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APPLICATIONS OF A NONNEGATIVELY CONSTRAINED ITERATIVE
METHOD WITH STATISTICALLY BASED STOPPING RULES TO CT, PET, AND
SPECT IMAGING *

JOHNATHAN M. BARDSLEY'

Abstract. In this paper, we extend a nonnegatively constrained iteratethod and three stopping rules for
its iteration to the medical imaging inverse problems of congbtaenography (CT), positron emission tomography
(PET), and single photon emission computed tomography (SPERA jterative method and stopping rules were
introduced for the use in astronomical imaging. The papernisegith a brief introduction to the CT, PET, and
SPECT mathematical and statistical models.
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1. Introductory material. The medical imaging modalities of computed tomography
(CT), positron emission tomography (PET), and single phamission computed tomog-
raphy (SPECT) are widely used in the medical professionsaBse of the unique set of
strengths and weakness of each of these methods, theylaredith different settings. How-
ever, mathematically they are closely related.

In this introductory section, we set the stage for the atoric discussion that consti-
tutes the main result of the paper by briefly introducing thethamatical models for CT,
PET, and SPECT imaging, their numerical discretizatioi, thie associated statistical mod-
els. The mathematical discussion is included because dcissaible and will be of interest
to the unfamiliar reader, while the statistical models ategral to the development of the
computational methods that are our focus.

1.1. Mathematical models. CT is the most widely used of the three methods and has
the simplest mathematical model. In the two-dimensionakcavhich is our focus in this
paper, CT involves the reconstruction of the mass absarfioction. of a body from one-
dimensional projections of that body. A particular one-éitsional projection is obtained by
integratingu along all parallel lines making a given anglevith an axis in a fixed coordinate
system. Each liné can be uniquely represented in this coordinate systemtogether with
its perpendicular distanagto the origin.

SupposeL(w,y) = {z(s) | 0 < s < S}, with an X-ray source located at= 0 and
a sensor at = S. The standard assumption is that the intensitf the X-ray along a line
segmentls is attenuated via the modd][

dI = —p(x(s))I ds.

The resulting ordinary differential equation can be solusthg the method of separation of
variables to obtain

I(S) = I(0)e™ Ji n() ds,
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whereI(0) is the intensity at the source addS) is the intensity at the receiver. Setting
z=—1In(I(S)/I1(0)), we obtain the Radon transform model for CT:

(1.1) o) = [ s

A discretized version of1(1) is what is solved in the CT inverse problem, whereorre-
sponds to collected data, apds the unknown.

In both PET and SPECT, a somewhat different problem is solredboth cases, a ra-
dioactive tracer element is injected into the body. Thedralsen exhibits radioactive decay,
resulting in photon emission. The emitted photons thatdeae body are, in theory, all
recorded by a photon detector, which also determines thefinesponse (LOR) (w, y). In
PET, two photons are emitted, and if they reach the deteictpit the same time (i.e., within
a few nanoseconds of each other), an event is registered #ierconnecting line, which is
also the LOR. In SPECT, single photons are emitted and aetedthe LOR is determined
using a method known as columnation. In both cases, the sasgkrieconstruct the tracer
density distribution: within the subject given the collected photon count data.

In both PET and SPECT, the datéw, y) for the line L(w, y) correspond to the number
of detected incidents along that line. The model relatirggttacer density: to the data is
similar to (L.1) and is given by

z(w,y) = /L(w,y) Guy(x(8))u(z(s))ds,

where the impulse response functign, (x(r)) can be viewed as the probability that an
emission event located a{r) alongL(w, y) is detected.

For SPECT, we assume that the detector is located$t. Then, making assumptions
for probabilities analogous to those made for intensitiethe derivation of the CT model
above, and assuming probability of 1:t-), one can obtaim,, , (x(r)) = e~ J @t dt,
so that the full model becomes

(12) z(w,y) — /L( )67 Jés #(m(t))dtu(z(s)) dS,
w,y

where the interior integral is along the lidgw, v).
For PET, since there are two photons that have to reach theatge detectors at(0)
andz(.9), the impulse response is the product of the probabilities,

Gy (@(r)) = o= 5 M) dt = [ naO) dt _ =y ) dt,

which does not depend onand hence we have the somewhat simpler mathematical model
(1.3) 2(w,y) =€ Je o #® dt/ u(z(s)) ds.
L(w,y)

A discussion of the PET mathematical and statistical madeajs/en in 22].

