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Abstract. We are interested in (approximate) eigenvalue inclusion regions for matrix pencils(A, B), in partic-
ular of large dimension, based on certain fields of values. We show how the usual field of values may be efficiently
approximated for large Hermitian positive definiteB, but also point out limitations of this set. We introduce four
field of values based inclusion regions, which may effectively be approximated, also for large pencils. Furthermore,
we show that these four sets are special members of two families of inclusion regions, of which we study several
properties. Connections with the usual harmonic Rayleigh–Ritz method and a new variant are shown, and we pro-
pose an automated algorithm which gives an approximated inclusion region. The results are illustrated by several
numerical examples.
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1. Introduction. For n × n matricesA and B, consider the generalized eigenvalue
problem

(1.1) Ax = λBx.

We are interested in practical (approximate) spectral inclusion regions for (1.1), in particular
for large pencils, based on certain fields of values. The fieldof values of ann × n real or
complex matrixA,

W (A) = {x∗Ax : ‖x‖ = 1} ,

where‖ · ‖ denotes the two-norm, has been extensively studied; see, for instance, [2].
The field of values (or numerical range) of a matrix pencil(A,B) was defined as

(1.2) W (A,B) = {λ ∈ C : x∗(A − λB)x = 0, x ∈ C
n, ‖x‖ = 1},

and examined in [4, 7]; see also [5].
If B is singular, then the pencil(A,B) may have an infinite eigenvalue. However, by

definition the set(1.2) does not contain the point at infinity. As a consequence, fromthis
definition,W (A,B) is not necessarily a spectral inclusion region. Therefore,we will work
with a slightly modified definition and add the point at infinity to W (A,B) if B is singular.
A homogeneous expression equivalent to this is the set

W (A,B) =

{

α

β
: x∗(βA − αB)x = 0, ‖x‖ = 1, (α, β) 6= (0, 0)

}

.

We can also use yet another equivalent definition: if there exists a nonzerox for which
x∗Ax = x∗Bx = 0, thenW (A,B) = C ∪ {∞}; otherwise

W (A,B) =

{

x∗Ax

x∗Bx
: x 6= 0

}

,
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where1/0 is understood as the point at infinity. Note that all definitions can be formulated to
range over all nonzero vectors or over all vectors of unit norm with straightforward adapta-
tions.

If B is Hermitian positive definite (HPD), it can be decomposed asB = LL∗ (for in-
stance, the matrix square root or the Cholesky factorization), and we have (cf. [7])

W (A,B) =

{

x∗Ax

x∗Bx
: x 6= 0

}

=

{

y∗L−1AL−∗y

y∗y
: y 6= 0

}

= W (L−1AL−∗).

One of the properties ofW (A,B) is that it is unbounded if (and only if)0 ∈ W (B) [4]. Since
our interest is in spectral inclusion regions for the pencil(A,B), this is clearly an unattractive
feature: ifB is nonsingular but0 ∈ W (B), then the spectrum is bounded, but the inclusion
region W (A,B) is unbounded, and therefore not very informative. This motivates us to
examine other field of values types of inclusion regions.

The rest of the paper has been organized as follows. In Section 2, we introduce four
inclusion regions of field of values type for matrix pencils.Section3 studies the question
how to efficiently approximateW (A,B) for HPD B, for matrices of both small and large
dimension. Section4 examines how to obtain eigenvalue inclusion regions based on fields of
values for non HPDB; we will exploit the sets introduced in Section2. Section5 extends
these four special inclusion regions to two different families of inclusion regions. By varying
a parameter (thetarget), we can generate infinitely many inclusion regions. We willstudy
several theoretical properties of the sets, as well as theirpractical computation.

Section6 points out connections of these families with the usual harmonic Rayleigh–Ritz
method for the generalized eigenvalue problem, and a new variant of this approach (theleft-
harmonic Rayleigh–Ritzmethod). Sections7 gives an automated algorithm and an additional
numerical experiment. We end with some conclusions in Section8.

2. Four inclusion regions of field of values type for matrix pencils. If B is nonsingu-
lar, then the spectrum ofB−1A coincides with that of the pencil(A,B). As a consequence,

(2.1) W (B−1A)

is a spectral inclusion region for (1.1). Similarly,

(2.2) W (AB−1)

is also an inclusion region for (1.1); note that both sets are generally not equal toW (A,B).
Next, we consider two different inclusion regions, which, to our best knowledge, have

not been previously considered. We interchange the roles ofA and B, and consider the
generalized eigenvalue problemBx = λ−1Ax. For nonsingularA, the sets

(2.3)
1

W (A−1B)

and

(2.4)
1

W (BA−1)

are also eigenvalue inclusion regions for (1.1). Hereby, division and addition, which is used
later in the paper, are interpreted elementwise: for a setS and a numberγ we define

1

S
+ γ =

{

1

ζ
+ γ : ζ ∈ S

}

.
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Note that the sets (1.2), (2.1), and (2.2) all reduce to the usual field of valuesW (A) for the
pencil (A, I), whereI denotes the identity matrix. The following simple example indicates
the potential advantage of the sets (2.1) and (2.2) as inclusion regions, over the set (1.2).

