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SPECTRAL DEFLATION IN KRYLOV SOLVERS:
A THEORY OF COORDINATE SPACE BASED METHODS *

MARTIN H. GUTKNECHT?

Abstract. For the iterative solution of large sparse linear systemdevelop a theory for a family of augmented
and deflated Krylov space solvers that are coordinate bastx isense that the given problem is transformed into
one that is formulated in terms of the coordinates with respethe augmented bases of the Krylov subspaces.
Except for the augmentation, the basis is as usual genebgtesh Arnoldi or Lanczos process, but now with a
deflated, singular matrix. The idea behind deflation is tdlieily annihilate certain eigenvalues of the system
matrix, typically eigenvalues of small absolute value. Tedation of the matrix is based on an either orthogonal
or oblique projection on a subspace that is complimentatheaeflated approximately invariant subspace. While
an orthogonal projection allows us to find minimal residuaim solutions, the oblique projections, which we favor
when the matrix is non-Hermitian, allow us in the case of aac#y invariant subspace to correctly deflate both the
right and the corresponding left (possibly generalizedgespaces of the matrix, so that convergence only depends
on the non-deflated eigenspaces. The minimality of the wekid replaced by the minimality of a quasi-residual.
Among the methods that we treat are primarily deflated vessid GMRES, MINRES, and QMR, but we also extend
our approach to deflated, coordinate space based versiatsesfKrylov space methods including variants of CG
and BCG. Numerical results will be published elsewhere.

Key words. Linear equations, Krylov space method, Krylov subspacehatktdeflation, augmented basis,
recycling Krylov subspaces, (singular) preconditioni@dyiRES, MINRES, QMR, CG, BCG

1. Introduction. Krylov space solvers are the standard tool for solving varge sparse
linear system@\x = b by iteration. But for many real-world problems they only gerge in
a reasonable number of iterations if a suitable precomdiigptechnique is applied. This is
particularly true for problems where the matxhas eigenvalues of small absolute value —
a situation that is very common in practice. A complement@cinique for dealing with such
problems can be viewed as applying a singular left prectomdit that deflates the matrix in
the sense that small eigenvalues are replaced by zero algesv We first have to identify
an approximately invariant subspa€ehat belongs to a set of such small eigenvalues. Ways
to do that have been extensively discussed in the literatndewill therefore not be a topic
of this paper; seee.g.,[1, 3, 6, 9, 12, 37, 42, 43, 44, 45, 48, 57, 62]. By using an orthog-
onal projectionP whose nullspace i€ the Krylov space solver is then applied only to the
orthogonal complemerf+ by restricting the operatok accordingly. The basis constructed
implicitly or explicitly by this restricted operator is angented by a set of basis vectors for
Z. In some algorithms based on short recurreri€esay also include eigenvectors that the
iteration has identified well already and which in the sequight cause loss of orthogonality
if new basis vectors were not reorthogonalized against thepractice, the dimension of the
deflation spac& may get increased during the solution process or the spaggehadapted,
in particular if a restarted algorithm is employed. In thégpr we assume for simplicity that
Z is fixed.

A relevant detail of the approach discussed here is thatdbis lof Z is assumed to be
given as the columns of a matrix of the fofh= AU. So, the preimage of the basis, the
columns ofU, are assumed to be known. In practice this means that we efficstghe matrix
U, which also spans an approximately invariant subspat@ the chosen eigenvalues, and
then compute the imagé = AU. This implies that the restrictioA |z of A to Z can be
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inverted trivially: if, say,y = Zk € Z, thenA~'y = A~'Zk = Uk € U.

Applying a Krylov space solver to a linear systefsx = b means to construct a sequence
of approximate solutions,, that are of the fornx,, € xo + K,,(A, r¢), wherex, is a chosen
initial approximationyry := b — Axg is the corresponding residual, af@, (A, ry) is the
nth Krylov subspace generated by from ry. (For its definition see SectioR) Then,
r, € ro + AK,(A,rg), and the goal is to make, small in some norm. Therefore, solving
the linear system with a Krylov space solver can be undedsaissuccessively approximating
ro by elements of the subspaca«’,, (A, ro).

In the methods described here firg{/C,,(A,ry) will be replaced by the subspace
AK,(A,T,), where the deflated operatdr := PAP is singular, andy := Pry € 2+,
so that we will have'Cn(K,?O) C Z*. Note that onZ+, and thus also on the Krylov sub-
space, the restrictiongﬁ is equal to the restriction dPA; thus only one application d?
is needed for applying\. On the other hand, as search space for approximate sautign
this Krylov subspace will be augmentedédythat is,

(11) Xn € Xo + IC‘!L(K-)?O) +u7 r, €rp+ AIC7L(-K7?O) +Z.

If 2L is A-invariant, AICR(K,?O) C 2+, so we can view the approach chosen here as
splitting upry in its two orthogonal componenis € Z+ andr, — T, € Z. The preimage of
the latter component can be computed in the trivial way netlibefore, while the preimage
of Ty is approximately computed with a Krylov space solver fox = 1, acting only in
Z+. However, some complications occurdf- is not A-invariant, which is the usual case.
Treating these complications suitably is the main aim of gfaper. In any case, we will see
that we can first solve the restricted probl&m® = 1y by a standard method such as GER
[53] and subsequently compute the still ‘missing’ componenthef solution by solving a
small triangular linear system.

While we will quickly also review the ‘symmetric case’, wieethe linear system is Her-
mitian (or real and symmetric), we are here mostly intekgtehe ‘non-symmetric case’,
where our main message is that it may be preferable to reflilac@thogonal decomposition
of ro by a non-orthogonal one. To this e, must be chosen as an oblique projection with
the property that when its nullspacgis A—invariant, so is its rang€=. In this way, we
not only can annul eigenvalues, but also deflate the correlipg left and right invariant sub-
spaces. This choice leads then in a straightforward way tauly ‘deflated” GMREs and to
deflated QMR 2§]. Like in the symmetric case, if is A—invariant, the convergence speed
of the deflated method is then fully determined by the nontiflaigenvalues oA and the
corresponding invariant subspace. There is no need foridgmew convergence estimates
unless we want to estimate the influence of an inexact chéitesubspace.

Our general approach can be used to define deflated versiany &frylov space solver.
But in this paper we concentrate on coordinate space bastudsesuch as GMERS, MIN-
REs[49], and QMR, where the Arnoldi or the Lanczos method is usectttegate a series of
bases of the nested Krylov subspaces. As is well known, loiwsus to reformulate a mini-
mum residual problem as an equivalent or approximatelyadgrit least squares problem in
coordinate space, which can be solved by updating the QRaesition of a Hessenberg or
tridiagonal matrix.

Orthogonal and biorthogonal residual methods such as33;hd BICG [40, 23] can
also be realized in this way, but are then normally considiégss attractive, perhaps due to
the possible nonexistence of some of the iterates. Hereeatdrtd, we only introduce related
deflated quasi-(bi)orthogonal residual methods.

A further main goal of this paper is to present all these mathin a common framework
that relies on a splitting of the space into two complememgabspaces, which can be cho-
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sen in various ways. We favor here the above mentioned cheflezting a partition of the
spectrum, but in the nonsymmetric case this leads to a cowfiic the choice imposed by
residual minimization. In contrast to our treatment, thestbent general treatment and review
of augmentation methods by Eiermann, Ernst, and Schneiégis] mostly restricted to the
application of orthogonal projections and does not cap#&alpon the knowledge of bases for
bothi/ andZ assumed here (unless they areinvariant and thus equal). A further difference
is that their treatment is aiming for augmented minimaldeal methods, in particular GM-
REs, while we will drop optimality in Section§-9 and replace it by some near-optimality.
Another interesting discussion and review of augmentadimh deflation methods is due to
Simoncini and Szyldg5, §9].

Itis a well-known fact about Krylov space solvers that aigiiar the smalles2-norm of
the residual, that is, applying G M without restarts, is not only excessively memory con-
suming, but is often also not much faster than using altermatethods that are suboptimal.
In practice, it is not important to find the fastest solvet,toiapply an effective precondition-
ing or multilevel method. Augmentation and deflation are pdul options along these lines,
and there are several different ways to apply the basic idélaseover, it is no problem to
combine them with other preconditioning techniques.

Literature. Augmentation and deflation of Krylov space solvers have lweposed
in various forms in a large number of publications. Many d& thethods differ not only
algorithmically and numerically, but also mathematical§ome keywords associated with
such methods are ‘(spectral) deflation’, ‘augmented basexycling Krylov subspaces’,
‘spectral preconditioning’, and ‘singular preconditingl. The primary goal is always to
speed up the convergence of a solver, but the applicatiomearl systems with multiple
right-hand sides and to systems with slowly changing mainik right-hand side is also often
mentioned.

