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APPLICATIONS OF A NONNEGATIVELY CONSTRAINED ITERATIVE
METHOD WITH STATISTICALLY BASED STOPPING RULES TO CT, PET, AND

SPECT IMAGING ∗

JOHNATHAN M. BARDSLEY†

Abstract. In this paper, we extend a nonnegatively constrained iterative method and three stopping rules for
its iteration to the medical imaging inverse problems of computed tomography (CT), positron emission tomography
(PET), and single photon emission computed tomography (SPECT); the iterative method and stopping rules were
introduced for the use in astronomical imaging. The paper begins with a brief introduction to the CT, PET, and
SPECT mathematical and statistical models.
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1. Introductory material. The medical imaging modalities of computed tomography
(CT), positron emission tomography (PET), and single photon emission computed tomog-
raphy (SPECT) are widely used in the medical professions. Because of the unique set of
strengths and weakness of each of these methods, they are utilized in different settings. How-
ever, mathematically they are closely related.

In this introductory section, we set the stage for the algorithmic discussion that consti-
tutes the main result of the paper by briefly introducing the mathematical models for CT,
PET, and SPECT imaging, their numerical discretization, and the associated statistical mod-
els. The mathematical discussion is included because it is accessible and will be of interest
to the unfamiliar reader, while the statistical models are integral to the development of the
computational methods that are our focus.

1.1. Mathematical models.CT is the most widely used of the three methods and has
the simplest mathematical model. In the two-dimensional case, which is our focus in this
paper, CT involves the reconstruction of the mass absorption functionµ of a body from one-
dimensional projections of that body. A particular one-dimensional projection is obtained by
integratingµ along all parallel lines making a given angleω with an axis in a fixed coordinate
system. Each lineL can be uniquely represented in this coordinate system byω together with
its perpendicular distancey to the origin.

SupposeL(ω, y) = {x(s) | 0 ≤ s ≤ S}, with an X-ray source located ats = 0 and
a sensor ats = S. The standard assumption is that the intensityI of the X-ray along a line
segmentds is attenuated via the model [6]

dI = −µ(x(s))I ds.

The resulting ordinary differential equation can be solvedusing the method of separation of
variables to obtain

I(S) = I(0)e−
R

S

0
µ(x(s)) ds,

∗ Received August 25, 2010. Accepted for publication October18, 2010. Published online February 21, 2011.
Recommended by R. Plemmons. This work was supported by the NSF under grant DMS-0915107, and by the
Physics Department at the University of Otago, New Zealand, who housed the author during his 2010-11 sabbatical
year.

† Department of Mathematical Sciences, University of Montana,Missoula, MT, 59812
(johnathan.bardsley@umontana.edu).

34



ETNA
Kent State University 

http://etna.math.kent.edu

A NONEGATIVELY CONSTRAINED ITERATIVE METHOD FOR CT, PET, AND SPECT 35

whereI(0) is the intensity at the source andI(S) is the intensity at the receiver. Setting
z = − ln(I(S)/I(0)), we obtain the Radon transform model for CT:

(1.1) z(ω, y) =

∫

L(ω,y)

µ(x(s)) ds.

A discretized version of (1.1) is what is solved in the CT inverse problem, wherez corre-
sponds to collected data, andµ is the unknown.

In both PET and SPECT, a somewhat different problem is solved. In both cases, a ra-
dioactive tracer element is injected into the body. The tracer then exhibits radioactive decay,
resulting in photon emission. The emitted photons that leave the body are, in theory, all
recorded by a photon detector, which also determines the line of response (LOR)L(ω, y). In
PET, two photons are emitted, and if they reach the detector ring at the same time (i.e., within
a few nanoseconds of each other), an event is registered along the connecting line, which is
also the LOR. In SPECT, single photons are emitted and detected. The LOR is determined
using a method known as columnation. In both cases, the task is to reconstruct the tracer
density distributionu within the subject given the collected photon count data.

In both PET and SPECT, the dataz(ω, y) for the lineL(ω, y) correspond to the number
of detected incidents along that line. The model relating the tracer densityu to the data is
similar to (1.1) and is given by

z(ω, y) =

∫

L(ω,y)

gω,y(x(s))u(x(s)) ds,

where the impulse response functiongω,y(x(r)) can be viewed as the probability that an
emission event located atx(r) alongL(ω, y) is detected.