EXAMPLE 2.1. LetA = diag(1, 2) andB = diag(1,−1). Note that0 ∈ W (B). Then
the eigenvalues are−2 and1, and one may verify that the sets (2.1) and (2.2) are equal to the
interval [−2, 1], which is the smallest convex spectral inclusion region possible. In contrast
to this, the sets (2.3), (2.4), andW (A,B) are all equal to(−∞,−2] ∪ [1,∞) ∪ {∞}.
For W (A,B) this can be seen from the implication: ifλ ∈ W (A,B) then it must hold that
|x1|

2 + 2 |x2|
2 − λ(|x1|

2 − |x2|
2) = 0 together with the constraint|x1|

2 + |x2|
2 = 1. Here

clearly, as inclusion regions,W (B−1A) andW (AB−1) are superior to the other three sets.
However, the converse can also hold. In the next example we show a typical case where

W (A,B) is a tighter inclusion region than (2.1), (2.2), (2.3), and (2.4): if A is Hermitian,
andB is HPD.

EXAMPLE 2.2. We take the matricesA = bcsstk06 andB = bcsstm06 of di-
mensionn = 420 from the Matrix Market [6]; this problem arises in structural engineer-
ing. A is Hermitian,B is diagonal with positive elements. SinceL−1AL−∗ is Hermitian,
W (A,B) = W (L−1AL−∗) is the ideal convex inclusion region[λmin, λmax]; no convex
inclusion region can be smaller. The matricesB−1A andAB−1 are non-Hermitian, and their
field of values is much larger.

As already illustrated by Example2.1, the sets (2.1), (2.2) on the one hand, and (2.3),
(2.4) on the other, differ in nature.W (B−1A) and W (AB−1) are closed, bounded, and
convex spectral inclusion sets. The set1/W (A−1B) is generally non-convex, and may or
may not be unbounded, depending on whether or not0 ∈ W (A−1B). To be precise, exactly
one of the three following cases holds:

• If a neighborhood of the origin is contained inW (A−1B), then (2.3) is unbounded,
with bounded complement. This bounded complement may also be considered a
spectralexclusion region.

• If a neighborhood of the origin is not inW (A−1B), then (2.3) is a bounded inclusion
region.

• In the special case that the origin lies on the boundary ofW (A−1B), then (2.3) is an
unbounded inclusion region with unbounded complement.

Similar remarks hold for the set1/W (BA−1). We will study related properties of more gen-
eral sets in Section5 (see Proposition5.4). We provide a further small illustrative example.

EXAMPLE 2.3. LetA andB be 10 × 10 matrices whose elements are generated ran-
domly with respect to the uniform distribution on(− 1

2 , 1
2 ). In Figure2.1, we plot the spec-

trum (dots), together with the setsW (B−1A) (solid),W (AB−1) (dash),1/W (A−1B) (dot-
ted line), and1/W (BA−1) (dash-dot). The inclusion regionW (AB−1) is tighter than
W (B−1A); the norms‖AB−1‖ ≈ 7.9 and‖B−1A‖ ≈ 10.9 may already serve as indicators
of this fact (recall thatW (A) is contained in the disk with radius‖A‖).

Since a neighborhood of the origin is contained in bothW (A−1B) andW (BA−1), the
sets (2.3) and (2.4) are unbounded inclusion regions, or can also be seen as bounded exclusion
regions. Note that a neighborhood of the origin is excluded;we will come back to this
phenomenon in Section5.

We will study generalizations of the sets (2.1), (2.2), (2.3), and (2.4) in Section5, and
show that they are special cases of two more general familiesof inclusion regions.

3. Approximation of W (A, B) for Hermitian positive definite B. We now consider
the numerical approximation ofW (A,B) for HPDB; first for small-sized, and subsequently
for large-sized pencils. For small-size matrices,W (A) can be efficiently computed by the
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FIG. 2.1. (a) Eigenvalues (dots),W (B−1A) (solid), W (AB−1) (dash), 1/W (A−1B) (dot), and
1/W (BA−1) (dash-dot), for two10 × 10 random matrices. The last two sets are better visible in (b),a zoom-in
of (a).

method proposed by Johnson [3]: determine

1
2 λmax(e

iαA + (eiαA)∗) and 1
2 λmin(eiαA + (eiαA)∗)

for a modest number of anglesα with 0 ≤ α < π. Hereby the equalities

max
ζ∈W (A)

Re(ζ) = 1
2 λmax(A + A∗),

min
ζ∈W (A)

Re(ζ) = 1
2 λmin(A + A∗)

are used for everyα. Since for HPDB with decompositionB = LL∗ we haveW (A,B) =
W (L−1AL−∗), we can also use this approach to efficiently approximateW (A,B) for small
and medium sized matricesA andB.