To our knowledge, the first suggestion of an augmented Krgfmce method that in-
cluded both the deflation of the matrix and the correspongiogection of the initial residual
came from Nicolaides4g], who submitted on May 13, 1985, such a deflated CG algorithms
based on the three-term recursions for iterates and rdsidndependently, Dostal ] sub-
mitted in January 1987 a mathematically equivalent defl@t®algorithm based on the well-
known coupled two-term recursions; he even gave an estifoathe improvement of the
condition number. In June 1987 Mansfieldl] submitted additional numerical evidence for
what he referred to as Nicolaides’ method of deflation, but/ag actually using a 2-term CG
algorithm. The same algorithm was more than ten years lg&naliscovered by Erhel and
Guyomarc’h L9 (deflation of a previously constructed Krylov subspacg)Saad, Yeung,
Erhel, and Guyomarc’hd4], and, independently, by Vuik, Segal, and Meijeririk], who
combined it with preconditioning by incomplete Choleskyadmposition. All three papers
refer to Nicolaides48], but not to Dostal 13 and Mansfield 41], whose articles are much
closer to their work. From a Google scholar search one caoleda that it was Kolotilina
[39] who ultimately promoted Dostal's papetd] to a larger audience. But, his two related
papers 14, 15] are not even mentioned by her. Early citations to Mansfiglde also had
two follow up papers, are by Fischetq] and Kolotilina [39]. To achieve the optimality of
the CG error vector in thé\-norm an oblique projection has to be used (see Secfidns
and12), which can be viewed as aA-orthogonal projection however, and has nothing to
do with the oblique projections promoted here. Before, iB2,.Xharchenko and Yeremin
[37], followed, in 1994, by Erhel, Burrage, and PohB[ suggested GMRs algorithms with
augmented basis and a corresponding nonsingular rightpdéoner that moves the small
eigenvalues to a multiple large eigenvalue. Later Bagla@ayetti, Golub, and Reichel
[6] constructed a left preconditioner with the same effect; [46, pp. 286—289] for a brief
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comparison of these three preconditioners. Also in the 18i80s, Morgan43] proposed
GMREs with augmented basis but no explicit deflation of the mataig de Sturler 1]
suggested an inner-outer GMRGCR algorithm with augmented basis and later, in other
publications, several related methods. S&&f put together a general analysis of Krylov
space methods with augmented basis, which was further glezezt in the above mentioned
survey article of Eiermann, Ernst, and Schneided].] Many more publications followed;
see,e.g.,[1, 24, 45, 57, 63] for further references. The starting point for the pregmater
has been the description of recycled\WRES or RMINRES by Wang, de Sturler, and Paulino
[62], which, after a minor modification that does not change tla¢gh@matical properties, fits
exactly into our framework. Their orthogonal projectibnand the corresponding deflated
matrix A have been used beforeg.,in [16, 11, 12]. They are the basic tools of our approach
in 2—4. But so far the oblique projectidf that is the basis of our approaches of Sectis+ts
only seems to have been used for Ahuja’'s RecyclinG B(RBICG) [4, 5], which does not

fit into our framework; see Sectidt? for how it relates to our work. In particular, the oblique
projection applied by Erlangga and Nabbéf][for their version of deflated GMREs is dif-
ferent from our. In fact, the projection o2(] generalizes the one that is typical for deflated
CG [48, 13,41]. The connection to some of these alternative choices witplained in Sec-
tion 11. Our approach is also different from the one of Abdel-Rehtorgan, and Wilcox

[2] for their deflated BCGSrAB, and the one of Abdel-Rehim, Stathopoulos, and Orginos
[3] for their Lanczos based combined equation and eigenvaluers

We must also mention that in a series of papers that culngriat@1, 47, 6Q] it has
been shown recently that deflation, domain decompositiod,naultigrid can be viewed as
instances of a common algebraic framework.

Outline. We start in Sectio2 by introducing the basic setting for a particular version of
augmented and deflated GMRbased on an orthogonal projection that annuls approximate
small eigenvalues, in the sense that they get moved to zéepadssibility of breakdowns of
this method and its adaptation to symmetric problems, wiaVERES turns into MNRES,
are then discussed in Sectiogst. In Sections5—6, we modify the basic setting by intro-
ducing an oblique projection that enables us to deflate appaie (possibly generalized)
eigenspaces and to introduce a truly deflated G Riethod. By making use of an adjoint
Krylov space generated b&" we next explain in Sectiong-9 how we can adapt our ap-
proach to the nonsymmetric Lanczos algorithm and introdudeflated QMR method and
a simplified deflated QMR method. The latter hag.,a well-known application in quan-
tum chromodynamics. Moreover, in Sectibbwe describe a different way of computing the
component of the solution that liestify and in Sectiori2 we briefly point out that our frame-
work could in principle also be used to define coordinate sjpased deflated (bi)orthogonal
residual methods that are approximately equivalent to @efl@G and BCG methods.

Notation. We denote the range (or, the image) of a malvikby R(M). For the
nullspace (or kernel) d/I we write A'(M). Sometimes we introduce the additional notation
M := R(M) for the range. As usual, the first column of thex n unit matrix ise;; addi-
tionally,e, € R"™! is e; with a extra zero component appended to it. LikewHg,andT,,
will be (n 4+ 1) x n matrices whose top x n submatrices ar#l,, andT,,, respectively.

2. Deflation by orthogonal projection; deflated GMRES. Consider a nonsingular lin-
ear systemAx = b of sizeN x N. LetU € CV** have full rankk, wherel < k < N, and
set

U :=r(U), Z =AU, Z:=R(Z) =AU,

and

E .=7"7, Q:=ZE 'z, P=I1-Q=1-ZE'Z".
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The subspacdg and Z will be used to augment the search spaces for the approxsohte
tionsx,, and the corresponding residuals := b — Ax,,, respectively. Note tha®? = Q,
P2 = P, Q" = Q, andP" = P; so,Q is the orthogonal projection ont&, while P is the
orthogonal projection onto the orthogonal complemg&ntof Z.

If the columnsu,; of U € C** are chosen to hbA™ A-orthonormal, so that the columns
of Z = AU form an orthonormal basis of, which we will from now on assume, then
E = I, and the formulas fo@ andP simplify to

(2.1) Q=127", P=1-Q=1-27".

Alternatively, we could compute a QR decomposition®dU to find a matrixZ with or-
thonormal columns; see Secti6pwhere we will temporarily apply this.

As mentioned in the introduction, the first basic idea is siriet the Krylov space solver
to Z+ by projecting the initial residual, into this space and by replacing the original oper-
ator A by its restriction to this space:

To:=Pr,, A :=PAP.

A corresponding initial approximaticy is not needed. (Angky € xo + U would satisfy
1o := Pro = P(b — Axq) = P(b — AXy), and for theoretical purposes we could even set
X0 := A~'PAx to achieve thaf, = Pb — AXy, orX, := A~} (PAx, + Qb) to achieve
thatry = b — Ax,.) Note thatrank A < N — k sincerankP = N — k, SOA is always
singular.

Given any initial guessxy, the second basic idea is to approximate the solution
x, := A~ 'b by iteratesx,, from the following affine space:

(2.2) Xn € Xo + Kn +U,
where
(2.3) Ky = Kn(A,T) = span {To, ATy, ..., A" %

is the nth Krylov subspace generated bzﬁ from ¥o. Sincet, € Z2Z! and
R(A) C R(P) = Z+, we havek,, C Z+. The choice 2.2) implies that

(2.4) r, =b—Ax, €rg+ AI/C\,,L + Z.

If we construct a nested sequence of orthogonal bases fdtritev subspaceﬁn by
an Arnoldi process started withy := 1y/5, whereg := ||1y||2, we can express this, for
eachn, by the Arnoldi relatiolAV,, = VorH,,WithVy, .= [ vo ... v, |andan
extendedn + 1) x n upper Hessenberg matd,,. But sinceR(V,,) = K, C 2+, we have
PV, =V, and therefore

(2.5) AV, = PAPV, = PAV,,,
so that the Arnoldi relation simplifies to
(26) PAV,, = V'rH—lHn .

This means that only one projectidéhis needed for applyin@ in Z+.
In view of (2.2) we can represent,, as

2.7) X, = %0 + V, k, + Um,,
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with coordinate vectork,, € C" andm,, € CF. In the usual way, multiplication b and
subtraction fronb yields then for the residuats, := b — Ax,, the representation

(2.8) r, =r9 — AV, k, —Zm,, .

Due to the Arnoldi relation4.6) and the orthogonal decompositiep = Ty + Qry =
voB + Qry this becomes, wittC,, := ZHAV,, € C**” andQ = ZZ", and in analogy
to the derivation for the symmetric case 62[*,

ry, = VOB + QrO - (P + Q)Avnkn - Zmn

(2.9) =2 Vi a,,
where

L ZHrO Ik Cn m,, k+n+1
(2.10) 9, = [ e } - [ O H ||k | €€

may be calleddeflatedGMRES quasi-residuain analogy to the terminology oPB. One
option is to choose,, of minimal 2-norm. Then 2.9) is the key relation for a GMRs-

like approach to this problemr,, is represented in terms of the basis consisting of the
columns ofZ andV,, ;. Since we assumg to have orthonormal columns as i8.9),

[ Z Vi1 } has orthonormal columns too, and the coordinate map is is@me the
2-norms ofZ & R(V,,41) € CV andCF+"+1 respectively, so that

ZHr I, C, m,,
e iek=tad= || 55 ][5 ][]

As in the original GMRes method p3] the minimization of||r, ||z reduces in theith step

to a least squares problem for minimizing the right-hane sifi2.11), which can be solved
recursively by updating in each iteration the QR decompsif the(n+ 1) x n Hessenberg
matrix H,,. Note that the firsk columns of the least square problem are in diagonal form,
hence a fortiori in upper triangular form already. Hence, te+ n + 1) x (k + n) least
squares problem in2(11) decouples from the beginning into &n + 1) x n least squares
problem fork,, and an explicit formula fom,,:

2

(2.12) min||ry|2 = min ||gn|\2 = kmeign lle;8 —H, k|, , m,, = Z"'ry — C,k,, .

This decomposition of the problem suggests that we searsthfdir a solution of the
reduced least squares problem, that is, determine a suiti#rn, the matricesv,, and
H,, resulting from the Arnoldi process, and the correspondivigt®n k,, in coordinate
space. This first stage can be understood as solving thelaihygpreconditioned system
PAx = Pb by standard GMRS, or as solvingAX = 7 in Z+ by GMRES. Subsequently,
we may calculate the related,,. There is no need to compuie,, for all n since the2-norm
of the residuat,, is not affected by the second stageif, is chosen according t@(12).

