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A POSTERIORI ERROR ESTIMATION FOR THE LEGENDRE COLLOCATION
METHOD APPLIED TO INTEGRAL-ALGEBRAIC VOLTERRA EQUATIONS*

S. PISHBINT, F. GHOREISHI, AND M. HADIZADEH

Abstract. In this work, we analyze the Legendre collocation method for a mixed system of Volterra integral
equations of the first and second kind which is known as Integral Algebraic Equations (IAEs). In order to obtain the
approximate solution, the kernels in the system of integral equations are approximated by using the discrete Legendre
expansion. A posteriori error estimate is obtained which is based on the Lebesgue constants corresponding to the
Lagrange interpolation polynomials and some well-known results of orthogonal polynomials theory. The spectral
rate of convergence for the described method applied to linear and nonlinear IAEs is also established in the L2-norm.
Finally, the proposed method is illustrated by several test problems which confirm the theoretical prediction of the
error estimation.
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1. Introduction. Consider the following system of integral equation

u(t) = fi(t) + / Ko (t,8)y(s)ds + / K (t, 8)2(s)ds,

(L.1) #0 £
0= fao(t) +/0 K21(t,s)y(s)ds+/0 Koo (t,s)z(s)ds, telI=][0,T],

where K;;(.,.), 4,j = 1,2, are d; x d; matrices, f; and f are given dy,d> dimensional
vector functions, respectively and (y, z) is a solution to be determined. Here, we assume that
the data functions f; and K;;, ¢,7 = 1,2, are sufficiently smooth such that f»(0) = 0 and
|detKao(t,t)| > ko > 0 for all ¢ € I. The existence and uniqueness results for the solution
of the system (1.1) have been discussed in [1]. However, the solvability and regularity of
the solution of (1.1) may be utilized if we differentiate the second equation and consider the
resulting equation as an equation of the second kind for z. Then, we formally solve for 2z
and replace the resulting expressions in the first equation of the system, and we obtain an
equation of the second kind for y. We emphasize that this reduction to an integral equation
of the second kind is not practical from a numerical point of view.

The system (1.1) is a particular case of the general form of the Integral Algebraic Equa-
tions (IAEs)

ABDX () = G@t) + /0 t K(t,s, X (s))ds,

which has been introduced in [1], where detA(t) = 0 and Rank A(¢) > 1 on I. An initial
investigation of these equations indicates that they have properties very similar to Differential
Algebraic Equations (DAEs). In analogy with the theory of DAEs (see, e.g., [13]), Kauthen
[16] in 2000 has called the system (1.1) the semi-explicit IAEs of index 1.

An important remark concerning the analysis of index-1 IAEs with respect to IAEs of
higher index (index larger than one) is their wide range of applications in the mathematical
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modelling of problems in engineering and sciences, e.g., the controlled heat equation which
represents a boundary reaction in diffusion of chemicals [12], the two dimensional bihar-
monic equation in a semi-infinite strip [5, 11], dynamic processes in chemical reactors [15]
and deformed Pohlmeyer equation [21]. Also a good source of information (including numer-
ous additional references) on applications of IAEs system is the monograph by Brunner [1].

As far as we know, there are some papers which have considered the theory of IAEs
system. The existence and uniqueness results of continuous solution to linear IAEs system
have been investigated by Chistyakov [8]. Gear [9] defined the index notion of IAEs system
by considering the effect of perturbation of the equations on the solutions. He has also intro-
duced the “index reduction procedure” for IAEs system in [9] similar to that in [10] for DAEs
in which if the reduction process is terminated, then the index is determined. This means
that under suitable conditions, there is a solution for the resulting regular system of integral
equations. Bulatov [2] in 1997, gave the existence and uniqueness conditions of the solution
for IAEs systems with convolution kernels and defined the index notion in analogy to Gear’s
approach. Further details of his investigation may be found in [3, 4]. A few numerical based
works, e.g., the spline collocation method and its convergence properties [ 16], are also avail-
able in the literature for the semi-explicit IAEs system (1.1). Brunner [1] defined the index-1
tractable for the IAEs system (1.1) which is analogous to that defined for DAEs by Mirz [17]
and he also investigated the existence of a unique solution for this type of systems. Recently,
the authors in [12] have defined the index-2 tractable for a class of IAEs and presented the
Jacobi collocation method including the matrix-vector multiplication representation of the
equation and its convergence analysis.

