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Abstract. Let A be a positive self-adjoint linear operator on a real separable Hilbert spaceH. Our aim is to
build estimates of the trace ofAq , for q ∈ R. These estimates are obtained by extrapolation of the moments of A.
Applications of the matrix case are discussed, and numerical results are given.
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1. Introduction. Let A be a positive self-adjoint linear operator fromH to H, where
H is a real separable Hilbert space with inner product denotedby (·, ·). Our aim is to build
estimates of the trace ofAq, for q ∈ R. These estimates are obtained by extrapolation of the
integer moments(z,Anz) of A, for n ∈ N. A similar procedure was first introduced in [3] for
estimating the Euclidean norm of the error when solving a system of linear equations, which
corresponds toq = −2. The caseq = −1, which leads to estimates of the trace of the inverse
of a matrix, was studied in [4]; on this problem, see [10].

Let us mention that, when only positive powers ofA are used, the Hilbert spaceH could
be infinite dimensional, while, for negative powers ofA, it is always assumed to be a finite
dimensional one, and, obviously,A is also assumed to be invertible. With this convention,
the two cases could be treated simultaneously. Moreover, since some of our results are valid
in the infinite dimensional case, the mathematical conceptsneeded are given in their full
generality in Section2.

Traces of powers of matrices arise in several fields of mathematics. More specifically
• Network analysis: triangle counting in a graph.When analyzing a complex net-

work, an important problem is to compute the total number of triangles of a con-
nected simple graph. This number is equal toTr(A3)/6 whereA is the adjacency
matrix of the graph [1]. For many networks, even if the matrixA is sparse,A3 can
be rather dense and, thus, it is not possible to compute this trace directly.

• Number theory and combinatorics: Euler congruence.Traces of powers of integer
matrices are connected with the Euler congruence [18], an important phenomenon
in mathematics, stating that

Tr(Apr

) ≡ Tr(Apr−1

) (mod pr),

for all integer matricesA, all primesp, and allr ∈ N. The diversity of proofs of
the Euler congruence indicates its universality and its role in different branches of
mathematics.

• Statistics: specification of classical optimality criteria. In optimal design of ex-
periments [15], the ultimate purpose of any optimality criterion is to measure the
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“largeness” of a nonnegative definite matrixC of dimensions. One of the most
prominent criteria is the average variance criterionΦ−1(C) = (Tr(C−1)/s)−1,
if C is positive definite. Invariance under reparametrization loses its appeal if the
parameters of interest have a definite physical meaning. Theabove average vari-
ance criterion provides a reasonable alternative. More generally, for positive defi-
nite matricesC, the matrix meanΦp can be defined for every real parameterp by
Φp(C) = (Tr(Cp)/s)1/p, for p 6= 0,±∞.

• Dynamical systems: determination of their invariants.The invariants of dynami-
cal systems are described in terms of the traces of powers of integer matrices, for
example in studying the Lefschetz numbers [18].

• p-adic analysis: determination of the Witt vector.For any integer matrixM and any
prime numberp, the entries of the unique Witt vector consisting ofp-adic integers
are expressed from the traces of powers of the integer matrixM [18].

• Matrix theory: extremal eigenvalues.There are many applications in matrix theory
and numerical linear algebra. For example, in order to obtain approximations of the
smallest and the largest eigenvalues of a symmetric matrixA, a procedure based on
estimates of the trace ofAn andA−n, n ∈ N, was proposed in [14].

• Differential equations: solution of Lyapunov matrix equation. These equations can
be solved by using matrix polynomials and characteristic polynomials where the
computation of the traces of matrix powers are needed [8].

The computation of the trace of matrix powers has received much attention. In [8], an
algorithm for computingTr(Ak), k ∈ Z, is proposed, whenA is a lower Hessenberg matrix
with a unit codiagonal. In [7], a symbolic calculation of the trace of powers of tridiagonal
matrices is presented.