We will call the resulting algorithndeflatedGMRES though it is not equivalent to the
methods introduced by Morgan] and Chapman and Saa@| under this namé.Our pro-
posal also differs from those of Kharchenko and Yererfiifj and Erhel, Burrage, and Pohl

1To change to the notation o8] substitute, in particulatZ ~» C andC,, ~ B.,.

2In both [9] and [43] a cycle of deflated GMRsconsists in first applying a fixed number of G MBsteps with
A starting fromx (instead of using& andX), and then adding orthogonalization steps to the vectaksi;. This
yields at the end atm + k + 1) x (m + k) least squares problem. So the orthogonal projedids only applied
at the end of each cycle. For an alternative interpretati@hrealization of Morgan’s method sek[ §4.3] and B4].
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[18], who construct nonsingular preconditioners that movellseigenvalues away from zero.
However, in Sectiorb we will come up with another proposal for the nonsymmetriseca
which we think is better suited to deflate approximate eigésp

3. Breakdowns of deflated GMRES. Unfortunately, in general, the deflated GM&
method of Sectior? can break down since the Arnoldi process described by tleioal
AV, =V, 1H, , which is used to set up the least squares problen. mz( is applied
with a singular matrixA. The least squares problem originates from sol\mg = 19 by
GMREs for somex € Z+. SinceR(A) C 2+ andr, € Z+, the linear system and the
Arnoldi process are restricted ©*. Hence, it is the restriction oA to Z+ which matters.
This restriction is singular if and only ifank A < N — k = dim Z+. But recall that in
applications the eigenvalues of this restriction are sapgdo approximate the nondeflated
‘large’ eigenvalues oA ; therefore, in practice it is very unlikely that the restiioa is singular
and breakdowns can occur. R

If rank A < N — k, it may happen that, € AV(A) N Z+ or that, for somer > 1,
Vi1 € N(K) N R(K) - /\/(11) N Z+. ThenAv,_; = o and, trivially, the component
orthogonal td@n = R(V,,) of this vector is also zero and cannot be normalized. Moneove
V,"L'Kvn_l = VHo = o, so the last column of,, is zero except for its undetermined
(n + 1,n)—element, which we may set equal @too. In particular, the top square part
H, of H, is singular Hence, the Arnoldi process terminates afteemliaﬂg the invariant
subspacéz( n) = .., and GMRes breaks down. Note thalim (A/Cn) rank (KVn) =
rank (V,,H,,) = n — 1 sincerank H,, = n — 1. Is this the only type of breakdown?

The application of Krylov space methods to singular systbas been investigated in
detail by Freund and HochbrucRT, §5 3-4] and others. In particular, the application of
GMREs to such systems has been analyzed by Brown and WatkelLemma 2.1 of §]
adapted to our situation reads as follows. R

LEMMA 1. If GMRESis applied toAx = 1 and ifdim K,, = n holds for some: > 1,
then exactly one of the following three statements holds:

0] dnn(AlC )=n-—1 andAx £ 71, for everyx € ICn,

(ii) dnn(AlC ) = dHnICn+1 =n, X, := V,k, is uniquely defined, anAxn =Ty,

(i) dim(AK,) =n, dimK,41 = n + 1, %, is uniquely defined, buAx,, # 7.

We call Case (i) abreakdownof GMRES, Case (ii) theterminationof GMRES, and
Case (iii) thecontinuationof GMRES. (In contrast, Brown and Walke8] and other authors
also call Case (i) a breakdown, although in this case theo&iimding a solution of the linear
system has been achieved.) Note that Case (i) implieslthak’,,; 1 = n, hence also in this
case the Krylov space is exhausted.

In the situation wheréd\v,,_; = o discussed before, we have obviously Case (i) since
Arnoldi terminates, but the resulting equatien = H, k,, has no solution. That this is
more generally a consequencecbfn(ﬁlen) = n — 1 can be seen as follows: if we had
chosen fori%n the so-called Krylov basis, that is

V%K) = [ ?’Q A?Q . A"_li'\g } s

then, in Case (i), the Hessenberg relation resulting afsteps would be&V(K) V(K)H(K)

with a companion matrisH O that has a zero element in its _upper right corner, so that
e ¢ R(HSLK)). This just reflects the fact that the restrictionfoto K, has a zero eigenvalue:
the last column oH,ﬁLK) contains the coefficients of the characteristic polynoniidte also

that the basis transformation frown, to VSLK) is represented by a triangular matrix and leaves
the direction of the first basis vector invariant.



ETNA
Kent State University
http://etna.math.kent.edu

163

Clearly,dim(AK,) = n — 1 (i.e., Case (i)) holds if and only iV(A) N K,, # {o}.
Conversely, if this breakdown condition does not occur foy a, GMREs will ultimately
terminate with Case (ii), where the unique solutionA = 7, is found. At intgrmediate
steps, where Case (iii) occuss, = V, k,, is the best least squares solution oukof.

In summary we obtain for deflated GMR applied toAx = b the following theorem.

THEOREM2. If Ty ¢ N(A), thenaslong adV/(A) N K,, = {o}, the deflatedSMRES
method defined b2.6)—(2.7) and(2.12) yields in thenth step the approximate solutios, €
xo + K., + U whose residuat,, has minimaR-norm. R

However, if V(A) N Z+ # {o} and if x, is chosen such that, € N(A), then(and
only ther) deflatedGMRES breaks down in the first step whese= 1. Moreover, at step
n > 1, if (and only if) N(K) NK, # {0}, the method breaks down when attempting to
constructv,,. In case of a breakdown, the search spaget I%n + U does not contain the
exact solutiorx,.

If Z+ is A—invariant, breakdowns cannot happe, = O, and the Arnoldi relation
(2.6) can be replaced by

(31) AV, = V'rH—lHn .

Proof. It remains to prove the last two sentences. Firstly, for@pby contradiction,
assume that the search space contajnsox, := é*lb = X9 + X, +u,, wherex, € K,
andu, € U. Then, sincdPAu, = o andPAx, = AX,,

o=b— A(xo+ X +u,)
=Pro — PAX, —PAu, + (I - P)(ro — AX, — Au,)
= (To — AX,) + Q(ro — AR, — Au,).

Since the first parenthesis isAEﬁl, while the second term is i&, both must be zero. In
particular, we must havé, = AX,. However, this contradicts case (i) of Lemrhawhich
applies when deflated G M breaks down and says that ¢ C,,.

Secondly, ifZ+ is A—invariant, we have in extension ¢f.) at thenth step

(3.2) AV, = PAPV, = PAV, = AV,,.

This implies that solving the systeX = 7, with GMRES (and starting vectok, = o)
is equivalent to solvingAx = 1t with GMRES. SinceA is nonsingular, there are no break-
downs (described by Case (i) of Lemrhg and ultimately the solution will be found. €.,
Case (ii) will occur).

Finally, sinceR(V,) C Z+ and the latter set is assumed to Aeinvariant, we have
R(AV,) C AZ+ =zt sothatC, = ZHAV, = 0.0

Egs. 8.1) and @.2) suggest that in the case whefe- is A—invariant we might apply
GMREs with A instead ofPA. But in some cases this might be risky due to round-off
effects: round-off components i may grow fast since\ ~! has large eigenvalues there.

Note that forn = 0 the breakdown conditio®y € MN(A) can be written as
N(A) N Ky # {o}, in accordance with the breakdown condition for tik step.

The following simple2 x 2 example taken from31] exemplifies a breakdown in the first
step:

o1 10 [0 1 _
69 ac[0 L] w20 w0 2] we]
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whereA = PAP = O andv, = Ty = ro, henceAv, = o. S0,Z = N(P) = span{es},
Z+ = span{ei}, vo € N(A) N Z* here, and we have a breakdown in the first step.

We will generalize this example in the Appendix, where wd shlow that breakdowns
are also possible at any later step upte: N — 1.

Based on Theorera we may formulate conditions that characterize plossibility of
breakdowns in case of an unlucky choicexgf that is, an unlucky, € Z+.

COROLLARY 3. DeflatedGMRES can break down in the first Arnoldi stéfor deter-
miningv;) if and only if the following four equivalent conditions hold

(1) N(A) N 2+ £ {o},

(2) AZ+ N Z # {o},

3) AZLA+ Z #£CN,

(4) rank A <n—k.

If these conditions are fulfilled for some givénand Z, then we can choose, (if b is
giver), so thatGMRESs breaks down in the first step.

The equivalent Conditior(4)—(4) are also necessary for deflat€&MRESsto break down
in a later step.

Conversely, a breakdown cannot occur in any step if equaditsts in Conditiong1)—(4),
or, equivalently, ifA/(A) = Z, thatis, if AZ+ @ Z = CV.

Proof. According to Theoren2, Condition (1) characterizes the possibility of a break-
down in the first step. It says that breakdowns are possitdedfonly if there existy =
Py € Z+\{o} with PAy = PAPy = Ay = o, thatis, witho # Ay € N(P) = Z.
This is equivalent to Conditior?f. Moreover, sincelim Z = k anddim AZ+ = dim Z+ =
N — k, the second condition is equivalent to the third one. Fjnal= N (P) C N'(A) and
therefore ConditionX) implies thatdim A'(A) > dim Z = k , thatis,rank A < n — k, and
vice versa.

For a breakdown at step > 1 we need, by Theore®, N'(A) N K,, # {o}. Since
K, C span{F} + R(A) C 2+, Condition () must hold.

Conditions for the impossibility of breakdowns are obtairi®y negating the Condi-
tions (1)—(4), noting that alwaysV'(A) 2 Z, and observing the dimension statements given
abovell

Finally, we point out the following fact.

COROLLARY 4. The assumption thaZ* is A-invariant is sufficient, but not necessary
for guaranteeing that no breakdown can occur.

