Electronic Transactions on Numerical Analysis. ETNA
Volume 38, pp. 98-112, 2011. Kent State University

Copyright O 2011, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.

FIELDS OF VALUES AND INCLUSION REGIONS FOR MATRIX PENCILS *

MICHIEL E. HOCHSTENBACH
This paper is dedicated with pleasure to Prof. Varga.

Abstract. We are interested in (approximate) eigenvalue inclusiomnagfor matrix pencil§ A, B), in partic-
ular of large dimension, based on certain fields of values. Mggvdrow the usual field of values may be efficiently
approximated for large Hermitian positive definiis but also point out limitations of this set. We introduce four
field of values based inclusion regions, which may effecyive approximated, also for large pencils. Furthermore,
we show that these four sets are special members of two famflieglasion regions, of which we study several
properties. Connections with the usual harmonic Rayleigtz—+Rethod and a new variant are shown, and we pro-
pose an automated algorithm which gives an approximatedsiociuegion. The results are illustrated by several
numerical examples.
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1. Introduction. For n x n matricesA and B, consider the generalized eigenvalue
problem

(1.1) Ax = ABx.

We are interested in practical (approximate) spectralsioh regions for1.1), in particular
for large pencils, based on certain fields of values. The Béldalues of anw x n real or
complex matrixA4,

W(A) = {x"Ax: |[x[| = 1},
where|| - || denotes the two-norm, has been extensively studied; seiastance, ).
The field of values (or numerical range) of a matrix peidi| B) was defined as
(1.2) W(A,B)={\AeC:x"(A-AB)x=0, xeC", |[x] =1},

and examined ir4, 7]; see also ).

If B is singular, then the pencil4, B) may have an infinite eigenvalue. However, by
definition the se{1.2) does not contain the point at infinity. As a consequence, fifum
definition, W (A, B) is not necessarily a spectral inclusion region. Therefaeewill work
with a slightly modified definition and add the point at infinio W (A, B) if B is singular.

A homogeneous expression equivalent to this is the set

Wia,m) = {5 x(GA-amx =0, |x|=1 (@57 00)}.

We can also use yet another equivalent definition: if theist®x@a nonzerax for which
x*Ax = x*Bx = 0, thenW (A, B) = C U {o0}; otherwise
x*Ax

x*Bx

W(A,B):{ :X#O},
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wherel/0 is understood as the point at infinity. Note that all defimg@an be formulated to
range over all nonzero vectors or over all vectors of unitmarith straightforward adapta-
tions.

If B is Hermitian positive definite (HPD), it can be decomposedas LL* (for in-
stance, the matrix square root or the Cholesky factorimptend we have (cf.7])

*A *LflALf*

One of the properties 0¥/ (A, B) is that it is unbounded if (and only if) € W (B) [4]. Since
our interest is in spectral inclusion regions for the pefdil B), this is clearly an unattractive
feature: if B is nonsingular bué € W (B), then the spectrum is bounded, but the inclusion
region W (A, B) is unbounded, and therefore not very informative. This vadéis us to
examine other field of values types of inclusion regions.

The rest of the paper has been organized as follows. In ®e2tiove introduce four
inclusion regions of field of values type for matrix penciSection3 studies the question
how to efficiently approximatél (A, B) for HPD B, for matrices of both small and large
dimension. Sectiod examines how to obtain eigenvalue inclusion regions basditlls of
values for non HPDB; we will exploit the sets introduced in Secti@n Section5 extends
these four special inclusion regions to two different faasilof inclusion regions. By varying
a parameter (thtargef), we can generate infinitely many inclusion regions. We siilldy
several theoretical properties of the sets, as well as pinaatical computation.

Section6 points out connections of these families with the usual lnaimRayleigh—Ritz
method for the generalized eigenvalue problem, and a nelantaf this approach (thieft-
harmonic Rayleigh—Ritmethod). Sectiong gives an automated algorithm and an additional
numerical experiment. We end with some conclusions in S8eéti

2. Four inclusion regions of field of values type for matrix pecils. If B is nonsingu-
lar, then the spectrum d8—! A coincides with that of the pendild, B). As a consequence,

(2.1) W(B~'A)
is a spectral inclusion region fot (1). Similarly,
(2.2) W(AB™Y)

is also an inclusion region fofi(1); note that both sets are generally not equaltoA, B).