On the other hand, the classical Legendre polynomials have been used extensively in
mathematical analysis and practical applications, and play an important role in the analysis
and implementation of the spectral methods. Here, the numerical solvability of the index-1
semi-explicit IAEs (1.1) using the Legendre collocation scheme is investigated. We will
provide a posteriori error estimate in the L2-norm which theoretically justifies the spectral
rate of convergence. To do so, we use some well-known results of the approximation theory
from [6, 14, 18] relevant to the Legendre polynomials, Gronwall inequality and the Lebesgue
constant regarding the Lagrange interpolation polynomials .

This paper is organized as follows. In Section 2, we carry out the Legendre collocation
approach for the IAEs system (1.1). A posteriori error estimation of the method in the L2-
norm as a main result of the paper is given in Section 3. In Section 4, we generalize our
results to the semi-explicit IAEs of index-1 in the Volterra-Hammerstein form and finally,
some numerical experiments are reported in Section 5 to verify the theoretical results obtained
in the previous sections.

2. The Legendre collocation method. We turn our attention to the formulation of the
polynomial spectral method for solving the IAEs system (1.1), using the collocation approach.
We first use some variable transformations to change the equation into a new system of inte-
gral equations defined on the standard interval [-1,1], so that the Legendre orthogonal poly-
nomial theory can be applied conveniently. In order to describe the key ideas without having
to resort to complex notations involving Kronecker products of matrices and vectors, we will
consider the IAEs system (1.1) with d; = dy = 1.

For the sake of applying the theory of orthogonal polynomials, we use the change of
variables:

2
2.1 n:fs—l, -1<n<T, T==t—-1, —-1<7<1,
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to rewrite the IAEs system (1.1) as:

§(r) = (r) + / Rua(r,m)3(m)dn + / Roa(r,m)2(n)da,
2.2) =1

0=Folr / Ror(r,m)3(m)dn + / Roa(r,m)2(m)dn,
—1

where fi(r) = fi(3 (7 + 1)), Kij(r,n) = $Kij(5(1+1), 5(n +1)). 6,5 =1,2,§(r) =
y(%(r +1))and 2(7) = Z(%(T +1)).
We consider the discrete expansion of K;;(7,7) as follows:

N

(2.3) P (Kij(m,m)) = > (Kij) Pr(n), (,5=1,2)
k=0

where Py is a projection to the finite dimensional space By = span{P,(z)}_, and P, is
the Legendre polynomial such that

~

(2.4) (K Z’IUZK” Tn,Tl)Pk(Tl)
’Yk =0

Moreover, the quadrature points 7; are the Legendre Gauss quadrature points, i.e., the
zeros of Py 1, where the normalization constant 7y, and the weights w; are given by

2
= — =0,...,N
Yk 2k+1’ k 07 34V
2
w; = l=0,...,N.

(1= 7)(Pyya(n))?”

In the Legendre collocation method, we seek a solution of the form

N N
25)  Px@m) =dnm) =D GePr(n), Pn(z(n) =2Zn(n) = Z 2k Pr(n)-

Inserting the discrete expansion (2.3) and (2.5) into (2.2), we obtain

N N
In(T) = H™) + YD (er + k) Vi,

(2.6) k=0 l=k

R N N
7) +ZZ ki + @) Vit
k=0 I=Fk
where Vi (7 f Py (n) P, (n)dn, and
Crl = @\k(@n)k ~ k=1, = 2’“(@12)’“ ~ k=1,
Ge(Kun) +T(Kn), k#L | B +E(Kn), k£

_ ﬂk(f?21)k k= l, ro_ 219(1?22)16 k= la
qrl = ~ 5 ~ = ~ ~ D
Y k#1.
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The unknown coefficients 4y, and 2, k = 0,---, N, are defined by the solution of the
following system of equations which is obtained by substituting the collocation points 7, in
the system (2.6) and employing the discrete representation (2.5):

N N N
ngpk('rn f1 Tn +ZZ ekt + ) Vit (Tn) s

(2_7) k=0 k=0 l=k

N N
0= fa(ra) + ) (aws + gg) Vi (),

k=0 I=k

forn=0,1,---,N.

Now, the coefficients yj and Zj are obtained by solving the linear system (2.7) and fi-
nally the approximate solutions yn (1) and Zx(n) will be computed by substituting these
coefficients into (2.5).

3. Error estimation. In this section, we present a posteriori error estimate for the pro-
posed scheme in the L2-norm. At first, we recall some preliminaries and useful Lemmas
from [6] and [18].