Proof. SinceA is nonsingularZ=* is A-invariant if and only ifAZ+ = 2. This
condition means that on the left-hand side of the negatedii@on (3) of Corollary 3 we
have an orthogonal direct sum:

Azt zZz=ztepz=CV.

However,AZ+ @ Z = C¥ will hold wheneverAZ+ N Z = {o}; hence, the condition
that Z- be A-invariant appears not to be necessary for guaranteeingeakthowns. The
following example proves this clairfl

Example We slightly modify the example of3(3) by choosing

11 _[1o0 (11 ~ [107_
A.[l 0}, P.[O O], PA[O 0}, A[O O]P.

As before,Z = span {es}, butnowA Z+ = A span{e;} = span{e; +e;} # Z*. Hence,
AZ+ @ Z = C2. Consequently, for ary = Pry # o there will be no breakdown.
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Remarks(i) Note that whemA is not Hermitian, then the property that- is A—invariant
does not imply thag is A—invariant, andrice versa

(i) In case of a breakdown we might restart deflated GMRES witnew column
zp+1 = v, appended td&. Repeating this measure if needed we will ultimately find a
least square problem of typ&.(1) with residual|r, |2 = 0 and with, say, the originat
replaced byt + ¢. However, we cannot find the approximate solutionfrom (2.7) unless
we know the preimagesy.,; satisfyingvy; = Augyi, i =1,..., L.

(iii) Some further results on breakdowns of deflated GiRnd on how to avoid them
in deflated MNRES are given in 1].2

4. Spectral deflation for symmetric problems. If A is Hermitian, then so if\, and
therefore the Arnoldi process can be replaced by a threesgmmetric Lanczos process, and
the extended Hessenberg maldy of the previous section turns into an extended tridiagonal
matrix T,,, for which a symmetric Lanczos relation

(4.1) PAV, =V, T,

holds and whose upper square g&yf is Hermitian. AdeflatedMINRES algorithm called
RMINRES for the so simplified setting has been described in detail bpdVde Sturler, and
Paulino B2. The same update procedure as in the originak REs method §i9] can be
applied to find the QR decomposition®f,. Wanget al.[62] also show that the approximate
solutionsx,, can still be updated by short recurrences. This is also seanthe fact stressed
here and in 31] that the results of RMIRES can be found by solving first the projected
problemAx =7, in Z+ by MINRES and then adding to the solution a correction terngin
see Sectiori0.

In the Hermitian case the properties of deflated GMRiven in Theoren®? and Corol-
lary 3 persist and also hold for deflated WVRES. In particular, the possibility of a breakdown
in the first step is still illustrated by thzx 2 example in 8.3). The possibility of a breakdown
at a later step is still proven by the example in the Apperglince the matribA there is real
symmetric.

We can reformulate the first part of Theorerfor deflated MNRESs as follows.

THEOREMS5. Let A be Hermitian; then so id. If Ty ¢ N'(A) = R(A)L, then as long
asN'(A)NK, = {o}, the deflatedINRES method obtained by adapting deflaB#IRes
to the symmetric case yields in théh step the approximate solutioy), € xg + /En + U
whose residuat,, hasAminiLnaQ-norm.

Conversely, ifV(A)NK,, # {o} forsomen > 1then(and only thendeflatedV INRES
breaks down in theth step.

Again, breakdowns cannot occur & is A—invariant, and in this case the projected
Lanczos relation4.1) can be replaced by the Lanczos relation

(4.2) AV, =V, T, .

A special feature of the symmetric case is ti#at is A—invariant if and only ifZ is
A-invariant. This is due to the fact that eigenspaces behontgi different eigenvalues are
mutually orthogonal, and higher dimensional eigenspaaede split up in mutually orthog-
onal ones if needed. The definitida= PAP and the fact thaP is the orthogonal projection
onto Z+ yield then the following result on the spectral deflatiomaf

THEOREM 6. Let A be Hermitian. IfZ is A—-invariant, thenz* is also A—invariant
and the restrictions oA, A, andO to Z and Z satisfy

(4.3) :&‘Z:O|Z’ :&‘zi :A‘zi'

3Note, however, thal\ is defined differently in31].
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Of course, 4.9 holds also ifA is non-Hermitian, and, by chance, bathand Z+ are
A-invariant.

5. Deflation by oblique projection: basic setting. So far we have based deflated GM-
REs and MINRES on orthogonal projection§ andP := I — Q, but for GMRes and
other solvers for nonsymmetric linear systems of equatibissmore appropriate to con-
sider oblique projections since the eigenspaceA are typically not mutually orthogonal.
Our approach is based on the natural splitting8f into the direct sum of twaA—invariant
subspaces. In general, the corresponding decomposititne sésidual search space will no
longer be an orthogonal one. We therefore modify the setfrgpction2 as follows.

Let U € CN** andZ € CV** have full rankk, and assume they are chosen such that
the matrixE defined by

is nonsingular. Then set
U:=R(U), Z:=R(Z) =AU, Z:=R(Z),
and
(5.1) Q=ZE'Z", P=1-Q=1-ZE'Z".
Note that stillQ? = Q andP? = P, but now
(5.2) QzZ=2, Qz'={o}, PZ={o}, PZt=2z',

where, as befor@Lgenotes the orthogonal complementﬁéf§o,Q is the oblique pro-
jection ontoZ alongzj, while P is the oblique projection ontg+ along Z. In particular,
N(P) = Z, R(P) = Z1. Again, the subspacésand Z will be used to augment the search
spaces for the approximate solutiogsand the corresponding residuals respectively.

If the k£ columnsz; of Z are chosen biorthogonal to theolumnsz; of Z, which means
that these two sets of columns form dual base€ @ind Z, thenE = ZHz = I, and the
formulas forQ andP simplify as before:

(5.3) Q=2zz", P=1-Q=1-27z".

Note that this is automatically true if we choose the coluwirig as (right-hand side) eigen-
vectors ofA and the columns dZ as the corresponding left eigenvectors. This property even
generalizes to multiple eigenvalues and defective matricéhe eigenvectors are suitably
chosen.

As in Section2 we further let

1o := Prg, A = PAP.
Note that still
(5.4) NA)DNP)=Z, RA)CRP)=2Z2Z",

sothatA| >, the restriction ofA to Z*, is a possibly singular endomorphism&f-. Con-

sequently, the Krylov subspacis, defined in 2.3 are all subsets o sincet, € Z=.
Therefore, we will be able to restrict a Krylov space solzegt-.
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The reason for choosing this subspace lies in the followertegalization of Theorei®
Recall that ssimpleA—invariant subspace an A—invariant subspace with the property that
for any eigenvector it contains, it also contains all theeotBigenvectors and generalized
eigenvectors that belong to the same eigenvalue;=#elp other words, choosing a simple
A-—invariant subspace induces a splitting of the charatiepslynomial into two co-prime
factors and a related decomposition of the Jordan candioical B

THEOREM 7. Assume thag is a simplek-dimensionalA—invariant subspace ang is
the correspondingA"—invariant subspace, that is, for ar, Z € CV** with Z = R(Z)
and Z = R(Z) there areG, G € C** such that, with := Z"Z,

(5.5) AZ=7G, A"Z=7ZG, G=E"GHE".

ThenZ = is also A-invariant andZ @ Z = CV. Moreover, the restrictions o, A, and
O to Z and Z* satisfy

(5.6) A|z:O‘z7 ‘/1|z~L :A|Z~i'

Proof. To fix our mind, let us first choose a special basisZoand assume tha\ has a
Jordan decomposition
= = J O
(5.7) Alz 7, |-z ZL}[OJL}7
where despite our notatidé, is at this point not yet known to be related Fo-. Eqn. 6.7)

just reflects the fact thaf is A—invariantin the assumed sense, thag the Jordan canonical
form ofA\Z, and thatZ contains the corresponding eigenvectors and generaligedwec-

tors, whileJ | is the Jordan canonical form Qf‘R(iL) and the columns cil are the corre-

sponding eigenvectors and generalized eigenvector<Z S@yst consists of the ‘remaining’
eigenvectors and generalized eigenvectorshndonsists of the ‘remaining’ Jordan blocks.
Clearly, R(Z, ) is also anA—invariant subspace, anfl & R(Z ) is a direct sum, but in
general not an orthogonal one. (Actually we could weakenat®imption: we need the
separation of the Jordan blocks Afinto two sets, but we need not that the eigenvalues are
necessarily different in the two sets.)

As is well-known, the rows of the inverse pfZ Z, | are the left-hand side eigen-
vectors and generalized eigenvectorsAgf or, equivalently, the complex conjugate of the
right-hand side eigenvectors and generalized eigenvaestax. To allow for another pair of
bases for the induced pair of invariant subspaces'fwe let, for some nonsinguld and
E, € (Cka,

ZH] _[E O ~ 11
(5-8) [zi]'{o ELHZZL} ’
so thatE := ZHZ as before, and, in addition,
E, =717, AV Oux(N=k) 5 ZZ = O(n_iyxk -

From the last two equations it follows that indeRdZ, ) = Z*+ andR(Z,) = Z*, and
by (5.7) the latter space was seen to Aeinvariant. Moreover, multiplyingg.7) from both
sides with the inverse df Z Z, | and inserting%.8) yields

(5.9) [ZHA={(E) ];)l][(‘]) J?HEOI E(}HZH
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So, the complex-conjugate of the columnsodndZ+ span left-invariant subspaces. Finally,
taking the Hermitian transpose leads to

(5.10) A"[Z z, | =]z ZLHEOH E?HH{; J%H%H Eoﬂ

which implies in particular thaA"Z = ZE-HJ"WEM. This establishes5(5) in the case
whereG = J andG = E~"J"EM. The general case & andG follows by noting that
we did nowhere make any use of the Jordan structurg ahdJ ,, but only of the2 x 2
block diagonal structure irb(7), that is, we referred to the Jordan structure just to ease th
discussion.