For SPECT, we assume that the detector is located atx(S). Then, making assumptions
for probabilities analogous to those made for intensities in the derivation of the CT model
above, and assuming probability of 1 atx(r), one can obtaingω,y(x(r)) = e−

R

S

r
µ(x(t)) dt,

so that the full model becomes

(1.2) z(ω, y) =

∫

L(ω,y)

e−
R

S

s
µ(x(t)) dtu(x(s)) ds,

where the interior integral is along the lineL(ω, y).
For PET, since there are two photons that have to reach the respective detectors atx(0)

andx(S), the impulse response is the product of the probabilities,

gω,y(x(r)) = e−
R

r

0
µ(x(t)) dte−

R

S

r
µ(x(t)) dt = e−

R

L(ω,y)
µ(x(t)) dt,

which does not depend onr and hence we have the somewhat simpler mathematical model

(1.3) z(ω, y) = e−
R

L(ω,y)
µ(t) dt

∫

L(ω,y)

u(x(s)) ds.

A discussion of the PET mathematical and statistical modelsis given in [22].
Note the appearance of the absorption densityµ in both (1.2) and (1.3), which must be

known beforehand in order to solve the PET and SPECT inverse problems. Estimates ofµ
can be obtained using, for example, CT. Note also that brief derivations of all of these models
can be found in [14], whereas [6] focuses on CT, [15] on PET, and [4] on SPECT.
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1.2. Numerical discretization. After discretization, each of (1.1), (1.2), and (1.3) can
be written as a system of linear equations. The discretization occurs both in the spatial domain
whereµ andu are defined, as well as in the Radon transform domain where theindependent
variables areω andy. We will use a uniformn × n spatial grid, and a grid for the transform
domain withnω angles andns sensors, both uniformly spaced. Then, after column-stacking
the resulting two-dimensional grids, we obtain a matrix-vector system

(1.4) z = Au,

with the data vectorz ∈ Rnθns , the unknown vectoru ∈ Rn2

, and the forward model matrix
A ∈ Rn2×(nθns).

In the case of CT, for thei-th lineLi, we have the discrete model

zi =

n2
∑

j=1

aRadon
ij µj ,

where aRadon
ij is the intersection length ofLi with pixel j. Written as (1.4), we have

[A]ij = aRadon
ij anduj = µj .

For both PET and SPECT, the system of linear equations instead has the form

zi =

n2
∑

j=1

gija
Radon
ij uj ,

wheregij is the discrete impulse response function, which for PET is

gij = exp



−
n2
∑

k=1

aRadon
ik µk



 ,

(note no dependence onj) and for SPECT is

gij = exp



−
n2
∑

k=j

aRadon
ik µk



 .

Written as (1.4), we have [A]ij = exp
(

−∑n2

k=1 aRadon
ik µk

)

aRadon
ij for PET and

[A]ij = exp
(

−
∑n2

k=j aRadon
ik

)

aRadon
ij for SPECT.

1.3. Statistical models.The character of the noise in the dataz is an important consid-
eration, particularly in the cases of PET and SPECT.

In CT, because intensities are typically high, a statistical model of the form

(1.5) z = Au + n,

wheren is a zero mean, independent and identically distributed normal distribution with
varianceσ2, is not uncommon. The resulting likelihood function takes the form

(1.6) pz(z;u) ∝ exp

(

− 1

2σ2
‖Au − z‖2

)

.
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PET and SPECT data are typically much more noisy, and hence itis important to accu-
rately model noise statistics in these cases. We follow [4, 15], and use a Poisson statistical
model

(1.7) z = Poiss(Au + γ).

In this case, the likelihood function takes the form

(1.8) pz(z;u) =

n
∏

i=1

([Au]i + γi)
zi exp[−([Au]i + γi)]

zi!
.

Given image dataz arising from model (1.5) or (1.7), the maximum likelihood estimate
of u is obtained by maximizingpz(z;u) with respect tou ≥ 0, or equivalently by solving

(1.9) uML = arg min
u≥0

T (u; z),

where for likelihood (1.6),

(1.10) T (u; z) =
1

2σ2
‖Au − z‖2,

whereas for likelihood (1.8),

(1.11) T (u; z) =

n
∑

i=1

{([Au]i + γi) − zi ln([Au]i + γi)} .