The mathematical tools needed are described in Section2. The extrapolation procedure
for estimating the moments of an operator is presented in Section 3. Estimates for the trace
of powers of a matrix are derived in Section4. Numerical results are given in Section5.
Concluding remarks end the paper.

2. The mathematical background. Let A be a compact positive self-adjoint operator
over a separable infinite dimensional Hilbert spaceH. The eigenvaluesλk of A are real and
positive, and it exists an orthonormal basis ofH consisting of its corresponding eigenelements
{uk} (the operatorA can be diagonalized by an orthonormal set of eigenvectors).

We have

Auk = λkuk, k = 1, 2, . . . ,

and also

λk = (uk, Auk) = (Auk, Auk)
1/2 and (uk, Aun) = 0, n 6= k.

A bounded linear operatorA over a separable Hilbert spaceH is said to be in thetrace
classif the sum

∑

k

((A∗A)1/2uk, uk)

is finite, where{uk} is any orthonormal basis [16, p. 32]. In this case, the trace ofA is
defined by the absolutely convergent sum

Tr(A) =
∑

k

(Auk, uk),
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which is independent of the choice of the basis. Lidskii’s theorem [13] states that, ifA is a
positive compact operator and if{uk} is any orthonormal basis ofH, its trace is equal to the
sum of its non-zero eigenvalues, each of them enumerated with its algebraic multiplicity.

We remind the canonical form of a compact self-adjoint operator on a Hilbert space

∀z ∈ H, Az =
∑

k

λk(z, uk)uk.

3. The extrapolation procedure for the moments.For q ∈ R, the canonical form of
the powers of the operatorA will be defined by

Aqz =
∑

k

λq
k(z, uk)uk,

and its moments by

(3.1) cq(z) = (z,Aqz) =
∑

k

λq
kα

2
k(z),

whereαk(z) = (z, uk).
We will now provide estimates of the trace ofAq. These estimates are based on the

integer moments ofA which are defined by (3.1), with q = n ∈ N. Obviously, in practice,
only the moments withn ≥ 0 can be computed.

The momentscq(z) defined in (3.1) are given by a sum. Starting from some moments
cn(z) with a nonnegative integer indexn, we want to estimate the momentscq(z) for any
fixed indexq ∈ R. For this purpose, we will interpolate thesecn(z)’s by a conveniently
chosen function defined by keeping only one or two terms in thesummation (3.1), and then
extrapolate this function at the pointq. This idea was introduced in [3] for estimating the
norm of the error in the solution of a system of linear algebraic equations, and it was used
in [4] for estimating the trace of the inverse of a matrix.

3.1. One-term estimates.We want to estimatecq(z), q ∈ R, by keeping only one term
in formula (3.1), that is by a function of the form

cq(z) ≃ eq(z) = sqa2(z).

Thus, knowing the values ofc0(z) andc1(z), the interpolation conditions

c0(z) ≃ e0(z) = a2(z), c1(z) ≃ e1(z) = sa2(z).

give us the 2 unknownss anda(z), and we have the
PROPOSITION3.1. The momentcq(z) can be estimated by the direct one-term formula

(3.2) cq(z) ≃ eq(z) =
cq1(z)

cq−1
0 (z)

, q ∈ R.

REMARK 3.2. The estimateeq(z) of formula (3.2) is real sinceA is a positive self-
adjoint operator and, thus,c1(z) is positive.

REMARK 3.3. Forq = −1, we havec−1(z) ≃ e−1(z) = c20(z)/c1(z), which is the one-
term estimate ofc−1(z) given in [4], which leads to the estimate of the trace of the inverse of
a matrix.
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Let us now assume thatA−1 exists, and letκ be the Euclidean condition number ofA
defined byκ = ‖A‖ · ‖A−1‖. We have the

PROPOSITION3.4. If A is self-adjoint positive definite, then, for any vectorz, the one-
term estimateen(z) given by(3.2) satisfies the following inequalities forn ∈ Z, n 6= 0,

en(z) ≤ cn(z) ≤

(

(1 + κ)2

4κ

)2d−1

en(z),

where

d =

{

n− 1, n > 1,

|n|, n < 0, n = 1.