For large sparse HPD matricesB, computing an exact decompositionB = LL∗ will
often be unattractive. Instead, we can attempt to approximate W (A,B) via projection ofA
andB onto a low-dimensional subspaceV. Let the matrixV have columns that form an
orthonormal basis forV. Then we have

(3.1)

{

x∗Ax

x∗Bx
: x 6= 0

}

⊇

{

c∗V ∗AV c

c∗V ∗BV c
: c 6= 0

}

.

The expression on the right-hand side may be viewed as the restriction of W (A,B) to the
subspaceV. Since the projectionV ∗BV is also HPD, we can decomposeV ∗BV = MM∗,
and this set is equal to

{

d∗M−1V ∗AV M−∗d

d∗d
: d 6= 0

}

= W (M−1V ∗AV M−∗).

The crucial ingredient is a suitable spaceV. In view of the transformed eigenvalue problem

L−1AL−∗y = λy, B = LL∗, y = L∗x,
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an ideal candidate would be the Krylov space

Kk(L−1AL−∗,v1) := span{v1, L−1AL−∗v1, . . . , (L−1AL−∗)k−1v1}

for a certain starting vectorv1 and a modest dimensionk, but this is assumed to be compu-
tationally expensive. Instead, we can approximate the above Krylov space using an inexact
decompositionB ≈ LL∗, for instance an inexact Cholesky factorization. This gives a new
method described in Algorithm 1.

Algorithm 1 A method to approximateW (A,B) for large, HPDB.

Input: A matrix A, a Hermitian positive definiteB, starting vectorv1, dimension of Krylov
spacek, and number of anglesm; (inexact) Cholesky factorL of B
Output: An approximation toW (A,B)

1: Generate a basisV for the Krylov spaceKk(L−1AL−∗,v1)
2: DecomposeV ∗BV = MM∗

3: ApproximateW (A,B) by W (M−1V ∗AV M−∗) usingm angles

We stress the fact that, whether or not we use the exact Cholesky factor in the generation
of the Krylov space, the resulting “inclusion region” is in fact anapproximateinclusion region
due to (3.1). However, although it is therefore not guaranteed that thespectrum is contained in
this approximation, this will often be the case in practice.The following experiment indicates
the potential of Algorithm 1.

EXPERIMENT 3.1. We take the matricesA = mhd1280a andB = mhd1280b from
the Matrix Market [6]; this problem arises in magnetohydrodynamics.B is HPD; its exact
Cholesky factorL has 14400 nonzeros. The inexact Cholesky factorL1 which is generated by
the Matlab commandL1 = cholinc(B,1e-1) has only about 24% of the nonzeros of
L. We carry out Algorithm 1 usingL, and usingL1. In Figure3.1, the spectrum is indicated
(dots), together with the inclusion regionW (M−1V ∗AV M−∗) based on the Krylov space
K10(L

−1AL−∗,v1) for the exact Cholesky factorL (solid line) and a random starting vector
v1. The dashed line is an approximate inclusion region, obtained in a similar way; the only
difference is that the inexact factorL1 is used. While both inclusion regions are relatively
coarse, note that the regions derived with the exact and inexact Cholesky factors are almost
indistinguishable. We will return to this example in Section 7.

Note that the use of Algorithm 1 is not limited to the case thatB is HPD. If A is HPD,
then we can interchange the roles ofA andB and in view of

W (A,B) =
1

W (B,A)

we can efficiently approximate the setW (B,A) in this case. Note that, considered as an
inclusion region, this set may have drawbacks as mentioned in the previous section: it may
be unbounded and non-convex; however, the set can be efficiently computed.

Moreover, if A andB are Hermitian but neitherA nor B are positive definite, but a
certain linear combinationA + γB is HPD, then we may use the following result.

LEMMA 3.2. For everyγ ∈ C we have

W (A,B) =
1

W (B,A + γB)
− γ.
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FIG. 3.1.The spectrum (dots) and (true and approximate) inclusion regionsW (M−1V ∗AV M−∗), whereV
is a basis for the Krylov spaceK10(L−1AL−∗,v1), andV ∗BV = MM∗. WhileL is the exact Cholesky factor
for the solid line, it is an inexact Cholesky factor (drop tolerance 0.1) for the dashed line.

Proof. If there exists anx for which x∗Ax = x∗Bx = 0, both sides are equal to
C ∪ {∞}. Otherwise we have

1

W (B,A + γB)
− γ =

{

x∗(A + γB)x

x∗Bx
: x 6= 0

}

− γ

=

{

x∗Ax

x∗Bx
: x 6= 0

}

= W (A,B).

In this case we can also apply Algorithm 1. However, it is not obvious how to compute
or approximate (1.2) if neitherA, norB, nor any linear combination ofA andB is HPD. This
is the topic of the next section.

