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PERTURBATION ANALYSIS FOR COMPLEX SYMMETRIC, SKEW
SYMMETRIC, EVEN AND ODD MATRIX POLYNOMIALS *

SK. SAFIQUE AHMAD' AND VOLKER MEHRMANN?

Abstract. In this work we propose a general framework for the structpegturbation analysis of several classes
of structured matrix polynomials in homogeneous form, inclgdiomplex symmetric, skew-symmetric, even and
odd matrix polynomials. We introduce structured backwardrsrfor approximate eigenvalues and eigenvectors
and we construct minimal structured perturbations such thatpproximate eigenpair is an exact eigenpair of an
appropriately perturbed matrix polynomial. This work extemdevious work of Adhikari and Alam for the non-
homogeneous case (we include infinite eigenvalues), and ove tfat the structured backward errors improve the
known unstructured backward errors.
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1. Introduction. In this paper we study the perturbation analysis for eigel@sgand
eigenvectors of matrix polynomials of degree

m

(1.1) L(e, s) := Zcm_jsjAj,
j=0

with coefficient matricesd; € C™*™. In contrast to previous work on this topiz, [3, 4], we
consider the homogeneous form of matrix polynomials, whegeigenvalues are represented
as pairs(c,s) € C*\ {0}, which forc # 0 correspond to finite eigenvalues= 2, while

(0, 1) corresponds to the eigenvaloe.

The eigenvalue problem for matrix polynomials arises radkyiin a large number of
applications; see, e.g.17, 18, 23, 24, 27, 29, 36, 37] and the references therein. In many
applications, the coefficient matrices have further stmgcivhich reflects the properties of
the underlying physical model; se®, [11, 12, 19, 28, 30, 32, 37]. Since the polynomial
eigenvalue problems typically arise from physical modegllincluding numerical discretiza-
tion methods such as finite element modelliti§, [31], and since the eigenvalue problem is
usually solved with numerical methods that are subjectuadeoff as well as approximation
errors, it is very important to study the perturbation aselyof these problems. This anal-
ysis is necessary to study the sensitivity of the eigenyaigenvectors under the modelling,
discretization, approximation, and roundoff errors, Hebao judge whether the numerical
methods that are used yield reliable results.

While the perturbation analysis for classical and genezdl@genvalue problems is well
studied (seed0, 33, 39]), for polynomial eigenvalue problems the situation is iml&ss sat-
isfactory and most research is very recent; 22733, 24, 35, 36]. Here we are particularly
interested in the behavior of the eigenvalues and eigeorseahder perturbations which pre-
serve the structure of the matrix polynomial. This has régdyeen an important research
topic [1, 2, 3, 6, 11, 12].
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In this paper we will focus on complex matrix polynomials, ewé the coefficient ma-
trices are complex symmetric or skew-symmetric, e, s) = +L”(c, s), or where the
matrix polynomials arél-even or7T-odd, i.e.,L(c,s) = +L%(c, —s). Complex (skew)-
symmetric problems arise in the finite element modellinchefacoustic field in car interiors
and in the design of axisymmetric VCSEL devices; see, e8g34]. ComplexT-even or
T-odd problems arise in the vibration analysis for high-siteains; see, e.g.2b, 26]. Many
applications only need finite eigenvalues and associatgeheéctors, but the eigenvectors
associated with the eigenvalue infinity play an importate es well, since quite often the
infinite spectrum has to be deflated before classical mettaad®e employed; se&3, 14].

While the perturbation analysis and the construction of @l errors for finite eigen-
values have been studied in detail, there are only few easkociated with the eigenvalue
infinity. We will present a systematic general perturbafi@mework that covers finite and
infinite eigenvalues and extends the structured theoryi,02,[3, 6, 11, 12] as well as the
unstructured theory for the homogeneous case studiéd @ 7, 16, 24, 33]. In particular, to
present the backward error analysis for a given approxandt an eigenvalue/eigenvector
pair of a matrix polynomiall,, we will construct an appropriately structured minimal (in
the Frobenius and the spectral norm) perturbation polyabil. such that the given eigen-
value/eigenvector pair is exact fiwr+ AL. It will turn out that the so constructed minimal
perturbation is unique in the case of the Frobenius norm hatthere are infinitely many
such minimal perturbations in the case of the spectral ndia.will compare the so con-
structed perturbations with those constructed for matergils and matrix polynomials in
[2, 3, 4] and show that our results generalize these results anddertive following further
information on the eigenvalué@sandoc of L + AL.

e Forthe case of complex symmetric or skew-symmetric matiyrpomials, we show
that the nearest perturbed matrix polynomial can have atkiof eigenvalues in-
cluding0 andoo.

e When the degree is» = 1, we present the perturbation analysis for the case of
T-even andl'-odd matrix pencils and we show that the nearest perturbecaa
have0 andoo as eigenvalues depending on the choicé\of:) for which we want
to compute the backward error. Furthermore, whea 0 or u = 0, then we show
that the perturbed pair is the same for the spectral and ti@eRius norm.

e When the degree i, > 1 and even, then for the case’Bfeven matrix polynomials
we show that the nearest perturbed polynomial can have(batidco eigenvalues
depending on the choice @X, 1) for which we want to compute the backward error.
Again, when\ = 0, u # 0or A # 0, u = 0, then the perturbed polynomial is the
same for the spectral and the Frobenius norm.

e Whenm > 1 is odd, then for the case df-even matrix polynomials we show
that the nearest perturbed matrix polynomial can have aipte finite eigenvalues
including 0 but not the eigenvaluso.

e Whenm > 1 is even, then for the case @fodd matrix polynomials we show that
the nearest perturbed polynomial can have non-zero fingengalues but not the
eigenvaluex.

e Whenm > 1 is odd, then for the case @f-odd matrix polynomials we show that
the perturbed polynomial can have omty and non-zero finite eigenvalues.

The paper is organized as follows: In Sectijrwe review some known techniques that
were developed ing, 6, 7] for matrix pencils and identify the types of structured tame-
neous matrix polynomials that we will analyze as well as igemvalue symmetry that arises
for these structured matrix polynomials. In Sectiband in Sectior! we present the struc-
tured backward error analysis of an approximate eigenpaicdmplex symmetric, complex
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skew-symmetric7-even, andl’-odd matrix polynomials and compare these results with the
corresponding unstructured backward errors. We also prasg/stematic general procedure
for the construction of an appropriate structured minineahplex symmetric, complex skew-
symmetric,7-even, andl'-odd polynomialAL such that the given approximate eigenvalue
and eigenvector are exact fbr+ AL. These results cover finite and infinite eigenvalues and
generalize results ofl| 2, 3, 4, 11] in a systematic way.

2. Notation and preliminaries. We denote byR"*" C"*" the sets of real and com-
plex n x n matrices, respectively. For an integerl < p < oo, and an elementwise

nonnegative vectow = [wy,...,w,]T € R", we define a weighteg-(semi)norm of a real
or complex vector: = [z1,...,z,]T via
Hx”w,p = H [wlxla waT2, . .. ;wnxn]T”zr

If w is elementwise strictly positive, then this is a norm, and tfias zero components then
it is a seminorm. We define the componentwise inverse ofa w="' := [w;*, ..., w;,']7,
where we use the convention that ' = 0 if w; = 0.

We will consider structured and unstructured backwardrerpoth in the spectral norm
and the Frobenius norm d@r**", which are given by

|4ll2 := mex [ Azll, ||l 4]F = (traced” A)'/?,
xl2=
respectively.

BY omax(A4) andomin(A) we denote the largest and smallest singular value of a ma-
trix A, respectively. The identity matrix is denoted byand A, A”, and A stand for the
conjugate, transpose, and conjugate transpose of a mgtrespectively.

The set of all matrix polynomials of degree > 0 with coefficients inC™*™ is denoted
by L,,,(C™*™). This is a vector space which we can equip with weighted (s®mnins (given
a nonnegative weight vectar := [wg, w1, . . ., w,]T € R™T1\ {0}) defined as

T, = [I(Aos - - - Am)llw.r = (Wi Aol + - . + wh || Am | 7)/2,
for the Frobenius norm and
L2 == [[(Ao, .- - Am)llw.2 = (Wil Aoll3 + ... + w, [ Am[13)"/2,

for the spectral norm. A matrix polynomial is calleebular if det(L(\, 1)) # 0 for some
(A, 1) € C2\{(0,0)}, otherwise it is callegingular. Thespectrunof a homogeneous matrix
polynomialLL € L,,,(C™*™) is defined as

A(L) := {(c,s) € C*\ {(0,0)} : rank(L(c,s)) < n}.