Proof. We have, by an inequality given in [5, Theorem 4],

cni (z) ≤ cin(z) c
n−1
0 (z), i = 0,±1,±2, . . . , n ≥ 0.

Thus, fori = 1, it follows

(3.3) cn1 (z)/c
n−1
0 (z) ≤ cn(z).

Moreover, from [5, Theorem 1], it holds

(3.4) cn+1(z) ≤
(1 + κ)2

4κ
·

c2n(z)

cn−1(z)
.

We will prove by induction that

(3.5) cn(z) ≤

(

(1 + κ)
2

4κ

)2n−1−1
cn1 (z)

cn−1
0 (z)

, n > 1.

This inequality is true whenn = 2, since it is the inequality (3.4) for n = 1. Assume that
(3.5) holds forn ∈ N, and let us prove that it still holds forn+ 1. From (3.4) we have,

cn+1(z) ≤
(1 + κ)2

4κ
·

c2n(z)

cn−1(z)
,

wherec2n(z) can be upper bounded from (3.5) since all the quantitiesci(z) are positive and
the inequality can be squared. Ascn−1(z) can be lower bounded from (3.3) by replacingn
by n− 1, we have

cn+1(z) ≤
(1 + κ)2

4κ

((1 + κ)2/4κ)2(2
n−1−1)c2n1 (z)/c2n−2

0 (z)

cn−1
1 (z)/cn−2

0 (z)
,

and the result immediately follows, because

(1 + κ)2

4κ
·
((1 + κ)2/4κ)2(2

n−1−1)c2n1 (z)/c2n−2
0 (z)

cn−1
1 (z)/cn−2

0 (z)
=

(

(1 + κ)
2

4κ

)2n−1
cn+1
1 (z)

cn0 (z)
.

The inequality forn < 0 andn = 1 can be proved in a similar way.
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3.2. Two-term estimates.We want now to estimatecq(z), q ∈ R, by keeping two terms
in formula (3.1), that is by a function of the form

(3.6) cq(z) ≃ eq(z) = sq1a
2
1(z) + sq2a

2
2(z).

The four unknownss1, s2, a21(z), anda22(z), will be computed by imposing the interpolation
conditions

(3.7) cn(z) = sn1a
2
1(z) + sn2a

2
2(z),

for four different values of the integern, namelyn = 0, . . . , 3. Writing this relation forn = 0
and1 gives a system of two equations in the two unknownsa21(z) anda22(z) if s1 ands2 are
known. But the interpolation conditions (3.7) mean, in fact, thecn(z)’s satisfy the difference
equation of order 2

cn+2(z)− scn+1(z) + pcn(z) = 0,

wheres = s1 + s2 andp = s1s2. Using this relation forn = 0 and1 givess andp. Then,
we obtain

(3.8)

s =
c0(z)c3(z)− c1(z)c2(z)

c0(z)c2(z)− c21(z)
, a21(z) =

c0(z)s2 − c1(z)

s2 − s1
,

p =
c1(z)c3(z)− c22(z)

c0(z)c2(z)− c21(z)
, a22(z) =

c1(z)− c0(z)s1
s2 − s1

,

and the estimate (3.6) for eq(z) follows with s1,2 = (s ±
√

s2 − 4p)/2. Thus, we have the
following result

PROPOSITION3.5. The momentcq(z) can be estimated by thedirect two-term formula

cq(z) ≃ eq(z) = sq1a
2
1(z) + sq2a

2
2(z), q ∈ R,

wheres1, s2, a21, anda22, are given by the formulae(3.8).