Next, we consider two different inclusion regions, whiah,our best knowledge, have
not been previously considered. We interchange the role4 ahd B, and consider the
generalized eigenvalue problefix = A~! Ax. For nonsingula#, the sets

1
(2.3) m
and

1
@4 WBAT)

are also eigenvalue inclusion regions frl). Hereby, division and addition, which is used
later in the paper, are interpreted elementwise: for &@satd a numbety we define

1
;—F’y:{c—i-’y:(ES}.
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Note that the setsl(2), (2.1), and @.2) all reduce to the usual field of valuég(A) for the
pencil (4, I), wherel denotes the identity matrix. The following simple exampidicates
the potential advantage of the sekslf and @.2) as inclusion regions, over the sét3).

ExAMPLE 2.1. LetA = diag(1,2) andB = diag(1l, —1). Note that0 € W (B). Then
the eigenvalues are2 and1, and one may verify that the se3]) and @.2) are equal to the
interval [—2, 1], which is the smallest convex spectral inclusion regiorsie. In contrast
to this, the setsA.3), (2.4), andW (A4, B) are all equal td—oco, —2] U [1,00) U {oo}.
For W (A, B) this can be seen from the implication:Xfe 1 (A, B) then it must hold that
|z1|% + 2 |22|? — A(Jz1|* — |22]?) = 0 together with the constraint;|? + |x2|?> = 1. Here
clearly, as inclusion regionsy (B~ A) andW (AB~!) are superior to the other three sets.

However, the converse can also hold. In the next example o attypical case where
W (A, B) is a tighter inclusion region thar2 (1), (2.2), (2.3), and @.4): if A is Hermitian,
andB is HPD.

EXAMPLE 2.2. We take the matrice& = bcsst k06 andB = bcsst nD6 of di-
mensionn = 420 from the Matrix Market §]; this problem arises in structural engineer-
ing. A is Hermitian, B is diagonal with positive elements. Sinée ! AL~* is Hermitian,
W(A,B) = W(LYAL™*) is the ideal convex inclusion regigl,in, Amax]; NO CONVEX
inclusion region can be smaller. The matriées' A andAB~' are non-Hermitian, and their
field of values is much larger.

As already illustrated by Exampl21, the setsZ.1), (2.2) on the one hand, an@.(Q),
(2.4) on the other, differ in natureW (B~'A) and W (AB~1) are closed, bounded, and
convex spectral inclusion sets. The 3¢tV (A~'B) is generally non-convex, and may or
may not be unbounded, depending on whether obnetl (A~1B). To be precise, exactly
one of the three following cases holds:

e If a neighborhood of the origin is containedliri(A~'B), then @.3) is unbounded,
with bounded complement. This bounded complement may asoohsidered a
spectralexclusion region
e Ifaneighborhood of the origin is not iV (A~1B), then @.3) is a bounded inclusion
region.
e In the special case that the origin lies on the boundaiy’¢fi—'B), then @.3) is an
unbounded inclusion region with unbounded complement.
Similar remarks hold for the s/ W (BA~!). We will study related properties of more gen-
eral sets in Sectioh (see Propositiob.4). We provide a further small illustrative example.

EXAMPLE 2.3. LetA and B be 10 x 10 matrices whose elements are generated ran-
domly with respect to the uniform distribution ¢r-1, 1). In Figure2.1, we plot the spec-
trum (dots), together with the seltg (B 1 A) (solid), W (AB~1) (dash),1/W (A~'B) (dot-
ted line), andl/W (BA~1) (dash-dot). The inclusion regioW (AB~1!) is tighter than
W (B~'A); the norms|AB~!| ~ 7.9 and| B~ A|| ~ 10.9 may already serve as indicators
of this fact (recall thaiV’ (A) is contained in the disk with radiysA||).

Since a neighborhood of the origin is contained in bidthA~'B) andW (BA~!), the
sets £.3) and @.4) are unbounded inclusion regions, or can also be seen adéderclusion
regions. Note that a neighborhood of the origin is excluded;will come back to this
phenomenon in Sectidh

We will study generalizations of the se8.), (2.2), (2.3), and @.4) in Section5, and
show that they are special cases of two more general fanoilie€lusion regions.

3. Approximation of W (A, B) for Hermitian positive definite B. We now consider
the numerical approximation &% (A, B) for HPD B; first for small-sized, and subsequently
for large-sized pencils. For small-size matricB8(A) can be efficiently computed by the
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Fic. 2.1. (a) Eigenvalues (dots)\W(B~'A) (solid), W(AB~1') (dash), 1/W(A~'B) (dot), and
1/W(BA~1) (dash-dot), for twal0 x 10 random matrices. The last two sets are better visible ing®pom-in
of (a).

method proposed by Johnsd:[determine
2 Amax (€A + (€' 4)*) and  § Apin(e’A + (e’ A)*)
for a modest number of angleswith 0 < a < 7. Hereby the equalities

R = l)\max A A* )
(Dmax &¢) =3 (A+ A7)

: 1 *
i Re(() = 3 Amin(A + A7)
are used for every. Since for HPDB with decomposition3 = LL* we havelV (A, B) =
W (L-*AL~*), we can also use this approach to efficiently approxiniétel, B) for small
and medium sized matricesand B.