Following [6], the inverse inequality concerning differentiability of the algebraic polyno-
mials on the interval (—1, 1) can be expressed in terms of LP-norms. Let ¢ € Py, where Py
denotes the space of all polynomials of degree less than or equal to IN. Then for any integer
r > 1and 2 < p < oo, there exists a positive constant C' independent of IV such that

3.1) 18 Mo (—1,1) < CN" (|8l £o(—1,1)-

We also give some error bounds for the Legendre system in terms of the Sobolev norms.
The Sobolev norm and semi-norm of order m > 0, considered in this section are given by

(3.2) llw(@)[Fm 1,1y = 2”8 k||L2( 1,1)
m 2
(3.3) |u| frm.n (—1,1) = Z ||u(3)||%2(71,1)
j=min(m,N+1)
N
The truncation error u — Pyu, where Pyu = Z Py, can be estimated as follows:
k=0
(3.4) llu = Prnullpz(-11) S CN"u|gm.~n(—1,1y,  Yu€ H™(=1,1).

In those cases for which the truncation error of the derivatives is relevant, the following
estimate extends (3.4) to higher order Sobolev norms:

(3.5) [ = Prull 1,1y < ON 3™ ful g1 1),

foru € H™(—1,1), m>1land1 <l <m.

The following main theorem reveals the convergence results of the presented scheme in
L2-norm:

THEOREM 3.1. Consider the system of integral algebraic equation (2.2) where U,z €
H™(—-1,1) and the data functions f; and K;j, i,j = 1,2, are sufficiently smooth and
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|I?22(7', T)| > ko > 0 forall T € (=1,1). Let (yn,Zn) be the Legendre collocation ap-
proximation of (¥, Z) which is defined by (2.5). Then the following estimates hold:

I = Bl 10y < ON= (V=1 + 20 NGl 1y + il )
+ON-™ ((Nfl + 912N%’m)|3|Hm’N(—171>)
LONEm (Qll||ﬂ||L2(—1a1) + 912”2“112(—171))

+ON= (il + Wllo 1),

(3.6)

IZ8 = Zllp2(—1,1) S CN™™ ((N% + Q21Ng_m)|l//\|Hm)N(—1,1))
(3.7 +CN—™ ((N% +922N%7m)|3|Hm,N(—1,1))
+CN3E—m (921”Z7||L2(—1,1) + Q22||3||L2(—1,1))=
provided that N is sufficiently large and
ij = ngang |Kkj(7_n7n)|Hm’N(71,l)7 k:] =12

Proof. Rewriting the first equation of (2.7) as:

Gn(r) = Frlr) + / " R (s )y (m)dy + S (7)
(3.8) o
+ Ki9(tn,m)zn (n)dn + Sa(Th),

-1

where

Mz

N n
chlel(Tn) —/ K11 (Tn, m)yn (n)dn,
—1

k=0 I=k

~

N N

= Z Zc}clel (Tn) — /Tﬂ K1a (7o, m)2n (n)dn.
£ -1

=0 I=k
Then it follows from (3.8) that

In(1a) = Fi(mn) / K11 (mn,m)e( )d17+/ K11(7n, )7 (m)dn
-1

Tn

(3.9)
/ Raa(rm, m)e(m)dn + / Ry (i, 1) 20)dn + 51 (1) + Sa(7n),
1

such that e(s) = yn(s) — y(s) and e(s) = Zn(s) — 2(s).
Now, using (2.3), we first multiply both sides of (3.9) by %wnPk (1,,) and sum up from

n = 0 to N and then multiply the altered equation by P (7) and sum up from k& = 0 to N,
and we get

ive) =P () + P [ Rustrmioan)
(3.10) 2 ([ Rutretan) +Px ([ Rutrmean)

Py ( / Riar, n)E(n)dn> Py (S1(r)) + P (Sa(r))-
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Subtracting the first equation of (2.2) from (3.10), we obtain

T) = /_Tl I?u(T, n)e(n)dn + /_Tl IA{12(7': n)e(n)dn

3.11)
+ (P(R) = Fi(0) + Pw ($1(7) + Py (S2(7) + Fi + By + Fy + By,
where
(3.12) =Py (/ K (r,n)e dn) /T K1 (r,m)e(n)dn,
-1
(3.13) =Py (/ Kia(r,m)e dn) /T Kis(r,m)e(n)dn,
—1

Pn / K11 T, dn) / K11 7,1y (n)dn,
Fy =Py (/ Kia(r, n)?(n)dn) —/ Ki12(1,m)2(n)dn.
—1 -1

The second equation of (2.7) can be rewritten as follows:

0= folra) + / Kot (T, m)yn (n)dn + / K2 (Tn, n)2n (n)dn
(3.14) -1 -1
+53(7n) + Sa(),
where

N N ™
= Zqulel(Tn) —/ Ko1 (0, myn (n)dn,
-1

k=0 I=k

~

M) =
WE

Su(ra) = Vit (1) / Roa(rmy m) ()i,
-1

=
Il

01l

I
=

From the second equation of (2.2), we can write

(3.15) PN(/ Ru(rmitidn+ [ Kmn)()dn)=—7>N<ﬁ<r)).

