Figure3.2 ). Although theB matrix for Taylor-Hood is smaller than for
Scott-Vogelius (due to continuous versus discontinuous pressure space), its density causes
BT (diag(M))−1B to be a much denser matrix than in the Scott-Vogelius case.

TABLE 3.2
Errors, solve times, and number of system matrix nonzeros for the different methods for computing the 2D

spinning eddy on theh = 1/32 barycenter refined mesh.

Method ‖u− uε
h‖ average solve time nonzeros in system matrix

(3.3) 1.722E-4 0.461 sec. 667,936
(3.2), SV 1.683E-4 0.475 sec. 670,671
(3.2), TH 1.098E-3 39.61 sec. 4,570588

3.3. Numerical experiment: 2D channel flow over a forward-backward step. For
the next test, we consider the benchmark problem of 2D flow over a forward and backward
facing step. This problem is time dependent, and we choose the linearly extrapolated Crank-
Nicolson (CNLE) method of Baker [3] for the temporal discretization. This is a natural choice
due to its unconditional stability with respect to time stepsize, and second order accuracy.

This problem has been studied in [20, 24, 32], and consists of a40 × 10 rectangular
channel with a1× 1 step on the bottom of the channel, 5 units in. The inflow boundary is set
as a Dirichlet parabolic condition,

u(0, y, t) = [y(10− y)/25, 0]T ,

the top, sides and step have no-slip boundary conditions, and at the outflow boundary the
‘do-nothing’ condition is enforced. The viscosity is chosen to beν = 1

600
, and the forcing

is taken to be zero,f = 0. The simulation is run from an initial condition of fully parabolic
flow throughout the channel, with the step being inserted at time t = 0, and then the problem
is run toT = 40. The correct physical behavior is for eddies to form behind the step, then
detach and move down the channel, with new eddies forming.

We compute solutions to this problem using (3.3) with Xh = (P2)
2, and with (3.2) by

eliminating pressure and replacingBTM−1B withBT (diag(M)−1)B for both((P2)
2, P disc

1 )
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Fill-in for (3.3), 2D Fill-in for (3.2) (TH), 2D

Fill-in for (3.3), 3D Fill-in for (3.2) (TH), 3D

FIG. 3.2.Fill-in patterns for the system matrices arising from(3.3) (left), and(3.2) with Taylor-Hood elements
after eliminating pressure (right). Top pictures: the 2D test problem of Section 3.1.2 withh = 1

32
. Bottom pictures:

The 3D cavity problem,h = 1

4
.

FIG. 3.3.The barycenter refined mesh used for the 2D channel flow over a step experiment.

Scott-Vogelius elements and((P2)
2, P1) Taylor-Hood elements. In all schemes we choose

ǫ = 10−4, time step∆t = 0.01, and use the mesh in Figure3.3 which provides 7,414 ve-
locity degrees of freedom for(P2)

2 velocities and 5,418 degrees of freedom for theP disc
1

discontinuous pressure space, and 915 degrees of freedom for theP1 continuous pressure
space.

Average solve times and number of nonzeros in the system matrices are given in Table
3.3. We see that the method (3.3) is faster than the methods of (3.2): about 20% faster than
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(3.2) with Scott-Vogelius elements and 10 times faster than withTaylor-Hood elements.

TABLE 3.3
Solve times for the different methods for computing 2D flow over a step.

Method average solve time (4,000 solves) nonzeros in systemmatrix
(3.3) 0.081 sec. 166,588

(3.2), SV 0.115 sec. 167,224
(3.2), TH 1.1041 sec. 1,089,882

T=40 Speed Contours and Velocity Streamlines, (3.2) scheme
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T=40 Speed Contours and Velocity Streamlines, (3.1) with TH elements
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FIG. 3.4.Shown above are the speed contours and velocity streamlinesfor the solutions to the 2D step bench-
mark problem at T=40: (TOP) the(3.3) solution, and (BOTTOM) the(3.2) solution with Taylor-Hood elements.

Plots of solutions atT = 40 are shown in Figure3.4as velocity streamlines over speed
contours. The method (3.3) and (3.2) with SV elements both give good solutions that are
visually indistinguishable (and so only a plot of (3.3) is shown), although they are slightly
different:

‖u(3.2),SV − u(3.3)‖ = 2.722E − 4 for T = 40.