For large sparse HPD matricés computing an exact decompositidh = LL* will
often be unattractive. Instead, we can attempt to apprdeii& A, B) via projection ofA
and B onto a low-dimensional subspate Let the matrix!V have columns that form an
orthonormal basis foy. Then we have

(3.1) {X*Axsx¢o}g{m~c¢o}.

x* Bx c*V*BVe '

The expression on the right-hand side may be viewed as thvctiem of W (A, B) to the
subspacé®’. Since the projectiof* BV is also HPD, we can decompo& BV = M M*,
and this set is equal to

{ d*M~V*AVM—*d

. d =W(M VAV M ™).
Td #0} w( V*AV )

The crucial ingredient is a suitable spa¢eln view of the transformed eigenvalue problem

L YAL "y = )y, B=LL* y=L"x,
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an ideal candidate would be the Krylov space
Kr(L7*AL™*,vy) :==spar{vy, LYAL *vy, ..., (L7TYAL=")F "1y}
for a certain starting vector; and a modest dimensidy) but this is assumed to be compu-
tationally expensive. Instead, we can approximate the @boylov space using an inexact

decompositionB =~ LL*, for instance an inexact Cholesky factorization. This gigenew
method described in Algorithm 1.

Algorithm 1 A method to approximat®/ (A, B) for large, HPDB.

Input: A matrix A, a Hermitian positive definité, starting vector, dimension of Krylov
spacek, and number of angles; (inexact) Cholesky factok of B
Output:  An approximation tdV (A, B)

1. Generate a basls for the Krylov spaceCy, (L~ 1AL, vy)

2. Decompos&*BV = MM*

3:  ApproximateW (A, B) by W (M ~1V*AV M ~*) usingm angles

We stress the fact that, whether or not we use the exact (ydisstor in the generation
of the Krylov space, the resulting “inclusion region” is act anapproximatenclusion region
due to B.1). However, although it is therefore not guaranteed thaspieetrum is contained in
this approximation, this will often be the case in practitke following experiment indicates
the potential of Algorithm 1.

EXPERIMENT 3.1. We take the matrices = mhd1280a andB = nhd1280b from
the Matrix Market pB]; this problem arises in magnetohydrodynamiésis HPD; its exact
Cholesky factoi. has 14400 nonzeros. The inexact Cholesky faEtowhich is generated by
the Matlab commandl = chol i nc(B, 1e-1) has only about 24% of the nonzeros of
L. We carry out Algorithm 1 usind,, and usingl; . In Figure3.1, the spectrum is indicated
(dots), together with the inclusion regid# (M ~'V*AV M ~—*) based on the Krylov space
K10(L=YAL=*,v;) for the exact Cholesky factdr (solid line) and a random starting vector
v1. The dashed line is an approximate inclusion region, obthin a similar way; the only
difference is that the inexact factdn is used. While both inclusion regions are relatively
coarse, note that the regions derived with the exact andcateéxholesky factors are almost
indistinguishable. We will return to this example in Sentib

Note that the use of Algorithm 1 is not limited to the case tBas HPD. If A is HPD,
then we can interchange the roles/bfind B and in view of

W(A,B) = m

we can efficiently approximate the sBt(B, A) in this case. Note that, considered as an
inclusion region, this set may have drawbacks as mentiaméiaki previous section: it may
be unbounded and non-convex; however, the set can be effffooamputed.

Moreover, if A and B are Hermitian but neithed nor B are positive definite, but a
certain linear combinatiod + +B is HPD, then we may use the following result.

LEMMA 3.2. For everyy € C we have

1
R (R e
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FIG. 3.1.The spectrum (dots) and (true and approximate) inclusigioress W (M ~1V*AV M ~*), whereV’
is a basis for the Krylov spad€;o(L~'AL™*,v1), andV*BV = M M*. While L is the exact Cholesky factor
for the solid line, it is an inexact Cholesky factor (dropei@nce 0.1) for the dashed line.