Note the appearance of the absorption densiiy both (1.2) and (L.3), which must be
known beforehand in order to solve the PET and SPECT inverdgdgms. Estimates qf
can be obtained using, for example, CT. Note also that beg¥altions of all of these models
can be found in14], whereas §] focuses on CT,15] on PET, and4] on SPECT.
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1.2. Numerical discretization. After discretization, each ofl(1), (1.2), and (.3) can
be written as a system of linear equations. The discredizattcurs both in the spatial domain
wherey, andwu are defined, as well as in the Radon transform domain wheradependent
variables arev andy. We will use a uniforrn x n spatial grid, and a grid for the transform
domain withn,, angles anch, sensors, both uniformly spaced. Then, after column-stacki
the resulting two-dimensional grids, we obtain a matrigtoe system

1.4) z = Au,

with the data vectoz € R™?™=, the unknown vecton € R”Q, and the forward model matrix
A ¢ R x(noms),
In the case of CT, for théth line L;, we have the discrete model

nz

_ Radon
Zi = A5 My,
j=1

where a}*°" is the intersection length of; with pixel j. Written as (.4), we have
[A];; = a%ad‘m andu; = p;.
For both PET and SPECT, the system of linear equations ishéi@sthe form

2
n

o Radon
Zi = g Gij Q5 Uj,
j=1

whereg;; is the discrete impulse response function, which for PET is
712
Gij = €Xp | — Z a?/{?donﬂk )
k=1
(note no dependence ghand for SPECT is
n2
gij = €Xp | — Z a4 .
k=j

Written as (.4), we have[A];; = exp (— o aﬁ?donuk> apdon for PET and
[A];j = exp (— ZZ; af}fdon) a%adon for SPECT.

1.3. Statistical models.The character of the noise in the dates an important consid-
eration, particularly in the cases of PET and SPECT.
In CT, because intensities are typically high, a statitivadel of the form

(1.5) z=Au+n,

wheren is a zero mean, independent and identically distributednabdistribution with
variances?, is not uncommon. The resulting likelihood function takes form

1
(1.6) pa(z;u) < exp [ ——||Au—z|? ).
202
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PET and SPECT data are typically much more noisy, and herngé@nitportant to accu-
rately model noise statistics in these cases. We follgwL$], and use a Poisson statistical
model

a.7) z = PoisgAu + v).

In this case, the likelihood function takes the form

(1.8) pa(z;u) = H ([Aul; + ;)% exp[—([Au]; + ;)]

i=1

Given image data arising from model 1.5) or (1.7), the maximum likelihood estimate
of u is obtained by maximizing,(z; u) with respect tax > 0, or equivalently by solving

(1.9) uyg = arg ILPZiI(}T(u; z),
where for likelihood {.6),
1
: T(w;z) = —||Au—z|?
(1.10) (w2) = 55| Au -2

whereas for likelihood(.8),

(1.11) T(wz) =Y {([Auli + ) — z In([Au]; +7,)} .
=1

Solutions of (.9) tend to be noise-corrupted due both to random errors amd ill-
conditioning of the matrixA, which in all cases is the discretization of a compact operat
[13]. Thus, some form of regularization is needed. One way thiatdan be accomplished
is by truncating an iterative method applied 09 [5]. When this approach is taken, the
choice of stopping the iteration becomes extremely imporaad is akin to the choice of a
regularization parameter in the standard Tikhonov apgréoacegularization, 23).

In the context of PET imaging, the Richardson-Lucy algonitfRL) is widely used. RL
is an iterative method for solvind.(9), (1.1 [10, 19], and stopping rules for its iterations
have been given9| 16, 17, 18. Much effort has gone into the development of efficient
iterative methods for PET; see, e.g., the review papgrdnd the references therein and also
[8]. In this paper, we apply the iterative method and stoppingsrof [1, 3], developed in the
context of astronomical imaging, td.9) for both (1.10 and (L.11). The iterative method,
called modified residual norm steepest descent (MRNSD)4h fvas originally introduced
in [7] in the context of PET.

