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STIELTJES INTERLACING OF ZEROS OF JACOBI POLYNOMIALS FROM
DIFFERENT SEQUENCES*

K. DRIVERT, A. JOOSTE, AND K. JORDAAN?

Abstract. A theorem of Stieltjes proves that, given any sequegg} 2, of orthogonal polynomials, there is
at least one zero qf,, between any two consecutive zerogfif k& < n, a property called Stieltjes interlacing. We
show that Stieltjes interlacing extends, under certairditmms, to the zeros of Jacobi polynomials from different
sequences. In particular, we prove that the zerol@jlbf1 interlace with the zeros dPSij’B and with the zeros of
PBFE for k € {1,2,3,4} as well as with the zeros d#* 7T for t, k € {1,2}; and, in each case, we identify
a point that completes the interlacing process. More gelgeva prove that the zeros of ttigh derivative ofPf}’B,
together with the zeros of an associated polynomial of defgragerlace with the zeros dPé*_ﬁ, k,n€ N,k <n.
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1. Introduction. It is well known that if{p,,}°2, is a sequence of orthogonal polyno-
mials, the zeros aof,, are real and simple, andif; ,, < z2,, < --- < x,, are the zeros of
prWhilezy 1 < 29,1 <--- < xp_1,-1 are the zeros gf,,_1, then

Tin <Tin-1<Toan < Tonpn-1 < " < Tpn-1n-1<Tpn,

a property called the interlacing of zeros. Another clasgiesult on interlacing of zeros of
orthogonal polynomials is due to Stieltjes who proved that i< n, then between any two
successive zeros ¢f,, there is at least one zero pf,, a property called Stieltjes interlac-
ing [13, Theorem 3.3.3]. Clearly, ifn < n — 1, there are not enough zerosyof to interlace
fully with the n zeros ofp,. Nevertheless, using the same argument as Stieltjes, ane ca
show that form < n — 1, providedp,, andp,, have no common zeros, there existopen
intervals, with endpoints at successive zerog,gfeach of which contains exactly one zero
of p,,. Moreover, in B], Beardon shows that for each < n — 1, if p,,, andp,, are co-prime,
there exists a real polynomiél, _,,, | of degreen — m — 1 whose real simple zeros provide
a set of points that completes the interlacing picture. Apdrtant feature of the polynomials
Sn—m—1 is that they are completely determined by the coefficienthénthree term recur-
rence relation satisfied by the orthogonal sequeipgg > ,. The polynomialsS,,_,,—1 are
the dual polynomials introduced by de Boor and Saff4hdr, equivalently, the associated
polynomials analyzed by Vinet and Zhedanov 15]f

The interlacing property of zeros of polynomials is impattan numerical quadrature
applications, and in12], Segura proved that interlacing of zeros holds, underagers-
sumptions, within sequences of classical orthogonal fotyials even when the parameter(s)
on which they depend lie outside the value(s) required tarensrthogonality. He also con-
sidered the interlacing of zeros of polynomials ; andp, ., in any orthogonal sequence
{rn}5>, and showed that interlacing of zeros occurs to the left anldgaight of a specified
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point [12, Theorem 1]. Segura identified this point in terms of the ficiehts in the three
term recurrence relation satisfied fy,, }>> ,; equivalently, it is the zero of the linear de
Boor-Saff polynomial 8, Theorem 3]. Stieltjes interlacing was studied for the gexopoly-
nomials from different sequences of one-parameter orthalgfamilies, namely, Gegenbauer
polynomialsC; and Laguerre polynomials® in [5] and [6], respectively, and associated
polynomials analogous to the de Boor-Saff polynomials vigkeatified in each case. Related
work in which recurrence relations fg#; functions are considered can be found9h [

In a generalization that is complementary to that of Segufa?], it was proved in 7]
that the zeros of%+? interlace with the zeros of polynomials from some differ@atobi
sequences, including those Bf ~“-#*+* and P* 1 for 0 < ¢, k < 2, thereby confirming
and extending a conjecture made by Richard Askeyjnilumerical examples were given
to illustrate that, in general, ifor k is greater thag, interlacing of zeros need not necessarily
occur.