Proof. If there exists arx for which x*Ax = x*Bx = 0, both sides are equal to
C U {oo}. Otherwise we have

1 B :{x*(A-i-WB)x

W (B, A ++B) x* Bx :X#O}_W

x*Ax
- : 0, = A, B). O
{ g ixrol=wn)

In this case we can also apply Algorithm 1. However, it is notious how to compute
or approximateX.2) if neither A, nor B, nor any linear combination of andB is HPD. This
is the topic of the next section.

4. Field of values type inclusion regions for non HPDB. Now consider the case
in which neitherA, nor B, nor any linear combination oft and B is HPD. Psarrakos7]
proposed a method (via the so-called joint numerical rasgidble for pairg A, B) of which
at least one matrix is Hermitian (but not necessary posdenite). This method uses a
discretization of the unit sphe®? c R3 and for every grid point a maximum eigenvalue of a
different associated Hermitian matrix has to be computezhs€quently, this approach does
not seem attractive for large pencils. Unlike for Johnsomhod (see, e.g.1]), there does
not seem to be a natural approach that generates just one/tspyéce for all these eigenvalue
problems, since at each grid point a different linear coratiom of three Hermitian matrices
is involved. Of course, one could generate a new Krylov sjaceach individual grid point,
but this drastically increases the amount of work. Moregwer method inT] is not suitable
for general non-Hermitian pencils.

Therefore, we will further study the spectral inclusioniceg W (B~!A), W(AB™1),
1/W(A™'B), and1/W(BA~!) as introduced in Sectiod. For small matrices, these sets
may be approximated using Johnson’s method. We will givellastiation of Psarrakos’s
approach and some of the mentioned sets in the followinglsieyample, also considered
in [7].

EXAMPLE 4.1. LetA = [(1) g] andB = |} 8] with eigenvalues 1 ando. Psar-

rakos’s approach’] gives an approximation df (A, B) by taking well-chosen sample vec-
torsz and computing the corresponding Rayleigh quotiézé%; see the dots in Figuré. 1.
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FiG. 4.1. Psarrakos's approach] (dots) and the unbounded inclusion regiopi¥’ (BA~1). The inclusion
region1/W (A~1B) is the real interval1, co) together with the point at infinity.

The setl /W (BA~1) is an unbounded inclusion region, or may also be seen as bdund
exclusion region, enclosed by the solid line. This exclasiegion is nearly, but not com-
pletely, convex. Furthermore, one may verify tha#?’ (A~ B) is the real interva[l, co)
together with the point at infinity. Again,/W (A~!B) as inclusion region is superior to
W (A, B). As B is singular, we do not conside2.() and @.2).

For large sparse matrices, the matrix inverses preseneisetsV (B=14), W(AB™1),
1/W(A~'B), or1/W(BA~!) seem problematic for practical use. However, we note that

* P—1 * *
W(B14) = {XBXAX L x 0} - {y ABYY o4 0} = W(AB*, BB"),

*AB™'x y*B*Ay
WAB ) =222 X ol Y2 ool - w(B*A, B*B).
() = {2 T ez 0p (X oy 2o —wmaps)

Moreover,

1 B x'x _ [yrAATy
W(A-1B) {X*AlBX X7 0} N {y*BA*y Y7 0}

* *\ 1
=W(AA*, BA") = W(BA", A4%)

1 B x'x _ [yrA*Ay
W(BA-1) {X*BA—lx x 7 0} N {y*A*By Y7 0}
* * _ 1

=W(A*A, A'B) = W(AB, A4)

The advantage of the various rightmost expressions is fieset sets can be dealt with by
the methods of Sectiofi since AA*, A*A, B*B, and BB* are all HPD if A and B are
nonsingular.

For large-sized pencils we can therefore use subspacecponjenethods based on the
same idea as behind Algorithm 1; we summarize them in Aligori2. For instance, in vari-
ant (a), we approximatd/ (B~1A) = W(AB*, B*B) by W(V*AB*V,V*B*BV), where
V' contains an orthonormal basis for a Krylov space. Insteatth@f'exact” Krylov space
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Kr(B~tA,v1), we can also use a Krylov space generated with an inexactdddrdposition
of B, thatis, useéC,(U1L71 A, v1), whereB ~ LU.