REMARK 3.6. The direct two-term estimateeq(z) of this Proposition is real ifq ∈ R.
Indeed, ifs2 − 4p < 0, s1 ands2 are complex conjugate, and it is easy to see thata21 and
a22 are also complex conjugate and, thus,eq(z) ∈ R. In cases2 − 4p ≥ 0, thens1 and
s2 are real. Alsos1 ands2 are positive, becausep = s1s2, as defined by relations (3.8),
is positive; this can be deduced from considering the inequality given in [5, Theorem 1],
c2i+1(z) ≤ ci(z)ci+2(z), i = 0,±1,±2, . . ., for i = 0 andi = 1. Moreover,s = s1 + s2, as
defined by relations (3.8), is positive; this follows from the inequality given in [5, Theorem 4],
c1(z)/c0(z) ≤ c3(z)/c2(z). Thus,eq(z) ∈ R.

Looking at (3.6), theen(z)’s also satisfy the difference equation

en+2(z)− sen+1(z) + pen(z) = 0.

Thus, using again the formulae (3.8) for s andp, theen(z)’s can be recursively computed, for
integer values of the index, and we obtain the

PROPOSITION3.7. The momentcn(z) can be estimated by theforward iterative formula

en(z) = sen−1(z)− pen−2(z), n = 2, 3, . . . ,

or by thebackward iterative formula

en(z) = (sen+1(z)− en+2(z))/p, n = −1,−2, . . . ,
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with e0(z) = (z, z) ande1(z) = (z,Az).
REMARK 3.8. Takingn = −1 in the backward iterative formula, and usings andp from

(3.8), we obtain the formula

c−1(z) ≃ e−1(z) =
c1

3(z) + c0
2(z)c3(z)− 2c0(z)c1(z)c2(z)

c1(z)c3(z)− c22(z)
,

which leads to the two-term estimate given in [4] for the trace of the inverse of a matrix.

The results of this Section will now be used for estimating the trace of the powers of a
symmetric positive definite matrix. Although not indicated, all sums run from 1 up to the
dimension of the matrix.

4. Estimates for traces. Let A be a symmetric positive definite matrix, and let{λk}
denote its eigenvalues. Forq ∈ R, Aq is also symmetric positive definite, and it holds [11]

Tr(Aq) =
∑

k

λq
k.

Our estimates for the trace ofAq are based on the following result proved by Hutchinson [12];
see also [2] and [10, p. 170].

PROPOSITION4.1. LetM = (mij) be a symmetric matrix of dimensionpwithTr(M) 6=
0. LetX be a discrete random variable taking the values1 and−1 with the equal probability
0.5, and letx be a vector ofp independent samples fromX; for simplicity, we write, in this
case,x ∈ Xp. Then(x,Mx) is an unbiased estimator ofTr(M), and it holds

E((x,Mx)) = Tr(M)

and

Var((x,Mx)) = 2
∑

i6=j

m2
ij ,

whereE(·) andVar(·) denote the expected value and the variance respectively.
This Proposition tells us thatTr(Aq) = E((x,Aqx)) = E(cq(x)), for x ∈ Xp. Thus,

for the one-term estimates (3.2), it immediately follows from Proposition3.4.
COROLLARY 4.2. If the matrixA is symmetric positive definite, then, for the direct

one-term estimates(3.2), we have the bounds

E(en(x)) ≤ Tr(An) ≤

(

(1 + κ)
2

4κ

)2d−1

E(en(x)), n ∈ Z, n 6= 0,

where

d =

{

n− 1, n > 1,

|n|, n < 0, n = 1.