The remainder of the paper is organized as follows. In Se@jove present the iterative
method and stopping rules that we will use for the image rsiroation step, and then in
Section3 we test our methods on some synthetically generated exampieally, we end
with conclusions in SectioA.

2. An iterative method and stopping rules. It is now time to present our numerical
method and iteration stopping rules for approximately isg\(1.9). The methods require a
least-squares formulation of the nonnegatively consticioptimization problemi(9). For
noise model 1.5 andT defined by {.10), this is already the case. However, for noise model
(1.7) an approximation ofl(.11) must be computed. For this, we follo, 2], where a Taylor
series argument is used to motivate the following quadegifiroximation ofl™:

T(u;z) = T(ue;z) + Twis(u; 2),
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where
of 1,
(2.1) Tys(w;z) € [ CT2(Au — (z— 7)),

2
with C = diag(z). Here we assume that> 0. This leads to the following approximation
of (1.9):

2.2 wls = in Tys(u; ).
(2.2) Uyls = arg min 1s(u;2)

Before continuing, we note thdt defined by .10 also can be written a® (1), with
C = ¢%I and~ = 0. In what follows we will use this convention in order to unifgtation.
However, we note that this implies that the user knows theenleivel||n||? in (1.5) a priori.

2.1. The iterative method. The algorithm of B] for the numerical solution of4.2) has
the form

(2.3) Ugy1 = U — TpUp O ATC’I(Auk — (Z - "}’)),
where “© " denotes Hadamard (component-wise) multiplication, dmdline search param-
eterry, in (2.3 is given by
T = min{7yc, Tha }-
Here,viy = u; © VTyis(u,) and
(Vi, VTyis(ug))2

<V;€, ATC_IAVk>2 ’

Toa = min {[ugli/[vili | [vi]i >0, [ug]; # 0}.
This method has been shown to be effective on several astioabimaging examples. For

more details, se€l] 3]. In this paper, we will refer to this technique as weighteRNSD, or
WMRNSD.

Tuc =

2.2. The stopping rules.Next, we introduce three stopping rules far3). Each can be
motivated from the assumption that our statistical modsltha form

(2.4) z —~ = Au+n,

wheren is distributed as a zero-mean Gaussian random vector withriemce matrixC.
For (1.5, v = 0, C = ¢?I, and model 2.4) is exact. For1.7), on the other hand, we take
C = diag(z), and the negative-log likelihood functiof.() results. Note that alternative to
the mathematical derivation of (1) above, one can use the statistical approximatid)
to derive the approximate maximum likelihood probleil). More detailed derivations of
these stopping rules can be found if. [

2.2.1. The discrepancy principle. Assuming thatZ.4) holds,C~/?(Au, — (z — 7)),
whereu, is the true image, is approximately normally distributethvgovariancd. Then by
a standard result

2Twls(ue) ~ XQ(n)7
wherex?(n) denotes the chi-squared distribution witliegrees of freedom, and hence

B(Tws(.) ~ L BGC() = 5.
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Since in early iteration% Twis(ug) is typically much larger than, a stopping rule of the
form

2
(25) *Twls(uk;z) S 1 +€pn
n

is therefore reasonable. We note that= 0 corresponds to Morozov’s discrepancy princi-
ple [11, 23], and we recommend its use unle&sy isn't satisfied in a feasible number of
iterations or if it uniformly yields over-regularized retsiructed images. Otherwisg, can
be taken to be, for example;/2n/n, or +2v/2n/n, i.e., + one or two times the standard
deviation ofx?(n).

We note that for modell(5), this stopping rule is equivalent to that presente®ij.[

2.2.2. Generalized cross validationIn [16, 18] it is shown that the generalized cross
validation (GCV) method4, 23] can be used to develop iteration dependent stopping rules
for the steepest descent and RL iterations. Following iygaroach, in]] a GCV method is
developed forZ.3).

The GCV function for 2.1) at iterationk is defined by

(2.6) GCV(k) =n||C*(Auy — (z — 'y))||2/trace(1n _CTU2AAL),
whereA is the iterative regularization matrix satisfying

Ay(z — ) = uy,

with uy the kth WMRNSD iterate. The idea is then to stop WMRNSD at the iterati that
results in an increase in tlieCV function.