In this paper, we investigate the extent to which Stieltfgsriacing holds between the
zeros of two Jacobi polynomials if each polynomial belomgs tsequence generated by a
different value of the parameter and/or3. We also identify, in each case, a polynomial
that plays the role of the de Boor-Saff polynomial ], in the sense that its zeros provide a
(non-unique) set of points that complete the interlacirarpss.

2. Results. We recall that, fory, 3 > —1, the sequence of Jacobi polynomi@f-#}2°
is orthogonal with respect to the weight functietiz) = (1 — )*(1 + z)” on (-1, 1) and
satisfies the three term recurrence relativ |

2(n+1)(n+a+p+1) o,
(2'1) (2n+a+ﬁ+1)(2o';+a+ﬂ+2)Pﬂ+1(x)
2 2

_ _ B —a a,3 _ 2(n+a)(n+p) a,p
o (x (2n+a+5)(2n+a+ﬂ+2)) PTL (J}) (2n+a+[3)(2n+a+6+1)Pn—l(l‘)'

Our first four results consider cases when Stieljes intertpoccurs between the zeros
of Jacobi polynomials from different sequences whose dsgiédfer by two.

THEOREM2.1.

() If P2*PP and P2, are co-prime, then

(a) the zeros oP**/** and 2 ?;n (fﬁ(ﬂﬁ ;;;21%‘:5:21)” interlace with the zeros of
Pf for fixedt € {0,1,2};

(b) the zeros oy *7 and 2t atiadtlatfin-ath) interlace with the zeros

of P,
(c) the zeros oy "7 and e tat Ot -t interlace with the zeros
of P27

(ii) If P;‘ff’ﬁ and Pﬁffl are not co-prime, they have one common zero located at the
respective points identified in (i) (a) to (c) and the- 1 zeros ofP,‘;‘ff’B interlace

with the remaining: (non-common) zeros G?,?_ﬁ.

REMARK 2.2. A theorem due to Gibso®][proves that if{p,,}>°, is any orthogonal
sequence, the polynomials ; andp,,,, m = 1,2,...,n—1can have at most m{mn, n—m}
common zeros. Theorefl (i) extends Gibson’s result to Jacobi polynomials of degre 1
andn + 1 from different orthogonal sequences.

REMARK 2.3. The case¢ = 0 in Theorem2.1 (i) was proved by Segurd p, Section
3.1]. For completeness and the convenience of the readgmavele an alternative proof of
this case.



ETNA
Kent State University
http://etna.math.kent.edu

STIELTJES INTERLACING OF ZEROS OF JACOBI POLYNOMIALS 319

Since Jacobi polynomials satisfy the symmetry propeky p. 82, Equation (4.1.1)]
(2.2) Pri(a) = (1) P (~x),

we immediately obtain the following Corollary of Theoreii.
COROLLARY 2.4,
@) If PF7 and P2 are co-prime, then

a, B+t ﬁ27a27t(a75+2n(n+a+1)) . .
(a) The zeros of,™ " and =z =55 7o 512 Interlace with the zeros of

P for fixedt € {1,2};

(b) The zeros oP*" "% and— ”(”J”(‘:Ligi?)z“ﬁ:%igf +2) interlace with the zeros
of P*#;

n+1

o, f+4 2n(nta+B+3)+(B+3)(a—p) i
(c) The zeros of, ™" and — 5 o B 5oy interlace with the ze-
ros of P25

n+1-*
(iiy If P*5*" and P,?fl are not co-prime, they have one common zero located at the

respective points identified in (i) (a) to (c) and the- 1 zeros ofP>** interlace

n—1
with the remainingr (non-common) zeros d?,?fl.
Numerical experiments suggest that results analogousosethroved in Theorerd.1
and its Corollary also hold asvaries continuously betwedhand4.