In the following we normalize the set of points s) € C? \ {(0,0)}, such that is real and
c|? + |s|? = 1. With this normalization, it follows that the spectrukiL) of a matrix poly-
nomialLL € L,,,(C™*™) can be identified with a subset of the Riemann sphere; seg[@.g

In the following we will compute backward errors for struetd matrix polynomials.
These were introduced, e.g., 1] 35|, but here we follow §, 6, 7] and define the backward
error of an approximate eigenpair as follows. [&tu) € C?\ {(0,0)} be an approximate
eigenvalue oL € L,,(C™*™) with corresponding normalized approximate right eigetmec
x # 0 with 27z = 1,i.e.,L(\, p)z = 0. Then we consider the Frobenius and spectral norm
backward errors associated with a given nonnegative weggtor [wg, w1, . . . , w,,] T

N, 7 (A, o, 2, L) := Inf{|| AL||p,r, AL € L,,(C™*™), (L(\, ) + AL\, )z = 0},
Uw,2(>\aM71E7L) = 1nf{|||AL|”1U2ﬂ AL € Lnl(cnxn)’ (L(Aa ,LL) + AL(}\,‘LL))l = 0}7
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respectively. Whem := [1,1,..., 1], then we just leave off the index for convenience.
The backward errors for structured matrix polynomials feosetS C L, (C"*™) are defined
analogously as

nISU’F()\,u,x, L) := inf{||AL||w,r, AL € S, (L(\, 1) + AL(X, p))x = 0},

773,2()\7%% L) = inf{mAL”"w,Qv AL €S, (L(/\Hu) + AL(/\H“))I = 0}7
respectively.

In order to compute the backward errors, we will need thagdaterivativeV, || z|| 2 of
the map
(Cerl N R,

z = ||z]

(2.1)

w,2 = ||(Z07 Zlyenny Zm)”w,?a

which is the derivative of4.1) with respect to the variable; obtained by fixing the variables
20y 21y -+ Zie1s Zit1, - - - » Zm @S CONStants. The gradient of the map) is then defined as

V(lIzlw2) = Vollzllwz, Villzllwg, -, Viulzllw,2] € €2

For a given(\, ) € C%\ {(0,0)} andx € C" with 2z = 1, we setk := —L(\, u)x
and, with a given nonnegative weight vecfay, wy, . . ., w,,|’, we introduce

Hw,2 = HUJ,Z()\7 #) = ”()\muo’ /\milﬂa ceey )\Oﬂm)”w,%

and we use the notatidvi; H,, » for the partial derivative (with respect tg) of the map 2.1)
at(A\? 0 A=y, \%™). Then we have

L, p)z|
2.2 woA px, L) = ———————.
( ) n 72( Hny, ) Hw—l’Q(A,,U/)
Defining for each of the coefficients
VH -19
23 e w2
(2.3) Za, Hy o1

and introducing the perturbatiodsA; := @ka for the coefficients, we form the matrix
polynomial

AL(c, s) = Z cmIsTAA;,
§=0
with

AL w2 = T .
”| ”| ,2 o .

w

s

Forz € Cwe setsigfz) := z/|z|, whenz # 0 and sigriz) := 0 whenz = 0. With these
definitions we have the following preliminary results whighneralize the corresponding
results of p, 6] to matrix polynomials.

ProPOsITION2.1. Consider the mayjz|., 2 given by(2.1). Then|z||,, 2 is differen-
tiable onC™*! and

2
Dt =0,1,2,...,m.
12]lw,2

Villzllwz2 =
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Proof. The assertion follows from the fact thet(|z;|?) = 22;. d
The proof of the following two propositions is analogous.

PROPOSITION2.2. Letm be an integer and lefr = % + 1, m = mif mis even and

1 . . . .
m = %, m =m — 1if mis odd. Consider the mapping
Ky C™ SR
2+ ||[z0, 22, 24, - . - ,Zm]THw,z-

ThenkK,  is differentiable and

ViKya(2) = KZJZZ(Z) i=0,2,4,..., 1.
PROPOSITION2.3. Let m be an integer and lefh, = %, m = m if m is even and
m = mTH, m =m — 1if mis odd. Consider the mapping
Ny2:C™ - R
2 ||[21, 235 255 -« + s 2] ” ||wi2-

ThenN,, » is differentiable and

2,
vin’g(Z) = —1—— = 173,5, e ,T?L.

Hyo(c™s? e s, %™) = ||[¢™s%, ¢ s,y 2™ w2,

Kupo(cms e 2% 0 ™) = ||[¢™s, ¢ 252, ., %™ || w.e if m is even,
Kua(c™s? cm2s% . es™ ) = ||[¢™s%, ¢ 7282 es™ T we if m is odd,
Nya(c™ s, c™ 383 0 es™ ) = [ s, ™33 es™ T e if mis even,
Nua(c™ s, ™ 383 0 Ps™) = ||[e™ s, e 38, 8™ || if m is odd.

For evenm, the following formulas hold:

m = 7 2 m
Cmijsj Vij’Q _ Kw,Q ’LU-_2 V. K 2 _ 1
H H2 j g w,2 )
A w,2 w,2 -
7=0,j even ’ 7=0
m—1 = 3 2 m—1
Cmijsj v]’Hw,Q _ Nw,Q U}‘_2 V. N 2 -1
H H2 j J4iVw,2 )
j=1,7 odd w,2 w,2 j=1
m = 7 m—1 =
g ‘V'KwZ — 'V'NMZ
E Mgl IS Mgl IS —
j=0,j even w,2 j=1,j odd w,2
m < 57 m—1 < 77
m_i i ViHy 2 m—i i ViHy 2
E Crn ]SJ JTw, + m ]SJ JTw, =1.

C
j=0,j even w,2 j=1,7 odd w,2
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For oddm, the following formulas hold:

m—1 2 m e T 2
ome j v Hw2 o Kw,2 Z ome jSJ ijw.Q o Nw,2
H, H2 ) H HZ )’
j=0,7 even w,2 w,2 j=1,7 odd ’ w,2
m—1 ~ T m ~ AT
om—igi Villwa S emigd ViNwa
K, ’ N, ’
j=0,7 even w,2 j=1,5 odd w,2
m—1
cme 383M+ E e J]VHU’2:1
j=0,j even w,2 j=1,5 odd w,2

For all m, the following formulas hold:

icm V Hw 2 = 1, iw;2|Vij72|2 =1

=0 w,2

Proof. By Proposition2.1, we have

v H ( m om—1 m) w]207rb—jsj
2(c™, ¢ S s = .
I ’ T Hyo(cm em=1s, ..., s™)
Then, we obtain
Hw 2 HE, 2 Hw,2

j=0, j even ws j=0,j even

The other parts follow analogously, using Propositigris-2.3. a

After establishing these formulas for general matrix polymals, we now turn to the
structured classes. These classes were discussed iniddtz#] but not in homogeneous
form. So let us first introduce the homogeneous versions.

DEFINITION 2.5. Let(c,s) € C?\ {(0,0)}. A matrix polynomiall € L,,(C"*") is
called

1. Symmetri¢skew-symmetridf L(c, s) = £L%(c, s),

2. T-everT-oddif L(c, s) = L7 (¢, —s).

The spectra of these classes of structured matrices havemmedyy structure that is
summarized in the following proposition which follows ditly from the results for the non-
homogeneous case iaq].

PROPOSITION2.6.

1. LetL € L,,(C"*™) be a complex symmetric or complex skew-symmetric matrix
polynomial of the fornf1.1). If z € C™ is a right eigenvector ok corresponding to
an eigenvalug), ) € C%\ {(0,0)}, thenz is a left eigenvector corresponding to
the eigenvalué\, 11).

2. LetL € L,,(C™*"™) be a complex-even orT-odd matrix polynomial of the form
(1.9. If z € C™ andy € C™ are right and left eigenvector associated to an eigen-
value (A, 1) € C?\ {(0,0)} of L, theny and = are right and left eigenvectors
associated to the eigenvalgg, —p).