In order to evaluat€&CV (k) in practice trace(I, —C~'/? A A;) must be approximated.
This can be accomplished using the Trace Lem#&gk [given B € R™*™ andv a discrete
white noise vectorE(vI'Bv) = trace(B). Thus given a realizatiom from a white noise
process,

trace(I, — C"V2AA) ~viv —vIC /2AA,v.

Thus, if we knowA, we can efficiently estimat€CV (k) at each iteration. However,
we don’'t knowA ;, nor do we want to compute it. Instead, we folloWs] and define

wi = Agv,
which yields the following approximation of(6):
@7)  GOV(k) =n |[C V2 (A — (2= )|/ (v = v C /2 Awy).
An iteration forwy, can be derived, followingl]], and is given by

Wil = Wi — Tp[WE O ATC*I(Auk —(z—7))

2.8
28) + u, O ATC_l(AWk—V) 1,

wherew, = (up © v)/(z — 7).

Thus, we immediately have a stopping rule for WMRNSD iteragionamely, iterate
(2.3) and @.8) simultaneously and stop the iterationsG/ET/(k) > (?(\f/(k — 1), where
@T/(k) is defined in 2.7). As it is standard43], we choosev so that its components are
either -1 or 1 with equal probability.
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100 100 100

120 120 120)

FIG. 3.1. The Shepp-Vardi phantom is pictured in the upper-left. Timeisted sinogram for CT and SPECT
are given, respectively, in the middle and right.

2.2.3. The unbiased predictive risk estimator.Similar to GCV is the unbiased predic-
tive risk estimator (UPRE)Z3]. With UPRE, the goal is to choose the iteratibrior which
the predictive riske (2 Tys(uk; z.)), Wherez, = Au,++, is smallest. The UPRE function
for (2.1) is

(2.9) UPRE(k) = 2 Toss (1 7) + 2 trace (0—1/2AAk) ~1
n n

It is derived as in23] for regular least-squares problems and is an unbiasedasti of the
predictive risk, hence its name. Following the same appraador GCV, we can approximate
(2.9 by

(2.10) UPRE(k) = =Tyis(ug;z) + = vIC12Aw;, — 1,
n n

wherev andw;, are as above.
Thus, we have our third stopping rule for WMRNSD iteratioremely, iterateZ.3) and

(2.8) simultaneously, and stop the iteration&liPRE (k) > Im(k —1), whereUPRE(k)
is defined in 2.10).

3. Numerical results. We now demonstrate the effectiveness of our methods on syn-
thetically generated examples for each of the CT, PET, artelC3Hmaging problems. For
each of our tests we use the Shepp-Vardi phant@th given on the left in Figures.1, as
the true image, generated by using MATLAB®ant omfunction. For data generation in
CT, PET, and SPECT, we use the discretization of model3,((1.3), and (L.2), respectively,
described in Sectiof.2. For PET, we ignore attenuation correspondingite= 0 in (1.3),
which is common in synthetic numerical experiments doneéRET literature. For SPECT,
we follow [4] and takeu = 1 where the absorption density of the body is positive ard 0
otherwise. The statistical model used for generating thel&@@ is (.5), while for PET and
SPECT itis (.7). The noisy sinogram data for CT and SPECT are given in thelimiand
on the left in Figure3.1 The sinogram for PET looks structurally very similar to tB&
sinogram with noise more characteristic of the SPECT semogthus we do not include it.
The signal-to-noise level for these examples is approxina0.

The inverse problem is to reconstruct the Shepp-Vardi mmaigiven the respective sino-
gram dataz and the forward model matriA. We do this by using the iterative method and
stopping rule presented in Secti@with an initial guess ofyy = 1 and the three stopping
rules, withe,, = 0in (2.5). The computations were done in MATLAB.
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MRNSD Reconstructed Image MRNSD Reconstructed Image Relative Error Norm

—— Relative Error nom
09 O DP stopping feration

O GCV stopping iterations
0 UPRE stopping iteration

100 100

120 120

20 0 60 80 100 120 20 40 60 80 100 120 0 20 0 60 80 100 120
lteration

FiG. 3.2.CT Example. On the left and in the middle are the reconsioastobtained using the DP and UPRE
stopping rules, respectively, and on the right is a plot ef slative error with the stopping iterations labeled.