4. Field of values type inclusion regions for non HPDB. Now consider the case
in which neitherA, nor B, nor any linear combination ofA andB is HPD. Psarrakos [7]
proposed a method (via the so-called joint numerical range)suitable for pairs(A,B) of which
at least one matrix is Hermitian (but not necessary positivedefinite). This method uses a
discretization of the unit sphereS2 ⊂ R

3 and for every grid point a maximum eigenvalue of a
different associated Hermitian matrix has to be computed. Consequently, this approach does
not seem attractive for large pencils. Unlike for Johnson’smethod (see, e.g., [1]), there does
not seem to be a natural approach that generates just one Krylov space for all these eigenvalue
problems, since at each grid point a different linear combination of three Hermitian matrices
is involved. Of course, one could generate a new Krylov spacefor each individual grid point,
but this drastically increases the amount of work. Moreover, the method in [7] is not suitable
for general non-Hermitian pencils.

Therefore, we will further study the spectral inclusion regionsW (B−1A), W (AB−1),
1/W (A−1B), and1/W (BA−1) as introduced in Section2. For small matrices, these sets
may be approximated using Johnson’s method. We will give an illustration of Psarrakos’s
approach and some of the mentioned sets in the following simple example, also considered
in [7].

EXAMPLE 4.1. LetA =
»

1 4
0 3

–

andB =
»

1 0
0 0

–

with eigenvalues 1 and∞. Psar-

rakos’s approach [7] gives an approximation ofW (A,B) by taking well-chosen sample vec-
torsz and computing the corresponding Rayleigh quotientsz

∗Az

z
∗Bz

; see the dots in Figure4.1.
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FIG. 4.1. Psarrakos’s approach [7] (dots) and the unbounded inclusion region1/W (BA−1). The inclusion
region1/W (A−1B) is the real interval[1,∞) together with the point at infinity.

The set1/W (BA−1) is an unbounded inclusion region, or may also be seen as bounded
exclusion region, enclosed by the solid line. This exclusion region is nearly, but not com-
pletely, convex. Furthermore, one may verify that1/W (A−1B) is the real interval[1,∞)
together with the point at infinity. Again,1/W (A−1B) as inclusion region is superior to
W (A,B). As B is singular, we do not consider (2.1) and (2.2).

For large sparse matrices, the matrix inverses present in the setsW (B−1A), W (AB−1),
1/W (A−1B), or 1/W (BA−1) seem problematic for practical use. However, we note that

W (B−1A) =

{

x∗B−1Ax

x∗x
: x 6= 0

}

=

{

y∗AB∗y

y∗BB∗y
: y 6= 0

}

= W (AB∗, BB∗),

W (AB−1) =

{

x∗AB−1x

x∗x
: x 6= 0

}

=

{

y∗B∗Ay

y∗B∗By
: y 6= 0

}

= W (B∗A,B∗B).

Moreover,

1

W (A−1B)
=

{

x∗x

x∗A−1Bx
: x 6= 0

}

=

{

y∗AA∗y

y∗BA∗y
: y 6= 0

}

= W (AA∗, BA∗) =
1

W (BA∗, AA∗)

1

W (BA−1)
=

{

x∗x

x∗BA−1x
: x 6= 0

}

=

{

y∗A∗Ay

y∗A∗By
: y 6= 0

}

= W (A∗A,A∗B) =
1

W (A∗B,A∗A)
.

The advantage of the various rightmost expressions is that these sets can be dealt with by
the methods of Section3 sinceAA∗, A∗A, B∗B, andBB∗ are all HPD ifA and B are
nonsingular.

For large-sized pencils we can therefore use subspace projection methods based on the
same idea as behind Algorithm 1; we summarize them in Algorithm 2. For instance, in vari-
ant (a), we approximateW (B−1A) = W (AB∗, B∗B) by W (V ∗AB∗V, V ∗B∗BV ), where
V contains an orthonormal basis for a Krylov space. Instead ofthe “exact” Krylov space
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Kk(B−1A,v1), we can also use a Krylov space generated with an inexact LU-decomposition
of B, that is, useKk(U−1L−1A,v1), whereB ≈ LU .

We remark that in Steps 2 and 3 of Algorithm 2, some additionalcomputational tricks
are used. For instance, for (a), it is not necessary to compute V ∗BB∗V and to subsequently
determine its Cholesky factor. Instead, we can compute the reduced QR-decomposition
B∗V = QR. This implies thatV ∗BB∗V = R∗R, so that

W (V ∗AB∗V, V ∗BB∗V ) = W (R−∗V ∗AB∗V R−1) = W (R−∗V ∗AQ).

Similar techniques can be used for (b), (c), and (d): for (b) we have, withBV = QR,

W (V ∗B∗AV, V ∗B∗BV ) = W (R−∗V ∗B∗AV R−1) = W (Q∗AV R−1),

for (c), with A∗V = QR,

1

W (V ∗BA∗V, V ∗AA∗V )
=

1

W (R−∗V ∗BA∗V R−1)
=

1

W (R−∗V ∗BQ)
,

finally, for (d), withAV = QR,

1

W (V ∗A∗BV, V ∗A∗AV )
=

1

W (R−∗V ∗A∗BV R−1)
=

1

W (Q∗BV R−1)
.