Consequently, using a similar procedure as outlined in the first part and (3.15), equa-
tion (3.14) gives

(3.16) 0—/ Eon (1 dn+/ Eas(r,m)e(n)dn
+ Pn (S3(7 ))"’le (Sa(r ))+F5+F6,
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where F5 and Fg are defined by

Fo= Py ([ Batronetian) = [ Bartrnetian,

Fo= Py ([ Ratronctian) = [ Ranlrmistiran.

Differentiating (3.16) with respect to 7, yields:

— Ko (1,7)e(r) — Kao(r,7)e(r) = /T w
(3.17) . or

T 8‘[? I ! ! ! !
+ [ S )iy + Pl (7)) + P (Su(7) + FL + i
-1

Equations (3.11) and (3.17) can be written as the equivalent compact matrix representa-
tion:

(3.18) AMED = [ K (r,n)E(n)dn + B,

e(n)dn

with
1 0 ‘[?11(7-7 77) I/{:}Q(Ta 77)

Aln) = [ —Roi(1,7)  —Kas(r,7) ] ’ Klrn) = [ 61?255_7’77) BK?;:T’U) ’

and

(P(fi(7) = Fi(1) + Pr(S1() + Pn(Sa(r)) + Fi + F + Fi + Fy
B =

Pr(S3(7)) + P (Sa(7)) + F5 + Fg

Noting that, since |Kay(7,7)| > ko > 0, the inverse of the matrix A(7) exists and is
bounded.

From now on, to simplify the notation, we denote || - [|z2(—1,1) by || - ||. Using the
Gronwall inequality (see, e.g., [19, Lemma 3.4]) on (3.18), we have

(3.19) IE[| < C|B]|.
It follows from (3.4) that

(3.20) 1PN (fi(7)) = @I < ONT™ | filprmn (-1,1)-
Using (3.4) and (3.3) for m = 1, we obtain

. T 9Ky (r,
17 < N R () + [ 2D iy
. T (K (,
<cn { 1Rur el +1 [ %e(n)dnn}
< N IR DIl CN gl -1y + Clle() }

<N (IR (r, )|+ €) CN=™[§lrmn 1) }
< CN717m|Z//\|Hm,N(—1,1)a
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and consequently

IFall < CNT™ 2 g 21,1y,
|Fs5] < CN~Y[3l,

|1F4l] < N7

Also,

N 1 N
-3 (_ S wn1 (1) Pi(7n) ) Py(7)

=0 n=0

where L, (7) is the Lagrange interpolation polynomial based on the Gauss quadrature nodes
(see, e.g., [14, page 90]). Therefore, we have

(3.21) [|Pn(S1())| < r<nax [S1 (7)) maicl)z | Ln (T

Moreover, using the Cauchy-Schwarz inequality [6], |S1(7,)| can be written as:

Sl = |17 (Pr(Bir () = Bus(r ) )i ()
< 1P (Rus () = Ra ) [

It then follows from (3.4) that

(3.22) |S1 ()| < CN=™| K1 (7, m) s 11y (el + [1F1)-

N
The expression max Z |Ln(7)] in (3.21) can be estimated by considering the fol-
T7€(—1,1) —o

lowing result on the Lebesgue constant for Lagrange interpolation from [18]:
3.23 L( —1+CN2+C +0
(3.23) 5 Z [Li(n) 0 L+ O(NT),

where {L; (a:)};vzo are Lagrange interpolation polynomials with the Legendre Gauss, Gauss-
Radau, or Gauss-Lobatto points {z;} 1.
Considering the above result and (3.22), the following relation for (3.21) holds

(3.24) PN (S () < CN2 Q1 (ON ™ [§lazmn —1,1) + 131,

and similarly

(3.25) IPa(S:()| < CNE ™ Qua(ON ™ 2l gm0y + 1)
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Set! = 11in (3.5) and using (3.2), we have

il < | F B <CN%’T”‘/ K d .
IF5 ] < 1 F5 ]l m (—1,1) < ) 21 (7 me(n)dn HmN(—1,1)