Notice that, ifA is orthogonal, thenκ(A) = 1, andTr(An) = E(en(x)).
For the direct one-term formula (3.2) of Proposition3.1, the expectationE(en(x)) ap-

pearing in the bounds of the inequality of Corollary4.2 is given by the formula

(4.1) E(en(x)) = E(cn1 (x)/c
n−1
0 (x)) = E(cn1 (x))/N

n−1, x ∈ Xp.
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In practice, the computation ofcn1 (x) needs quite tedious algebraic developments. In-
deed,c1(x) =

∑

i,j aijξiξj , wherex = (ξ1, . . . , ξp)
T . Its nth power has first to be ex-

panded, noticing that each term ofcn1 (x) has the formCξn1

1 · · · ξnk

k , with ξi 6= ξj for i 6= j,
n1 + · · · + nk = 2n, and whereC is a coefficient which is the product ofn elements of the
matrix A. Then,E(cn1 (x)) has to be computed taking into account that, since theξi’s are
independent random variables, the expectation of their product is equal to the product of the
expectations, and that, for alli, E(ξmi ) is equal to 1 ifm is even and to 0 ifm is odd. Unless
a general formula could be obtained, the use of a computer algebra software is required for
n > 2. A closed formula and numerical results forn = 2 are given in Example5.4.

Whenq ∈ R, estimates ofTr(Aq) can be obtained by realizingN experiments, and then
computing the mean value of the quantitieseq(xi), for xi ∈ Xp. We set

(4.2) tq =
1

N

N
∑

i=1

eq(xi),

where thexi’s are realizations ofx ∈ Xp. Thus, formula (3.2) gives us the direct one term
trace estimatestq,

tq =
1

N

N
∑

i=1

cq1(xi)/c
q−1
0 (xi), q ∈ R,

while, from formula (3.6), we have the following direct two term trace estimates

tq =
1

N

N
∑

i=1

sq1a
2
1(xi) + sq2a

2
2(xi), q ∈ R,

together with (3.8). Similarly, estimates for the variance are given by

(4.3) vq =

∑N
i=1(eq(xi)− tq)

2

N − 1
.

Proposition3.7 leads us to the following result
PROPOSITION4.3. For n ≥ 2, estimates ofTr(Aq), q ∈ R, are given by the forward

iterative formula

tn = stn−1 − ptn−2,

with the initial valuest1 = Tr(A) and t0 = p (sinceA0 = I). For n < 0, estimates of
Tr(Aq), q ∈ R, are given by the backward iterative formula

tn = (stn+1 − tn+2)/p,

with the same initial values.
The following result specifies the confidence interval for the trace estimatetq of the trace

of powers of symmetric positive definite matrices. Let us remind that the amount of evidence
required to accept that an event is unlikely to arise by chance is known as thesignificance
level. The lower the significance level, the stronger the evidence. The choice of the level
of significance is arbitrary, but for many applications, a value of 5% is chosen, for no better
reason than that it is conventional.
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Let Za/2 be the uppera/2 percentage point of the normal distributionN (0, 1). Then,
the following result is a classical one about the probability of having a good estimate.

PROPOSITION4.4.

Pr

(∣

∣

∣

∣

∣

tq − Tr(Aq)
√

Var((x,Aqx))/N

∣

∣

∣

∣

∣

< Za/2

)

= 1− a,

whereN is the number of trials,a is the significance level, andZa/2 the critical value of the
standard normal distribution defined above.

For a significance levela = 0.01, we haveZa/2 = 2.58, and Proposition4.4gives us a
confidence interval forTr(Aq) with probability100(1 − a)% = 99%. Thus, we expect, for
any sample’s size, the trace estimatetq to be in this interval with a probability of99%.

If, in Proposition4.4, Var((x,Aqx)) is replaced byvq given by formula (4.3), an ap-
proximation of the confidence interval is obtained.

5. Numerical results. Let us now give some numerical results for illustrating the trace
estimatestq. Each realization ofeq requires only few matrix-vector products and some inner
products. For a real dense symmetric matrixA of dimensionp, the one-term estimateeq needs
O(p2) flops, whereas the two-term one requiresO(2p2) flops. In the case of a banded ma-
trix the complexity is reduced. Specifically, the one-term estimateeq requiresO(mp) flops,
wherem is the bandwidth. The two-term estimate has twice this complexity. Obviously, the
computation oftq by (4.2) and ofvq by (4.3) needsN times these flops.