CONJECTURE2.5. Fort € (0,2),if P{*/” and P/} are co-prime, the zeros &>}

2 2 . .
and Zatai 2t D) interlace with the zeros ).

Our next two results prove that Stieltjes interlacing of #eeos of Jacobi polynomials
from different sequences also holds when both the parastetend 5 change within certain
constraints.

THEOREM2.6.

(i) For each fixedj, k € {1,2}, if P277"** and P}

: .84k foa=n(k—j) ; i
(a) are co-prime, then the zeros Bf'™; and PR ey e interlace with

the zeros o}
(b) are not co-prime, they have one common zero located gpdire identified

in (i) (@) and then — 1 zeros of P*"7""** interlace with then remaining
(non-common) zeros @t

n+1-*
(i) If POT394 and P

(a) are co-prime, then the zeros 837" and 1 tr(eti+3)—(a+2)(ap)

n2+n(a+pB+3)+(a+2)(a+5+2)
interlace with the zeros aP2};
(b) are not co-prime, then they have one common zero locatéad gooint identi-

fied in (ii) (@) and then — 1 zeros ofP;:ff”ﬁ“ interlace with then remaining
(non-common) zeros @1

iy If PO and PO

(a) are co-prime, then the zeros &f* 73 and S —r(atb+3)—(5+2)(a—p)

n?+n(a+p+3)+(8+2)(a+p+2)
interlace with the zeros P2}’ ;
(b) are not co-prime, then they have one common zero locattad goint identi-

fied in (iii) (a) and then — 1 zeros ofP®™**3 interlace with then remaining
(non-common) zeros @1.7;.
THEOREM2.7.
(i) If the respective pairs of polynomials are co-prime,rthe

(a) the zeros oPy " and ;22 interlace with the zeros dPy'};
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a—1,8+2 —n+B+1 ; ; a,B .
(b) the zeros oP" ", and =7 interlace with the zeros o} ;
(c) the zeros o """ and -7~ interlace with the zeros aP;};
(d) the zeros o 77~! and 2-2=L interlace with the zeros aP;.

(i) If the respective pairs of polynomials in (i) (a) to (djeanot co-prime, then they
have one common zero located at the points identified inYijo(éd) and then — 1
zeros of the respective polynomial of degree 1 in each case interlace with the
(non-common) zeros (ﬂffl.

REMARK 2.8. Restrictions on the rangestodndk are required in our theorems since,
in general, Stieltjes interlacing is not retained betwdenzeros of Jacobi polynomials from
different sequences, whose degrees differ by two.

Using Mathematica, we see that

Whenn = 5, a = 20.7 and3 = 0.5, the zeros of?"” and P ™" or P"~! do

not interlace, illustrating that Stieltjes interlacingeganot hold in general far> 4,
k=0ort=0,k <0.

Whent = k = —1 andn, « andg are chosen as in the example above, the zeros of
Py~ and P2? do not interlace.

The zeros o)} and those o2 ™" or P2*77*2 do not interlace when = 7,
a=—0.9ands = 329.3.

We now state a general result for Stieltjes interlacing leetwthe zeros oR‘ffl and the
n — k zeros of thekth derivative of P2:#,

THEOREM2.9. Let P*#, a, 3 > —1,n € N, denote the Jacobi polynomial of degree

(i) Foreachk € {1,2,...,n—1}, there exist polynomial&';, and H;, of degreek such
that

