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COMPUTATION OF THE TORSIONAL MODES IN AN AXISYMMETRIC
ELASTIC LAYER *

MOHAMED KARA f, BOUBAKEUR MEROUANI', AND LAHCENE CHORFF

Abstract. This paper is devoted to the numerical study of an eigenvaligigm modeling the torsional modes
in an infinite and axisymmetric elastic layer. In the cylindticoordinategr, z), without, the problem is posed
in a semi-infinite strip? = R x 10, L[ . For the numerical approximation, we formulate the problemhim t
bounded domaif2r =10, R[ x |0, L[ . To this end, we use the localized finite element method, whitts |
two representations of the solution: the analytic solutiothe exterior domaif’, = R, +o0o[ x ]0, L[ and the
numerical solution in the interior domaidg.
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1. Introduction. ForL > 0and = R x 0, L[, we consider the following eigenvalue
problem:

Findu € D'(Q),u # 0 andw € R such that

2 .
(Po) Bou = w?pu forag, z) € Q,
u(r,0) =0, (M6z> (r,L) =0, Vr >0,

where the differential operatds, is defined by

1[0 ou ou 0 ou U
(1.2) Bou = —; {87 (MTGT — uu) + ME + 7 (,uraz> — Mr} )

We use the definition®* = |0, +oo[ andR, = [0,+oco[ . This problem models the
vibrations of torsional modesy(r,0,z,t) = u(r,z)e™! in an infinite and axisymmetric
elastic layer occupying the domaih= {(z,y,2) € R*: 0 <z < L} orQ = Q x [0, 27|

in the cylindrical coordinateé&, 0, z) [1], wherew is the frequency. We suppose the layer is
stratified and perturbed with a local perturbation, whichangethat it is characterized by a
densityp(r, z) and a shearing coefficiep{r, z) which satisfy the assumptions

(A1) Wy p € L¥(02),0 < p— =inf p, and0 < p_ = inf p,
(A2) dR > 0 such that(u(r, z), p(r, 2)) = (Heo(2), peo(2)) fOrr > R.

The boundary conditions mean the layer is fixed on the faee 0 and is free on the face
z = L.

In this article, we propose a numerical method to computeitpenvalues and the eigen-
modes of the problent(). As the domaiif2 is unbounded, the simplest method is to impose
the conditionu = 0 on the fictitious boundary = R, then discretize the problem @b, .
This technique is not accurate, especially when the modadfylzonfined. If we are con-
strained to choos®, rather large, the dimension of the related algebraic syateneases
rapidly. To overcome this difficulty, we propose an exacthodtwhich consists of setting an
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equivalent problem in a bounded domain via the transmissiodition on a fictitious bound-
aryr = R (R being the size of the perturbation). The idea is to use thieldat-Neumann
operator to link the analytic solution for the exterior dom&’, = |R, +oo[ x ]0, L] to the
numerical solution for the interior domaidy = ]0, R[ x ]0, L[ . The transmission condition
is expressed in terms of series which will be truncated atrderadV for the numerical ap-
proximation. This method is well known as the localized &m@tement method, and has been
used by several authors. We refer to the worl® [L3, 16], respectively, for the hydrody-
namic problem, the resolution of the Helmholtz equation #re Schddinger equation. We
mention also the reporf] for the computation of the guided modes in elasticity aBdb[ 11]
for the computation of the cutoff-frequencies in electrgmetism. Note that the differential
operatorB, in our model is singular at the origin, which makes the arialg®ore difficult.

The paper is organized as follows. In Sectihmve give a variational formulatior( ) of
the spectral problemP(). In Section3, we formulate an equivalent problefi() set in a
bounded domaifi2r by using the Dirichlet-Neumann operator. In Sectignwe truncate
the series and discretiz€) by the finite element method, then we perform a convergence
analysis as the rank of truncatidh — +oo and the discretization parameter— 0. Finally,
we show in Sectio® some numerical results which validate the method.