We remark that in Steps 2 and 3 of Algorithm 2, some additieoahputational tricks
are used. For instance, for (a), it is not necessary to canipuB B*V and to subsequently
determine its Cholesky factor. Instead, we can compute ¢deced QR-decomposition
B*V = @QR. This implies thal’* BB*V = R*R, so that

W(V*AB*V, V*BB*V) = W(R*V*AB*VR™ ) = W(R™*V*AQ).
Similar techniques can be used for (b), (c), and (d): for (b)have, withBY = QR,
W(V*B*AV, V*B*BV) = W(R™*V*B*AVR™') = W(Q*AVR™1),
for (c), with A*V = QR,
1 1 1

W(V*BA*V, V*AA*V)  W(R—*V*BA*VR-1)  W(R*V*BQ)’
finally, for (d), with AV = QR,

1 1 1

W(V*A*BV, V*A*AV)  W(R*V*A*BVR-1)  W(Q*BVR 1)’

Algorithm 2 Methods to approximate (&) (B—*A), (b) W(AB™1), (c) 1/W(A~1B),
and/or (d)1/W (BA~1!) for large B (intended for non HPD3).

Input:  Matrices A, B, starting vectorvy, dimension of Krylov spacé, and number of
anglesm; (inexact) LU -factors forA or B.
Output: An approximation to a spectral inclusion region based onld éievalues
1. Approximate the Krylov space
@Ki(B7'A,vi) () Kp(AB~1,vi) (©)Kp(A™'B,vi) (d)Ki(BA™1,vq)
by a spacé’, by working with an (inexact) LU-decomposition
2:  Compute the reduced QR-decomposition
@BV=QR ((bL)BV=QR (()A*V=QR (d)AV =QR
3. Approximate the set
@W(RVAQ) () W(Q AVR™Y)
(©)1/W(R™*V*BQ) (d)1/W(Q*BVR™)
using Johnson’s method with angles

In the next section, we will study a family of inclusion reggfor which the set2(1),
(2.2), (2.3), and @.4) are special cases. Finally, we would like to mention that oould
also consider approximate inclusion regions of the fét(V*BV)~1V*AV). However,
these will often not be competitive to the regions generagdlgorithms 1 and 2. IfB
is HPD, then a symmetric decompositionof BV (as in Algorithm 1) will give superior
results, whileW ((V*BV)~1V*AV) is unbounded iff € W (V*BV'), which may occur for
non-HPD matriced3.

5. Inclusion regions from shifted pencils. In this section, we extend several results
from [1] to the context of matrix pencils. Let ¢ A(A, B) which implies thatd — 7B is
nonsingular. Because of the shift-and-invert property((cfl))

(5.1) (A—7B) 'Bx=(\—1)"'x,
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we have for the spectru( A, B) of the pencil(4, B) that

1

MAB) C a8

)+7'.

Similarly, in view of
B(A-7B)'y=(A-7)""y, (A-71B)x=y,
we have for the spectrum( A, B) of the pencil(4, B) that

1
A(A,B) C WBA—7B)1) + 7.

Therefore,

1 1

a5 7 ™ wEa—m "

(5.2)

parametrized by ¢ A(A, B), are two families of inclusion regions of field of values type
Furthermore, we note that

1 _ vy ]
W(BA-7B) ) {y*B<A—TB>1y s 0} o
x*(A—7B)"(A—-71B)x

x*(A — 7B)*Bx X¢0}+T

x*(A—-7B)*Ax
x*(A—7B)*Bx x 7 0} ’

(5.3) -

and

a0

x*(A—-7B)(A—-TB)*x
x*B(A — 7B)*x '

B {X*A(A —7B)*x
x*B(A — 1B)*x

{
{
1 —
(5.4) _ { x4 0} ir

:X#O}.

Characterizations5(3) and 6.4) enable effective computational approaches, since

1 1
W(BA—7B) 1) | W(A—7B)yB, (A—1B)(A—7B))
1 1

W(A—7B)-1B) | WBA_7B), (A B)A_7B))

where(A — 7B)*(A — 7B) and(A — 7B)(A — 7B)* are HPD.
For the first family, we consider the subspace approximation

1
W(V*(A—-7B)*BV, V*(A—-71B)*(A—7B)V)

+ 7

where the columns of are an orthonormal basis for the Krylov space

Ke(BUT'L™',v)), A—-71B=~LU.
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With (A — 7B)V = @R, this yields

1 1

W(R V- (A—7ByBVR L) | W(QBVR )

For the second family, we consider the subspace approximati

1
W(V*B(A—rB)*V, V*(A—7B)(A—7B)*V)

+ 7

where the orthonormal columns &f span the Krylov spack, (UL~ B,v;). Using the
QR-decompositioiA — 7B)*V = QR, we get
1 1

W(R—VBA—7B) VR | WERVBQ)

These subspace based approximations are summarized irthhgS.