(2.3) (1 — 22 Qi PO P (@) = (n 4+ 1) Hy—1 (2) P2 (2) + Gi(a) PSP (),

whereQ,, , = (n+a+ﬁ+2)k—21k(2n+oz+ﬁ+2) and( )

bol [10, p. 8, Equation (1.3.6)].
(i) Letk € {1,2,...,n — 1}, k fixed. IfP%;; and P**}""** are co-prime, then the
zeros of thekth derivative of P>+# | together with thek real zeros ofGy, interlace
with the zeros oP..
(iii) Let k € {1,2,...,n — 1}, k fixed. IfP?}} and P**"* haver common zeros,

then the(n — 2r) non-common zeros of the produét P ** together with the
r common zeros d?;}} and P17t interlace with the(n +1 —r) non-common

zeros ofP}.

r denotes the Pochhammer sym-

3. Proofs. Jacobi polynomials are linked with thé’; Gauss hypergeometric polyno-
mials via the following identity I, p. 99]

(a+1),
n!

1—=x
(3.1) PP () = oy (—n,n+a+ﬁ+l;a+ 1; 5 T)

In our proofs, we make use of this connection between Jacwhj & hypergeometric poly-
nomials, as well as the following contiguous function rielias satisfied by £, polynomials.
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LEMMA 3.1.LetF,, = 3 Fy(—n,b;c; z) and denotg Fy (—n—1,b+1; ¢; z) by Fy, 11 (b+),
oF1(—n+1,b+4 1;¢ — 3;2) by F},_1(b+, ¢ — 3) and so on. Then,

(32) (i = 2) Fa = Gy Pt (04) + 20202 By (o)

(3.3) (m - z) Fo = e P (04) + 2 B (b, e+ 2)

34 (57 -2) 5P = SRS P 04) + SRR, (04 2,04)
(3.5) (biﬁl - z) Fo = g2 Fa () — 25200 F, (bt o)

2(c+1) _ ct+c®—bnztcenz
36) (Grifiien —2) o = HEREE Faa(0)

4l bint D 49 ey 3)

c(c+1)(c+2)
(b—ct1) _ b—ct1—z(btntl) 2.
3.7) GG I = ey Lt (bH) = 2 F (0 + 2,04)

(38) (c—z(b+1—n))F, = (c +2nz — nz? ii?f’;) Fri1(b+)

n(b+1)(b+2)((2—1)2)?(b+1+4n)
+ GHI—)e(ct) Fuoa(b+3,c+2)

(3.9)

c(ctl) _ c+c®—bnz+2cnz4+nz2+bnz’4+n?2>
(Z - (1+c+n)(1+b)—cn> F" =<t 1+ctcn+:—+b+z_c+bn+ Fn+1(b+)

(b4+1)(b+2) (1+b+n)(1+c+n)n(z—1)z>

+ c(c+1)(c+2)(1+c—cn+n+b+be+bn) Fn*l(b + 37 c+ 3)

(3.10)
b+1)(2+4c+2n)—cn 2(b— b—c)(1+b+
(1 ! )(0(012) o= Z) Fo = (1 - c((c+cz))nz - n(c(cJCr)l()(c+2)n) 32) Foga(b+)

+ zererre Fn-1 (b + 3,c 4+ 4)

wherea = (b+1)(b+2)(b—c)(c+n+1)(c+n+2)(1 +b+n)zin.
Proof. For eachj = 1,2,...,n, the coefficient ok’ on the left-hand side of3(2) is

2b(c+n)(=n); (b); 2(=n);—1(b)j—1

(b+n) (b+n+1)(c); (4)! (0)j—1(G—1)!

= T (ble+n)(—n+j = )b+ —1) = jlc+i— D)b+n)(b+n+1)

while the coefficient ot/ on the right-hand side oB8(2) is given by

2b(c+n)(—n—1);(b+1); + 2n(b—c) (—m+1);_1(b)j—1
(b+n)(b+n+1)(c); 5! c(b+n)  (c+1);-1(G—1)!

= ot s (e n)(—n =D+ = D)(b+4) —jb—o)(—n+j+1)(b+n+1).

A straightforward calculation shows that these coeffideare equal and the result follows.
The other identities can be proved in the same way by conpadafficientsO

REMARK 3.2. The identities in Lemma.1follow from the contiguous relations fet
hypergeometric polynomialdsl], p. 71]. A useful algorithm in this regard is available as a
computer packagelff].