On the other hand, when indeed starting from a Jordan decsitigpo(5.7) of A and
choosingZ andZ, so thatE = I, andE; = Iy_;, we turn 6.10 into a Jordan decompo-
sition (with lower bidiagonal Jordan blocks) Af.

Finally, it follows from (5.7) and the properties d? that

A[z ZL}:PAP[Z ZL}sz[o ZL}
(5.11) :P{o ZLJL}:[O ZLJL}.

So,AZ = O, and by comparison witt6(7) we findAZ, = Z,J, = AZ,, which proves
(5.6.0 B

But also in the typical situation whet® and Z+ are notA—invariant this pair of spaces
is well chosen, as the following simple fact underlines.

LEMMA 8. LetZ, Z € CN** be given such thak := Z"Z is nonsingular, let
Z := R(Z) and Z := R(Z), and choosé&,, Z, € CN*(N=k) sych that their columns

consist of bases of the orthogonal complemehtsand zZ4, respectively. Then

(5.12) [ZEMZ ZL}z[(E)E?L},

where all three matrices are nonsingular. In particulBr, is nonsingular too, and
(5.13) ZozZt=Zazt=CV

are both decompositions 6f" into (in general nonorthogonakcomplements.
Proof. The block diagonal structure of the right-hand side%i9 holds by definition

of Z | andzl, but we need to show that on the left-hand side the matl[icﬁs Z, } and

[ Z Zl } are nonsingular,e.,their columns are linearly independent.

Letz, be any nonzero element &f. So,Z"z, = o andz, # o. For a proof by
contradiction, let us assume that is a linear combination of columns &, i.e.,z, = Zk
for somek € CV—*. Then,

o=17"z, = Z"Zk = E'k,

which implies thatk = o, and thusz; = o in contrast to our assumption. It follows that
Z N 2+ = {o}. An analogue argument shows ti&t) Z+ = {o}. [

Remark. Note that, by definitonZ @ 2+ = Z @ Z+ = CV are two other decom-
positions ofC"V, and they even feature orthogonal complements. In contrageneral, the
decompositions in5.13 are not orthogonal, but they are adapted to the operatirZ is
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exactly or nearlyA—invariant. In 6.7) we assumed th& andZ, contain eigenvectors and
generalized eigenvectors, which, in general, is not trikérsetting of this and the following
sections. In general, we will have

(5.14 alz o=z 2 ][ & &

where the block€s,> andGs; can be expected to contain only small elements gndzZ+
are nearlyA—invariant.

6. Deflation by oblique projection: truly deflated GMRES. Let us now come to the
details of a correctly deflated GM# based on the observations of the previous section.
Given an initial guessg, we choose as in Sectianteratesx,, from

(6.1) X € Xo + Kn +U,
where the Krylov subspac&sL are still defined byZ.3). This implies that
(6.2) rn=b— Axo € 1o+ AK, + Z.

We again construct a nested sequence of orthogonal basteefirylov suQspaceEn by
an Arnoldi process started withy := To/3, where nowr, := Pr, € Z+ andp :=
IToll2- As before, this is expressed by the Arnoldi relatidiv,, = V,+1H,,. Since
R(V,) =K, C Z+, we havePV,, = V,,, and therefore again

(6.3) AV, = PAPV, = PAV,,,
so that the Arnoldi relation still simplifies to
(64) PAV,, = V7L+1Hn .

However, recall thaP and, henceA are now defined differently.
In view of (6.1) we represent,, again as

(65) Xn = X0 + Vnkn + Um’rb

with coordinate vectork, € C" andm,, € C*. Regarding the residuals, where we prefer
a representation in terms of an orthonormal basis, we nat&tbhannot be expected to have
such columns, whence we propose to QR-decomdsmst:

(6.6) Z = Z.Rqr, Zh7, =1, .
Then, after insertind\U = Z = Z,Rqr, We get
(6.7) r, =19 — AV, Kk, — Z,Rqrm,, .

Due to the Arnoldi relationd.4) and the decompositiar = 1o + Qro = v + Qry this
becomes now, witl) = ZZ" = Z,RqrZ" andC,, := ZHAV,,,

r, = V()ﬂ + QI‘() - (P + Q)Avnkn - ZORQRmn
= voB + ZoRqrZ"ro — V,, 1 1H, k,, — ZoRqrZ" AV, k,, — Z,Rqrm,,
(68) = [ Zo Vn+1 ]gn’
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where

— qu — RQRZHT() o RQR RQRCn my k4+n+1
(6.9) gn._[gi_}._[ "y o H, K, eC

is thetruly deflatedGMRES quasi-residual
The columns of eacld, andV,,; are still orthonormal, but those &, need no longer
be orthogonal to those &f, 1. So, in generalr,||2 # ||g, [|2, but since

(610) ry, = Zoqz + Vn+1g,i_ with Zoq; = an € Z; VnJrlg,i_ = Prn S Z~J_
we have at least

(6.11) e, 13 = e 13 + lla, 113 = [1Qrall3 + [Prall3 -

Itis therefore tempting to minimizgy [|> instead of|r,, [|2, and as in Sectiod this amounts
to solving ann x (n + 1) least squares problem with the extended Hessenberg riBjrior
minimizing ||q;-||2, that is, for findingk,, and subsequently choosing,, such thag® = o:
(6.12) min |q || = min ||qt ]2 = kmi(rcl lle. s — H, k||, m, = Z"ro—C,k, .

—n —n ne n
At this point we see that the QR decompositionZbfs actually not needed since we can
achieve thaty;, = o and thusZ,q;, = o. In other words, we can represantas

(6.13) r,=[2Z Vuu]q,
with
z 7H
~ q, — Z ro _ 1 Cn my k+n+1
(6.14) g”'_[gil_[glﬂ] {o H K, eC

and are then lead to the same solution as giverbbly2. Formally there is very little differ-
ence between this algorithm and the one of Secidout there is an essential mathematical
improvement regarding the deflation Af. In view of Theorenv we call the new algorithm
truly deflatedGMRES. B

In practice, this algorithm will be applied with restartedethe matriceZ andZ with
the approximate right and left eigenvectors may be upddtedch restart.

Truly deflated GMRS can break down in the same way as deflated GdRHere is
the adaptation of Theore® which only requires very small changes.

THEOREMO. If Ty € N (A), thenaslong ad/(A)NK,, = {o}, the truly deflated>M-
REs method defined bf6.4—(6.5), (6.9), and (6.12) yields in thenth step the approximate
solutionx,, € xq + K,, + U whose quasi—residua_in defined by(6.9) has minimakR-norm.

However, if V'(A) N Z+ # {o} and if x, is chosen such that, € A/(A), then(and
only ther) truly deflatedGMRES breaks down in the first step whetie= 1. Moreover, at
stepn > 1, if (and only if) N(K) N K, # {0}, the method breaks down when attempting to
constructv,,. In case of a breakdown, the search spaget /En + U does not contain the
exact solutionx,.

If Z+ is A—invariant, breakdowns cannot happefl, = O, and the Arnoldi relation
(6.4 can be replaced by

(6.15) AV, =V, H, .

Proof. Essentially we just have to replace in the proof of Theofeewvery occurrence
of Z+ by Z+. This applies also to the last sentence, includi®id9. In that proof we only
made use of andZ+ being complimentary subspaces, but not of their orthodgynal

Corollaries3 and4 can also be adapted easily.
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7. Deflation by oblique projection: the adjoint Krylov space. Some very efficient,
computing time and memory space reducing alternatives t(R&d/are based on the non-
symmetric Lanczos biorthogonalization process. Our aith@hext two sections is to adapt
the approach of the previous two sections to these alteasatin particular to the quasi-
minimal residual (QMR) method of Freund and Nachtida][ which is fully analogous to
GMREs. To this end, we first need to look at the adjoints of the prtapes Q andP of (5.1)
and the adjoint of our restricted operathr.= PAP.

The adjoint projections are defined by
(7.1) Q":=zZE"zZH, PU.=1-Q"=1-ZEHz",
from which we see that the propertiés?) of Q andP are supplemented as follows:

(7.2a) QzZ =2, Qz' = {o}, PZ = {o}, Pzl =2z,
(7.2b) Q"Z=2, Q"z'={o}, PHZ={o}, PHzl=z'

So, Q" is the oblique projection ont& along 2, while P" is the oblique projection onto
Z+ alongZ. In particular,

(73) NP)=2, NPH=Z, REP)=z', REP"=2z'.
For the adjoint operatoAH = PHAHPH this means that
(7.4) NAM NP =Z, RA"CREY) =24,

We define the dual Krylov subspaces (sometimes called théoshapaces) started from
Vo € Z+ by

(7.5) Ln = Kn(AR ¥0) := span {vo, ANV, ..., (AH) 15} C 2+,

Methods based on implicitly or explicitly constructing fachn a pair of biorthogonal bases
should choose the right and left bases, respectively, suath t

(76a) R([Z Vn ]):Z@I/(\:'rrﬁ-lgz@gl:c]v,

In the rest of this section let us again consider the caseenfiés A—invariant, which
led to TheorenY and motivated using deflated solvers in the first place. Térad@rtranslates
to the adjoint operator as follows. B

THEOREM 10. Under the assumptions of Theor&mz and Z+ are AH—invariant, and
the restrictions ofA", A", andO to Z and 2+ satisfy

(7.7) KH‘§:O|§’ KH‘ZL:AH‘ZL'

Proof. We takeZ andZ, as given by the Jordan decompositiéng, and choos& and
Z, , as towards the end of the proof of Theorénsuch thatlt = I, andE; = Iy_j. Then,
(5.9 simplifies to

v P ERIr
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while (5.10 becomes

79) Az oz ]=[z 2 ]lg ol

From the proof of Theorerfiwe know already thaZ, andZ, contain in their columns bases
of Z and Z+, respectively; so these two spaces Aré-invariant. Finally, in analogy to
(5.11) we have

A"z z, |=PMA"PY[Z z, |=P'A"[ O z. ]
(7.10) =P"[0 z, Y |=[0 z.J7],

from which, by comparison with7(9), we find the result{.7). O

8. Deflation by oblique projection: deflated QMR. Now we are ready to introduce
a deflated QMRmethod that is analogous to our truly deflated Gi&Rbut replaces the
Arnoldi process by the nonsymmetric Lanczos process. Tier laas the important feature
that it can provide approximations of both right and leftezigectors. For details about the
QMR method, see Freund and Nachtigz]f for a presentation in the notation used Here
see BZ). Deflated QMR is started with the pair

(8.1) vo :=To/B =Pro/B, B:= |,
(8.2) Vo :=To/8, B = |[%oll,

wherer, must be chosen such that€ Z+ andrtit, # 0. The Arnoldi relation 6.4) is then
replaced by a pair of Lanczos relations

(83) PAV'rL = Vn+11n 5 PHAan = ivfn—&-lin 5
where we may enforce that all columns¥f, and\anH have2-norm one, and where
Dn+1 = -{'/,Ir—:_‘_anJrl

is nonsingular diagonal or, if look-ahead stefi§][are needed, block-diagonal. With this
choice {.69 and (/.6 hold.