Applying (3.3) for m = 1, the above relation can be written as

Lo " O(Ea(r,
1B < V¥ Ras(r et + [ ZERED gy

< N (1Roa (7, 1)l + C) ON =™ Glgrmv(1.1y } < CN A Gl (1 1y-
Consequently, we have
||Fé|| < CN%7m|§|Hm:N(—1,1)-
It then follows from (3.1), (3.24) and (3.25) that
1P (Ss(n)l| < CN?||Pw(S3(r))|| < CN2 ™ Qo1 (CN ™[l —1,1) + 17,
and
IPxn(Sa(r))|| < CN%_mQ22(CN_m|E|Hm,N(71,1) + [Z1])-

Finally, combining the above estimates and (3.19), the desired error estimates (3.6) and
(3.7) are obtained. O

4. Generalization to the semi-explicit IAEs of index-1 in the Volterra-Hammerstein
form. As a matter of interest, it is remarked that this approach may be applicable for the
nonlinear IAEs of index-1. For this purpose, here we will consider the nonlinear semi-explicit
IAEs of index-1 and try to obtain an error estimation for the proposed method similar to
Theorem 3.1. We emphasize that our error analysis does not cover the general nonlinear case
which contains some complications and restrictions for establishing a convergent result that
will be the subject of our future work.

Consider the nonlinear semi-explicit IAEs of index-1 in the Volterra-Hammerstein form

y(t) = f1(t) + / K (t, 5) G (5, 5(5), 2(5))ds,
4.1

t
0= fa(t) +/ Ky(t,5)Ga(s,y(s),2(s))ds, ~ te€I=[0,T],
0
where K;(t,s) = [Kul(t,s), Ki2(t,s)] are sufficiently smooth and G;(s,y(s),2(s)) =

[Gi1(s,y(s)), Gia(s, 2(s))]" are nonlinear in y(s) and z(s), i = 1,2.
Using the change of variables (2.1), the system can be written in the general form:

42) Ax) = oy + [ R(r,n)G0, Xm)dn, 7€ [-1,1],

~ ~

where X(r) = [3,3]7,f(r) = [ﬁ,fz]T, K(r,n) = diag[ﬁl,ﬁz], G, X(n) =

[él,éz]TandK: [ (1) 8 ]
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Using the discrete expansion of X (1), we obtain:
43) Pn(X(n)) = 2 1 Py(n

Assume that, the nonlinear analytic function é(n, X (1)) can be expanded as:

(4.4) G(n,X(n))) ~ Zw(n)ﬁ?’

Substituting X x (1) in (4.4), yields

~ -~ .

4.5) Gn(n, Xn(n) ~ Z%(W)X}v(n)-

Using the orthogonal Legendre series expansion of R(T, n), (4.3), (4.5), and inserting
the Gauss Legendre quadrature points 7, in the system (4.2), we conclude

N
(46) AkZ:OEEkPk(Tn = Tn +Z/ ’Yz ZKIIDI )(Za:kpk )dna

—01 -, N,

where {v;(n)}X, are continuous functions and {Kl}l ~, can be obtaine from (2.4).

The above procedure leads to a nonlinear system of equations for Z; whose solution
yields the unknown coefficients.

We can now follow the strategy given in the previous section with some restrictions and
new conditions for establishing a convergent result similar to Theorem 3.1:

THEOREM 4.1. Assume that the hypotheses of Theorem 3.1 hold and let the function
G(n, X(n))) in the nonlinear IAEs (4.2) satisfy (4.4). IfXN = [yn, Zn] be the Legendre
collocation approximation ofX [U,Z] which is defined by (2.5), then the following esti-
mates hold

N

7
v = Gllza10) < CNEmQu S (CNE™ [l ) + (Gl (-1
N i=0
4.7 +N2 mﬂlzz(CN“ m|2|Hm N(— 11)+”Z||Lco( 11))

+CNE_m<|Z/|Hm ~(—11) + [BlEmoy - 11))
+Wi1(y )+W12( 2),

N .
~ ~ 5_ 3 i ~ B
Iy = Zlla11) < ONE™0o1 3~ (ONE ™Gl 1y + Bl 1))
Nz':O .
5 3 _mi ~
4.8) + ONE™05 3 (ON ™2l g1 + Bl 1,0

i=0
+CNz—™ (|3//\|H’”’N(—171) + |2|H""N(—1*1))
+Wa1(y) + Wa(2),
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where

o 13 N 3

Wiy (@) = Oy N L™ (@l g 11) Y {(CNz—m|a|Hm,N(,l,1)

=2
—~ i—1
e ) T N )
and
ij = Oglag{N”Kk](Tnan)”Lz( 1,1)» k:] = 1727

provided that N is sufficiently large.
Proof. Rewriting the first equation of (4.6) as:

I () = Fi(ra +2 / (111)i K11 (s )y ()l + D ()
4.9)

+Z/_1 (712)1'[?12(7%777)2}.\,(17)6177_}_Dz(Tn),

where

N Tn N N )
Di) = Y- [ ua)s (PR ) = Roa(ro ) ),
i=0 7/ 1

N Tn N R )
Datrn) =3 [ () (P (Raa(rs ) = Ria(ros) i)
i=0 Y 1

The first equation of (4.2), together with (4.4), gives rise to

T

P ([ Rt + [ o Fatrmzonn) =

(4.10) +7’N<Z7(T) — fi(7) —/ ((m1)oK11(r,m) + (712)0-’?12(7777))6177)

~ Py Z / (un)iRus (r, ) (1) + ()i Roa (7,7 (n) ).

Considering (3.10), after some manipulations on (4.9) and inserting (4.10) into the re-
sulted equation, we obtain

T

= /_1(’711)1.7?11(7', n)e(n)dn +/ (712)11?12(7, n)e(n)dn + Wy + W,

4.11) »
+Pn (D1(7)) + Pn (D2(7)) + Fi + F,

where

ZPN( [ cniRustem @iy o) - i)
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ZPN( [ nRiatrm (el ) ~ ).

Differentiating (4.11) with respect to 7, yields:

—( K (1, 7)e(r) = (y12)1 Kaa (7, 7)e(7) = /_Tl W

/ 5K12 712) e(m)dn + P'n (D1 (7)) + P'n (Da(7)) + F + Fs.

e(n)dn + W| + W,

(4.12)
Consequently, the second equation of (4.6) can be written as:

~ 8K
()i Roa (r, 7)e() — (ao)s oy 7)e / R DO )ty 4 5 4w
T 9K
+f dem P (Ds(r) + Pl (Da(r) + FL + F,
-1
(4.13)
where

27" (/T (21)iK (Tn,n)(ﬁfv(n)—z)"(n))dn),
ZP’ (/" Gee)iRastrm, )G o) = 2
N ~ ~

Ds(1) = Y- [ Gan)i (Pa(Ras(rn) = Ranlr)) s e
i=0 Y 1

N -
=> / 1(722)i(7’N(K22)(T, 1)) — Ko (7, n))ﬁﬁv(n)dn-
=07~
Now, considering (4.12) and (4.13) in the matrix notation (3.18) and using the Gronwall
inequality for the obtained equation, we conclude:
(4.14) IE| < C||Bl,
where

3 P'n(D1(7)) + P'N(D2(7)) + Wi + Wj + F| + F}
B =

W3 + Wy + Prn(Ds(1)) + Pan(Da(T)) + Fi + F§

In a similar manner to (3.21) and (3.22), we have

(4.15) IPN(D1(7))]| < ohax, |D1(7)] i 1)Z|L
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such that | Dy (7,,)| can be written as:

N Tn R R '
D)l =3 | [ s (PR ) = Ras ()b
i=0 1V —1 v
< 1|(Pw (Ris (1) = Bua(rasm) )| - o)
N =0
< ONT™ K1 (7o, )| g (1,0 D 9Nl poo(—1,1)
A~ ZEO .
< CN_m|K11(Tn,7))|Hm,N(71,1) Z ”:’]N”zL""(fl,l)
=0
< CN_m|I?11(Tn,77)|HmyN(71,1) Z (||€||L°°(71,1) + ||?7||L°°(71,1)) .
=0

We are now applying the well-known Sobolev inequality from [6]

1 F 1 1
lallzoe oy < (5= +2) " NullE a0l oy

where (a,b) C R is a bounded interval of the real line and u € H!(a,b).
It then follows from (3.4) and (3.5) that

N .

~ 3 N i

| D1 (1) < CN=™| K1 (T, )| Ermov (—1,1) D (CJ\“ [Ylm. (—1,1) + ||.7/||L°°(71,1)) :
i=0

On the other hand, using (3.1) and (3.23), similar to (3.24) and (3.25), we obtain