The following Lemma simplifies the proofs of Theorén and Theoren?.6.

LeEmmA 3.3. Let {p,}>2, be a sequence of polynomials orthogonal on the (finite or
infinite) interval (¢, d). Letg,_; be any polynomial of degree — 1 that for eachn € N
satisfies

(311) gnfl(x) = an(m)pn+1(x) - ({L‘ - An)bﬂ(x)pn(x)
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for some constanti,, and some functions,, (z) andb,,(z), with b,,(z) # 0 for z € (¢, d).
Then, for eacln € N,

()
(ii)

the zeros ofg,_; are all real and simple and, together with the poidt,, they
interlace with the zeros of,, ,, if g,_1 andp,, ., are co-prime;

if g,—1 andp,, are not co-prime, they have one common zero located-atA,,
and then — 1 zeros ofg,,_; interlace with then (non-common) zeros of, ;.

Proof. Letw; < wy < -+ < w, 1 denote the zeros of, ;.

(i)

(ii)

Sincep,, andp,, 1 are always co-prime, and by assumptigiiz) # 0 for z € (¢, d)
andp,+1 andg,_; are co-prime, we deduce fron3.(1) that A,, # wy, for any
ke{1,2,...,n+ 1}. Evaluating 8.11) atw; andwy1, we obtain

(3.12)  grrlwmlon(oenn) — (AL ) (wpry — An)bn (wi)bn (wis)

P (Wi )P (Wrt1)

for eachk € {1,2,...,n}. Sincewy, andwy41 € (¢, d) while b,, does not change
sign in (¢, d), we know thatb,, (wg )b, (wr+1) > 0. Hence, the right-hand side of
(3.12 is positive if and only ifA,, ¢ (wg, wr11). Sincep, (wg)pn (wir1) < 0 for
eachk € {1,2,...,n} because the zeros pf andp,,; are interlacing, we deduce
that, providedd4,, ¢ (wy,wr+1), gn—1 has a different sign at consecutive zeros
of p,+1 and therefore has an odd number of zeros (counting muitili; each
interval (wy, wi41), k € {1,2,...,n}, apart from one interval that may contain the
point A,,. It follows from the Intermediate Value Theorem that forleace N the

n — 1 real simple zeros qf,, 1, together with the pointi,,, interlace with the: + 1
zeros ofp,, 1 1.

If p,+1 @andg,_1 have common zeros, it follows fron3.(L1) that there can only be
one common zero at = A,, sincep,, andp,, 1, are co-prime. For # A, we can
rewrite 3.11) as

(313) Gn—Q(«I) = an(x)Pn(x) - bn/(z)p7l(x)’

where(z — A,,)Gp—2(z) = gn—1(z) and(z — A,)P,(x) = pny1(x). Note that
the zeros ofP,, are exactly the:s (hon-common) zeros gf,, 1, sayv; < -+ < Up,
and at most one interval of the forfn,, vy41), k € {1,...,n — 1}, can contain the
point 4,,. Evaluating 8.13 atv, andwvy1, for eachk € {1,...,n — 1} such that
A, ¢ (vg,vp41), We obtain

Gn—2(vk’)Gn—2(Uk+1) = bn(vk)bn(vk—&-l)pn(vk)pn(Uk+1) <0,

and it follows thatG,,_» has an odd number of zeros in each interual, vi41),

k € {1,2,...,n}, that does not contaid,,. Since there are at least— 2 of these
intervals andleg(G,,—2) = n — 2, there are at most — 2 such intervals and we
deduce that,, = w; wherej € {2,...,n} and the zeros of7,,_», together with
the pointA4,,, interlace with the: zeros ofP,,. The stated result is then an immediate
consequence of the definitions@f, 5 andP,,. 0

Proof of Theoren?.L

()

(@) If ¢ = 0, the result follows from Z.1) and Lemma3.3 (i). Fort = 1, we
use B.2 withb = a+ S+ n+ 1andc = « + 1, together with 8.1), and then
apply Lemma3.3(i). Fort¢ = 2, the stated result follows fron8(3) and 3.1)
together with Lemma&.3 (i).