Algorithm 3 Methods to approximate/W (B(A—7B)~Y)+7orl/W((A—7B)"'B)+1
Input: MatricesA, B, a shiftr, starting vectow, dimension of Krylov space,
and number of angles; (inexact) LU -factors forA — 7 B.
Output: An approximation to the spectral inclusion regions
@ 1/W(BA-7B)"Y)+7 or (O)1/W{(A-7B)"'B)+71
1. Approximate the Krylov space
(@) Ke(B(A—71B)"Y,vi) or (b) Kp((A—7B)"'1B,vy)
by a spacé’, using the (inexact) LU-factors
2:  Compute the reduced QR-decomposition
@ (A-—7mB)V =QR or (b) (A—7B)*"V =QR
3: Approximate the set
@ 1/W(Q*BVR™Y)+7 or (b) I/W(R*V*BQ)+ 7
using Johnson’s method with angles

We note that a disadvantage of this approach is that in plmcive need a different
Krylov subspace for every. In the remainder of this section we study several propedfe
the two families §.2). The next results can be viewed as extensiong,offim. 5].

LEMMA 5.1.
(a) lTlligflwW(B(Al_TB)_l)JrT = W(B*A,B*B),
(b)  lim W(B(Al_TB)_l)JrT = W(A*4, A*B),
() lTlliinwW((A_lTB)_lB)JrT = W(AB*, BB*),
(d)  lim ! +7 = W(AA*, BA*).

r—0 W((A—7B)"1B)
Proof. Forr # 0 there holds (cf. alsds(3))

1 _ [x"(A-71B)*Ax _ [x*(:A-B)*Ax
W(B(A—-71B)~1) = {X*(A—TB)*BX X7 0} B {x*(iA—B)*Bx X7 0}

from which (a) and (b) follow. Parts (c) and (d) are provedikinty. a
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Some remarks about these results are in orderd #nd B are nonsingular, then the
sets in this lemma ad’ (AB~1), 1/W(BA~1), W(B~1A), andl/W (A~!B) respectively.
From these properties we see that the s2t§,((2.2), (2.3), and @.4) studied in Sectiod are
in fact special cases of the famili€s.?). Moreover, the limit sets in (a) and (c) are the only
members of these two families that are guaranteed to be xonve

Next, we present extensions df [Thms. 2 and 4] for matrix pencils.

THEOREMb.2. LetG be a set-valued function from the setok n matrices to subsets
of C, such that for anyA the setG(A) is bounded and contains(A). Then

1
MaB = ] G(A—7B)1B)
T€C\A(A,B)
1
AMAB) = () + 7.

_ —1
reciaap GBA=TE

Proof. SinceA(A, B) C m +rforall T ¢ A(A, B), we have that\(A, B)
is also contained in the intersection. To show that equhlbitgs, suppose thatZ A(A, B),
then¢ ¢ ora—epy=—rpy + ¢ sinceG (A —¢B)~' B) is abounded set. The second statement
is proved similarly. a

Since the field of values satisfies the requirements of Theér& we immediately get

the following result.
COROLLARY 5.3. We have the intersection properties

1
MAB = () s
rEC\A(A,B)
1
AAB) = ) + 7.

_ -1
reca(ap V BA=TE)T

If 0 Z W((A—7B)"!'B),thenthe set/W((A — 7B)~'B) + 7 is bounded and hence
may be seen as an inclusion region) ¥ W((A—7B)~1B), thenl/W ((A—7B)~'B)+7
is unbounded. If its complement is bounded, it may be moreauent to view this com-
plement as amxclusion region We will call the case in which both the inclusion region
1/W((A—7B)~1B) + r and its complement are unbounded tremsition case

The next proposition, an extension df [Thm. 6], implies that the transition case for
1/W((A — 7B)~'B) + 1 occurs precisely iff € OW(B~'A) (that is, on the boundary
of W(B~1A)) and, similarly, that the transition case fof\W (B(A — 7B)~!) + 7 occurs
precisely ifr € OW (AB™1).

PrROPOSITIONS.4. LetT ¢ A(A, B) and B be nonsingular. Then

(@ 0€ W((A—7B)~'B)ifand only ifr € W(B~1A),

(b) 0 € W(B(A—7rB) YYifand only ifr € W(AB™1).