CCPMRNSD Reconstructed Image CCPMRNSD Reconstructed Image ‘True Error Norm

—— Relative Error nom

09 O DP stopping ieration

Q  GCV stopping iterations
0 UPRE stopping iteration

100] 100 03

120] 120

80
eration

FiG. 3.3.PET Example. On the left and in the middle are the reconstmstobtained using the DP and GCV
stopping rules, respectively, and on the right is a plot efelative error with the stopping iterations labeled.

For the CT example, the reconstruction given by the DP andEJB#®pping rules are
given on the left and middle, respectively, in Fig@&. On the right is a plot of the relative
error [[ug — Ugre||/||utrue|| With the stopping iterations for DP, GCV, and UPRE labeled. |
this example, the reconstructions for the three methodsisweally very similar.

Before continuing, we note that GCV and UPRE depend, thrategation ¢.8), upon
the particular randomly drawn vecter We have observed that differentyield different
stopping iterations. Though the methods seem to be relatstable with respect to the
choice ofv, additional stability can be obtained through averaginguttiple values ofv are
chosen, and multiple iterations of the forth&) are implemented.

Additionally, we have found that regularly restarting theration ¢.8) within the WM-
RNSD iterations yields more effective stopping rules. la tesults shown in Figurd.2,
as well as those that follow, we restaft.§) every tenth WMRNSD iterations by setting
wi = (u, ©v)/(z - 7).

For the PET example, the reconstruction given by the DP and &Gpping rules are
given on the left and middle in Figur@3. On the right is a plot of the relative error with
the stopping iterations for DP, GCV, and UPRE labeled. Is tid@se, the GCV and UPRE
reconstructions appear slightly sharper than the DP réicantion and have a slightly smaller
relative error.

For the SPECT example, the reconstruction given by the DREEEM stopping rules are
given on the left and center in FiguBe4. On the right is a plot of the relative error with the
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'CPMRNSD Reconstructed Image CPMRNSD Reconstructed Image True Error Norm

— Relative Error norm

09 O DP stopping teration

20 2] & GCV stopping iterations
O UPRE stopping feration

100 100 03

120 120

20 0 60 80 100 120 20 0 60 80 100 120 0 20 0 60 80 00 120 140
Iteration

FIG. 3.4. SPECT Example. On the left and in the middle are the recoctstins obtained using the DP and
GCV stopping rules, respectively, and on the right is a pfdhe relative error with the stopping iterations labeled.

stopping iterations for DP, GCV, and UPRE labeled. In thisegance again, the GCV and
UPRE reconstructions appear slightly sharper than the Béhstruction, and have a slightly
smaller relative error.

As it is the case for the discrepancy principle for regulaitn parameter selection in
the case of Tikhonov regularization, the discrepancy placonsistently underestimates the
stopping iteration. On the other hand, whereever we've @hes = 0 in (2.5), a negative
value could reasonably be chosen as well, e.g., one staddaiation below the mean of the

XQ(n)v ore, = —\/%/n.

4. Conclusions. We have presented an iterative method and three statigticativated
stopping rules for solving inverse problems arising in thplizations of CT, PET, and SPECT
imaging. For PET and SPECT, a quadratic approximation ohtgative-log Poisson like-
lihood function is needed in order to motivate the use2of)( whereas in the CT example
Gaussian data, and hence a least-squares likelihood, sumed. This allows for the im-
plementation of the simple nonnegatively constrained WMRNEorithm of [1, 3] to be
applied in all cases.

Stopping rules for WMRNSD follow from a Gaussian approximatof the data-noise
model. For CT, such a model is assumed, whereas for PET an@TBRIE approximation
(2.4) of a Poisson statistical model of the forrh.7) is used. The Gaussian/least-squares
assumptions allow for the development of three stoppingstuthe discrepancy principle,
generalized cross validation, and unbiased predictikeassimation. All three of these meth-
ods work in practice, as the numerical experiments show.

The codes used to perform the numerical experiments in #geipcan be obtained from
the author.
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