SinceT-odd andT-even matrix polynomials have coefficients that are alt@émgebe-
tween symmetric and skew-symmetric matrices, it is clear itnthe product:” (L(\, u))z
all terms associated with skew-symmetric coefficientsstanihese are the coefficients with
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TABLE 2.1
Eigenvalues and eigenvectors of structured matrix polyatsm

S Eigenvalues Eigenpairs 2T A
symmetric (A, ) ((\p),z,T)
skew-symm. (\, ) (A p),x ) 0
Teven | {0\ ), (0 —0)) | (Ovsi)s,3), (A —po),y,7) | 0 for all odd;
T-odd (), (=) | (A )2, 7), (=, 1), y,T) | Oforall eveny

odd index forT-even matrix polynomials, and the ones with even indexffesdd matrix
polynomials. We summarize the properties of these stradtanatrix polynomials in Ta-
ble2.1

To derive the backward error formulas, we will frequentledehe following completion
results in which for a symmetric matriX, X2 denotes the positive square root.

THEOREM 2.7 ([15]). Consider a block matrigf’ := {g )(’;] Then for any positive
number
A
vem{|[3]], 1 al )
2 2
the blockX can be chosen such that
A
=X
|5 <],

where X is of the formX = —KAYL + (I — KK")Y/2Z(I — L*L)'/2, and where
K = ((*T — AHA)712BIYH [ .= (2T — A" A)~Y/2C with Z an arbitrary matrix
such that| Z||, < 1.

As a Corollary of Theorerd.7 one has the following result for complex matrices.

COROLLARY 2.8. LetA = £A7, C = £BT € C™™ and x := 0yax (ED Then

there exists a symmetric/skew-symmetric makrig C"*" such that

A +£BT]\ _
Umaw B X _X7

and X has the form
X = -KAKT 4+ x(I - KK")'?27(1 - KKT)Y/2,

K := B(x*I — AA)~'/? and whereZ = +Z7 ¢ C"*" is an arbitrary matrix such that
122 < 1.

In the results presented below, we always dse 0. In the following section we derive
backward errors for the different classes of structuredimpblynomials.

3. Backward errors for complex symmetric and skew-symmetrt matrix polynomi-
als. In this section we derive backward error formulas for honmageis complex symmetric
and skew-symmetric matrix polynomials. Throughout thistise, we will make use of the

. . .. V,;H,- ) .
partial derivatives—2—*""2 of H,-1 5 and ofz,, as defined inZ.3).

w—1,2
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THEOREM 3.1. LetL € L,,(C"*") be a regular, symmetric matrix polynomial of the
form(1.2), let(\, ) € C2\ {(0,0)}, letz € C" be such thatx = 1 andk := —L(\, p)x.
Introduce the perturbation matrices

AA; = foTAjmxH +7Za; [fkT + katl — Q(mTk)fo} ,7=0,1,....m
and define

AL(c,s) =Y "I sTAA; € Ly (C™7).

m
=0

ThenAL is a symmetric matrix polynomial ar@ (X, i) + AL(\, 1))z = 0.
Proof. Since for allj we haveAA; = AAT, it follows that AL is symmetric and we
have that

(LA, 1) + AL, )z = Y N7 (Aj + AAj)x
7=0

= Z/\m_juj [Ajz — 72" Ajo + 24, [Tk x + k — 2(2" k)7]]
=0

= k(I —z2") + @k 2z + k- 22" k)z] Y A" iz
j=0

By Proposition2.4we have thag)\m*juj@ =1. Then
§=0

(L, ) + AL\, p))z = —(I — 22k + kT2 + k — 22" k)T = 0,

sincek’z = 27k, a

TheorenB.1with ¢ = 1 andw = [1, 1,...,1]7 implies Theorem 4.2.1 of] for the case
of non-homogeneous matrix polynomials that have only fisiteenvalues, i.e., for which
det(A,,) # 0. Theorem3.1 also implies Theorem 2.2 of]] for matrix pencils. Using
Theorem3.1 we then obtain the following backward errors for complex sygtric matrix
polynomials.

THEOREM 3.2. LetL € L,,(C"*™) be a complex symmetric matrix polynomial of
the form(L1.2), let (\,u) € C2\ {(0,0)}, letz € C" be such thatt?z = 1, and set
k:=—L(\ p)z.

i) The structured backward error with respect to the Frolennorm is given by

V2[E(3 — [T E[?

Hw_1,2

ni,F()‘vuaxa L) =

There exists a unique complex symmetric polynoik(c, s) := Zcm‘jszAj
with coefficients
AA; =7z, [@k" + k' — (2T k)z2], j=0,1,...,m

such that the structured backward error satisfigs, (X, 11, 2, L) = [|AL|.,.» andz,
2 are left and right eigenvectors corresponding to the eigam(\, 1) of L + AL,
respectively.
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ii) The structured backward error with respect to the spalctiorm is given by

[[%l2
Hw*1,2

7]3,2()" M X, L) =

and there exist a complex symmetric polynomiidl(c, s) := Zcm*jsjAA]— with
j=0
coefficients
2Tk(I — 32 kKT (I — xz¥
A4 =z TR 4+ ket~ (KTt — T H;”‘/’g ) | TE:IQ w2)
5 — |T

such that] AL,.2 = 7S (A, 1., L), and (L(\, ) + AL(X, ) = 0.
Proof. By TheorenB.1we have(L(A, 1) + AL(A, 1))x = 0 and hencé = AL(\, p)x.
Now we construct a unitary matri¥ which hasz as its first columnl/ = [z, U;] € C"*"

— - T
and letAA; := UTAA;U = {dé’ gi } ,whereD; ; = DT, e C(n=1)x(»=1) Then
J 253

—~—

UAL(, U = TUT (AL, p))UMU = AL(A, p),

and hence

—~—

UAL\, ) Uz = AL\, p)z =k,

which implies that

—~ T
H_. Ty, X k’
AL\, ) U 2 =U"k = [UlTk} .
Therefore, we get that

m Am_J:LLJ

PO A i 2 j=owidj; w; [sz}
m m—j,,7 = = T .

2o X L ey G PR

i
To minimize the norm of the perturbation, we solve this syster the parameterg; ;, d; in
a least squares sense, and obtain

wodop,o ZA4, wodo ZA,
wid Z Z
1d171 A1 . wldl A1 .
wa @2 2 = | RAs | ¢ k, and . = | A, U1 k,
W Ao,
wmdm,m ZAm ZAm

Applying Propositior2.1, we then get the following relations
djj=7zZaa"k, dj =za,U{k, j=0,1,....,m.
From this we obtain
AA; = UNAUM = 7d; 2! + Udja®! +zd U + T D; ;U
=74, [(@2" k™) + WU k2™ + 2k U U] + UL D; ;U
= za, (T2 k™) + (I — 72" k2™ + 2k" (I — 22™))] + U1 D; ;U
(3.1) =za, [kz™ + k" — (kT2)z2"| + U D; ;U
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In the Frobenius norm, the minimal perturbation is obtaibgdaking D, ; = 0, and hence
we get

IAA; 5 = 1d; 57 + 20ld;115 = |2a, *(I27 K[ + 2| U k[13)
2|[k[3 — |="k(?
H? ’

w—1,2

= |Vij*1,2|2

since|UT k|3 = [«Tk|? + |UTk|[3. Using» w?|V;H,-1,|* = 1 from Proposition2.4,
j=0
we obtain that in the case of the Frobenius norm
2 20|klI3 — [Tk 2[k[I3 — |=TK[?
H? - H2,,

w—1,2

m
IALIE, p = > wIVHy
) J
=0

and hence,

2[k[[3 — |2 k|?
H? '

w—1,2

IALlw,F =

As kT x is a scalar constant, it follows that @llA; and thus als@\L are symmetric and

(L) + AL, )z = SN0 (4 + AAy)e = —k + (S AW A )
j=0 §=0

=—k+ Z AN za ket + Tk — Tk a2
=0
=—k+k+zk"s —Tk"z = 0.