Solutions of (1.9) tend to be noise-corrupted due both to random errors inz and ill-
conditioning of the matrixA, which in all cases is the discretization of a compact operator
[13]. Thus, some form of regularization is needed. One way that this can be accomplished
is by truncating an iterative method applied to (1.9) [5]. When this approach is taken, the
choice of stopping the iteration becomes extremely important and is akin to the choice of a
regularization parameter in the standard Tikhonov approach to regularization [5, 23].

In the context of PET imaging, the Richardson-Lucy algorithm (RL) is widely used. RL
is an iterative method for solving (1.9), (1.11) [10, 19], and stopping rules for its iterations
have been given [9, 16, 17, 18]. Much effort has gone into the development of efficient
iterative methods for PET; see, e.g., the review paper [15] and the references therein and also
[8]. In this paper, we apply the iterative method and stopping rules of [1, 3], developed in the
context of astronomical imaging, to (1.9) for both (1.10) and (1.11). The iterative method,
called modified residual norm steepest descent (MRNSD) in [12], was originally introduced
in [7] in the context of PET.

The remainder of the paper is organized as follows. In Section 2, we present the iterative
method and stopping rules that we will use for the image reconstruction step, and then in
Section3 we test our methods on some synthetically generated examples. Finally, we end
with conclusions in Section4.

2. An iterative method and stopping rules. It is now time to present our numerical
method and iteration stopping rules for approximately solving (1.9). The methods require a
least-squares formulation of the nonnegatively constrained optimization problem (1.9). For
noise model (1.5) andT defined by (1.10), this is already the case. However, for noise model
(1.7) an approximation of (1.11) must be computed. For this, we follow [1, 2], where a Taylor
series argument is used to motivate the following quadraticapproximation ofT :

T (u; z) ≈ T (ue; z) + Twls(u; z),
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where

(2.1) Twls(u; z)
def
=

1

2
‖C−1/2(Au − (z − γ))‖2,

with C = diag(z). Here we assume thatz > 0. This leads to the following approximation
of (1.9):

(2.2) uwls = arg min
u≥0

Twls(u; z).

Before continuing, we note thatT defined by (1.10) also can be written as (2.1), with
C = σ2

I andγ = 0. In what follows we will use this convention in order to unifynotation.
However, we note that this implies that the user knows the noise level‖n‖2 in (1.5) a priori.

2.1. The iterative method. The algorithm of [3] for the numerical solution of (2.2) has
the form

(2.3) uk+1 = uk − τkuk ⊙ A
T
C

−1(Auk − (z − γ)),

where “⊙ ” denotes Hadamard (component-wise) multiplication, and the line search param-
eterτk in (2.3) is given by

τk = min{τuc, τbd}.

Here,vk = uk ⊙ ∇Twls(uk) and

τuc =
〈vk,∇Twls(uk)〉2
〈vk,AT C−1Avk〉2

,

τbd = min {[uk]i/[vk]i | [vk]i > 0, [uk]i 6= 0} .

This method has been shown to be effective on several astronomical imaging examples. For
more details, see [1, 3]. In this paper, we will refer to this technique as weighted MRNSD, or
WMRNSD.

2.2. The stopping rules.Next, we introduce three stopping rules for (2.3). Each can be
motivated from the assumption that our statistical model has the form

(2.4) z − γ = Au + n,

wheren is distributed as a zero-mean Gaussian random vector with covariance matrixC.
For (1.5), γ = 0, C = σ2

I, and model (2.4) is exact. For (1.7), on the other hand, we take
C = diag(z), and the negative-log likelihood function (2.1) results. Note that alternative to
the mathematical derivation of (2.1) above, one can use the statistical approximation (2.4)
to derive the approximate maximum likelihood problem (2.1). More detailed derivations of
these stopping rules can be found in [1].

2.2.1. The discrepancy principle.Assuming that (2.4) holds,C−1/2(Aue − (z−γ)),
whereue is the true image, is approximately normally distributed with covarianceI. Then by
a standard result

2Twls(ue) ∼ χ2(n),

whereχ2(n) denotes the chi-squared distribution withn degrees of freedom, and hence

E(Twls(ue)) ≈
1

2
E(χ2(n)) =

n

2
.
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Since in early iterations2n Twls(uk) is typically much larger than1, a stopping rule of the
form

(2.5)
2

n
Twls(uk; z) ≤ 1 + ǫn

is therefore reasonable. We note thatǫn = 0 corresponds to Morozov’s discrepancy princi-
ple [11, 23], and we recommend its use unless (2.5) isn’t satisfied in a feasible number of
iterations or if it uniformly yields over-regularized reconstructed images. Otherwise,ǫn can
be taken to be, for example,±

√
2n/n, or ±2

√
2n/n, i.e.,± one or two times the standard

deviation ofχ2(n).
We note that for model (1.5), this stopping rule is equivalent to that presented in [21].