(b) Replacingg by n + o+ 5+ 1, c by a + 1 andz by 1‘% in (3.6) and using
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(3.2), we obtain

n’+(2a++4)—(a+2)(a=B) | po.s
(x_ (n+a+2)(n+a+p+2) )Pn (I)

— (n+1)A(z) a,p (1-2)*(2n+a+B+2)(n+B) pa+3,p
= (ntat)(ntat2)(ntotB+2) Pl (2)+ I(ntotD) (ntat2) P (),
whereA(z) = n(n+ B)(z — 1) +2(a+1)(a+2). Lemma3.3(i) then yields
the result.

(c) From .10 and @.1) we have

n

(x o 2n2—(a+3)(a—,8)+2n((x+6+3)) Pfl’"ﬂ(x)
_ —(n+1)B(x) a,B (1—z)*D,, a+4,8
T 2(ntatl)(at+2)Cy Pofi(e) + 8(nta+1)(a+2)C, * n—1 (z),
where

Cp=2nn+a+L+3)+(a+3)(a+8+2),
D,=02n+a+p+2)(n+8)(n+a+8+2)(n+a+L+3),

andB(z) is a polynomial of degre in = which depends on, «, andg.
The result follows from Lemma.3 (i).
(ii) This follows immediately from Lemma&.3(ii) and the proofs of Theorem.1 (i) (a)
to (c).0
Proof of Theoren?2.6.
() (a) The case wheri = k£ = 1 will be proved in Theoren2.9. Forj = k = 2,
(3.8 and @.1) yield

B—a a,
(v~ &5) P (@)

_ 2(n+1)C(x o, 2\2 pa+2,5+2
= Grarinepeiars P (@) + Ea(l = ) P20 (@),

where

B — (nta+pB+2)(nt+a+B+3)(2n+a+p542)
n — 8(n+a+1)(n+8+1)(a+p+2)
andC(z) is a polynomial of degree in = which depends on, o and3. The
result follows from Lemm&.3 (i).
Forj = 1, k = 2, the mixed recurrence relation

nta—8_\ pa,
(w + m) Ppo(x)

_ (n(z4+1)+284+2)(n+1) pa,B (z+1)%(z—1)(2n+a+B+2) patl,3+2
~ (nta+B+2)(n+p+1) Piin(@) — 4(n+p+1) Py (z)
is obtained from§.1) together with 8.4). Lemma3.3 (i) then yields the stated
result.
Forj = 2,k = 1, the result follows from the symmetry proper®.®).
(b) From @.1) and @.9), we obtain the mixed recurrence relation

n’—(a+2)(a—B)+n(a+B+3) B
(fﬁ - n2+n(a+ﬂ+3)+(a+2)(a+5+2)) Py(z)

o 4(a+1)(a+2)+(3(17B+4)n72nx(n+2a+3)+naz2(2n+a+ﬁ+2) a,f

= 2(ntat1)(n2+(at2)(a+B+2)+n(atB+3)) (n+ 1P (x)

+ n(1—z)%(1+z)(n+a+p+2)(nta+B+3)(2n+atp+2) potdftl (z)
8n(n?+(a+2)(a+p+2)+n(a+B+3))(n+a+1) n—1 ’

and Lemma3.3 (i) then yields the stated result.
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(c) This follows directly from the symmetry propertg.p).
(i) This follows from Lemma3.3 (ii) and the proofs of Theorer®.6 (i) (a) to (c).O
We omit the proof of Theorerf.7 which follows exactly the same reasoning as the proofs of
Theorem<.1and?2.6.
Proof of Theoren2.9.
(i) We use the mixed recurrence relations
(3.14)

a+1,6+1 a— a, 4(n+1 «,
(1—2?) P (e) =2 (“’ T W%) PP () — gifarira Pt (@)

and

(3.15) (1 —a®) Pyttit(z) =

2 2(n+B+1) (nta+1) pa, = 2
nFatgir2 ( - 2n+a+7§+g Pyi(a) — (n+1) (9’j - ﬁfﬁﬁ) PSH(”“")) )

which can be obtained fron3(1), (3.5), and @.7). We prove our result by induction
onk.