Here we have used that by Propositid we have thaly ~ A"~/ /zz; = 1. Similarly, it
§=0
follows thatz" (L(\, ) + AL(\, 1)) = 0.
For the spectral norm we can apply Coroll&rgto (3.1) and get

ZA, [
Dj; === [+TRUT T 1]
,_ WikwinmY [ UTkuTk”

whereZ = ZT and||Z|]» < 1, P? = ||k||3 — |[27k[, x := +/I|d;;]|* + ||d;]|3. With the

special choiceZ = 0 we getD; ; = —21’342{ [ka(UlTk)(UlTk)T} and
iR ZA; 1 ZA; _
0D UY =~ S5 UL kKT UUY = =20 (1 = 72 )RE" (1 = ™).
Hence,
ZA;

AA; =7z, [ka™ + 7k —T(k"2)2™) — Z2(1 — 72 )kkT (I — 2™,

P2
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AL(c, s) is symmetric, andL (A, ) + AL(A, )z = 0. With

4 Y,y
= (| 99]) = e ke TR = B2l

wT

and Corollary2.8we havex = [|AA;||s, and by Propositio.4, >~ w? |V Hy -1 5|* = 1,
it follows that ‘

77’118172()‘3/“‘75871‘) = |||AL”|’LU72 =7

Note that in the construction of a minimal spectral norm lveeukl error we have infinitely
many choices of an appropriate completi@nfor which || Z||> < 1, but here and in the
following we always takeZ = 0 to simplify the formulas.
Vij—lg()\, :u’)
Hw*1,2 ()‘7 /’[’)

by TheorenB.2we have thaA; = 0, j = 0,...,m. This shows thaty; = 0 implies that
A; remains unperturbed.

We then have the following relations between structuredwrsdructured backward er-
rors.

COROLLARY 3.4.LetL € L,,(C"*™) be a regular, symmetric matrix polynomial of the
form (1.2), let (\, u) € C%\ {(0,0)}, letz € C" be such that:’ > = 1. Then,

Remark 3.3.1f w; = 0for j =0,...,m, thenz,, = = 0 and hence

ntsu,F<)‘a u, T, L) < \/Enwg()\, M, T, L)
TISJ,Q(Aa M, T, L) = 7]111,2()‘7 M, T, L)

Proof. By Theorenm3.2with k := —L(\, 1)x, we have that

s [[l2 s 2|[k[13 — [2Tk[?
A L)= and A L)=
77w,2( y s Ty ) Hw*1,27 nw,F( y s Ty ) Hw*1,2
k .
and from @.2) we have thaty, 2(A, p, z, L) = h'[' 2 . Thus the assertion follows. O
w12

As a corollary we obtain the results df,[3, 4] for the case of non-homogeneous matrix
polynomials that have no infinite eigenvalues, as well agé¢kalt for homogeneous matrix
pencilsL(c, s) = cA+ sB € L;(C™ ™) and in the special case, i.e., for= 1, we obtain
results given in Theorems 3.1, and 3.2 8 |

In an analogous way we can derive the results for complex-siy@ametric matrix poly-
nomials.

THEOREM3.5. LetL € L,,(C™*™) be a complex skew-symmetric matrix polynomial of
the form(1.1), let (\, u) € C*\{(0,0)}, letz € C" such thatt? 2z = 1 andk := —L(\, u)x.
Introduce the perturbation matrices

AA; = —za, [zk" — k2], j=0,1,2,...,m.

Then the matrix polynomiaAL(c, s) = Zcm*jsjAAj, is complex skew-symmetric and

j=0
(L(A, p) + AL(A, p))z = 0.
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Proof. By constructiomAL is complex skew-symmetric and by Propositibd, we have

m
Z Amfjﬂjoj = 1. Thus, we have
§=0

(LA, p) + AL(A, p))z

= —k+ AL\ p)z = —k+ Y _ N pizg [Zh" - k'] 2
j=0
= k+zkTer+k=0,

aszk”x = 0, since the polynomial has skew-symmetric coefficients. O

THEOREM 3.6. LetL € L,,(C"*™) be a complex skew-symmetric matrix polynomial
of the form(1.1), let (\,u) € C%\ {(0,0)}, letz € C" be such thatt?z = 1 and let
k := —L(\, u)z. The structured backward errors with respect to the Frobsmorm and
spectral norm are given by

V25113
Hw*1,2 ’
[[K[|2

Hw_172)

773}1?()\7/1755;14) =

773,2()\7 M, T, L) =

respectively. Introducing the perturbation matrices
AAj = —zx; [zk" — kz"],j=0,1,....m,

then AL(c,s) = Y 7', c™7s7AA; is skew-symmetric(AL(A, p1) + L(A, u))z = 0,
ni,F()‘v p,x, L) = mAL'”w,F andngz()‘ﬂ s, L) = |\|AL|\|w,2-

Proof. By Theorem3.5we have(L(\, ) + AL(), 1))z = 0 and hence we have that
k = AL(\, p)x. We choose a unitary matriX of the formU = [z, U;], U; € C»*"~! and

defineAA; :=U" AA;U = p Al%
—4j G2

],where

AD;; =—ADT; e ctn=Dx(n=1),
Then

UAL(X, p)U" = TUT (AL(A, p))U"'U = AL(A, ),

and hence

UAE_(\)\,//J,)UHLU = AL\ p)z =k,
which implies that

— T
H.. Ty X ]f
AL\, ) U7z =U"k = {UlTk} .

SinceUH z = e, it follows thatz”k = 0 and

m o m Cds
Uk ==Y \"ipld; = ijxmﬂuﬂw%.
§=0 §=0 !
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To minimize the perturbation we solve the system for thepatarsd; ;, d; in a least squares
sense, and obtain’ ¥ = 0 and

wodo ZA,
wid; ZA,
wmdm ZA7n

whereH,, 5 = || [\™u0, A 1p, .., A0um] T (|, 0. This yieldsd, ; = 0,d; = —za ULk
and then

— T
A= |0 —(EUTR) |
ZAj Ul k AD]',]‘
The Frobenius norm can be minimized by takihg; ; = 0 and then we have

2| k|3
H2_, )

w—1,2

IAA; 5 = 21ld;13 = 2lea,PIUTEI? = |V Hy-1 2

since||k|% = |[UTk||2 = |2Tk|?> + ||[UL k|3 = ||[ULk||3. Also by Propositior?.4, we have

. V2| k(|3
that) """ w3 |V Hy-1 5> = 1. Thus we obtaif| AL, r = i %] and
w12

A, —URAU" = [z T ] O G ]|
i~ - Mg, AD;,| |UF
= —Uhd;a™ +zd U + TAD; ;UT
= Urza, Ul ke — z(zx, UL R) U + U AD; ;U
=74, [ U] ka™ — zk"U U] + U AD; ;U
(3.2) =74, (I — 22" k™ — k" (I — z2™))].
Therefore
AA; = 7z, [ka™ — Tk"]

is complex skew-symmetric and we halle(\, 1) + AL(\, p))z = 0.
To minimize the spectral norm we make use of Corol2a&and obtain

Eypgi
ADjj =55 [ Tk(U{ k) (U k)]
(UL k) (U R)H UL k(UL k)T
L iy KA el B

whereZ = —Z7 with || Z||; < 1, andP? = ||k||2 — |zTk|2. ChoosingZ = 0, we get

ZAj

ADj; = —ﬁ[m(UFk)(U{%)T]
and using 8.2), we get
ThAD, ;UH = — A T3, uT kT U, U H = —ﬁ”ﬁ(l — 22k (I — za™?)
1 371 T T p2 1Y1 1Y = P2 >
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and hence
ZA ———
AA; =7z, [~k + k" — 27 (K" 2)2™] — %ka’(I —zz D) kET (I — z2).

The skew-symmetry ofi; implies thatz”k = 0 and thusAA; = zz; [k —zk"] is
complex skew-symmetric. TheAL(c, s) is complex skew-symmetric as well and with
Xa4a; = |@|HU1TI<;||2 we have thatL(\, i) + AL(\, p))z = 0.

By Corollary2.8we obtain

1AA ll2 = |24, 10T Kll2 = |24, W/ 1613 = [2Tk[2 = |2a,][1Kl2

and hence)$ (X, 1, 2, L) = [[AL[w,2. O

As a direct corollary of Theorer®.6 we have the following relation between structured
and unstructured backward errors of an approximate eigienpa

COROLLARY 3.7. LetL € L,,(C"*"™) be a skew-symmetric matrix polynomial of the
form (1.2), let (\, ) € C2\ {(0,0)}, letx € C" satisfyzx = 1, and setk := —L(\, p)x.
Then the structured and unstructured backward errors al&teel via

nSJ,F(Aa My T, L) = \[277w,2(/\7 My T, L)7
773,2()\7 ", T, L) = 7Iw,2(>\, Hy Ty L)

As a further corollary we obtain Theorem 4.3.4 2f, [see also4] for non-homogeneous
matrix polynomials with no infinite eigenvalues.