Proof. Since

x*B(A—1B)*x .
x*(A—7B)(A—-7B)*x x7 O} ’
0 € W((A—7B)~!B) if and only if there exists a nonzesosuch that* B(A —7B)*x = 0

which means that € W (AB*, BB*), and sinceB is nonsingular this is equal to the set
W (B~1A). The proof of the second statement is similar. [

W(A—-7B)"'B) = {
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The following result, an extension of,[Prop. 3], indicates that by considerirgZ), we
can get inclusion regioresxcluding(user-chosen) targets
PROPOSITIONS.5.

i 1
dist (T, W((A—rB
. 1
dist (T, WB(A—r

oy 7) 2 A= B

—rB)7 Y.
7 +7) 2 1B -5

Proof. The first statement follows directly from the facts thatse¢!V ((A — 7B) "1 B)
is contained in the disk around the origin with radjigl — 7 B) ! B||. The second statement
follows from a similar argument. 0O

In fact, we have already seen examples of this in Figdrésand 3.1 We will make
fruitful use of this fact in Sectiofd.

6. Relation with harmonic Rayleigh—Ritz methods. In this section we will first briefly
review the harmonic Rayleigh—Ritz method for the geneealigigenvalue problem (see also
[8]), and then point out connections with the families of irsdtin regions of the previous
section.

In subspace methods for eigenvalue problems, one attemfitedtapproximate eigen-
pairs(6,v) ~ (), x) of which the approximate eigenvecteiis sought in a low-dimensional
search spac¥. The standard Ritz—Galerkin projection

Av—0Bv 1LV

is frequently employed to find eigenvalues at the exteriathefspectrum, but is often less
successful to approximate interior eigenvalues.

Suppose we are interested in eigenpairs close to a targeC\A(A, B). Because of
the shift-and-invert propertys(1), interior eigenvalues close toare exterior eigenvalues of
(A — 7B)~!B. This suggests to impose the Galerkin condition

(A—mB) 'Bv—-0—-7)"'v.iWw

for a certain test spad&’. With the choiceV = (A — 7B)*(A — 7B)V we manage to avoid
matrix inverses and get the harmonic Ritz extraction

V(A—7B)*(A—7mB)Ve= (0 —1)V*(A—-7B)"BVc,

wherev = V¢ are the harmonic Ritz vectors. The corresponding harmoiticvRlues are

given by

0 cV*(A—-71B)*(A—71B)Vc n c'V*(A—-1B)*AVc

= T = .
c*V*(A—-71B)*BVc c*V*(A—-71B)*BVc

Therefore, we conclude that for fixed (5.3) is exactly the set of all possible harmonic Ritz
values that can be obtained from a one-dimensional sub3pace

To obtain the sety.4), we now consider the following neleft-harmonic Ritz approach
We start with the shift-and-invert property

(A—7B) "By =(A—7)""y.
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(In this casey represents a left eigenvector; but since we are interestédeieigenvalues in
this context, this is irrelevant.) This inspires us to esti@n approximate eigenpdif, v) by
the Galerkin condition

(A—7tB)*B*v— (0 —7)""v LW,

for a certain test spacd). With W = (A — 7B)(A — 7B)*V we get the harmonic Ritz
extraction

V(A—7B)(A—71B)"v=(0—-71)"V*(A—7B)B"v.

where we call the vectorg = V¢ the left-harmonic Ritz vectors. The corresponding left-
harmonic Ritz values are given by
0 c*V*(A—71B)(A—7B)*Ve L c*V*A(A—-71B)*Ve

B c*V*B(A—71B)*Ve - c¢*V*B(A-71B)*Vc’

Hence, we may conclude that for fixed(5.4) is exactly the set of all possible left-harmonic
Ritz values that can be obtained from a one-dimensionalpsude’ .

7. An automated algorithm and a numerical experiment. Algorithm 3 raises the im-
portant question how to choose relevant target#\lthough the user is free to choose any
7 ¢ A(A, B), itis attractive to develop an algorithm that automaticatiooses sensible val-
ues forr. Recall from Sectior® that for a chosen, Algorithm 3 generates an approximate
inclusion region thaéxcludes neighborhood of this.

Algorithm 1 (for HPD B) and Algorithm 2 parts (a) and (b) (for non HPB) provide
us with bounded convex (approximate) inclusion regionsesthregions may be not very
strict; cf. Figures2.1and3.1 If we would like to improve this inclusion region, it seems a
promising idea to take the discretized boundary points@biitained inclusion region as our
points forr, as this “cuts away” parts of our initial inclusion regiori. @lso [1]). This leads
to an automated “master” Algorithm 4, that calls Algorithin®, and 3 as appropriate.

Algorithm 4 An automated method to generate an approximate inclusgarre

Input: MatricesA, B, starting vectow, dimension of Krylov spacg, drop tolerance,
and number of angles.