TABLE 5.1
Estimations ofTr(P 3/2).

Dim. Exact 1-term est. rel1 conf. interval
100 2.461e2 2.454e2 2.628e-3 [2.420e2, 2.489e2]
200 4.923e2 4.878e2 9.275e-3 [4.823e2, 4.932e2]
500 1.231e3 1.211e3 1.647e-2 [1.202e3, 1.220e3]
1000 2.462e3 2.421e3 1.700e-2 [2.409e3, 2.432e3]

TABLE 5.2
Estimations ofTr(P 3/2).

Dim. Exact 2-term est. rel2 conf. interval
100 2.461e2 2.465e2 1.769e-3 [2.426e2, 2.504e2]
200 4.923e2 4.923e2 1.350e-4 [4.869e2, 4.976e2]
500 1.231e3 1.231e3 4.156e-5 [1.223e3, 1.239e3]
1000 2.462e3 2.464e3 6.400e-4 [2.453e3, 2.475e3]

TABLE 5.3
Estimations ofTr(P 1/2).

Dim. Exact 1-term est. rel1 conf. interval
100 1.332e2 1.340e2 6.505e-3 [1.332e2, 1.349e2]
200 2.663e2 2.676e2 4.603e-3 [2.664e2, 2.687e2]
500 6.657e2 6.698e2 6.160e-3 [6.682e2, 6.714e2]
1000 1.331e3 1.341e3 7.535e-3 [1.339e3, 1.344e3]
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For the vectorsxi ∈ Xp, we used the uniform generator of random numbers between 0
and 1 ofMATLAB . If the random number obtained is less or equal to0.5, the corresponding
component ofxi is set to−1; if it is greater than0.5 and smaller or equal to1, the corre-
sponding component ofxi is set to+1.

The relative errors for the one-term and two-term estimatesare denoted byrel1 andrel2,
respectively. The condition number of the matrix is denotedbycond. The confidence intervals
for Tr(Aq) of Proposition4.4 were obtained using the numerical variancevq computed by
(4.3).

All computations were performed inMATLAB , the test matrices were given by thegallery
function, and we tookN = 50. The so-calledexactvalues reported in this section are those
given by the functiontraceof MATLAB . The matrix powersAq, if q is an integer, are com-
puted by repeated multiplication. If the integer is negative,A is inverted first. For other values
of q, the calculation involves eigenvalues and eigenvectors, such that if[V,D] = eig(A), then
Aq = V ∗ Dq ∗ inv(V ), where “eig” and “inv” are theMATLAB internal functions for the
computation of the eigenvalues and the inverse of the matrix, respectively.

EXAMPLE 5.1 (the Prolate matrix). We consider the Prolate matrixP . It is a symmetric
Toeplitz matrix depending on a parameterw. If 0 < w < 0.5, it is positive definite, its
eigenvalues are distinct, lie in (0,1], and tend to cluster around0 and1. It is ill-conditioned
if w is close to 0. In our examples we takew = 0.9 for which cond(P ) = 2. In Tables5.1
and5.2, we give the results forTr(P 3/2) and, in Tables5.3and5.4, those forTr(P 1/2).

TABLE 5.4
Estimations ofTr(P 1/2).

Dim. Exact 2-term est. rel2 conf. interval
100 1.332e2 1.332e2 3.4839e-5 [1.325e2, 1.339e2]
200 2.663e2 2.662e2 3.0015e-4 [2.651e2, 2.674e2]
500 6.657e2 6.656e2 2.0770e-4 [6.634e2, 6.678e2]
1000 1.331e3 1.332e3 1.2375e-4 [1.329e3, 1.334e3]

Let us now see the behavior of our estimates for a higher power. The results forTr(P 12)
are presented in Tables5.5and5.6. For the power−1/2, we obtain the results of Table5.7.