2. Variational formulation. In the paperZ?], we introduce P;) as a spectral problem:
Bu = w?u, whereB is a self-adjoint operator characterized by a variatioriplet (H, V, ).
We recall the essential results given there. We introdubedr¢al Hilbert spacel with
weights)
loc

H(Q)={ue L. () :rue L*(Q)}

with the inner productu, v) gy = [, puvr dr dz and the normj|u| o) = (u, v)}f(zﬂ),

and the weighted Sobolev space

V(Q) = {u e H):

NG € L*(Q), Vr|Vu| € L*(Q), u(r,0) = 0}

equipped with the norm

[ul*
||U||\2/(Q) = // <|VU2 + T + [ul? ) rdrdz.
Q

We can write problemKj) in the following variational form:

P1) { Findu € V(Q),u # 0, andw > 0 such that
1

b(u,v) = w?(u, V) E(Q), Vv € V(Q),

where the bilinear form is defined by

b(u,v) = //,u (rVu-Vv—i— 1%1) —u% —v?i) drdz, Yu,v € V().
)

This form is obviously continuous and symmetric. Using Rai@’s inequality

oul? L? 9
(2.1) Yu € V(§), 3 rdrdz > -5 |u|“rdrdz,
z
Q Q
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we can establish thdi(-,-) is V-coercive. Hence, from the representation theor&m |
there exists an unbounded self-adjoint operdtoguch thath(u,v) = (Bu,v)m ) for all
u € D(B) andv € V. The domain ofB is given by

D(B) = {u € V(Q): Bou € L*(Q), u a Y, L) = } andBu = Byu.
The spectral formulation of the problefi() is then:

(P) Findu € D(B),u # 0, andw > 0 such that
B(u) = w?u.

REMARK 2.1. We can see from € D(B) thatdiv(uVu) € H(Q)), hence the trace
(ug—g)(r, L) exists in the generalized sense (in the spHp_O%/Q(Ri)).
The spectrum of3 is described in the following proposition.
PROPOSITION2.2. The spectrum 0B iS 0 = 0egs U 04is, Where
(i) The essential spectrum &f is

Oess = [7a +OO[ 5
where

L
: Jo' 1oo(2) |9/ ()| d2
9eW(O0.L).970 [¥ poc (2) g(2) [ dz

with W (0,L) = {g € H'(0,L), g(0) =0}.
(i) The discrete spectrum satisfies

. _ L?
oais C [C,y],  with the lower bound” = (M) - — andp, = sup p.

p+/) 2

Proof. The assertiori) is proven in ]. The inclusion(i) follows from (2.1); indeed,
we have foru € V(Q)
g) drdz.

b(u, u) Zu,// (7" @
Q

SinceD(Q) is dense il (), it follows that

L
// 2u@ drdz = / (Ju(oo, 2)|* — |u(0, 2)|*)dz = 0,
or 0
Q

hence

b, ) > p1 //’

rdrdz > ( ) //|u|2rpdrdz. d
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3. Formulation in a bounded domain. Before exhibiting the method, we introduce
some notation. We let

Qr=]0,R[x]0,L[ and Q% =]R,+oo[x]0,L][.

ForD = Qp or Q}, we denote by (D) (resp.V (D)) the space of the functions which are
the restrictions td of the elements of (2) (resp.V (€2)) equipped with the induced norm.
For simplicity, we also make the following assumption:

1/2
(A3) The velocityc, (2) := ('%OE'Z;) , 0 <z < L, isaconstant.
Poo(2

We set

u(r, 2) = ui(r,z) for(r,z) € Qg,
’ ug(r,z)  for(r,z) € Q.

If w € D(B) is solution of P), then the paifuy, us) satisfies the transmission problem

B0u1 = W2U1 for (T’, Z) S QR,
(3.1) Bous = w?usy for (r,z) € Qf,
' u (R, z) = ua(R, z) for0 <z < L,

ut(ur)(R, 2) = poot(ug)(R,z) for0< z < L,

ou
heret(u) = r— — u.
wheret(u) ron T U

3.1. Exterior problem. We now exhibit the analytical form of the solution in the exte
rior domainQY’. If v € V(Q) then the trace:(R, =) belongs to the space

J%UQLD{@eHHme,jZeHuaLD}

Forw? andyp(z) € HO%(]O, L[) given, we consider the following boundary value problem

(Q(OJ)) {BoU2 = w2u2 in Q/R,

uz(R,z) = ¢(z) forze€lo,L.
We also introduce the Sturm-Liouville problem

Findg € H*(]0,L[),g # 0, and > 0 such that
(3.2) 4 (1oo(2)82) = Brc(2)g, ¥z €10, L[
9(0) = (e 2) (1) = 0.