For matrix pencild.(c, s) = cAg + sA; € L (C™*™), Theorem3.6in the special case
¢ = 1 also implies the results given in Theorem 3.3 and Theoreno#.Z].

To illustrate our results, in the following we present somareples.

Example 3.8.Consider the complex symmetric penkile L; (C?*?2) with coefficients
Ag = [(1) (1)} andA4, := [8 ﬂ , and taker = [ljﬂ (A p) = (0,1).

For the Frobenius norm we obtain the coefficients of the pleation pencilAL as

0 0 0.25 0.25

Ado = {0 0] andAd, = [0.25 —0.75
and||AL| r = % (\, p, z, L) = 0.8660.

]. Then(0,1) is an eigenvalue oL + AL

0 0 0.5 0.5 .
0 O},andAAl— [0.5 _015}.Agam(0,1)

is an eigenvalue dt + AL and||AL|ls = 75 (A, i, z, L) = 0.7071; see also Tabl8.1
Example 3.9.Consider the complex skew-symmetric perci€ L; (C?*?2) with coeffi-

cientsAg := [0 _01] VA = [O _2] and taker = [_Z/ 2 (A, i) = (0,1).

For the spectral norm we obtainA, = {

1 2 0 1/V2 |
For the Frobenius norm and spectral norm, the coefficientiseoperturbation pencil are
AAy = {8 8} AA; = {_02 g} , (0,1) is an eigenvalue oL + AL. The norm of the
perturbation i|AL|| » = % (A, u, 2, L) = 2.8284, while for the spectral norm we obtain
IAL|l2 = n5 (A, i, z, L) = 2, see also Tabl.1

4. Backward errors for complex T'-odd and 7T-even matrix polynomials. In this sec-
tion we derive backward error formulas for homogenefusdd andl-even matrix polyno-
mials. Throughout this section we assume that the coeffionatrix Ay is in the even posi-
tion, i.e., it is symmetric for &-even and skew-symmetric forigodd matrix polynomial.
The other case can be treated analogously via a multigicatith the imaginary unit.
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TABLE 3.1
Structured and unstructured backward errors for Exam@&sand 3.9.
Example S n5 (N w2, L) | nB (N w2, L) | n2(\ g2, L)
1 symmetric 0.7071 0.8660 0.7071
2 skew-symmetric 2 2.8284 2

For a given nonnegative vectar, an eigenvalud ), u) and the partial derivatives as
introduced in Proposition®.1-2.4, we use the following abbreviations.

- ijwfl,Z(/\a /L)
Hw*I,Q()‘a M)

— Vijfl,Z()‘a M)

o ijwfl,Q()‘a /”')
na, - — =7
’ wal’g()\,,u)

: ka. =
ZAJ P A Kw*I,Z()‘? /’L)
We then have the following backward errors.

THEOREM4.1. LetL € L,,(C**") be a comple®’-even orT-odd matrix polynomial
of the form(1.1), let (\,u) € C2\ {(0,0)}, letz € C" be such that:’z = 1 and set
k = —L(\ pz. Forj = 0,1,2,...,m, and different cases, we introduce the following
perturbation matrices.
e In the case thatn is even and\ # 0, or whenm > 1 is odd then let fofl-even
matrix polynomials

AAL ka, (2Tk)(@a™) + za;, [(I — 72T )ka™ + zkT (I — 2z'T)] for eveny,
Pz [ = m ket + 7T (1 - zath)] for odd j,

so that the perturbation preserves the structure,
e in the case thatn > 1 is even and both # 0, u # 0, or in the case thain is odd
andy # 0, let for T-odd matrix polynomials

AAs na, (aTk) (@) + za; (I — z2T )ka™ + Tk™ (I — z2™)] for odd j,
P [T = 3Dkt + 7T (1 - 2t for eveny,

so that the perturbation again preserves the structure,
e in the case that\ # 0, # 0 consider perturbation matrices for symmetric or
skew-symmetric coefficients

AA —zaT Ajeat + 75 (I — Z2T)kat + zkT (I — z2™)] symm,
T -7 [~ - ma D ke + 3T (1 -zt skew-symm.

Then there exists a matrix polynomialL(c, s) = Zcm*jsjAAj € C™*™ that is structure
j=0
preservingl’-odd or7-even and satisfigd.(\, 1) + AL(A, u))z = 0.
Proof. Let AL € L,,(C"*") be of the formAL(c, s) = 7", ¢™ 75/ AA;. Then by
the construction it is easy to see thaL is either7-even or7’-odd and it remains to show
that (L(A, 1) + AL(A, )z = 0. We begin with a’-odd polynomialL. In both cases that
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m IS even or odd, we have

(LOW ) + AL, ) = SN0 (4, + Ady)a

3=0
m m
= Z AT AG | e — [—k —|—§ka] Z AN Za
§=0,j even j=0,j even
m—1 m—1
+ Y A A+ [T+ Y Nz (I - T2k
j=1,j odd j=1,; odd
m m—1
-kt Z A" AT + Z NI iz | (I -7k + 2Tk
j=0,j even j=1,j odd

=—k+k—z2Tk+2Tkz =0,

since by PropositioR.4we have that

m m—1
Z Nz + Z NI za, = 1.
j=0, 5 even j=1, 7 odd

The proof forT-even polynomials is analogous. 0O
In the special case of linear matrix polynomials, i.e.,/for= 1, we have the following
expressions. For even pencils we have

AAg = —|sign(p)|*z2” Agza™ + za, (I — z2" k2™ + 2k (1 — 22™)]
AAy = -z, [-(I —zx ) kat! + KT (1 — mxH)] ,

and for odd pencils we have

AA; = —[sign(\) [Pz’ Ajza™ + Za; (I — z2")ka™ + 7" (I — 22™)],
AAg = —za, [-(I — 72" k™ +Tk" (I — 22™)]

where[sign(z)| = 1, if z # 0 and|sign(z)| = 0, for z = 0.

As a corollary we obtain the results for the case of non-ha@negus matrix polynomials
with no infinite eigenvalues of Theorem 4.2.1 i#],[see also 3, 4]. This case follows by
settinge = 1,L(s) = L(1,s),A = [1, i, ..., x™" andw = [1,1,...,1]7.

The minimal backward errors for compl@even polynomials aneh. > 1 are as fol-
lows.

THEOREM4.2. LetL € L,,(C**™) be aT-even matrix polynomial of the fori.1),
let (A, ) € C?\ {(0,0)}, letz € C" be such that?z = 1 and setk := —L(\, u1)z.

i) The structured backward error with respect to the Frolennorm is given by

|z T k|2 49 |kl|2 — |zTk[?>  if misevenor

K2 ., H? ., if u # 0 andm is odd

21k||3 — |=Tk|? . .

M, (A g, L) = 20kl — 27 k7 |Z2 [~ k| if A =0and, m is even

w12

211k||3 — |=Tk|? . .

% if « =0 and,m is odd.
w—1,2
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ii) The structured backward error with respect to the spalctiorm is given by

|27k ||k||3 - |2Tk]?  if misevenor
K1y HZ if 41 # 0 andm is odd
k . .
5 oA g2, L) = IJ [E if \ = 0 and, m is even

w—1,2

L _— .