TABLE 5.5
Estimations ofTr(P 12).

Dim. Exact 1-term est. rel1 conf. interval
100 3.219e5 1.266e5 6.065e-1 [1.098e5, 1.435e5]
200 6.490e5 2.485e5 6.171e-1 [2.250e5, 2.719e5]
500 1.631e6 5.957e5 6.348e-1 [5.640e5, 6.274e5]
1000 3.269e6 1.189e6 6.363e-1 [1.139e6, 1.239e6]

TABLE 5.6
Estimations ofTr(P 12).

Dim. Exact 2-term est. rel2 conf. interval
100 3.219e5 3.220e5 2.716e-4 [3.114e5, 3.325e5]
200 6.490e5 6.492e5 3.231e-4 [6.366e5, 6.618e5]
500 1.631e6 1.629e6 1.183e-3 [1.609e6, 1.650e6]
1000 3.269e6 3.263e6 1.803e-3 [3.233e6, 3.293e6]
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TABLE 5.7
EstimatingTr(P−1/2).

Dim. Exact 2-term est. rel2 conf. interval
100 7.647e1 7.619e1 3.710e-3 [7.568e1,7.670e1]
200 1.530e2 1.531e2 3.926e-4 [1.522e2, 1.539e2]
500 3.827e2 3.826e2 2.642e-4 [3.811e2, 3.841e2]
1000 7.656e2 7.645e2 1.314e-3 [7.626e2, 7.665e2]

EXAMPLE 5.2 (dense matrices). We consider theParter matrix P whose elements
are pij = 1/(i − j + 0.5). P is a Cauchy and a Toeplitz matrix. We setA = PTP .
The condition number for the matrixA of dimension100, 200, 500, 1000 has the values
10.997, 12.892, 15.638, 17.898, respectively. The results for the trace ofA15 are given in
Tables5.8and5.9.

TABLE 5.8
Estimations ofTr(A15).

Dim. Exact 1-term est. rel1 conf. interval
100 7.934e16 7.348e16 7.395e-2 [7.128e16, 7.568e16]
200 1.612e17 1.530e17 5.052e-2 [1.507e17, 1.554e17]
500 4.072e17 3.984e17 2.161e-2 [3.954e17, 4.014e17]
1000 8.176e17 8.067e17 1.339e-2 [8.031e17, 8.102e17]

TABLE 5.9
Estimations ofTr(A15).

Dim. Exact 2-term est. rel2 conf. interval
100 7.934e16 7.937e16 3.652e-4 [7.884e16, 7.991e16]
200 1.612e17 1.611e17 5.764e-4 [1.603e17, 1.619e17]
500 4.072e17 4.071e17 4.145e-4 [4.064e17, 4.078e17]
1000 8.176e17 8.177e17 1.463e-4 [8.170e17, 8.185e17]

EXAMPLE 5.3 (ill-conditioned sparse matrices). The following ill-conditioned matri-
ces, denoted byB and whose dimensions are indicated into parenthesis in the Tables, come
from theFlorida Sparse Matrix Collection[9]. We tested two matrices for the power3/2 in
Table5.10, and five of them for the power 3 in Table5.11. These matrices appear in stiff-
ness problems, except the matrixjournals in Table5.11which corresponds to an undirected
weighted graph.

EXAMPLE 5.4 (bounds of Corollary4.2). Let us give some numerical results for illus-
trating the bounds given in Corollary4.2 for the trace ofA2. In that case,E(e2(x)) can be
exactly computed by Formula (4.1) with n = 2, where

E(c21(x)) = 4
∑

i<j

a2ij + 2
∑

i<j

aiiajj +
∑

i

a2ii.

This formula was already given by Hutchinson [12]. Its interest lies in the fact that it only
implies the knowledge ofA, and thatA2 does not have to be computed. Let us remind that, for
a symmetric matrix, the trace ofA2 is the square of its Frobenius norm. The Frobenius norm
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TABLE 5.10
Estimations ofTr(B3/2).