Sinceps(z) > p— > 0, the problem$.2) is regular in the sense that it admits a sequence of
eigenvaluesf,, > 0, 8,, — +o0) and an orthogonal system of eigenfunctiggs(z)) which
is complete inZ?(0, L).

REMARK 3.1. We notice that under the hypothesis, the lower bound of the essential
spectrum isy = fic3,. Moreover, ifc? := info(%) < ¢, we prove by theMin-Max
principle that the discrete spectrum is not empty; sge [

PROPOSITION3.2. For any realw? € [B1c%, fic% |,



ETNA
Kent State University
http://etna.math.kent.edu

COMPUTATION OF TORSIONAL MODES 307

1. (Q(w)) has a unique solutiony(r, z) = R(w)e(z). Moreover, the operatoR(w)

is linear and continuous frorﬁ[oé (10, L]) into V/(Q%).
2. us(r, 2) has the following representation for> R:

Ki(Ap(w)r)

(3.3) ug(r, z) = Cpn—r————0n(2),
209 = 2 g
2\ 1/2 I : .
where), (w) = (ﬁn - (‘jT) , Cp = Z/ too(2)p(2)gn(2) dz, and K is the modified
e 0

Bessel function of the first order. The series converg@s(in’, ).

Proof. The first part results from the variational formulation aoeércivity of the bilinear
form associated with the probler)(w)). More precisely, there exists, € V' (2;) such that
Volr=r = . Settingi = uy — vy, f = (Bo — w?)v,, andX = {v € V(Q}),v(R,z) = 0},
then Q(w)) is equivalent to
{ Findu € X such that

(34) boo (w, @, v) = (f,v), Yv € X,

where

boo (w, U, v) = // oo (rVﬂ -V + u:;) dr dz—w? (i, v) and(@,v) = // Poctv T dr dz.
O g

The brackets-, -) designate the duality betweeéhand X".
If w? < B1c2,, thenby, (w, @, v) is X-coercive and bounded ardv) = (f,v) is linear
and continuous. By the Lax-Milgram theorem, there existaigue solutioni such that
lallx < Cullfllx = Collvellx < Csllell 11 g 1)
which means that
luzllv @) < lallx +lvsllviar) < Cllell ;g q 1)
For the second part, we use the method of separation of \esiabo this end, we introduce
the following space:

Wr={ue L*(]R,4+o0[) : Vru € Hl(]R,—i—oo[)}

equipped with the normiu|ly,, = [[vVrull g (g 400))-

The solutionu, admits the Fourier expansien(r, z) = >, -, u,(7)gn(2), which con-
verges inV (Q), with the Fourier coefficients,, € Wx and withg, (z) the sequence of
eigenfunctions of the Sturm-Liouville problerf.p); for details, seeq]. Inserting this form
in the equation of @ (w)), we see that, for alt > 1, u,, is a solution of the modified Bessel
equation

w2

1 1 .
un(r) + ;u,’n(r) + (—702 + /\fb(w)> u,(r) = 0forr > R with A2 (w) = 3, — e
As u,, € Wg, we havey/ru,, € L?>(]R,+oo[) andu, (r) = d, K1 (A, (w)r),¥n > 1 (ac-
cording to the Bessel asymptotic formulas). The consfgris determined by the boundary
condition. Finally, we get

Ki(Ap(w)r)

us(r, z) = Z cnmgn(z), r> R,
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wherec,, is the Fourier coefficient ofp. The previous series convergesWi{{z) if the
numerical serie§_ n?||u, |3, converge. We can see that,[|3,, = A2 [|v/run|7 .
and\,, = O(n), henced_ n?||u, ||, < C1 > nep < Callll - a

Note that the hypothesis\@) is essential to the separation of variables in the equation
Bou = w?u in Q.

(1R, +o0[)

3.2. The Dirichlet-Neumann operator. We first introduce some tools. Fere R, we
have the (equivalent) definition

+o00 +oo
H;(]0,L[) = {U(Z) =Y upgp(2) : 0l =D lupl*p™ < +OO} :
p=1 p=1

The dual product betweek and Hy * = (H)' is (v,u)s = LY ] v,liy.