Fi if w =0 and,m is odd.
w12

Whenm is even, or whem: is odd and\ # 0, introduce the perturbation matrices

AA ka, (Tk) (@) + za, [(I — 2T )ka™ + TKT (I — 22T)]  for evenj,

T —za, [-(I — 72Tkt + KT (I — wx!?)] for odd ;.
ThenAL(c,s) = 7™ /sAA; is the uniqueT-even matrix polynomial satisfying
(LA, 1) + AL\, p))xz = 0, and | AL || r = TIE,F(A»M,%L)- Similarly, for the spec-
tral norm, whenm is even or whemn is odd and\ # 0, introduce the perturbation matrices

ka,aTh(I — wa™)kkT (I — 72T)

AA; for evenj
A4y =3 500 [KIZ = a7 k[? g
AA; for odd ;.
m
Then the matrix polynomialAL(c,s) = Zcm—jsjAAj is T-even, has spectral norm
=0

IALJlw,2 = 15 o(A, 1, 2, L), and satisfie§L(X, 1) + AL(A, )z = 0.
Proof. Theoremd.limplies that(L(\, 1) + AL(\, 1))z = 0 and hencé = AL(\, p)x.
Now choose a unitary matrid = [z, U;], U; € C**"~! and let

ANA. 77T _ d‘f dT _ T n—1 n—1
AAj = UTAAU = [éjj AD;, |0 ADis=AD € Clr=hx(n=1)
whenj is even and
0 b7

Ad; =T [ } Uf, AB],=-AB;;

j
—bj ABj;
whenj is odd. Then, sinc@Aﬁu)UT = UUT(AL(\, p))UTU = AL(), p), it follows
—_ —_ T
that UAL(M, 1)U Tz = AL(\ )z = k, and hence\L(), )07z = UTk — [5#2}
1
Using

m

> widsy = .
j=0 J o lil’ k]
m m - T )
o ds b Uik
Do wpNt I = Y et
j=0, j even J j=1,j odd J

to minimize the perturbation, we solve this system for thepeetersi; ;, d; in a least square
sense, and we obtain

Wopao,0 ZAm
w2a2 2 ZA,

Wi Gm,m ZA,,
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Thend;; = ka,z"k,d; = za,U{ k for evenj andb; = zx, U{ k for odd j and we obtain

_ T

J— ks xT za UL

i ka;x" k (ZAjU1 k) UH  forevenj,
|z, Uk ADj

AAJ' = — T
0 B (ZA’UlTk> UH  for oddj.
zZa, Ul k ABj

=

This implies that
(4.1) AAj = —z4, [-(I — 72"k +TK" (I — 22™)] + T1AD; ;U
whenj is odd. For even, we get
L T
AA; = [z T |Faek <Zz4jU1Tk> PH]

UH
Za,U{k  ADj; '
=ka, (27k) @) + za; [U1(UD k2™ + kT UU ] + U1 AD; ;U

and thus
(4.2) AAj =ka, (2" k)(@2") + 74, [(I — 72" )ka™ +TK" (I — 22™)] + U1 AD; ;UL

The Frobenius norm can be minimized by takitgl; ; = 0, so we obtain

AA ka, (2Tk) (@) + za; [(I — T2 T)kat + kT (I — z2™)]  for eveny,
T —za, [—(I — 72T kat! + TKT (I — z2™)] for oddj.

Since the Frobenius norm is unitarily invariant, it follotist for evenj we have

1A l1r = lag 12 + 2llagl13 = /I, PleTk +2|za, 2| UT I3
VKo PlaTRE IV H o IUT HS
= + e .
w12 w12

Similarly for oddj, we have|AA;||p = v/2|z4,||U{ k||2. Furthermore, by Propositich4,

we have Y~ w?|V;K,-1o/* = 1andy w}|V;H,1,|* = 1 whenm is even. Then it

j=even 7=0
follows that

Tk]> | 2|U k3
ZW?HAAJ'H%: K2 + H21 :
j=0

w12 w12

AL}, F =

_ [Tk 2(Ik] — leTR?)
K2 H? ‘

w—1,2 w—1,2

For the spectral norm, we have fro [) and @.2) that

AA ka, (Tk) (@) + za; [(I — T2 )kt + TKT (I — z2™)] + S;  for eveny,
T —za, [—(I = zaT)kat! + KT (I — zal?)] for oddy,
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_ FAi T

whereS; := U;AD; ;UH = 2] 2Tk(I — 22 T)kET (I — z2™), andP? = ||k[3 — |27 k|?.
Now let

\/|kz4j|2|9’7Tk’|2 + |24, 2(|k]|? — [T k[?) for eveny,
V124, 2IRIE = 27 K[2) for oddj.

XAA; =

Hence, by Corollary.8it follows that||Al|> = xa4,. Then

TEE L IEIP — 12TR?

m
|
[ALfw2 = | > w?[|AA[3 = 7L ;
j=0 w—1,2 w12

and

T1.12 2 T1.12
s T (] el
7711172()‘7”7'7;’1‘) = \/Kil ) + H?2 : a

w—1,2

We obtain the following relations between the structured amstructured backward errors.
COROLLARY 4.3. LetL € L,,,(C™**™) be aT-even matrix polynomial of the for(i. 1),
let (A, ) € C?\ {(0,0)}, letz € C™ be such that?z = 1, and setk := —L(\, p)z.
1. fw:=[1,1,...,1]7, || = |u| = 1 and if m is odd, thenH?, =2K?
for the Frobenius norm we get

e # (A i, 2, L) = V21, 2(A, g, 2, L).

Similarly, for the spectral norm we have

VIEE + 2Tk
77’le),2()\7 o, T, L) = %
w12

and

12 12

2. If mis even or ifm is odd and\ # 0, then for the Frobenius and the spectral norm
we have

TIS,F(Av My T, L) < \/inw,Q(Aa oy Ty L)a
7751,2()‘?#’37’ L) = 77w72(>\’M»$7L)7

respectively.
Proof. Consider the case thpt| = |u| = 1, w = [1,1,...,1]7 and thatm is odd. Then
Hifl,z = ZKEU,l’Q. Substituting these in Theorem?2 and then applyingZ.2), we get for
the Frobenius norm that

?7’LSU,F()\7 My Z, L) = \/inw,Q(A, Hy Ty L)

and for the spectral norm that

k 2_|_ sz2
n o 1) = I E IR
Hw*1,2

If m is even and\ = 0, then we haveK,,-1 5 = w;{u|™ andH,,-1 5 = w;,;'|p|™ and
hence

ni,F()‘? sy, L) S \/5"71%2()‘; M, T, L)a
7715”,2()\» p,x, L) = nw72()‘v wyz, L).
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Similarly, for 1 = 0 we havek -1 » = wy '|A|™ and H,,-1 » = wy ' |A|™, and hence

T i (A s, L) < V204 2(A, 2, L),
"7572()" s Ty L) = 77w,2()‘> u, T, L)-

The assertion for the case that£ 0 andm is odd follows analogously. 0O

As a corollary we obtain the results for non-homogeneousixnpdlynomials with no
infinite eigenvalues ofZ, 4], using the notatiom\. := [1,u2,..., ™7 if m is even and
Ao = [1, %, ..., pm 1T if mis odd.

COROLLARY 4.4. LetL € L,,(C"*™) be aT-even matrix polynomial of the form
L(s) = Z;ﬁ:o s1A; € C™ ™ that has only finite eigenvalues. et C, letz € C" be such
thatzf2 = 1 and setk := —L(u)z.

i) The structured backward error with respect to the Frohenorm is given by

Tk KR [TKE
+2 if ue C\ {0},
S, L) = 4\ TR 1A {0}

V21KI3 — 1Tk it o= 0.

if) The structured backward error with respect to the spalotrorm is given by

TKE KR [TRP
f
) = L\ A3 g e Moy

n2(p, x, L) if uw=0.

In particular, if || = 1 andm is odd, then we havgA |3 = 2||A.||3. Moreover, for the
Frobenius norm we have (11, z, L) = v/2n2(u, 7, L) and for the spectral norm we obtain

VIES + [Tk

If we introduce the perturbation matrices

wi(aTk) (@)
+ I
ez A

— zaT)kat + kT (I — z2™)]  for eveny,
AAJ' = J—
J

fHZW [—(I — z2 )kt + TkT (I — 22t)] for odd,

2

thenAL(s) = -7, ' AA; is the uniquely define@-even matrix polynomial that satisfies
(L(p) + AL(p))z = 0 and | AL|| r = n$ (i, z, L) for the Frobenius norm.

For the spectral norm, we introduce

wzTk(I — xa™)kkT (I — z2T)

Adj — 2 2 T2

AA; = [AcllZ(IE]? = =T k[?)
AA;

J

for eveny,

for odd ;.