P (D)l < CNQIITVN(Dl(T))II

4.16 3 i ~ i
10 < ONE0 3 (CNE g oy + i)
=0

and

5 N 3 i
@17) PN D) < ONE ™0 37 (ONE ™ Bl g 1y + [l (1, ) -

i=0
Similarly,

||W1||<g1ax2\( [ iR @ - ' )dn) | m

TE( 1 1)Z|L
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such that

N
Z\( / ()i (7, m) G (r) = 5°0n)dn )| < IR (ras ) Y a0)i(y — 991

=2
N
< ClN K1 (T M)IN = dillzo 1,0y DGR + 05720+ + 5" lpe(-1,1)
=2
> 3~ . (lie
S C”Kll(Tnan))”N4 |y|Hm’N(—1,1) Z (”yN”lel(_l’l) +---+ ||y||Loo( 1 1))
=2
zN
= 3 _ -~ 3_ ~
< IR (s N Gl <1y 3 ((CNE™ Gl 1.1
=2
A~ ] 1
+”y”L°°(—1,1))Z -+ ||?l||Loo( 1 1))

and
5 N 3
(W] < Ce11 N+ ™|y gm.~(—1,0) Z ((CNZ?m|§|Hm,N(—1,1)
1=2
i—1
Il 1) T )
Using (3.1), we have
13 N 3
Wl < N = Glgmn 1y 3 (CN "Gl 1y
1=2

i—1
Il o) T T )

and
N
3_ ~
W3l < CouN ™ El w1y 3 ((CNF Tl rmn 1)
1=2

i—1
Bl ) T o TR )
Due to (3.1), (4.16) and (4.17), we obtain

IPn(Ds(r))l| < CN2I|7’N(D3( )

<CN2 mQ2IZ(0N4 m|Z/|HmN -1,1) +||Z/||L°°( 11))
i=0

N .
1P (Da(r)| < CNE™00 3 (CNE 2l 1,1y + Bll 1))

=0
and similarly
N
13 o~ 3_ ~
W31l < COou N Gl 1y 3 ((CNF "Gl a1y
=2

i—1
oo 1) T 1T )-
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and

N
13 _ ~ 3 _ ~
IWyll < C®2a N4 ~™|2] gm.n(_1,1) Z ((CN4 "2 oy (—1,0)
=2

~ i—1 i
Bl ) T Ry )-
Finally, according to (3.12) and (3.13) in the proof of Theorem 3.1 and applying (3.2)
and (3.3) form = 1, we have
1o~
IF || < [|Fillgr(—1,0) < CN? "M N (~1,1)5
1 omio
||F21|| S ||F2||H1(—1,1) S CN:= m|z|HM,N(,1’1).
Also, using (4.14) and the upper bound which is obtained for ||F}|| and || E§]|, together
with the above estimations, the desired estimates (4.7) and (4.8) are obtained. O

5. Numerical experiments. In the following, we implement the Legendre collocation
method on some test problems and show the reliability and efficiency of the presented method
and error estimation using program code written in Mathematica®. We will also show that
the proposed scheme can provide reasonable results for nonlinear as well as linear IAEs
systems.

EXAMPLE 5.1. Consider the following linear system of IAEs with index 1:

A)X(t) =g(t) +/0 K(t,s) X (s)ds, t €[0,1],

where
10 B3+s+1 (3s) +1
Alt) = [ 0 0 ] K(ts) = [ t+s+2 Z?§(3s)+2 )
X)) =) 20, gt)=[AE) LO]
and

A =1—(1+t+8)sint - %(3 + cos3t)(sin %)2,
fo(t) =1 —cost —2(1 + t)sint + 1—12(—8 — 6t + 8 cos 3t + sin 6t).
The exact solution of this system is
y(t) = cost, z(t) = sin 3t.

Let (Jn, 2n) and (g, 2) be the approximate and the exact solution of the system, respec-
tively, which is given by (2.5). The L?(—1,1) norm of the errors are reported in Table 5.1
and Figure 5.1.

EXAMPLE 5.2.

AWX(#) =g+ /Ot K(t,s)X(s)ds, t €[0,1],

where

P?P+s2+2 s+t+1
:|7 K(t7$) = [ e2t+s S+t2+2 )

z
o~

SN—r
I

| ——|
O =
o O
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TABLE 5.1
L?(—1,1) errors for Example 5.1.

N g~ = 9llz2(—1,1) IZv = 2llL2(-1,1
4 2.30 x 1074 9.60 x 104
6 2.25 x 1076 1.53 x 10~5
8 1.41 x 108 1.33x 107
10 6.04 x 10~11 7.48 x 1010
12 1.87 x 10713 2.92 x 1012

Log,,( Error)

FIG. 5.1. L2(—1,1) errors versus N for Example 5.1.

X(t)=[y(t) 2()]", g(t) =[f() L0,
and
[ = thl(S + 2t% — e%(5 — 2t + 4t?)) — (1 + t) arctan t — %ln(l +1%),
Falt) = 56 (-1 +¢%) - (2 + ) axctan — %111(1 +e2),
with the exact solution: y(t) = €2, z(t) 1

Tt
Table 5.2 and Figure 5.2 show the errors for several values of N and the associated

rate of convergence, which confirms the expected convergence of the method as described in
Theorem 3.1.
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TABLE 5.2
L2(—1,1) errors for Example 5.2.