Recall thatt(u) = r? —u, foru € D(B). The Dirichlet-Neumann operator is defined
T
as follows:

T,:HZ()0,L[) — Hy?(]0,L]) suchthat To(¢) = t(R(w)®)|r_r.

whereR(w) is the solution of the problent)(w)) associated with the data(z).
PROPOSITION3.3. We have:
1. T,, is linear and continuous and the bilinear forfn- T, (uo ), vo) is Symmetric and
positive.
2. T, admits the expansion

(35)  Tu(uo)(z) =Y (uo)n

n>1

An (W) REG (An (W) R) )
— 1) gn(z)forr > R,
(o o)
where the series converges in the spa’vféé (10, L[).
Proof. The first part follows from the identity

(=T (ug),vo) = // thooVu - Vordrdz — w?(u,v) + Z(uo)p(vo)p,
Q;? p>1
whereu is the solution of the problent)(w)) associated with the daia. The second part
results from the application of the differential operatto the series3.3). a
REMARK 3.4. If the medium is homogeneous, we have:

(3.6) gn(z) = sin ((n + 0.5)%) , A (w) = —ZJ; + (n +0.5)? (—)2, n>1.

oo

3.3. Problem(Pr). The transmission condition8.(l) allow us to formulate the prob-
lem

F|ndu1 € V(QR),U 7é 0, andw2 c I = [6162—761620[ SUCh that
(Pr) Boup = w?uq in Qp,
pt(ur)|r=r = pooTw(u1|r=r).

The problemsi¢r) and ) are equivalent in the the following sense:
PROPOSITION3.5. We have:
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1. If the pair (w?, u) is a solution of the problertP) then (w?, u|q,, ) is a solution of
the problem(Pg).
2. Conversely, if the paifw?,u1) is a solution of the probleniPr) thenu; can be
extended uniquely to a solutigw?, u) of the problen(P).
REMARK 3.6. The eigenvalue probleni®) is nonlinear sincél’(w) is a nonlinear
function.

3.4. Study of the nonlinearity. Fora € I = [8:¢ , 81¢2 [ fixed, we consider the linear
problem:

(Pr(a))

Bu; = w?(a)uy in Qp,

{ Findu; € V(Qr),u1 # 0, andw? () € I such that
pt(ur)lr=r = prooTa(u1lr=r)-

Suppose that — w?(«) is a curve having a fixed pointy € I (w?(ag) = ap); then(uy, ag)
is a solution of Pr). We shall examine the question of existence of such cui@this end,
we use the variational form oPR («)):

(Pr(ay | Findu € V(Qr).u# 0, andw?® € I such that
r( Clo, u,v) := A(u,v) + D(o,u,v) = w?(u,v) gy, Vv e V(Qr),

uv v ou
Au,v) = //u (TVu~Vv—|— U, _U(?r) drdz

Qr

where

and

We prove in P] that C(«, u, v) is coercive and characterizes a family of operatd(a ).
ProPOSITION3.7 ([9]). C(«) is a positive self-adjoint operator with a compact resol-
vent. The eigenvalues form an increasing sequence hawengrtiperties:
1 w2 () <wl g (0), wia) > B,
2. w2 (o) = miny,, er, Mmax,ey,, C(HOZWQ’")
spaces/,,, C V(Qg) with dimensionn.
3. the functionsy — w? (a), m € N*, are strictly decreasing and Lipschitz continu-
ous on the interval.
Proof. These properties are a consequence of the following aatgrogsults:
1. Clou,u) > 2 B (u, u) mian),
2. foralle > 0, there exist positive constant§ (¢) andC5(e) such that

, WhereF,,, denotes the family of the sub-

Cla,u,u) + Cr(e)(u, u) mag > Cale)l[ullF o

Then we use the Min-Max principle ). O
As a consequence of Propositi8ry, we have
COROLLARY 3.8.For « € I, the following two properties are equivalent:
1. a = w?is an eigenvalue aB.
2. 3m € N such that?, (o) = a.
We conclude with the following regularity result.
THEOREM 3.9 (Regularity). Suppose that, € C%1(Qg) and letu € V(Qz) be an

eigenfunction of Pr («)). Then
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1. vru € H*(Qg) and||v/rullz < Cllull oy,
2.Vr €0, R/2[, [u(r)| < Crllullm@p)-
Proof. The proof is rather technical. We reproduce here the majpsstf P].
1) Letu € V(Q2r) be a solution of Pr (). Thenv = /ru € H'(Qp) satisfies the
problem