The solution from (3.2) with TH elements, on the other hand, is visibly less resolved. The
likely reason is its poor mass conservation compared to the other solutions: atT = 40,

‖divu(3.3)‖ = 5.296E − 5

‖divu(3.2),SV ‖ = 2.839E − 5

‖divu(3.2),TH‖ = 1.210E − 0

3.4. Numerical experiment: 3D driven cavity benchmark problem. This numerical
test is for the 3D driven cavity problem atRe = 100, 400, and 1,000. This problem is well
studied [30, 33, 41], and consists of 3D flow in the unit box where the sides and bottom
have prescribed no-slip boundary conditions and the top (moving lid) is given the Dirichlet
conditionu = [1, 0, 0]T . There is no forcing with this problem:f = 0, and kinematic
viscosities are taken to beν = Re−1. The solution is known to be steady for each of these
Reynolds numbers.
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We computed on a barycenter refinement of a quasi-uniform tetrahedral mesh using
Xh = (P3)

3 velocity elements, which gives 185,115 velocity degrees offreedom. We
compute only with (3.3) for this experiment, and note that the((P3)

2, P disc
2 ) SV element

implementation has 306,753 total dof. Again we takeε = 10−4, and use Newton’s method
(without relaxation) to solve the nonlinear problem. The linear solves averaged 20.3 seconds!
For a problem of this size, such a solve time is competitive with most preconditioned itera-
tive methods applied to the mixed method’s saddle point systems, although the direct solve is
certainly more robust.

Plots of the solutions are shown in Figure3.5 as midplane velocities. The results agree
well with simulation data given in [30, 41], and thus we see again that the proposed method
(3.3) is accurate as well as efficient.

As expected, mass conservation by each of the solutions was also very good:

Re = 100 : ‖divuh‖ = 1.917E − 5,
Re = 400 : ‖divuh‖ = 7.764E − 6,
Re = 1, 000 : ‖divuh‖ = 4.395E − 6.
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FIG. 3.5. Shown above are the midplane velocity vector fields for the computed solution with TOP ROW:
Re=100, MIDDLE ROW: Re=400, BOTTOM ROW: Re=1,000.

3.5. Numerical experiment: 3D flow over a forward-backward facing step. The
final numerical experiment is for 3D channel flow over a forward and backward facing step.
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This problem was computed by V. John and A. Liakos in [23], and consists of a10× 40× 10
rectangular channel with a10× 1× 1 block step on the bottom of the channel, 5 units in. As
in [23], we take a constant inflowu = [0, 1, 0], no slip boundary conditions on the channel
walls, a zero traction outflow condition, and use viscosityν = 1/20. Computations were
performed on a barycenter refined tetrahedral mesh using (3.3) with ε = 10−4, Xh = (P3)

3

with 376,500 velocity dof (the corresponding SV problem would have 602,060 total dof). It
took 6 iterations to converge for the Newton method, and the average time per linear solve
was 61.4 seconds.

The results obtained are in agreement with those found in [23]. Plots of the solution are
shown in Figure3.6, as a sliceplane of streamlines and speed contours, and zoomed in, and a
plot of the reattachment line.

4. Conclusions and Future Directions.By using a barycenter refined triangular / tetra-
hedral mesh andk ≥ d, accurate approximations can be found for the linear elasticity problem
in pure displacement formulation with Poisson ratio≈ 0.5, and incompressible flow problems
can be accurately and efficiently computed with ‘velocity-only’ linear solves. The results ex-
tend tok < d in some situations, provided that more elaborate macro-element structures are
used, with the key requirement being that the SV element pairis LBB stable.

Of particular interest for future work is extending the applicability of the developed in-
compressible flow methods to larger problems. We have shown numerical examples where
these methods are accurate, very efficient, provide excellent mass conservation, and are highly
competitive with state of the art preconditioned iterativemethods (e.g., [4, 5, 6]) applied to
the associated saddle point problems. The excellent mass conservation and compliance with
robust of-the-shelf direct solvers (such as Matlab’s “backslash”) makes the properly designed
penalty method an attractive alternative to other pressuredecoupling approaches such as pro-
jection and artificial compressibility methods. However, the problem size where the methods
are currently applicable appears limited to about 1 million(or so) dof in 3D, and thus find-
ing ways around this limitation would be also of interest to many CFD practicioners. For
example, different matrix structuring or factorizations could lead to easier direct solves. The
iterated penalty method [43] could also be used, which would lower the effective artificial
compressibility parameter and allow for iterative solvers, but with the cost of tripling (or
more) the total number of linear solves needing done.
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