N lgn — dllz2(=1,1) IZ8v — 2l|L2(—1,1
4 1.38 x 103 4.80 x 1073
6 7.89 x 1076 2.33x107°
8 2.71 x 108 5.90 x 106
10 7.10 x 10711 3.10 x 107
12 8.81 x 10713 5.62 x 107°

Log,,( Error)

_14; ]

FIG. 5.2. L2(—1, 1) errors versus N for Example 5.2.

The last test problem considers the following nonlinear IAEs system of index-1 from [ 16].
EXAMPLE 5.3.

u(t) = fi(t) + / e!=%y? (s)z(s)ds,

0 = f2(t) +/0 (1+t— s)y(s)z(s)ds, t €[0,1],

where
1
fit)=et - Ee*2t(3e3t —3cost + sint),
1
fa(t) = 5(—1 —t+e tcost),

with the exact solution: y(t) = e~ t, z(t) = cost.
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We work with the same conditions as in [16]. Let (u, v) be the approximation of the exact
solution (y, z). The errors for the numerical results obtained by using the spline collocation
method with m = 3,4 and N = 4, 6, 8, 10 for Radau II collocation parameters are presented
in Table 5.3; the L2— norm of the errors for the proposed method with several values of N

are also reported in the same Table. Figure 5.3 displays the exponential rate of convergence
which confirms the prediction of Theorem 4.1.

TABLE 5.3
Comparison of the spline collocation and Legendre spectral methods for Example 5.3.

Spline collocation method [16]

lly — ulloo [z — vl|oo
N m=3 m=4 m=3 m=4
4 499 x107% 445 x107° 1.69 x 107*  7.60 x 10°©
6 5.95 x 1077 2.35 x 1071° 529 x 1075  1.49 x 107°
8 1.33x 1077 296 x 10~ 228 x 1075 471 x 1077
10 424 x107%  6.01 x 10712 1.11x107°%  1.92x1077

Present method

||Z7N - §|IL2(—1,1) ||2N — 2”L2(—1,1)
8.74 x 1078 5.72 x 1073
1.29 x 1078 2.84 x 1078
1.12 x 10~ 1.01 x 101°
10 6.40 x 10715 3.00 x 1074

Log,,( Error)

3 4 5 6 7 8 9 10

FIG. 5.3. L2(—1,1) errors versus N for Example 5.3.
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Figure 5.4, presents a comparison between the error behaviours of the spline collocation
scheme with m = 4, N = 10 and the proposed method with N = 10. From Table 5.3 and
Figure 5.4, we can see that the Legendre spectral method coincide to a very high degree of
accuracy over the spline collocation method. This is also consistent with the prediction of
Theorem 4.1.

m=4, N=10 N=10
0 ! T 0 =
® Log, |y @® Log,l¥,-7l
* Logyq | z=v] * Logy, | 2y—2
,5 ,5, 4

(»:K»;K»:K»:K»:K:K»)K:K»:K-);

.__..__.—-0—-0——0-—0-—0—0—-0—-1
e

Log,q ( Error)
|
—_
(=)
Log,, ( Error)
|
—_
(=]
T
|

e *

’* e
-5 1 _ISL*-.._-Q!-——.-——}‘——-.-—-%——.'

-20¢ ] -20} 1
0.0 0.2 04 06 08 1.0 -1.0 -0.5 0.0 0.5 1.0

FIG. 5.4. The error behaviors for the spline collocation method with N = 10, m = 4 (Left) and the Legendre
spectral method for N = 10 (Right) in Example 5.3.

6. Conclusions. This paper studies the Legendre collocation method for the semi-explicit
IAEs system of index-1. The scheme consists of finding an explicit expression for the integral
terms of the equations associated with the Legendre collocation method. A posteriori error
estimation of the method in the L2 norm was obtained. It should be noticed that, the IAEs Sys-
tems are coupled systems consisting of the first and second kind Volterra equations, so that in
our considered numerical tests, we can not use the Legendre-Gauss-Radau or Gauss-Lobatto
points as the collocation points. An optimal error estimate may be obtained by choosing a
suitable collocation points. We may need to follow some other ways, in modifying the pro-
posed method in Section 2, to obtain the optimal rate of convergence which is the subject of
our future work.

Acknowledgement. The authors are very grateful to the two reviewers for carefully
reading this paper and for their comments and suggestions.
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