—Av—i—%r% = f(v) in Qg,
3.7) v(r,0) = 32(r, L) =0, 0<r<R,
(0, z)fO R2(R,z) = 2412 0 (v],_p), 0<z<L.

where f(v) = [pw + 8 (e By 4 g‘z‘%} p~'. We can see thaf(v) € L?(Qg) and

£ ()]0 < CIIUIIva)-
2) We can decompose= v; + vq such that the paifv;, v2) solves the systems

7AU1+%%: ( ) inQR,
(3.8) vy (r,0) = @( r,L)=0, 0<r<R,
v1(0,2) = Z1(R,2) =0, 0<z<L.
and
—Avy + 3% =0 in Qpg,
(3.9) va(r,0) = 8”2 2(r,L) =0, 0<r<R,

va(0,2) = o, R%2(R,z) = 212 4 T, (v],_p), 0<z<L. (T)
3) Using separation of variables we can expresand f(r, z) = f(v(r, z)) as the series
2
2) = Z V1 sin(y/ Bn2), Z fn(r)sin(y/Bnz) (ﬁn = (2n 4+ 1)? 4L2>
n>0 n>0
wherewy,, is the solution of the boundary value problem

{_Ui/l/n + (ﬁn + %)Uln = fn(r)7 r E]O, R[ ,

(310 o10(0) = 4, (R) = 0.

The solution of 8.10 is given by

R

Vi (r) = G(r,r") fn(rdr’

0

whereG(r, ') is the Green function of3 10, which involves the modified Bessel functions
I (v/Bnr) and Ky (v/ B, r). Using asymptotic formulas, we can prove the inequalities

[v10(r)| < C7|| fullL2go,r) @Nd [lvinllz2(j0,81) < Cllfallz2(jo,r])s
and as a consequence we obtain
[v1(r)| < Cr[|fllLz(er) and [|villaz@g) < CllfllLz@n)-

4) In the same manner, we obtain the expression

VBar)
\/72 ¢2n \/ﬁinR) sin(y/n2)

n>0
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With v, = (15, sin(v/Bnz))2(0,2) @ndy;(z) = v;(R, z) for j = 1,2. Using the boundary
condition(T’), which relates; tovs, we establish that, € H*/2 and|[v||3/2 < C|[¢1]|3/2-
Then by a direct calculation we prove thav, € L? and||Avs||o < C|2][3,2. Finally, an
asymptotic study whem — 0 shows|ua(r)| < Cr[1h2||3/2, which concludes the proof.
0

4. Discretization.

4.1. Semi-discretized problem.For the numerical approximation of the problefx( «)),
we first truncate serie8(5) in the expression df,. This leads us to set the followirggmi-
discretizedoroblem:

(PX(a)) Findu € V(Qgr),u # 0, andw? € I such that
@ CN(a,u,v) == A(u,v) + DN (a, u,v) = wQ(u,v)H(QR), Yo € V(Qgr),

where

4.2) (v, u,v) i ( RK,((Q/})}(B))R) - 1) (w0)n (v0)n-

This problem possesses a sequence of eigenvalfiés) = w’¥(a)? and eigenfunctions

uN (o), m = 1,2,..., having all the properties of the exact problem. Moreoves gequence

pl¥ (o) converges tas,, (a)? asN — +oo. More precisely, we have the following result.
THEOREM 4.1 ([9]). Suppose: € C%1(Qgr) and (u,, (a),w?,(a)) is a solution of the

problem(Pg («)). Then we have .

@2) 05w (@) (@) < o5
and

C
(4.3) (@) = um (@) < -

Proof. The proof is similar to that of3, 4]. 0

4.2. Discretization by finite elements.The goal here is to approximat&X («)) by
finite elements. For this we consider a subspice” V' (§2r) of dimensionM = M (h),
whereh is a discretization parameter, and we consider the follgwliscretized problem:

(PN () Findu € Vj,,u # 0, andw? € I such that
" CN(a’u7vh) ZWZ(U’UIL)H(QR)v Vo € Vp.
We denote the eigenelements B{(" (a)) by (12, uX ), m =1, M.