So, if we start again from the ansaéz%) for the approximate solutions,, which implies
the representatior®(7) for the residuals, and if we again QR-decompAdé = Z = Z,Rqr
as in 6.6), we obtain exactly as ir6(8)

(8.4) r, = [ Zo Vi ]gn,
where

— q% — RQRZHI'O o RQR RQRCn my k+n+1
09 g, 5] =[Pt ] [ Tox R ][]

is now thedeflated QMR quasi-residuaNote that formally the only change is the replace-
ment of the extended Hessenberg maliiy by an extended tridiagonal matrik, (or a

block tridiagonal one if look-ahead steps are needed). Mieians short recurrences (except
for the very unlikely special situation of a long look-aheelp) and thus no need to store the

4Except that in $2] v, andv;, were calledy;, andy,, respectively.
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columns ofV,, and\Nf,,L since, in fact, the componem, k,, of the approximate solutions,
can be updated step by step, as iINRES.

Since we have chosen to QR-decompdse- assuming that the numbkiof its columns
is small — we still havé|q? |2 = ||Qr,]||2 asin 6.11). However, the other essential change
is that the columns oV,,; are no longer orthogonal, so, in geneﬂ&h,fb”g # ||Pry|2,

unlike in (6.11). And, sinceV,, has changed, so h&, := Z"AV,,.

Nevertheless, as in QMR, we may choose to mininflige||» instead ofr, [|», and as in
Section2 this amounts to solving first anx (n + 1) least squares problem with the extended
tridiagonal matrixT,, for minimizing ||q;- ||» and for findingk,,. Next,m,, is chosen such
thatqy, = o:

(8.6) min||q |2 = min ||gl‘||2 = min |e;8— T, kyl, . m,, = ZHI‘O - C,k, .
n n k, eCn

As in Section6, the QR decomposition & is seen to be unnecessary. Updating the least
squares problenB(6) by updating the QR decomposition ®f, is done as in NNREs and
QOMR.

Also deflated QMR can break down in the same way as deflated E8ViRhe corre-
sponding adaptation of the first part of Theorragain requires only minor changes. But
additionally, QMR may break down due to a serious breakdditheononsymmetric Lanc-
Z0s process; see,g.,[26, 32] for a discussion of these breakdowns. They can nearly away
be circumnavigated by look-ahead.

THEOREM11.1f T, ¢ N(A), then as long a®V(A) N K,, = {o} and as long as there
are no serious Lanczos breakdowns, the deflated QMR mettimedidy(6.5) and (8.3)-
(8.6) yields in thenth step the approximate soluties, € xq + KC,, +U whose quasi-residual
q,, defined by8.5 has minimak-norm.

However, apart from Lanczos breakdownsA{A) N Z+ + {o} and if x, is chosen
such thatry € N(K), then(and only then deflated QMR breaks down in the first step where
n = 1. Moreover, at step. > 1, if (and only ify N'(A)NK,, # {o}, the method breaks down
when attempting to construst,. In case of these two latter types of breakdown, the search
spacexg + KC,, + U does not contain the exact solution.

Proof. Here, we have to replace in the proof of Theor2mot only every occurrence
of 2L by Z+, but alsovH by VM, H, by T, ‘orthogonality tok’,,* by ‘orthogonality to
L., and ‘Arnoldi’ by ‘Lanczos’. Then the arguments remain tseme as in the proof of
Theoren®. O

9. Deflation by oblique projection: deflated simplified QMR. If A is Hermitian and
the Lanczos biorthogonalization algorithm is started wigh= v, then it simplifies to the
symmetric Lanczos algorithm sindé,, = V,, andT,, = T,, = T,,. Consequently, QMR
just simplifies to MNRES, where, in particular, only one matrix-vector product ieded
per step. As pointed out by FreunzH there are other situations where one can profit from
a similar simplification. In fact, Rutishausés(] made the point that, in theory, the matrix-
vector product byA" in the nonsymmetric Lanczos algorithm can be avoided sfoceyery
square matrixA there exists a nonsingular mati$xsuch thatAT = SAS—!, that is,AT is
always similar toA; see,e.qg.,[35, p. 134] for a proof of this result. Choosing = Sv,
yields thenv,, = Sv,, for n > 0; therefore, the multiplication bA" can be replaced by a
multiplication bysS followed by complex conjugation. The vectars are temporarily needed
to compute the recursion coefficients storedip

However, in general, the spectral decompositionAofs needed to constru&, and
this makes this idea normally unfeasible. But there are soeeesting situations, where
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the matrixS is known and simple to multiply with. Freun@9) lists several classes &-
symmetricand S-Hermitian matrices satisfying by definitoA™S = SA, S = ST and
AHS = SA, S = SM, respectively. But we note that the symmetry conditi8ns- ST or
S = SH are not needed for the simplification.

In one popular application of deflated Krylov space methtusWilson formulation of
the lattice Dirac operator in lattice Quantum Chromodyr@n(@QCD), the Wilson matriA
has the formA = I — kW, wherex € R andW is S-Hermitian for a diagonal matri® with
diagonal elements1. See [, 10, 29 for early contributions making use of this feature and
[2, 1, 46, 57] for some samples of the many publications that make useftstam in lattice
QCD.

So, compared to QMR, simplified QMR reduces the cost in batte tand memory.
Regarding modifications for the deflated version, there ismeah change before one gets to
the details of an implementation. In particuldt,4)—(8.6) remain unchanged.

10. An alternative interpretation of the augmentation compmnent. We have seen
that in each of the deflated Krylov space methods presentedams based on the ansatz
x, = X9 + V. k,, + Um,,, the solution can be found in two steps: first,(@nt 1) x n least-
square problem with an extended Hessenberg or tridiagoagixris solved fork,,, then
an explicit formula form,, is evaluated in order to determine the augmentation comyone
Um,, of the approximate solution and the corresponding augrtienteomponent-Zm,,
of the residual. As mentioned, the first part can be viewedpadyang the corresponding
standard Krylov space method to the singular linear systetn= 1. For example, in
deflated GMRS, checking the derivation of the least-square problen2it,

min |2 = minJle,6 ~ H k|,

we readily see that it is the coordinate space equivaleteoliast squares problem
(10.1) [Vt (e — H k) |12 = [[Fo — PAV, Ky |2 = |[Fo — AV, k|2 = min!
in the spacez*. On the other handn,, := Z"r, — C, k,, yields in residual space
(10.2) Zm, = ZZ"ry — ZC,k, = Qro — QAV,.k,, ,
a formula relating three vectors . The corresponding correction for the iterates is
(10.3) Um, = UZ"r; - UC,k, = UZ"b - UZ"A(x¢ + V,.k,,) .
Now, let us define, with the optim&d,,,

Xn = Vioky,, Xn = X0 + Voky, = %0 + X,
so thatx,, = x¢ + X,, + Um,, = X,, + Um,,. Then (0.1)—(10.3 take the form

2 xek,
(10.5) [P(b—AX,)|, = min_ [[P(b—-Ax)],,
xexo+Kn
(10.6) Zm, = Q(ro — AX,) = Q(b — AX,),
(10.7) Um, = UZ"(ri — AX,) = UZ"(b - AX,).

This clarifies for deflated GMBs the relationship between the problems in coordinate space
and those in the Krylov subspa&% C 21, in the affine spacg, + K,, € xo + Z+, and in
the augmented spasg + K, + .
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Likewise, with differently defined matrice¥,+1, H,,, Q, P, C,,, and the new matrix
Z, and thus also with differen&, To, agdlan, the least squares problem of truly deflated
GMRESsin (6.12) corresponds to one if+ that is formally identical with10.1) and can be
recast as¥0.4) or (10.5. Moreover, the formulan,, := Z"r, — C, k,, yields in the residual
space still £0.6, while in the search space of the approximants we get anaidgto (L0.7)

(10.8) Um, = UZ"(r; — AX,) = UZ" (b — AX,,).

The property that10.4 and (0.5 remain valid can be understood from the fact that in
(6.17) the term||q) || = ||Qr,|| vanishes for the optimal choice &f,, while for the other
term ||gfl|| = ||Pr,|| the coordinate map is still isometric because the basis,af;, which

consists of the columns &f ,, 1, is orthonormal. But, in general, evengtt is A—invariant,
r,, is no longer the minimal residual from + AK,, + Z, sinceZ andk,, € Z+ need not
be orthogonal to each other.