Algorithm 2 Methods to approximate (a)W (B−1A), (b) W (AB−1), (c) 1/W (A−1B),
and/or (d)1/W (BA−1) for largeB (intended for non HPDB).

Input: MatricesA,B, starting vectorv1, dimension of Krylov spacek, and number of
anglesm; (inexact)LU -factors forA or B.
Output: An approximation to a spectral inclusion region based on a field of values

1: Approximate the Krylov space
(a)Kk(B−1A,v1) (b)Kk(AB−1,v1) (c)Kk(A−1B,v1) (d)Kk(BA−1,v1)

by a spaceV, by working with an (inexact) LU-decomposition
2: Compute the reduced QR-decomposition

(a)B∗V = QR (b) BV = QR (c) A∗V = QR (d) AV = QR
3: Approximate the set

(a)W (R−∗V ∗AQ) (b) W (Q∗AV R−1)
(c) 1/W (R−∗V ∗BQ) (d) 1/W (Q∗BV R−1)

using Johnson’s method withm angles

In the next section, we will study a family of inclusion regions for which the sets (2.1),
(2.2), (2.3), and (2.4) are special cases. Finally, we would like to mention that one could
also consider approximate inclusion regions of the formW ((V ∗BV )−1V ∗AV ). However,
these will often not be competitive to the regions generatedby Algorithms 1 and 2. IfB
is HPD, then a symmetric decomposition ofV ∗BV (as in Algorithm 1) will give superior
results, whileW ((V ∗BV )−1V ∗AV ) is unbounded if0 ∈ W (V ∗BV ), which may occur for
non-HPD matricesB.

5. Inclusion regions from shifted pencils. In this section, we extend several results
from [1] to the context of matrix pencils. Letτ 6∈ Λ(A,B) which implies thatA − τB is
nonsingular. Because of the shift-and-invert property (cf. (1.1))

(5.1) (A − τB)−1Bx = (λ − τ)−1x,
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we have for the spectrumΛ(A,B) of the pencil(A,B) that

Λ(A,B) ⊂
1

W ((A − τB)−1B)
+ τ.

Similarly, in view of

B(A − τB)−1y = (λ − τ)−1y, (A − τB)x = y,

we have for the spectrumΛ(A,B) of the pencil(A,B) that

Λ(A,B) ⊂
1

W (B(A − τB)−1)
+ τ.

Therefore,

(5.2)
1

W ((A − τB)−1B)
+ τ and

1

W (B(A − τB)−1)
+ τ,

parametrized byτ 6∈ Λ(A,B), are two families of inclusion regions of field of values type.
Furthermore, we note that

1

W (B(A − τB)−1)
+ τ =

{

y∗y

y∗B(A − τB)−1y
: y 6= 0

}

+ τ

=

{

x∗(A − τB)∗(A − τB)x

x∗(A − τB)∗Bx
: x 6= 0

}

+ τ(5.3)

=

{

x∗(A − τB)∗Ax

x∗(A − τB)∗Bx
: x 6= 0

}

,

and

1

W ((A − τB)−1B)
+ τ =

{

y∗y

y∗(A − τB)−1By
: y 6= 0

}

+ τ

=

{

x∗(A − τB)(A − τB)∗x

x∗B(A − τB)∗x
: x 6= 0

}

+ τ(5.4)

=

{

x∗A(A − τB)∗x

x∗B(A − τB)∗x
: x 6= 0

}

.

Characterizations (5.3) and (5.4) enable effective computational approaches, since

1

W (B(A − τB)−1)
+ τ =

1

W ((A − τB)∗B, (A − τB)∗(A − τB))
+ τ,

1

W ((A − τB)−1B)
+ τ =

1

W (B(A − τB)∗, (A − τB)(A − τB)∗)
+ τ,

where(A − τB)∗(A − τB) and(A − τB)(A − τB)∗ are HPD.
For the first family, we consider the subspace approximation

1

W (V ∗(A − τB)∗BV, V ∗(A − τB)∗(A − τB)V )
+ τ

where the columns ofV are an orthonormal basis for the Krylov space

Kk(BU−1L−1,v1), A − τB ≈ LU.
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With (A − τB)V = QR, this yields

1

W (R−∗V ∗(A − τB)∗BV R−1)
+ τ =

1

W (Q∗BV R−1)
+ τ.

For the second family, we consider the subspace approximation

1

W (V ∗B(A − τB)∗V, V ∗(A − τB)(A − τB)∗V )
+ τ

where the orthonormal columns ofV span the Krylov spaceKk(U−1L−1B,v1). Using the
QR-decomposition(A − τB)∗V = QR, we get

1

W (R−∗V ∗B(A − τB)∗V R−1)
+ τ =

1

W (R−∗V ∗BQ)
+ τ.