In practice, we defind/, as foIIows LetT, = {K; } ,—; be a regular triangulation

of the rectangler with vertlces{al} .—1,» and definel'y = {(0,2), 0 < z < H} and
'y ={(r,0), 0 <r < R}. Then we define the spaces

M= {peC’Qr): ¢p=00nToUT;} and
Vh:{QDGMﬂV(QR)(pK7 EPl(Kl)for].SZSM}

We introduce the interpolation operator

I}, : M — V},, such thatIl,¢)(a;) = p(a;).
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As in the classical theory7[ 14], we can show the following interpolation property: for
u € V(Qr),

4.4 li inf — = 0.
(4.4) hinowe%/r;ll(QR)Hu Urllv(@n)

Let O be a regular open d&% = {(r,z) : r > 0}. Forl € Nanda € R, we recall the
following weighted Sobolev spaces:

Wh2(0) = {u € D'(O) : r*DPu e L*(O) for0 < || < I}
and
XL2(0) = {ue D'(0): r*"HBI DAYy e L2(0) for0 < |8] < 1}

equipped with the natural nornfs ||; .. These spaces are studied 112][

We now recall a useful interpolation result.

THEOREM 4.2 ([12]). If the triangulationT}, is regular, then there exists a constant
C > 0 such that for every, € W73(Qr) N X, 75 (), we have

(4.5) lu = Tpully 3 < Chllully s

and such that for al € W72 (k) N X, 73 (2nr), we have

(4.6) |- <l -

THEOREM4.3. Suppose that € C%!(Qz) and the triangulation is regular. Suppose
is a solution of(P} (). Then there exists a constafit> 0 such that

(4.7) [u = pully @) < Cllullyqp -

Proof. As p is smooth, it follows from Theoren3.9 and Hardy’s inequality that
u € W5(Qr) N X,75(Qr). To conclude we use Theored?2 by observing the follow-
ing imbedding:

(4.8) W232(Qp) N X2

1/2 12(2r) C X22(Qr) € HY(Qg),

1/2

. . . i . . 2 _ 2 1/
which is continuous; moreover, the noffaly, q, ., is equivalent tc<||u||1’% -+ 1/2uHO) .
O

We introduce the projectiol;, defined by the variational equation

(4.9) CN(a, yu — u, up) + ﬁo(ﬁhu — U, un) () = 0, Yon € Vu(QR).

The coercivity leads to the following interpolation result
THEOREM 4.4. Suppose that € C%1(Qp) and letu be an eigenfunction ofP} («)).
Then there exists a constafit> 0 such that

4.10 H I H <Ch .
( ) u hU van ||u||1,QR
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THEOREM4.5 (Convergence Ve have

(4.11) lim g (@) = piy 4 ()] = 0;
h—0 ’

furthermore, if the eigenvalue’) («) is simple, then

(4.12) 0 < ph(a) = pp () < Ch* and ||upy () — “z,h(a)nv < Ch.
The previous theorem is analogous to Theorem 6.5.14h [

THEOREM4.6 (Global Error) Suppose that € C%!(Qg). For each solutior s, (), u,, ()

of (Pr(«)) we have, for alky € I,
1
1.0 < (@) — gl p(a) < © (h? n N)
1
N
2. Hum(a) - um_’h(a)HV(QR) <C (h + N2)

4.3. Implementation of the method. Let hy = R/M, andhy = L/M, tend to zero
whereM,., M, € N*, and letM = M, x M,. We search for a solution to the problem
(PR " () in the formuy, (o) = %,Y;;, where{y;} is the basis of/},, which leads to the
linear system

(4.13)

FindY € RM,Y £ 0, and\ € I such that
(A4 DN(a))Y = ABY,

with the entriesA = (a;;), DV (a) = (d;;), andB = (b;;) given by

PP 0, 0p;
a; ; = Alpi, ¢;) ://u <7"V50¢~V<pj+ SDT% fgoi% —©; (’;j“) drdz,

Ky

n=N ’ a
dij = DN (o, i, 05) = Z (/\n(igif:((;‘)’}é))m - 1) (@i0)n(®j0)n

n=1

bi; = // TP drdz,
Kij

K; j = supp(p;) Nsupp(p;).-

(pi0)n are the Fourier coefficients of ordenf p;o(z) = ¢i(z, R) associated with the system
{gn(2)} (eigenfunctions ofZ.2)) given by:

(%‘o)n =

Sl

L
/ oo (2)01 (2, R) g (2)d2.
0

REMARK 4.7. If (u(z), p(z)) are not constant we approximatg(z) by discretizing the
Sturm-Liouville problem 8.2) by the finite element method in the interyal | .