2.2.2. Generalized cross validation.In [16, 18] it is shown that the generalized cross
validation (GCV) method [5, 23] can be used to develop iteration dependent stopping rules
for the steepest descent and RL iterations. Following theirapproach, in [1] a GCV method is
developed for (2.3).

The GCV function for (2.1) at iterationk is defined by

(2.6) GCV(k) = n ‖C−1/2(Auk − (z − γ))‖2
/

trace(In − C
−1/2

AAk)2,

whereAk is the iterative regularization matrix satisfying

Ak(z − γ) = uk,

with uk thekth WMRNSD iterate. The idea is then to stop WMRNSD at the iterationk that
results in an increase in theGCV function.

In order to evaluateGCV(k) in practice,trace(In−C
−1/2

AAk) must be approximated.
This can be accomplished using the Trace Lemma [23]: given B ∈ Rn×n andv a discrete
white noise vector,E(vT

Bv) = trace(B). Thus given a realizationv from a white noise
process,

trace(In − C
−1/2

AAk) ≈ v
T
v − v

T
C

−1/2
AAkv.

Thus, if we knowAk, we can efficiently estimateGCV(k) at each iteration. However,
we don’t knowAk, nor do we want to compute it. Instead, we follow [16] and define

wk = Akv,

which yields the following approximation of (2.6):

(2.7) G̃CV(k) = n ‖C−1/2(Auk − (z − γ))‖2
/

(vT
v − v

T
C

−1/2
Awk).

An iteration forwk can be derived, following [1], and is given by

wk+1 = wk − τk[wk ⊙ A
T
C

−1(Auk − (z − γ))

+ uk ⊙ A
T
C

−1(Awk − v) ],
(2.8)

wherew0 = (u0 ⊙ v)/(z − γ).
Thus, we immediately have a stopping rule for WMRNSD iterations, namely, iterate

(2.3) and (2.8) simultaneously and stop the iterations if̃GCV(k) > G̃CV(k − 1), where

G̃CV(k) is defined in (2.7). As it is standard [23], we choosev so that its components are
either -1 or 1 with equal probability.
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FIG. 3.1. The Shepp-Vardi phantom is pictured in the upper-left. The simulated sinogram for CT and SPECT
are given, respectively, in the middle and right.

2.2.3. The unbiased predictive risk estimator.Similar to GCV is the unbiased predic-
tive risk estimator (UPRE) [23]. With UPRE, the goal is to choose the iterationk for which
the predictive riskE

(

2
nTwls(uk; ze)

)

, whereze = Aue +γ, is smallest. The UPRE function
for (2.1) is

(2.9) UPRE(k) =
2

n
Twls(uk; z) +

2

n
trace

(

C
−1/2

AAk

)

− 1.

It is derived as in [23] for regular least-squares problems and is an unbiased estimator of the
predictive risk, hence its name. Following the same approach as for GCV, we can approximate
(2.9) by

(2.10) ŨPRE(k) =
2

n
Twls(uk; z) +

2

n
v

T
C

−1/2
Awk − 1,

wherev andwk are as above.
Thus, we have our third stopping rule for WMRNSD iterations; namely, iterate (2.3) and

(2.8) simultaneously, and stop the iterations if̃UPRE(k) > ŨPRE(k−1), whereŨPRE(k)
is defined in (2.10).

3. Numerical results. We now demonstrate the effectiveness of our methods on syn-
thetically generated examples for each of the CT, PET, and SPECT imaging problems. For
each of our tests we use the Shepp-Vardi phantom [20], given on the left in Figure3.1, as
the true image, generated by using MATLAB’sphantom function. For data generation in
CT, PET, and SPECT, we use the discretization of models (1.1), (1.3), and (1.2), respectively,
described in Section1.2. For PET, we ignore attenuation corresponding toµ = 0 in (1.3),
which is common in synthetic numerical experiments done in the PET literature. For SPECT,
we follow [4] and takeµ = 1 where the absorption density of the body is positive andµ = 0
otherwise. The statistical model used for generating the CTdata is (1.5), while for PET and
SPECT it is (1.7). The noisy sinogram data for CT and SPECT are given in the middle and
on the left in Figure3.1. The sinogram for PET looks structurally very similar to theCT
sinogram with noise more characteristic of the SPECT sinogram, thus we do not include it.
The signal-to-noise level for these examples is approximately 30.