ThenAL(s) = >0, s7AA; is aT-even matrix polynomial such thélt (1) + AL(p))z = 0
and |AL|lz = 93 (i, z, L).
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Proof. The proof follows from Theorem.2 usingw = [1,1,...,1]7, ¢ = 1 and that
Hy—1 5 = ||A]l2, K19 := || Ac|l2. a

Remark 4.5. Corollary 4.3 implies that for|| = 1, and for the spectral norm we have
that

VIE(S + |27k

S
U (,u/ava) = T A
’ [[Al2

while in [2, Theorem 4.3.6] and in| Theorem 3.7] itis shown thgf (11, z, L) = 02 (p, z, L)
whenw = [1,1,...,1]7 andm is odd.
For complexI’-even pencils we obtain the following result.
COROLLARY 4.6. LetL(c,s) = cAp + s4; € L (C"*™) be aT-even matrix pencil.
et (\,u) € C%2\ {(0,0)}, letz € C" be such thattz = 1, and setk := —L(\, p)x,
=[1,1)%.
i) The structured backward error with respect to the Frohemorm is given by

[1%]15 — [A*[T Aga|?
leT Agz|* + 2
’ 1A, 1113 f A0
I )
S J (I — 1) o7 h12 + 2013
A L)= =
et L 178
\/5771072()\7,“7%1‘) if n= 07
\/inwﬂ(/\alhva) if A= 0’
\/57711172()\“11,,177]‘_4) If |>‘| = 13 |:u“‘ = 1

i) The structured backward error with respect to the spalctiorm is given by

T 2
\/xT Agaf? + B Hm ]|;H2on|

— 2 if A0,

\/ R on| + k113

iy (A iy, L) = "Iz
o (A, 1y, L if ©w=0,
7]2(A,/J/,3?,L) if )‘207
T 2 2
Defining the perturbation matrices
AAg = —|sign\) Pz Agza™ + Za; [(I — 72" )ka™ + k" (I — 22™)],

AAy = -z, [-(I — T )k + 7T (I~ x:z:H)] ,

we have for the Frobenius norm thafL(c, s) = cA A + sA A, is the uniquel-even matrix
polynomial that satisfiefL(\, 1) + AL(X, o))z = 0 and || AL ||, r = nlst(/\, w,x, L).
For the spectral norm we introduce the perturbation matsice

sign(A2)xT Aoz (I — 2T kkT (I — z2!l)
(I[ElI? = |27 Aoz |?) ’
AAy = —za, [~ — 72" ka™ + Th" (1 — 22™)]

AAO = AAO -
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thenAL(c,s) = cAAg + sAA; is T-even and satisfiedL(\, 1) + AL(\, p))x = 0 and
IALflw2 =73 o (A, . 2, L).
Proof. The proof follows as in Theored 1, usingm = 1 andw := [1,1]7. d
It follows that for A = 0 in theT-even case we havd Ay = 0 and
AA; = —za, [~ — 72" k2™ +TKT (I — 22)] .

These perturbations are the same for the spectral and theius norm. Furthermore,
Corollary4.6 shows that

V2 (A, p, 2, L) if [ul <Al

S
n (A7/"L7x’ L) S H
" A 1 ll2 m2 (A, g, L) iF ] > [A].

For a non-homogeneous penkils) = Ay + sA; € L;(C"*") we then have

\/5772(“73:?[‘) if ‘/t| < 1a
||[1“U,]TH2772()\,ILL7I,L) if |lu| > 1a

which has been shown in Theorem 3.4 &fffor the case that: # 0.

n%(u, 2, L) < {

Example 4.7. Consider d-even matrix pencil which has coefficiently := E 1] ;

10— |/ V2 _ . .
Ay = [Z 0} etz = [z/\/ﬁ and (A, 1) = (1,0). Then we obtain the following
perturbation matrices.

For the Frobenius norm we have

C[-140.250 04025 oo
Ado = { 04025 1-— 0.751} : A= {0 o] ’
14025 140.25 J0 =
Ao+ Ado = {1 +0.250 1+ 0.251] ! A+ Ady = L—z 0} :

and”'ALmF = n%(A7 My Ty L)'
For the spectral norm we obtain

~[-12+40.100 —0.20+0.10 o o
Ado = {—0.20 +0.100  0.80 — 0.90z ] ’ Adv= [o 0} ’
~10.80+40.102  0.80 + 0.102 |0 =
Ao+ Ak = {0.80 +0.100 0.80 + 0.102} : At Ak = [z 0} ’

andnS (\, u, 7, L) = [|AL|]> = 1.2247; see also Tablé.1
In a similar way we can derive the results férodd matrix polynomials.
THEOREM4.8. LetL € L,,,(C™*™) be aT-odd matrix polynomial of the forifi.1), let
(A, 1) € C?2\ {(0,0)}, letx € C™ be such thatz = 1 and setk := —L(\, u1)z.
i) The structured backward error with respect to the Frolennorm is given by

|ka|2 ”k”z _ ‘ka|2 if ©#0 andm odd, or
+ 212
Ni,l 5 H?

Mo, (A 1y, L) = w2 if 1, A#0, andm even

2|13 — =T E[?

0 ) if A =0andm odd
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TABLE 4.1
Computed structured and unstructured backward errors faargples.7.

(Avu) S WQS()‘>M"I'7L) 77%‘()‘7Maxa1‘) 772(/\7/1’73771‘)
(1,0) T-even 1.2247 1.6583 1.2247
(0,1) T-even 1 1.414 1
(2,1) T-even 1.0247 1.3601 1
(4,3) T-even 0.9644 1.2689 0.9165
(24,1) T-even 1.0247 1.3601 1

(24 3i,1+41) | T-even 1.1255 1.5111 1.1106
1,2) T-even|  0.9487 1.2450 0.8365
(1,1) T-even 0.9354 1.2247 0.8660

i) The structured backward error with respect to the spalctiorm is given by

|27 k|2 N k|13 — [xTk|?> if u# 0 andm odd, or
N2, H? .., if A p # 0,andmeven,
1|2

Hw_1,2

T]ig(A,M,I,L) =
if A =0andm odd

For i #£ 0 and oddm or for A £ 0, u # 0 andm even, introduce the perturbation matrices

J

—za, [~ — T2 )ka® + 7K (I — zz'?)] for eveny.

e {nA.(;ka)(xxH) +24; [(1 — 7 ket + kT (I — 2zt)]  for odd,
ji=

Then, for the Frobenius norm\L(c, s) = 7" ¢™ /s’ AA; is the uniqueT-odd matrix
polynomial such thatLi(\, i) + AL(A, )z = 0 and || ALl r = TIZ,FO\; w,x, L.

For 1 # 0 and oddm or for A # 0, u # 0 and evenn and the spectral norm consider
the perturbation matrices

AA na,x k(I — zx™)kkT (I — z2T)
AB; =" (T = TaT[?)
AA; for evenj.

for odd j,

ThenAL(c,s) = > 7, ¢ /s’ AE; is T-odd, satisfie§L(\, 1) + AL(A, p))z = 0 and
mAL” w,2 = 777%,2()‘7 K 2, L)

Proof. The proof is analogous to that féi-even matrix polynomials. a

We then obtain the following relations between structured anstructured backward
errors of an approximate eigenpair.

COROLLARY 4.9. LetL € L,,(C"*™) be aT-even matrix polynomial of the for(d.1),
let (X, 1) € C?\ {(0,0)}, letz € C" be such that:" 2 = 1, and setk := —L(\, u)z.