For eachn? in [c%ﬁl, B [ , we solve the generalized eigenvalue problém®. For
that we perform the Cholesky factorizatiéh= L? L and make the change of the coordinates
Z = LTY, which transforms the system into

(4.14) LT (A+DY() L' Z = \Z.
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The latter system has a sequence of eigenvaljgsr), 1 < m < M. Form fixed, we put
g(a) = AN («). The functiong is decreasing (see PropositiBi¥), so g possesses a fixed
point if and only if

(4.15) 9(c2 p1) < e3P
If (4.15 holds, we approximate this point by the secant iteration

Cgoﬁlg(as) B Oé.sg(CZoﬂﬁ
glas) + 2 1 — g(2.P1) — ag

We stop the process whém, 1 — a| < ¢, wheree is the desired accuracy.

fors=0,1,....

2
g =c_ B, Qg1 =

5. Numerical results. We present two simple numerical experiment to verify andil
trate the result in this paper.

5.1. An example with piecewise constant profileln the first example, the domain is
Qr =10, R] x ]0, L[ whereR = L = 1. Define the piecewise constant coefficients:

p1 = 1.0 x 10® kg/m?, p2 = 1.0 x 10° kg/m?
pr = 0.5 x 10 N/m?, po = 1.0 x 10" N/m?
. . . . . 2p+1
In this case there exists a hierarchy of eigenmagés, z) = u,(r) sin(A\,2), A\, = 57
indexed with an integes, such that
Do) g,
Jl(()épR)
up(r) = A Ky (3
1Br) i g,
Kl (BpR)
where
oﬁzwjfv 52:A2J":withc2:ﬂ 2 =H
S S Yo P e

and{J,(z), K,(z)} are Bessel and modified Bessel functions of ondeihe eigenvalues
w? are the roots of the characteristic equation, in the intefya- [¢f A2, c3A2 ],

2y . JO(apR) H2 K()(BPR) (:u? - ) _
Gp(w?) == apRijl(apR) + o 6pR7K1(ﬂpR) +2 o 1) =0.

G,(w?) possessesroots in the interval,,.
We have computed numerically the first frequencies and cozdpaith exact ones. Re-
sults are shown in the Tabtel

TABLE 5.1
Convergence of the method for the first eigenvalues.

P | 1 | 2 | 3

w 40877 | 60899  71439| 81840 90600 102303

wh 40916 | 60794  71992| 81865 89956 100915
le=enl | 00010 | 0.0017 0.0077| 0.0003 0.0071 0.0135

The approximatiow; is computed with the dat& = 1, M,. = 24, M, = 30. We have
used the commanspecof the softwareScilab 5based on the routine DGEEV of LAPACK.
We observe that the result is insensible of higher ordérs 2.
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o © + mode2
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FIGURE 5.1. First modes forz = L.

. . . . . . .
3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
x 10

FIGURE 5.2. The first dispersion curva — w?, (a).

5.2. An example with linear profile. As a second example, we consider a problem with
coefficientu(r, z) which is affine inQ2; =10, 1[ x ]0,1[:

a(r+ z) + fmin foro <r <1,

r,z)=
uir,2) oo forr > 1,

with @ = 0.2 x 10", fiin = 0.5 x 10" andpee = 1.0 x 10''. With N = 10 and
M, = M, = 23, we have computed the first frequencies

wip = 45230, wy ), = 57054, ws), = 72183,

In Table5.2, we show the evolution ab{Y, with N, h fixed. We notice that the contri-
bution of the ranksV = 1, 2 is essential.

TABLE 5.2
Evolution ofw ¥ with N

N | 1 2 3 4 5

w1 | 45227233 45230.235 45230.237 45230.238 45230.242
wy | 58321.369 58321.424 58321.443 58321.459 58321.461
wz | 72296.395 72302.084 72302.100 72302.105 72302.107

The corresponding eigenvectors are plotted:fer L, in Figure5.1 Figure5.2 shows
that the dispersion curve — w; () is decreasing.
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