These subspace based approximations are summarized in Algorithm 3.

Algorithm 3 Methods to approximate1/W (B(A−τB)−1)+τ or 1/W ((A−τB)−1B)+τ

Input: MatricesA,B, a shiftτ , starting vectorv1, dimension of Krylov spacek,
and number of anglesm; (inexact)LU -factors forA − τB.

Output: An approximation to the spectral inclusion regions
(a) 1/W (B(A − τB)−1) + τ or (b) 1/W ((A − τB)−1B) + τ

1: Approximate the Krylov space
(a) Kk(B(A − τB)−1,v1) or (b) Kk((A − τB)−1B,v1)

by a spaceV, using the (inexact) LU-factors
2: Compute the reduced QR-decomposition

(a) (A − τB)V = QR or (b) (A − τB)∗V = QR
3: Approximate the set

(a) 1/W (Q∗BV R−1) + τ or (b) 1/W (R−∗V ∗BQ) + τ
using Johnson’s method withm angles

We note that a disadvantage of this approach is that in principle we need a different
Krylov subspace for everyτ . In the remainder of this section we study several properties of
the two families (5.2). The next results can be viewed as extensions of [1, Thm. 5].

LEMMA 5.1.

(a) lim
|τ |→∞

1

W (B(A − τB)−1)
+ τ = W (B∗A,B∗B),

(b) lim
τ→0

1

W (B(A − τB)−1)
+ τ = W (A∗A,A∗B),

(c) lim
|τ |→∞

1

W ((A − τB)−1B)
+ τ = W (AB∗, BB∗),

(d) lim
τ→0

1

W ((A − τB)−1B)
+ τ = W (AA∗, BA∗).

Proof. Forτ 6= 0 there holds (cf. also (5.3))

1

W (B(A − τB)−1)
+ τ =

{

x∗(A − τB)∗Ax

x∗(A − τB)∗Bx
: x 6= 0

}

=

{

x∗( 1
τ
A − B)∗Ax

x∗( 1
τ
A − B)∗Bx

: x 6= 0

}

from which (a) and (b) follow. Parts (c) and (d) are proved similarly.
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Some remarks about these results are in order. IfA andB are nonsingular, then the
sets in this lemma areW (AB−1), 1/W (BA−1), W (B−1A), and1/W (A−1B) respectively.
From these properties we see that the sets (2.1), (2.2), (2.3), and (2.4) studied in Section4 are
in fact special cases of the families (5.2). Moreover, the limit sets in (a) and (c) are the only
members of these two families that are guaranteed to be convex.

Next, we present extensions of [1, Thms. 2 and 4] for matrix pencils.
THEOREM 5.2. LetG be a set-valued function from the set ofn × n matrices to subsets

of C, such that for anyA the setG(A) is bounded and containsΛ(A). Then

Λ(A,B) =
⋂

τ∈C \Λ(A,B)

1

G((A − τB)−1B)
+ τ,

Λ(A,B) =
⋂

τ∈C \Λ(A,B)

1

G(B(A − τB)−1)
+ τ.

Proof. SinceΛ(A,B) ⊂ 1
G((A−τB)−1B) + τ for all τ 6∈ Λ(A,B), we have thatΛ(A,B)

is also contained in the intersection. To show that equalityholds, suppose thatζ 6∈ Λ(A,B),
thenζ 6∈ 1

G((A−ζB)−1B) + ζ, sinceG((A− ζB)−1B) is a bounded set. The second statement
is proved similarly.

Since the field of values satisfies the requirements of Theorem 5.2, we immediately get
the following result.

COROLLARY 5.3. We have the intersection properties

Λ(A,B) =
⋂

τ∈C \Λ(A,B)

1

W ((A − τB)−1B)
+ τ,

Λ(A,B) =
⋂

τ∈C \Λ(A,B)

1

W (B(A − τB)−1)
+ τ.

If 0 6∈ W ((A − τB)−1B), then the set1/W ((A − τB)−1B) + τ is bounded and hence
may be seen as an inclusion region. If0 ∈ W ((A−τB)−1B), then1/W ((A−τB)−1B)+τ
is unbounded. If its complement is bounded, it may be more convenient to view this com-
plement as anexclusion region. We will call the case in which both the inclusion region
1/W ((A − τB)−1B) + τ and its complement are unbounded thetransition case.

The next proposition, an extension of [1, Thm. 6], implies that the transition case for
1/W ((A − τB)−1B) + τ occurs precisely ifτ ∈ ∂W (B−1A) (that is, on the boundary
of W (B−1A)) and, similarly, that the transition case for1/W (B(A − τB)−1) + τ occurs
precisely ifτ ∈ ∂W (AB−1).