Matrix cond Exact 2-term est. rel2 conf. interval
bcsstk20(485) 7.48e12 8.610e24 8.664e24 6.199e-3 [7.943e24, 9.384e24]
bcsstk21(3600) 4.49e7 9.105e14 9.020e14 9.339e-3 [8.923e14, 9.117e14]

TABLE 5.11
Estimations ofTr(B3).

Matrix cond Exact 2-term est. rel2 conf. interval
bcsstk20(485) 7.483e12 9.145e48 9.226e48 8.763e-3 [8.261e48, 1.019e49]
bcsstk21(3600) 4.497e7 8.750e26 8.759e26 9.774e-4 [8.613e26, 8.905e26]
bcsstm06(420) 3.457e6 2.581e13 2.581e13 0 [2.581e13, 2.581e13]
bcsstm08(1074) 8.266e6 6.415e18 6.415e18 1.724e-14 [6.415e18, 6.415e18]
journals(124) 1.938e4 3.701e14 3.455e14 6.640e-2 [1.831e14, 5.079e14]

has application in obtaining lower and upper bounds for the Frobenius condition number on
the cone of symmetric and positive definite matrices [6, 17].

As an illustration, we first consider the Kac-Murdock-Szegö (KMS) Toeplitz matrixK,
whose elements arekij = y|i−j|, y ∈ R. If 0 < |y| < 1, the matrix is positive definite. It is
ill-conditioned fory close to 1. We choosey = 0.2, for whichκ(K) is around 2.25 when the
dimension ranges between 100 and 1000. We also consider the nearly orthogonal Chebyshev
Vandermonde-like matrixQ, which is given by thegallery function, using the test matrix
orthog with the parameterk = −1. Its elements, based on the extrema of the Chebyshev
polynomialTn−1, areqij = cos((i − 1)(j − 1)π/(n − 1)), and we setA = QTQ. Their
condition number lies in the interval[2.045, 2.147] for dimensions between 100 and 1000.
Finally, we consider theparter matrixP whose elements arepij = 1/(i − j + 0.5). P is a
Cauchy and a Toeplitz matrix. We consider the matrixA = PTP whose condition number is
10.997 for p = 100 and17.898 for p = 1000. In Table5.12, we give the lower and the upper
bounds forTr(A2) for these matrices obtained from Corollary4.2.

TABLE 5.12
Bounds forTr(A2).

Matrix Dim. lower bound Exact upper bound
Prolate 100 3.243e2 3.394e2 3.649e2
Prolate 1000 3.240e3 3.399e3 3.645e3
KMS 100 1.002e2 1.083e2 1.175e2
KMS 1000 1.000e3 1.083e3 1.174e3
QTQ 100 2.652e5 2.748e5 3.059e5
QTQ 1000 2.515e8 2.525e8 2.851e8
PTP 100 9.446e3 9.544e3 3.091e4
PTP 1000 9.702e4 9.715e4 4.840e5

6. Concluding remarks. In this paper, we extended the technique presented in [4] for
estimating the trace of the inverse of a matrix to the trace ofits powers. As explained in
Section1, such estimates have applications in various branches of mathematics. According
to the numerical tests we performed, it seems that our estimates are not very sensitive to
perturbations on the initial matrix. Probably, they could be further improved by statistical
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techniques such as trimmed values or bootstrapping, as already done in [4]. We also per-
formed some tests withq ∈ R, which proved to be conclusive. The ideas presented in this
paper could be extended to a complex Hilbert space. Also, thepossible extension of the ex-
trapolation technique for obtaining estimates of(x, f(A)x), wheref is some function, has to
be studied. Although the numerical results presented here only deal with matrices, they could
be extended, under convenient assumptions, to the trace of powers of a positive self-adjoint
operator in a Hilbert space.
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