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SPECTRAL DEFLATION IN KRYLOV SOLVERS:
A THEORY OF COORDINATE SPACE BASED METHODS ∗

MARTIN H. GUTKNECHT†

Abstract. For the iterative solution of large sparse linear systems wedevelop a theory for a family of augmented
and deflated Krylov space solvers that are coordinate based in the sense that the given problem is transformed into
one that is formulated in terms of the coordinates with respect to the augmented bases of the Krylov subspaces.
Except for the augmentation, the basis is as usual generatedby an Arnoldi or Lanczos process, but now with a
deflated, singular matrix. The idea behind deflation is to explicitly annihilate certain eigenvalues of the system
matrix, typically eigenvalues of small absolute value. Thedeflation of the matrix is based on an either orthogonal
or oblique projection on a subspace that is complimentary tothe deflated approximately invariant subspace. While
an orthogonal projection allows us to find minimal residual norm solutions, the oblique projections, which we favor
when the matrix is non-Hermitian, allow us in the case of an exactly invariant subspace to correctly deflate both the
right and the corresponding left (possibly generalized) eigenspaces of the matrix, so that convergence only depends
on the non-deflated eigenspaces. The minimality of the residual is replaced by the minimality of a quasi-residual.
Among the methods that we treat are primarily deflated versions of GMRES, M INRES, and QMR, but we also extend
our approach to deflated, coordinate space based versions ofother Krylov space methods including variants of CG
and BICG. Numerical results will be published elsewhere.

Key words. Linear equations, Krylov space method, Krylov subspace method, deflation, augmented basis,
recycling Krylov subspaces, (singular) preconditioning,GMRES, M INRES, QMR, CG, BICG

1. Introduction. Krylov space solvers are the standard tool for solving very large sparse
linear systemsAx = b by iteration. But for many real-world problems they only converge in
a reasonable number of iterations if a suitable preconditioning technique is applied. This is
particularly true for problems where the matrixA has eigenvalues of small absolute value —
a situation that is very common in practice. A complementarytechnique for dealing with such
problems can be viewed as applying a singular left preconditioner that deflates the matrix in
the sense that small eigenvalues are replaced by zero eigenvalues. We first have to identify
an approximately invariant subspaceZ that belongs to a set of such small eigenvalues. Ways
to do that have been extensively discussed in the literatureand will therefore not be a topic
of this paper; see,e.g.,[1, 3, 6, 9, 12, 37, 42, 43, 44, 45, 48, 57, 62]. By using an orthog-
onal projectionP whose nullspace isZ the Krylov space solver is then applied only to the
orthogonal complementZ⊥ by restricting the operatorA accordingly. The basis constructed
implicitly or explicitly by this restricted operator is augmented by a set of basis vectors for
Z. In some algorithms based on short recurrencesZ may also include eigenvectors that the
iteration has identified well already and which in the sequelmight cause loss of orthogonality
if new basis vectors were not reorthogonalized against them. In practice, the dimension of the
deflation spaceZ may get increased during the solution process or the space may get adapted,
in particular if a restarted algorithm is employed. In this paper we assume for simplicity that
Z is fixed.

A relevant detail of the approach discussed here is that the basis ofZ is assumed to be
given as the columns of a matrix of the formZ = AU. So, the preimage of the basis, the
columns ofU, are assumed to be known. In practice this means that we choose first the matrix
U, which also spans an approximately invariant subspaceU for the chosen eigenvalues, and
then compute the imageZ = AU. This implies that the restrictionA|Z of A to Z can be
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inverted trivially: if, say,y = Zk ∈ Z, thenA−1y = A−1Zk = Uk ∈ U .
Applying a Krylov space solver to a linear systemAx = bmeans to construct a sequence

of approximate solutionsxn that are of the formxn ∈ x0+Kn(A, r0), wherex0 is a chosen
initial approximation,r0 :≡ b − Ax0 is the corresponding residual, andKn(A, r0) is the
nth Krylov subspace generated byA from r0. (For its definition see Section2.) Then,
rn ∈ r0 +AKn(A, r0), and the goal is to makern small in some norm. Therefore, solving
the linear system with a Krylov space solver can be understood as successively approximating
r0 by elements of the subspacesAKn(A, r0).

In the methods described here first,AKn(A, r0) will be replaced by the subspace
AKn(Â, r̂0), where the deflated operator̂A :≡ PAP is singular, and̂r0 :≡ Pr0 ∈ Z⊥,
so that we will haveKn(Â, r̂0) ⊆ Z⊥. Note that onZ⊥, and thus also on the Krylov sub-
space, the restriction of̂A is equal to the restriction ofPA; thus only one application ofP
is needed for applyinĝA. On the other hand, as search space for approximate solutionsxn,
this Krylov subspace will be augmented byU , that is,

(1.1) xn ∈ x0 +Kn(Â, r̂0) + U , rn ∈ r0 +AKn(Â, r̂0) + Z .