The inverse problem is to reconstruct the Shepp-Vardi phantom given the respective sino-
gram dataz and the forward model matrixA. We do this by using the iterative method and
stopping rule presented in Section2 with an initial guess ofu0 = 1 and the three stopping
rules, withǫn = 0 in (2.5). The computations were done in MATLAB.
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FIG. 3.2.CT Example. On the left and in the middle are the reconstructions obtained using the DP and UPRE
stopping rules, respectively, and on the right is a plot of the relative error with the stopping iterations labeled.
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FIG. 3.3.PET Example. On the left and in the middle are the reconstructions obtained using the DP and GCV
stopping rules, respectively, and on the right is a plot of the relative error with the stopping iterations labeled.

For the CT example, the reconstruction given by the DP and UPRE stopping rules are
given on the left and middle, respectively, in Figure3.2. On the right is a plot of the relative
error‖uk − utrue‖/‖utrue‖ with the stopping iterations for DP, GCV, and UPRE labeled. In
this example, the reconstructions for the three methods arevisually very similar.

Before continuing, we note that GCV and UPRE depend, throughiteration (2.8), upon
the particular randomly drawn vectorv. We have observed that differentv yield different
stopping iterations. Though the methods seem to be relatively stable with respect to the
choice ofv, additional stability can be obtained through averaging ifmultiple values ofv are
chosen, and multiple iterations of the form (2.8) are implemented.

Additionally, we have found that regularly restarting the iteration (2.8) within the WM-
RNSD iterations yields more effective stopping rules. In the results shown in Figure3.2,
as well as those that follow, we restart (2.8) every tenth WMRNSD iterations by setting
wk = (uk ⊙ v)/(z − γ).

For the PET example, the reconstruction given by the DP and GCV stopping rules are
given on the left and middle in Figure3.3. On the right is a plot of the relative error with
the stopping iterations for DP, GCV, and UPRE labeled. In this case, the GCV and UPRE
reconstructions appear slightly sharper than the DP reconstruction and have a slightly smaller
relative error.

For the SPECT example, the reconstruction given by the DP andGCV stopping rules are
given on the left and center in Figure3.4. On the right is a plot of the relative error with the
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FIG. 3.4. SPECT Example. On the left and in the middle are the reconstructions obtained using the DP and
GCV stopping rules, respectively, and on the right is a plot of the relative error with the stopping iterations labeled.

stopping iterations for DP, GCV, and UPRE labeled. In this case, once again, the GCV and
UPRE reconstructions appear slightly sharper than the DP reconstruction, and have a slightly
smaller relative error.

As it is the case for the discrepancy principle for regularization parameter selection in
the case of Tikhonov regularization, the discrepancy principle consistently underestimates the
stopping iteration. On the other hand, whereever we’ve chosen ǫn = 0 in (2.5), a negative
value could reasonably be chosen as well, e.g., one standarddeviation below the mean of the
χ2(n), or ǫn = −

√
2n/n.

4. Conclusions.We have presented an iterative method and three statistically motivated
stopping rules for solving inverse problems arising in the applications of CT, PET, and SPECT
imaging. For PET and SPECT, a quadratic approximation of thenegative-log Poisson like-
lihood function is needed in order to motivate the use of (2.1), whereas in the CT example
Gaussian data, and hence a least-squares likelihood, are assumed. This allows for the im-
plementation of the simple nonnegatively constrained WMRNSD algorithm of [1, 3] to be
applied in all cases.

Stopping rules for WMRNSD follow from a Gaussian approximation of the data-noise
model. For CT, such a model is assumed, whereas for PET and SPECT, an approximation
(2.4) of a Poisson statistical model of the form (1.7) is used. The Gaussian/least-squares
assumptions allow for the development of three stopping rules: the discrepancy principle,
generalized cross validation, and unbiased predictive risk estimation. All three of these meth-
ods work in practice, as the numerical experiments show.

The codes used to perform the numerical experiments in this paper can be obtained from
the author.
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