PROPOSITION5.4. Let τ 6∈ Λ(A,B) andB be nonsingular. Then
(a) 0 ∈ W ((A − τB)−1B) if and only ifτ ∈ W (B−1A),
(b) 0 ∈ W (B(A − τB)−1) if and only ifτ ∈ W (AB−1).
Proof. Since

W ((A − τB)−1B) =

{

x∗B(A − τB)∗x

x∗(A − τB)(A − τB)∗x
: x 6= 0

}

,

0 ∈ W ((A−τB)−1B) if and only if there exists a nonzerox such thatx∗B(A−τB)∗x = 0
which means thatτ ∈ W (AB∗, BB∗), and sinceB is nonsingular this is equal to the set
W (B−1A). The proof of the second statement is similar.
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The following result, an extension of [1, Prop. 3], indicates that by considering (5.2), we
can get inclusion regionsexcluding(user-chosen) targetsτ .

PROPOSITION5.5.

dist

(

τ,
1

W ((A − τB)−1B)
+ τ

)

≥ ‖(A − τB)−1B‖−1,

dist

(

τ,
1

W (B(A − τB)−1)
+ τ

)

≥ ‖B(A − τB)−1‖−1.

Proof. The first statement follows directly from the facts that thesetW ((A − τB)−1B)
is contained in the disk around the origin with radius‖(A−τB)−1B‖. The second statement
follows from a similar argument.

In fact, we have already seen examples of this in Figures2.1 and3.1. We will make
fruitful use of this fact in Section7.

6. Relation with harmonic Rayleigh–Ritz methods. In this section we will first briefly
review the harmonic Rayleigh–Ritz method for the generalized eigenvalue problem (see also
[8]), and then point out connections with the families of inclusion regions of the previous
section.

In subspace methods for eigenvalue problems, one attempts to find approximate eigen-
pairs(θ,v) ≈ (λ,x) of which the approximate eigenvectorv is sought in a low-dimensional
search spaceV. The standard Ritz–Galerkin projection

Av − θBv ⊥ V

is frequently employed to find eigenvalues at the exterior ofthe spectrum, but is often less
successful to approximate interior eigenvalues.

Suppose we are interested in eigenpairs close to a targetτ ∈ C\Λ(A,B). Because of
the shift-and-invert property (5.1), interior eigenvalues close toτ are exterior eigenvalues of
(A − τB)−1B. This suggests to impose the Galerkin condition

(A − τB)−1Bv − (θ − τ)−1v ⊥ W

for a certain test spaceW. With the choiceW = (A− τB)∗(A− τB)V we manage to avoid
matrix inverses and get the harmonic Ritz extraction

V ∗(A − τB)∗(A − τB)V c = (θ − τ)V ∗(A − τB)∗BV c,

wherev = V c are the harmonic Ritz vectors. The corresponding harmonic Ritz values are
given by

θ =
c∗V ∗(A − τB)∗(A − τB)V c

c∗V ∗(A − τB)∗BV c
+ τ =

c∗V ∗(A − τB)∗AV c

c∗V ∗(A − τB)∗BV c
.

Therefore, we conclude that for fixedτ , (5.3) is exactly the set of all possible harmonic Ritz
values that can be obtained from a one-dimensional subspaceV.

To obtain the set (5.4), we now consider the following newleft-harmonic Ritz approach.
We start with the shift-and-invert property

(A − τB)−∗B∗y = (λ − τ)−∗y.
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(In this case,y represents a left eigenvector; but since we are interested in the eigenvalues in
this context, this is irrelevant.) This inspires us to extract an approximate eigenpair(θ,v) by
the Galerkin condition

(A − τB)−∗B∗v − (θ − τ)−∗v ⊥ W,

for a certain test spaceW. With W = (A − τB)(A − τB)∗V we get the harmonic Ritz
extraction

V ∗(A − τB)(A − τB)∗v = (θ − τ)∗V ∗(A − τB)B∗v.

where we call the vectorsv = V c the left-harmonic Ritz vectors. The corresponding left-
harmonic Ritz values are given by

θ =
c∗V ∗(A − τB)(A − τB)∗V c

c∗V ∗B(A − τB)∗V c
+ τ =

c∗V ∗A(A − τB)∗V c

c∗V ∗B(A − τB)∗V c
.

Hence, we may conclude that for fixedτ , (5.4) is exactly the set of all possible left-harmonic
Ritz values that can be obtained from a one-dimensional subspaceV.

7. An automated algorithm and a numerical experiment. Algorithm 3 raises the im-
portant question how to choose relevant targetsτ . Although the user is free to choose any
τ 6∈ Λ(A,B), it is attractive to develop an algorithm that automatically chooses sensible val-
ues forτ . Recall from Section5 that for a chosenτ , Algorithm 3 generates an approximate
inclusion region thatexcludesa neighborhood of thisτ .