1. If A = 0 andm is odd, then for the Frobenius norm we have

TIS,F(/\v T, L) < \@7]10,2()‘7 M, T, L)
2. If A = 0 andm is odd, then for the spectral norm we have

T’TSU,Q(A’ My T,y L) = 7711),2()\7 M, T, L)
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3. Letw := [1,1,...,1]7 and |\ = |u| = 1 for odd m. Then we have for the
Frobenius-norm

n5 #(\ g2, L) = V20, 2(\, p, 2, L),

and for the spectral-norm

VIENE A+ 2T k|2
1S 5 (0o, 1) = VB 1R l'l;:lﬂ i
Proof. The proof follows from the fact that it := [1,1,...,1]7 and|\| = |u| = 1 and
mis odd, then we hav&l? _, , = 2N2?_, 2 and then applyng( 2) the results follow. a
As a corollary we also obtam the results for the case of mnmdrgeneous matrix polynomials
with no infinite eigenvalues o] 4]. By introducing the notation,, := [u, 3, ..., u™ 17T
whenm is even and\, := [u,x?,..., ™7 whenm is odd and by choosing the weight
vectorw := [1,1,..., 1], we have the following result similar to Theorem 4.3.8#jf [
COROLLARY 4.10. LetL € L,,(C"*"™) be aT-odd matrix polynomial of the form
L(s) = Y718’ A; € C™ with det(A,,) # 0, letp € C\ {0} and letz € C" be such
thatzf2 = 1 and setk := —L(u)z.
i) The structured backward error with respect to the Frolennorm is given by

T1.12 2 T1.12
s =™ k| [E[l5 — |~ k|
UF(HJ@L) = +2 .
{ 1413 A3

i) The structured backward error with respect to the spalitrorm is given by

2TE12 K2 = 2T k|2
s O

- 1Al13 IAL13

In particular, for oddm and |u| = 1 we have for the Frobenius norfi\||3 = 2||A,||3 and

s _ S _ VIEIS A+ |2k
0% (p, 7, L) = v/2n2(p, 2, L) and for the spectral norm$ (u, =z, L) = AT .
2
Defining the perturbation matrices
W (" k) (T2 n 1w
1A[13 A3

(I = z2")kat! + zkT (I — x2™)]  foroddyj,
AAj =

J
— HXH? [—(I — T2 T)kat! + kT (I — zal)] for eveny,
2

then AL(s) = Z;.":O s1AA; is the uniquely defined-odd matrix polynomial such that

(L(p) + AL(p))z = 0 and | AL|| r = 0% (i, z, L) in the Frobenius norm.
For the spectral-norm, we introduce the perturbation mzes

AA wzTk(I — xx™)kET (I —z2T)
AE; = ’ 1ALl = [«TE[?)
AA; for eveny.

for odd 5,

ThenAL(s) = >0, s/ AE; is aT-odd matrix polynomial such th&lL(u) + AL(u))z = 0
and |AL|l> = 73 (i, x, L).
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Proof. The proof follows from Theorem.8 using the fact thatd,,-1 o = ||Al|2,
Ky-15:=||Ao]2 whenw =[1,1,...,1]Tandec = 1. O

Remark 4.11. The case that = 0 is not covered by the formulas in Corollayl0for
the casen > 1. But it has been shown in Theorem 4.3.8 gf that for .« = 0, it hold that
n% (w2, L) = v2n9(p, 2, L) andnS (u, x, L) = na2(u, 2, L), respectively, for the Frobenius
norm and the spectral norm. Fgrl = 1 and the spectral norm we have

[13 + [« &[>

S
Ui (:vava) = ’
° A2

while again it has been shown in Theorem 4.3.8%thatnS (11, z, L) = n2(p, z, L).
For the pencil case we have the following Corollary.
COROLLARY 4.12. LetL(c,s) = cAg + sA; € Ly (C"*™) be aT-odd matrix pencil,
let (A, ) € C?\ {(0,0)}, letz € C" be such that”z = 1 and setk := —L(\, u)z.
i) The structured backward error with respect to the Frohesmorm is given by

kI3 — 22 Ay
[ Azl T AT _
2 I /’(‘ 9
(B — 1) 12"k + 23
s . l
el =1 = IENHE
\/5772()\,/%557 L) if A= Oa
\/5772()\,%%[‘) |f/.l/:O7
VZns(A, @, L) if A = 1,]g] = 1.

i) The structured backward error with respect to the spalctrorm is given by

T Aya? + KI5 = |pl?|2" Ay z]?
[IRSYZIRNE: 120
w o7 Ava? + [|K]13 ’
SO\ gz, L) = IRYZEF:
n2(A, i, z, L) if A=0,pu#0,
n2(A, p, z, L) if A£0,u=0,
TA 2 k 2
|2 wcl2 + %13 I\ = 1l = 1.

iii) Introduce the perturbation matrices
AAg = —za, [-(I — 72"k +TK" (I — 22)]
AA; = —|sign(p)|*T2” Ayez™ + za; (1 — z2" )k + Tk" (1 — 22™)] .

Then for the Frobenius norm we obtain the uniqiedd pencilAL(c, s) = cAAp + sAA4;
such thatL(\, ) + AL(A, 1))z = 0 and [ AL|| » = n3(\, p, 2, L).
For the spectral norm, defining

sign(p?)aT Ay (I — 2T kk™ (I — x2™)
(IIK)1? = |27 Ay ]?)

then we obtain &-odd pencilAL(c, s) = ¢cAEy + sAE; with (L(A, ) + AL\, @)z =0
and[|AL|lz = nF(\, p, 2, L).

AFE, .= AA; — andAFE, := AAp,
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TABLE 4.2
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Computed structured and unstructured backward errors faarEple4.13

()‘7/’6) S 772S()‘7Ma$71‘> 77%‘(/\7:”73371‘) 772()\7%35714)
(0,1) T-odd 1 1.2247 1
(1,0) T-odd 2.2361 3.1623 2.2361
(2,1) T-odd 2.2361 3.0822 2.1448
(4,3) T-odd 2.0881 2.8671 2.0100
(24,1) T-odd 2.2361 3.0822 2.1448
(2+3i,1+i) | T-odd 2.3310 3.2197 2.2361
(1,2) T-odd 1.5166 2.0248 1.4832
1,1) T-odd |  1.9365 2.6458 1.8708

Proof. The proof is analogous to that of Theordm usingm = 1 andw := [1,1]7. D

By the above results it is clear thatif= 0, then for theT-odd case we havA4; = 0
andAAy = —za, [—(I — 72 )ka™ + Tk (I — zx'")]. These perturbations are the same
for the spectral and Frobenius norm.

Furthermore, Corollaryt.12shows that

V2o (A, p, z, L) when|y| > |A],
ng(\ g2, L) <
1A 1] l2m2(A 2, L) when|p| < |A.

Now consider a pencll(z) = Ay + zA; € L1(C™"*™). Then for givery, € C andz € C”
such thatt” z = 1, we have

ﬂUQ(MaIaL) When|.u‘ > 1,
e (p,x, L) <
1L, = " lam2 (N, g, 2, L) when|u| <1,

which has been shown i3]

As another corollary we obtain the results fBrodd matrix pencilk(z) := Ay + z4;
presented inf].

Let us illustrate these perturbation results with a few gxams

Example 4.13.Consider &'-odd matrix pencil with coefficientd, := 9 2 . 720+ 1
142 0 = /2 B
and4, := [ 0 0] .Letx = { Z/\/ﬂ and(A, u) = (0,1).
i) For the Frobenius norm we obtain the minimal perturbatoefficients
100 _ [-0.75—-0.75:  0.25+ 0.25¢
Ado = {0 0] ’ A= [ 0.2540.25:  0.25 +0.25z] ’
o 2+ ~ [0.25+0.250  0.25 4 0.25
Ao+ Ado = [ 0 } y At Ad = [0.25 +025 0.25+ 0.251} !

and[|AL[lr = n3(A, 4, z, L).
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ii) For the spectral norm we obtain

oo _[-05-050 054050
Ado = {o 0] ’ Adv= [0.5—1—0.51 o.5+0.5z] ’

0 —242 0.5+ 0.52 0.5+0.51

Ag+ AAy = {2—2 0 0.540.5: 0.5+ 0.5

:|7 A1+AA1|:

and||AL||r = n$(\, u, 7, L) = 1; see also Tablé.2

5. Conclusion. The structured backward errors for an approximate eigergral the
construction of minimal structured matrix polynomials b&ween introduced inl[ 2, 3, 4]
such that an approximate eigenpairlobbecomes exact fak. + AL in the Frobenius and
the spectral norm. However, this theory has been based arotitbtion that the polynomial
eigenvalue problem has no eigenvaluexat Also for 7-odd matrix pencil case there is no
information on the backward error for thesigenvalue. In this paper we have extended these
results in the homogeneous setup of matrix polynomials kisie more convenient way to do
the general perturbation analysis for matrix polynomialthat it equally treats all eigenval-
ues of a regular matrix polynomial. We have presented asyte general procedure for the
construction of appropriately structured minimal normypgmialsAL € L,,(C**") such
that approximate eigenvector and eigenvalue become erastaf the polynomial. + AL.
The resulting minimal perturbation is unique in the casehef Frobenius norm and there
are infinitely many solutions for the case of the spectraimadfurthermore, we derived the
known results for matrix pencils and polynomials @f B, 4] as corollaries and we have
illustrated the results with several examples.
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