For k = 1, equation 2.3) is the same as equatiof.{4) with Hy(x) = —1,
Gi(z) =3 (2n+a+pB+2)z+a—p)andQ,1 = ;(2n+ o+ B+ 2). There-
fore, 2.3) holds fork = 1.

Next, we assume that the result holds#for= 1,2, ..., k, i.e we assume that
(3.16)

(1= 2%)"Qum PI ™M (@) = (n + 1) ooy (2) P (2) + G (2) P2 (),

with G,,, andH,,, polynomials of degres: andQ,, ,,, = ("ot fH2)m 1 (Entatft2)

form=1,2,...,k.
Form = k + 1, the left-hand side of4.3) is equal to

(1= 2 Qe PoHH P (),
and, applying 8.14) and @.15), a straightforward calculation shows that this equals
Grs1(2) P (2) + (n+ D) Hi(2) Py ()
with
—n o— n4+o 2
Hy(x) = 5 (37 - 2n+o¢+ﬁl‘3+2) Hy(2) = Qniotﬁ;;QGk(x)
and

+a+1)(n+p+1 2 =5
Gry(z) = 2’::+a¥g+§ LHy () 4 e (m + 2n+aa+BB+2> Gi(),

which is the right-hand side o2(3) for m = k + 1. It follows that @3.16) holds for
m = k + 1, and the result follows by induction gn
(i) We note thatD*[P2f] = J(n + a + B + 1), PS5 +*, where D* denotes the

k-th derivative L3, p. 63]. From 2.3), providedP,f‘fl(a:) # 0, we have

2V a+tk,B+k a
(1 €T ) Q”vk’Pn—k (I) _ (77,—|- 1)Hk_1(.13) + Gk(x)Pn ﬁ(‘x)

(3.17) . -
P () P ()
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Now, if wy < ws < --+ < w41 are the zeros (ﬂf‘ﬁ, we have

PP (z) i A
P::Jrﬁl (z) T W

whereA; > 0 for eachj € {1,...,n+ 1} [13, Theorem 3.3.5]. Therefor&(17)
can be written as

(3.18)
(1= 22 Qu ik Py () S Gr(@)4,
N = (n+1)Hj_1(z) + I x4 w;
P (x) g T —w, ’

SinceP?}, and P¢-# are always co-prime whil@?;’, and P17 ** are co-prime
by assumption, it follows from23) thatGy, (w;) # 0 foranyj € {1,2,...,n+1}.
Suppose that’;, does not change sign i) = (w;,w;11) wherej € {1,2,...,n}.
Since A; > 0 and the polynomiali,_; is bounded on/; while the right hand
side of .18 takes arbitrarily large positive and negative valuespitofvs that
POTEPTE must have an odd number of zeros in each interval in whighioes not
change sign. Sincé', is of degreek, there are at least — k intervals(w;, w;11),

j € {1,...,n} in which G, does not change sign, and so each of these intervals

must contain exactly one of the— k real, simple zeros aP®"#**_ We deduce
that thek zeros ofG), are real and simple and, together with the zeroBf,
interlace with the: + 1 zeros ofP.}}.