Output: An approximated spectral inclusion region, consistinghefintersection of
O(m) inclusion regions

if Bis HPD
1 Determine an inexact Cholesky factor®fwith drop tolerance
2: Carry out Algorithm 1
else
3: Determine inexact LU-factors d@ with drop tolerance
4: Carry out Algorithm 2, parts (a) and/or (b)
end

for eachr; on the discretized boundary found in Step 2 or 4
Determine inexact LU-factors of — 7; B with drop tolerance
6: Carry out Algorithm 3, parts (a) and/or (b)
end

o

To test Algorithm 4, we return to the setting of Experimé&nt. SinceB is HPD, Al-
gorithm 4 first calls Algorithm 1, which approximatég (A, B). There are two different
approximating aspects involved: we projétt( A, B) onto a 10-dimensional Krylov space
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(k = 10), and to generate the Krylov space we use an inexact Cholds&ymposition
(6 = 1075, with randomv;). The resulting approximation is a convex inclusion region
For clarity we discretize this region using just 8 pointsrf@ points in Figur&.1(a)).

Apparently, this is a quite coarse inclusion region; to miakighter we take the 8 corner
points as-values. The blue dashed lines indicate approximationgWd(B(A—7B) 1) +7
as described in Algorithm 3(a). These represent finite apprate inclusion regions; note
that these regions are not true inclusion regions in thisng@ The black dotted lines
indicate approximations to/W ((A — 7B)~'B) + t as given in Algorithm 3(b). These 8
sets are unbounded inclusion regions. We see that the apai@dinclusion region consisting
of the intersection of all approximate inclusion regiondaad includes the vast majority of
the eigenvalues. Although it does not include some relaiivtiers, it gives a very good
indication of the location of the spectrum.

1000,
6000}
4000}
. 500
2000} 1.
g g
g ° g
—2000f .}
: -500f
~4000/
-6000; 3 L 100 d
-5000 0 5000 “19%%0  —s00 0 500 1000
Real Real
(@ (b)

FiG. 7.1.(a) Result of running Algorithm 4 on the problem from maghgtiiodynamics for the discretization
of W(A, B) using 8 points. The blue dashed lines represent inclusigioms obtained with Algorithm 3(a), the
black dotted lines those obtained with Algorithm 3(b). Batte forr the values on the discretized boundary of the
approximation ofi’ (A, B) (the 8 corner points). (b) Zoom-in of (a).

8. Conclusions. Our focus in this paper was on inclusion regions for matrirgile
based on fields of values. We stress that the computatiorchofSion regions may be an effi-
cient technique: since the field of values is often well agpnated from a low-dimensional
Krylov space,computing a spectral inclusion region may be cheaper thanpuding even
one single eigenvalue!

Several results in this paper are extensions of resulig,ib{it for matrix pencils there are
many new aspects as well. First, we have slightly modifiedighel definition oV (A, B) by
addingoo if B is singular. We have given procedures to numerically apprate W (A, B)
for HPD matricesB (or any combination oA and B), for both matrices of small and large
(see Algorithm 1) dimension.

Psarrakos’s methodT can be used for pairs of small dimension of which at leastaine
the two matrices is Hermitian (and not necessary definite)sbems to be computationally
unattractive for large matrice$ and B. Moreover, it is not clear from7] how to effectively
approximatelV (A, B) if both matrices are non-Hermitian. Apart from this, we haeen
thatW (A, B) as inclusion region may not reveal much useful informat&nce it may be
very large or even unbounded.
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The setsW (B~1A), W(AB~1Y), 1/W(B~!A), and1/W (AB~!) may be more infor-
mative inclusion regions, although the latter two sets mag Ge unbounded. Of course,
the intersection of these sets is also a bounded inclusgione In contrast tdV (A, B),
these sets can efficiently be approximated if no linear caathon of A and B is HPD (Al-
gorithm 2).

We introduced two families of inclusion regions involvingifted and inverted pencils:
1/W(B(A—7B)~) + randl/W((A — 7B)~'B) + 7, of which the four sets mentioned
above are special cases. We considered several theopatigerties as well as their use in
practical contexts (Algorithm 3). By varying the shift, weayngenerate as many inclusion
(or exclusion) regions as we desire, depending on the regfittimee complex plane that is of
interest to us.

We pointed out connections with the usual harmonic RayleRitz method, as well as a
new left-harmonic variant. Finally, we proposed a methat #utomatically selects targets
7, and gives a bounded approximated inclusion region congisif the intersection of a
user-chosen number of inclusion regions (Algorithm 4).
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