For deflated QMR, the restricted minimal norm propertigs.4) — (10.5 are no longer
valid, but the derivations ofl(.6 and (L0.8 remain unchanged, although the matrisdgs, 1,
T, , andC,, have again new meanings.

Yet another interpretation of the augmentation compohant, is found as follows. Let
us consider the oblique projection framework of Sectisrfirst, with E := ZHZ = I, as

in our presentation of truly deflated GMR and deflated QMR. We further define

(10.9) Ma :=UZ", Qa:=1-MaA=1-UZ"A,

noting that botiMI o A andQa are projections. Inserting them intd@.8 we obtain
Um,, = Ma(b — AX,) = Mab — (I — Qa)%,,

and we end up with

(10.10) Xp = %Xn + Um, =X, + Mab — (I — Qa)X, = QaX, + Mab.

This formula holds for truly deflated GM&s and for deflated QMR. An analogous formula
holds in the situation of Sectior#s4, that is, for GMRes and MINREs deflated with orthog-
onal projections. We have to replaZeby Z and the paitM o, Qa by

(10.11) Man = UZM | Qani=1—-MuA =1-UZ"'A
to obtain likewise
(10.12) X, = Xp + Um,, = QanX, + Marb.

The last formula is the ‘correction formula’ of Theorem Zh231] for the case wher8 = A
there and our normalizatioB = I holds. Both (0.10 and (L0.19 relate the approximate
solutionsx,, of the augmented and deflated method to the approximaté@wk,, of a
deflated but not augmented metheg; € x¢ + K,,. The termUm,, = Ma (b — AXx,,) or
Um, = Mn(b — AX,,), respectively, is the ‘correction’ due to augmentation.

11. Other projections used in augmentation and deflation métods. Many publica-
tions on particular augmentation and deflation methodsyapjections that are different
from the projection® that are the basis of our approach. In this section we intedwo
parameter-dependant projectioBg and Qg that cover many of published proposals, the
parameteB being a nonsingular matrix of the same sizeAasThe most relevant choices for
B are
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| definition | nullspace| range | rangeifB = A
Ps I- AMB Z (BHzf) L ZL
Qs I- MBA u (AHBHZN)* (AHZ)+
Agp | PsA = PsAQgs = AQs U (BHl)+ zL
TABLE 11.1

The projection® g and Qg and the projected operatQKB for a generalization of the situation of Sectidhs3 .

1. B = Ifor deflated CG, BCG, and FOM §1],
2. B = A" for deflated CR, GCRI[7], MINRES, and GMReS,
3. B = A for deflated BCR [56].
We start here from a setting suitable for deflate€B8 and BCR that will be treated fully in
[30]. Then we specialize it to the setting for CG, FOM, CR, GCRNRES, and GMRes
considered in31], which covers most of the published approaches.
Similar to the situation in our Sectioas8 we let

U:=R(U), Z:= AU, Z2:=R(Z),
U :=R(U), Z .= A"U, Z:=R(Z),

but now we exchangE by a more generdlg € C*** and introduce a matrivi € CV*N
that replaces ou®:

Eg:= U'BAU, M :=UE;'U".

Of course, we assume thg is nonsingular. Finally, we introduce two projectidAg and
Qg as well as a corresponding projectidi of A, all defined in Tablé 1.1, which also lists
kernels and ranges of these three operators. In the case Bher I these operators have
been used by Erlangga and Nabb2€] |

In contrast, by comparinBg with E we see that in Sectiofthe choice wa83 = A.
In this case we have

Ea=E, AMA=ZE 'Z"=Q, Po=P, Qa=1-MA2, A,=PA.

Note thatQ is the same as inlQ.9 if E = I, sinceMA = UE'U"A = UE~'Z" =
UZM = M. However,A # A, in general. But the following holds:

THEOREM12. For the projected operatorA of Section®-8and A g of Tablel1.1with
B = A holds

(11.1) A|,=0|,, Al; =A4l; .
Moreover, under the assumptions of TheoigwhereZ & zZL=cN,
(11.2) A|_,=AA|,=0|,, A|;, =A4xl;, =Al;,,
and thereforeA = A onCV.
Proof. By definition, A = PAP, whereP is a projection with\/(P) = Z and
R(P) = Z*. ConsequentlyA| _ = O/ and

Al;, =PAP|;, =PA|;, =PAA|;, =A4l;, .



ETNA
Kent State University
http://etna.math.kent.edu

177
definition | null space] range | rangeifB = A"
Pr I- AMB Z B )T ZT
Qs I- MBA U (AHBH)L (AHZ)L
Ap | PBA =PpAQgp = AQp U (BHu)*- zt
TABLE 11.2

The projection® g and Qg and the projected operato g for a generalization of the situation of Sectiohst.

Moreover, if Z is A—invariant,
ArZ =PAZ CPZ = {o}.
Finally, under the assumptions of Theor@nmalsoZ~ is A—invariant and, byg.6),
Alz =Alz

Altogether, we obtain1(1.2 and, sinceZ © Z1 = CY under these assumptions, there holds
A=A onCN.O

An analogous result holds in the situation of Sectidnaé. There is no dual space there,
so we redefine

Eg:=U"BAU, M:=UE;'U".

Pg, Qg, andAg can be defined as before, but their ranges slightly diffe; Tadblel1.2
This is the situations considered 81]. (But note that ouB is defined differently and equals
B" in the notation of $1].) The case wherB = I covers deflated CGIB, 13, 41, 61, 19, 54
and is also a topic of study ir2], 47, 60] and related work.

ComparingEg with E of Section2 we see thaB = A" here. Then we have

Ex =E, AMA"=ZE 'Z"=Q, Pon =P, Qu=I-MA"A, A, =PA.

Now Qw is the same as irl(.1]) if E = I, sinceMA" = UE [/ UMAH = UE1ZH =
UZH = M pu. The following analog of Theorer?2 holds: R

THEOREM 13. For the projected operatorA of Section®—4 and A of Tablel1.2with
B = A" holds

(11.3) Al,=0|,, Al , =A|,..

Moreover, ifZ and Z+ are A—invariant, then

(11.4) Al_=Am|,=0|,, Al =Auxm|.. =A|,.,

E |2

and thereforeA = A o onCY,

Proof. The proof s fully analogous to the one of Theorgfeand is left out herel

In summary, the two slightly different projectiod used here in Sectiord4 and in
Sections5-8 coincide with the projectionP 4+ andP 5 defined in Tablel1.2(for B = A")
and Tablell.1(for B = A), respectively, but they differ from the projectioRs defined
there whenB = 1. The latter projections are those used in deflated @& 13, 41] and
deflated BCG [30]. Moreover, even whe® = Pan or P = P4 our deflated operator
A = PAP differs in general from the deflated operat@kgH andA 4, respectively, unless
Z andZL or Z+ are exactly right and lefA—invariant subspaces.
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12. Deflated quasi-(bi)orthogonal residual methodsThe GMRes algorithm of Saad
and Schultz$3) is just one incidence of a so-called minimal residual (MRthod: a Krylov
space solver whose iterates and residuals restricted by

(121) Xn € Xg + ’Cn(A; rO) ) r, €ro+ A’Cn(A; rO)
have the minimal norm property, || = min!, which is equivalent to the Galerkin condition
(12.2) r, L AK, (A, rg).

Other methods with the same mathematical properties ar@¢heralized Minimum Resid-
ual (GCR) method17], the MINRES algorithm of Paige and Saunderd[ for Hermitian
matrices, and, the Conjugate Residual (CR) method of ${ig€for Hpd matrices. While
MINREs and GMRes transplant the problem into coordinate space, CG and GCRlibuse
rectly recursions fok,, andr,,.

There is an analogue family of so-called orthogonal resifidBR) methods, wherel@.?
is replaced by another Galerkin condition,

(123) T'n 1 ’Cn(Aa I‘()) )

which implies that the residuals are mutually orthogonaisTamily includes the ubiquitous
conjugate gradient (CG) method of Hestenes and Stigfgfpr Hpd matrices, which has the
property that the residuals have mininzat'—norm, or, equivalently, the error vectors have
minimal A—norm. Another one is the Full Orthogonalization Method KP®f Saad p1].
Of course, ifA is not Hpd, there is né ~'—norm, and therefore no minimal norm property.
Moreover, for some an iterate characterized b¥4.1) and (L2.3 need not exist. Therefore
there is little interest in this method.

Of much greater importance is the biconjugate gradien€®) method of Lanczosi[)]
and Fletcher 23], where the Galerkin conditionl@.3 is replaced by the Petrov-Galerkin
condition

(12.4) r, LK, (AN 7)),

with a freely selectabl€,. There is still the drawback that iterates may not exist amthér
breakdown problems lurk (see,g.,[37]), but this is balanced by the enormous advantage
of short recurrences for iterates and residuals. Eg.4 implies that the residuals, and

the so-called shadow residuals of the fictitious linear systemA"x = T, (with initial
approximatiork, := o) are mutually biorthogonal.

If we consider a transplantation of an OR method to coordispace, it follows imme-
diately thatr,, = ro + AV, k,, is a scalar multiple of,,, the(n + 1)th basis vector generated
by the Arnoldi or the nonsymmetric Lanczos process, resgdygt Moreover, inserting the
Arnoldi relationAV,, = V,,.1H,, or the Lanczos relatioAV,, = V,,., T, we see that the
coordinate vectok,, satisfies

(12.5) H,k, =€ o Tok,=eif,

respectively, with thex x n matricesH,, and'T,, that are the ‘upper parts’ of the matrices
H, andT, used in the coordinate space based MR methods. Solvingsieelyrthese linear
systems by LR or QR factorization we obtain coordinate ba3Bdmethods. In the case
of the tridiagonal matriced, it is possible to derive short recurrences for the iteratets a
residuals, but this means essentially that we apply a C&dlikB CG-like algorithm.
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In this section we want to point out that we can define augnteatel deflated meth-
ods that are not quite (bi)orthogonal residual methodsntight be calleddeflated quasi-
(bi)orthogonal residual methodsnd have the property that they turn iteflated (bi)orthog-
onal residual methodi$ C is A—invariant. We start again from

(12.6) X, = X0 + Vpk, + Um,, , r, =r9 — AV, k, —Zm,, .

and a representation of in terms of the basis d€,, 1 © Z given by[ Vo Z } . Deflated
CG [48, 13,41, 61, 19, 54] and deflated FOM are normally characterized by

(12.7) r LK, oU.