Algorithm 1 (for HPDB) and Algorithm 2 parts (a) and (b) (for non HPDB) provide
us with bounded convex (approximate) inclusion regions. These regions may be not very
strict; cf. Figures2.1 and3.1. If we would like to improve this inclusion region, it seems a
promising idea to take the discretized boundary points of the obtained inclusion region as our
points forτ , as this “cuts away” parts of our initial inclusion region (cf. also [1]). This leads
to an automated “master” Algorithm 4, that calls Algorithms1, 2, and 3 as appropriate.

Algorithm 4 An automated method to generate an approximate inclusion region

Input: MatricesA,B, starting vectorv1, dimension of Krylov spacek, drop toleranceδ,
and number of anglesm.

Output: An approximated spectral inclusion region, consisting of the intersection of
O(m) inclusion regions

if B is HPD
1: Determine an inexact Cholesky factor ofB with drop toleranceδ
2: Carry out Algorithm 1

else
3: Determine inexact LU-factors ofB with drop toleranceδ
4: Carry out Algorithm 2, parts (a) and/or (b)

end
for eachτj on the discretized boundary found in Step 2 or 4

5: Determine inexact LU-factors ofA − τjB with drop toleranceδ
6: Carry out Algorithm 3, parts (a) and/or (b)

end

To test Algorithm 4, we return to the setting of Experiment3.1. SinceB is HPD, Al-
gorithm 4 first calls Algorithm 1, which approximatesW (A,B). There are two different
approximating aspects involved: we projectW (A,B) onto a 10-dimensional Krylov space
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(k = 10), and to generate the Krylov space we use an inexact Choleskydecomposition
(δ = 10−5, with randomv1). The resulting approximation is a convex inclusion region.
For clarity we discretize this region using just 8 points (corner points in Figure7.1(a)).

Apparently, this is a quite coarse inclusion region; to makeit tighter we take the 8 corner
points asτ -values. The blue dashed lines indicate approximations to1/W (B(A−τB)−1)+τ
as described in Algorithm 3(a). These represent finite approximate inclusion regions; note
that these regions are not true inclusion regions in this example. The black dotted lines
indicate approximations to1/W ((A − τB)−1B) + τ as given in Algorithm 3(b). These 8
sets are unbounded inclusion regions. We see that the approximate inclusion region consisting
of the intersection of all approximate inclusion regions indeed includes the vast majority of
the eigenvalues. Although it does not include some relativeoutliers, it gives a very good
indication of the location of the spectrum.
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FIG. 7.1. (a) Result of running Algorithm 4 on the problem from magnetohydrodynamics for the discretization
of W (A, B) using 8 points. The blue dashed lines represent inclusion regions obtained with Algorithm 3(a), the
black dotted lines those obtained with Algorithm 3(b). Bothtake forτ the values on the discretized boundary of the
approximation ofW (A, B) (the 8 corner points). (b) Zoom-in of (a).

8. Conclusions. Our focus in this paper was on inclusion regions for matrix pencils
based on fields of values. We stress that the computation of inclusion regions may be an effi-
cient technique: since the field of values is often well approximated from a low-dimensional
Krylov space,computing a spectral inclusion region may be cheaper than computing even
one single eigenvalue!

Several results in this paper are extensions of results in [1], but for matrix pencils there are
many new aspects as well. First, we have slightly modified theusual definition ofW (A,B) by
adding∞ if B is singular. We have given procedures to numerically approximateW (A,B)
for HPD matricesB (or any combination ofA andB), for both matrices of small and large
(see Algorithm 1) dimension.

Psarrakos’s method [7] can be used for pairs of small dimension of which at least oneof
the two matrices is Hermitian (and not necessary definite), but seems to be computationally
unattractive for large matricesA andB. Moreover, it is not clear from [7] how to effectively
approximateW (A,B) if both matrices are non-Hermitian. Apart from this, we haveseen
thatW (A,B) as inclusion region may not reveal much useful information,since it may be
very large or even unbounded.
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The setsW (B−1A), W (AB−1), 1/W (B−1A), and1/W (AB−1) may be more infor-
mative inclusion regions, although the latter two sets may also be unbounded. Of course,
the intersection of these sets is also a bounded inclusion region. In contrast toW (A,B),
these sets can efficiently be approximated if no linear combination ofA andB is HPD (Al-
gorithm 2).

We introduced two families of inclusion regions involving shifted and inverted pencils:
1/W (B(A − τB)−1) + τ and1/W ((A − τB)−1B) + τ , of which the four sets mentioned
above are special cases. We considered several theoreticalproperties as well as their use in
practical contexts (Algorithm 3). By varying the shift, we may generate as many inclusion
(or exclusion) regions as we desire, depending on the regionof the complex plane that is of
interest to us.

We pointed out connections with the usual harmonic Rayleigh–Ritz method, as well as a
new left-harmonic variant. Finally, we proposed a method that automatically selects targets
τ , and gives a bounded approximated inclusion region consisting of the intersection of a
user-chosen number of inclusion regions (Algorithm 4).
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