(iiiy Assume thatP;; and P**)#** haver common zeros. Fron2(3), it follows that

if P;*_*,f’ﬁ*k and P,‘j“fl have any common zeros, these must also be zerdg;,of

sincePs? and P, are co-prime. It follows that < min{k,n — k} and there are
at least(n — 2r) open intervald; = (w;, w;+1) with endpoints at successive zeros

w; andw; 1 of Py} where neitherw; or w; is a zero ofP**7* or Gy ().

If G does not change sign in an intenial = (w;, w;41), it follows from (3.18),
sinceA; > 0 andH_, is bounded while the right hand side takes arbitrarily large

positive and negative values fore I;, that P****** must have an odd number
of zeros in that interval. Since this applies to at lefast- 2r) intervalsI; and

POHFPFR has exactlyn — k — ) simple zeros that are not zeros/@f;’, while G,

has at mostk — r) zeros that are not zeros 6fj+51 it follows that there must be

exactly (n — 2r) intervalsl; = (w;,w;4+1) with endpoints at successive zeros
andw;; of P} where neitherw; or w;, is a zero of P**7 % This implies
that the common zeros d@t.} and P°*"P** cannot be two consecutive zeros of

P,‘jfl, and the stated result now follows using the same argument(as O

REFERENCES

[1] G. ANDREWS, R. ASKEY, AND R. Roy, Special FunctionsEncyclopedia of Mathematics and its Applica-
tions, 71, Cambridge University Press, Cambridge, 1999.

[2] R. AsKEY, Graphs as an aid to understanding special functioné#Asymptotic and Computational Analysis,
Lect. Notes Pure Appl. Math., 124 (1990), pp. 3—-33.

[3] A.F. BEARDON, The theorems of Stieltjes and Fava@bmput. Methods Funct. Theory, 11 (2011), pp. 247—
262.

[4] C. DE BOOR AND E. B. SaFF, Finite sequences of orthogonal polynomials connected bgcakl matrix
Linear Algebra Appl., 75 (1986), p. 43-55.



326

(5]
(6]
(7]
(8]
(9]
(10]

(11]
(12]

[13]
(14]

(18]

ETNA
Kent State University
http://etna.math.kent.edu

K. DRIVER, A. JOOSTE, AND K. JORDAAN

K. DRIVER, Interlacing of zeros of Gegenbauer polynomials of non-eontive degree from different se-
guencesNumer. Math., 2011, pp. 1-10.

K. DRIVER AND K. JORDAAN, Stieltjes interlacing of zeros of Laguerre polynomialsirdifferent sequence
Indag. Math. (N.S.), 21 (2011), pp. 204-211.

K. DRIVER, K. JORDAAN, AND N. MBUYI, Interlacing of the zeros of Jacobi polynomials with differe
parametersNumer. Algorithms, 49 (2008), pp. 143-152.

P. C. GBsoN, Common zeros of two polynomials in an orthogonal sequeh@gprox. Theory, 105 (2000),
pp. 129-132.

A. GIL, J. SEGURA, AND N. TEMME, Numerically satisfactory solutions of hypergeometricumsgns
Math. Comp., 76 (2007), pp. 1449-1468.

M. E. H. IsmAIL Classical and Quantum Orthogonal Polynomials in One Vdga&ambridge University
Press, Cambridge, 2005.

E. D. RaINVILLE , Special FunctionsMacmillan, New York, 1960.

J. SEGURA, Interlacing of the zeros of contiguous hypergeometric fions, Numer. Algorithms, 49 (2008),
pp. 387-407.

G. SZEGO, Orthogonal PolynomialsAmerican Mathematical Society, New York, 1959.

R. VIDUNAS AND T. KOORNWINDER, Webpage of the NWO project, “Algorithmic methods for special
functions by computer algebra”,
http://www.science.uva.nl/ ~ thk/specfun/compalg.html , 2000.

L. VINET AND A. ZHEDANOV, A characterization of classical and semiclassical orthaglopolynomials
from their dual polynomials]. Comput. Appl. Math., 172 (2004), pp. 41-48.


http://www.science.uva.nl/~thk/specfun/compalg.html