For CG,i.e.,for Hpd A, it has been implicitly shown in various waysd 36, 48] (see also
[19, Thm. 4.1] and $4, Thm 4.2]) that this implies the following optimality resuflor which
we provide the sketch of a straightforward proof.

THEOREM 14. AssumeA is Hpd, definelC,, and i/ as in Sectior2, and let again
x, := A~ 'b. Then the conditiof12.7) implies thatx,, is optimal in the sense thdtx,, —
X4 ||a is minimal under the restrictior,, € xo + /En eU.

Proof. Assumex,, andr,, are represented as ih4.6, and let

U(k,,m,) = % Ixn — X*HQA = % Ixo + V. k,, + Um,, — X*HQA.

Then straightforward differentiation shows that

ov - H ov - H
ak” - rnvn ) amn - rnU’
and
9?0 H 0?0 0?0 H
=vhav, — =0, =U"AU.
(0ky,)? " ok,, Om,, (Om,,)?

Any stationary point is characterized by zero gradientt iy byr,, L R(V,,) = K,, and
r, L R(U) = U. Moreover, we have there a minimum siég AV,, andU" AU are Hpd.
O

The deflated CG algorithms ofi§, 13, 41, 61, 19, 54] fulfill condition (12.7), and thus
maintain global optimality. For deflation they implicitly explicitly apply oblique projec-
tions, namelyP; or Qg of Table11.2(with B = I andAT = A, so thatP; = QIT). Dostal
[13] calls M A aconjugate projection Moreover, these algorithms are all based on recur-
rences for iterates and residuals, so they are not cooedspsice based. But unlesgsis
exactly A—invariant, the approach promoted in this paper which léadse decomposition
K, @ Z is in conflict with a global optimization criteria valid f@€,, & U/. To obtain simple
coordinate space based methods we may drop global optraalit replacel2.7) by

(12.8) rn LK, @ Z.

We will call a method with this propertydeflated quasi-orthogonal residual (DQOR) method
For such a method we have the following trivial corollary.

COROLLARY 15. Under the assumptions of Theordd if Z is A—invariant, the con-
dition (12.8 implies thatx,, is optimal in the sense thdix,, — x,||a is minimal under the
restriction(12.1).

Proof. If Z is A—invarianty{ = A~'Z = Z. So, (12.8 implies (12.7 here.d
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With the quasi-residuaj = of (2.10), the condition {2.§ transforms into
(12.9) q, LCH"

if we considelC**" as the subspace 6F*+"+! characterized by a zero last component. This
means that the firdgt + n components of_;n must be zero, that is,

Ik Cn m,, - ZHI'Q
1210 Lo ][]
This system is upper block triangular with a ufilt 1) block, and therefore it reduces to

a linear system with thé€2, 2) block for computingk,, and an explicit formula fom,,, in
complete analogy to the least squares probl2mlj that we solved before:

(1211) H,k, = elﬁ; my = ZHrO - Cky, .

In the setting of deflated GMES of Section2 these two formulas define a corresponding
particular DQOR method. IA is Hermitian, we can repladd,, by the tridiagonall’,, and
profit from short recurrences for updatirg.

In the setting of truly deflated GMs of Section6, Whereqn is defined by §.9), the
conditions (2.9 and (12.9 are no longer equivalent. For simplicity we may just fulfiet
latter, which yields 12.10, except thaZ" is replaced byz", so that (2.11) turns into

(12.12) H.k, =ei13, m,:=Z"ro— C,k,.

This defines another particular DQOR method.
Finally, in the setting of deflated QMR of Secti@rcondition (L2.9 leads to

(12.13) T,k, =e3, m,:=Z"'ry— Cpk,.
As can be readily verified, in this setting conditidr2(9 is equivalent to
(12.14) rn LL,®Z,

which characterizes deflated quasi-biorthogonal residuaDQBIOR) method The Recy-
cling BICG (RBICG) method of Ahuja4, 5] seems to be of this type.

DQOR and DQBOR methods are in general not optimal. But we think that thia i
minor disadvantage. It is shared by the class of orthog@sidual methods, whose residual
norms depend in a well-known way discovered by Paige andd&aaf9] from those of the
corresponding MR method; semg.,[16] and [33].

Conclusions. We have described several augmented and deflated Krylovochefior
solving Ax = b that all fit into a common theoretical framework. They are rdimate
space based in the sense that we generate recursively basies &ugmented search spaces
K.ou andlCnH @ Z for the iterates,, and the corresponding residug), respectively,
and determine the coordinatesxf. Here,Z = Al{. The typical examples are deflated
MINRES, GMRES, and QMR. Details differ from the proposals in the literatuior MINRES
a little, for GMRES much more.

We assume that a basis faris given, and that typically, but not necessarily, this sub-
space is close to aA—invariant subspace belonging to eigenvalues of smalllatesealue.
Deflation replaces these by zero. We point out that the déftieratorA := PAP and the
corresponding Krylov subspacks, := K,,(A, 1) generated frorg, := Pr, can be chosen
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in different ways. For deflated MRES an orthogonal projectio® on Z- is appropriate.
The same projection is also the standard for deflated @b RVe suggest for non-Hermitian
A another choice: an oblique projection orfo- along Z. Here Z is an approximately
left A—invariant subspace corresponding to the same eigenvasdésind Z. This choice
has the major advantage that in the case of eAagtvariance, these eigenspaces are really
deflated in the sense that the kernelfofcontains/ = Z, while on Z+ the operatorsk
and A coincide. The so deflated methods are based on the nonortalbgecomposition
Z®Kpe1 € Z2® 2+ = CN, which needs to be complimented by an analogous nonorthog-
onal decompositiotﬁ S3) /3n+1 C Z@ 2L+ = CN for the shadow residual search space if
the nonsymmetric Lanczos algorithm is applied to genehetdases. These decompositions
lead to truly deflated GMRs and deflated QMR.

As further alternatives we suggest deflated quasi-orthalgesidual (DQOR) methods
and deflated quasi-biorthogonal residual (DIQBR) methods that are simple analogs of the
deflated MR and QMR methods discussed before.

While the deflated operatoﬁs we promote are defined differently from those in most of
the literature (except for the one ie.g.,[62], which coincides in the symmetric case), we can
show that in the case whei® is exactly A—invariant our deflated operators are equivalent
with those (for Hermitian and non-Hermitian problems, exgjvely) that are discussed in two
companion papers3[, 30] and have the widely used standard form, but are geared dswar
different Petrov-Galerkin conditions.
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Appendix: An example where deflatedM INRES and GMRES break down after any
given number of steps. Let us consider examples of si2é x N that are of the following
form:

1 0 of
, P=|0 0 of

o o Iy_»
whereM is a symmetric nonsinguldN — 2) x (N — 2) matrix whose minimal polynomial
is of degrees, wherel < k < N — 2. Clearly, A is real symmetric and nonsingular too. We
obtain

0 1 of R 0 0 of
PA=|0 0 o' |, A=PAP=|0 0 o' |,
o o M o o M

so that in the notation of Sectiddwe have in particular

N(P) = span {es}
R(P) = C¥ & span {e}

AZl R(AP) = C" © span{ei},
N(A) = span{ey, e, },

N(A)N Z* =span{e}.
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We can choosb andx, suchthatrg =Tp =Pro=[ 1 0 w' ]T, wherew satisfies
(12.15) w=>Y BiMw
=1

with 3. # 0. Here,1 — """, 3;¢* is a comonic representation of the minimal polynomial
of M. Relation (2.15 is achieved by choosing in general position with respect to the
eigenvectors oM. For example, we could choose

M =diag{1,1,...,1,2,...,k}
—_———

N—r—1
andw as a vector of ones. R R
The firstk + 1 Krylov vectorsry, ATy, ..., A®Ty are
1 0 0 0
0|, 0 , 0 - 0
w Mw M?2w M-w

They are linearly independent, hence a basi@,gil. In view of (12.15 they satisfy

To —Zﬁif‘xi?o — e, espan{e)} =N(A)nZ*.

i=1

ConsequentIyN(K) N IEKH # {o}, whence according to Theorer@snd5 deflated GM-
Resand deflated MNRES (and thus also RMIRES of [62]) break down when attempting to
constructv,1, while, obviously, they do not break down before. To underdtthis better

consider the image of the Krylov basis under the mappingvhich spans&l@nﬂ:

0 0 0 0
o |, o | ... 0o |, 0
Mw M?w Mrw Mty

Due to (L2.19 thesex + 1 vectors are linearly dependent, dim AK,.1 = « only, which
shows that we have Case (i) of Lemrhanamely a breakdown during step+ 1 of the
Arnoldi process. Here& < x +1 < N.

For a breakdown in the first step we could, for example, candite same type oA
with an arbitraryM combined withP = e;e! and an arbitraryw. ThenA = O, and the
method will fail for any initialty # o.

However, as we mentioned in the beginning of Seclpmbreakdown is very unlikely if
Z is chosen such that an approximately invariant subspacdleteld and the deflated eigen-
values are well separated from the not deflated ones. In @mpleA Z = span {Ae,} =
span{e1}, S0Z is not at all approximately invariant.
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