If Z⊥ is A-invariant,AKn(Â, r̂0) ⊆ Z⊥, so we can view the approach chosen here as
splitting upr0 in its two orthogonal componentŝr0 ∈ Z⊥ andr0− r̂0 ∈ Z. The preimage of
the latter component can be computed in the trivial way outlined before, while the preimage
of r̂0 is approximately computed with a Krylov space solver forÂx̂ = r̂0 acting only in
Z⊥. However, some complications occur ifZ⊥ is notA-invariant, which is the usual case.
Treating these complications suitably is the main aim of this paper. In any case, we will see
that we can first solve the restricted problem̂Ax̂ = r̂0 by a standard method such as GMRES

[53] and subsequently compute the still ‘missing’ component ofthe solution by solving a
small triangular linear system.

While we will quickly also review the ‘symmetric case’, where the linear system is Her-
mitian (or real and symmetric), we are here mostly interested in the ‘non-symmetric case’,
where our main message is that it may be preferable to replacethe orthogonal decomposition
of r0 by a non-orthogonal one. To this end,P must be chosen as an oblique projection with
the property that when its nullspaceZ is A–invariant, so is its rangẽZ⊥. In this way, we
not only can annul eigenvalues, but also deflate the corresponding left and right invariant sub-
spaces. This choice leads then in a straightforward way to a ‘truly deflated’ GMRES and to
deflated QMR [28]. Like in the symmetric case, ifZ is A–invariant, the convergence speed
of the deflated method is then fully determined by the nondeflated eigenvalues ofA and the
corresponding invariant subspace. There is no need for deriving new convergence estimates
unless we want to estimate the influence of an inexact choice of the subspace.

Our general approach can be used to define deflated versions ofany Krylov space solver.
But in this paper we concentrate on coordinate space based methods such as GMRES, M IN-
RES [49], and QMR, where the Arnoldi or the Lanczos method is used to generate a series of
bases of the nested Krylov subspaces. As is well known, this allows us to reformulate a mini-
mum residual problem as an equivalent or approximately equivalent least squares problem in
coordinate space, which can be solved by updating the QR decomposition of a Hessenberg or
tridiagonal matrix.

Orthogonal and biorthogonal residual methods such as CG [34] and BICG [40, 23] can
also be realized in this way, but are then normally considered less attractive, perhaps due to
the possible nonexistence of some of the iterates. Here, at the end, we only introduce related
deflated quasi-(bi)orthogonal residual methods.

A further main goal of this paper is to present all these methods in a common framework
that relies on a splitting of the space into two complementary subspaces, which can be cho-
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sen in various ways. We favor here the above mentioned choicereflecting a partition of the
spectrum, but in the nonsymmetric case this leads to a conflict with the choice imposed by
residual minimization. In contrast to our treatment, the excellent general treatment and review
of augmentation methods by Eiermann, Ernst, and Schneider [16] is mostly restricted to the
application of orthogonal projections and does not capitalize upon the knowledge of bases for
bothU andZ assumed here (unless they areA–invariant and thus equal). A further difference
is that their treatment is aiming for augmented minimal residual methods, in particular GM-
RES, while we will drop optimality in Sections5–9 and replace it by some near-optimality.
Another interesting discussion and review of augmentationand deflation methods is due to
Simoncini and Szyld [55, §9].

It is a well-known fact about Krylov space solvers that aiming for the smallest2-norm of
the residual, that is, applying GMRES without restarts, is not only excessively memory con-
suming, but is often also not much faster than using alternative methods that are suboptimal.
In practice, it is not important to find the fastest solver, but to apply an effective precondition-
ing or multilevel method. Augmentation and deflation are powerful options along these lines,
and there are several different ways to apply the basic ideas. Moreover, it is no problem to
combine them with other preconditioning techniques.

Literature. Augmentation and deflation of Krylov space solvers have beenproposed
in various forms in a large number of publications. Many of the methods differ not only
algorithmically and numerically, but also mathematically. Some keywords associated with
such methods are ‘(spectral) deflation’, ‘augmented bases’, ‘recycling Krylov subspaces’,
‘spectral preconditioning’, and ‘singular preconditioning’. The primary goal is always to
speed up the convergence of a solver, but the application to linear systems with multiple
right-hand sides and to systems with slowly changing matrixand right-hand side is also often
mentioned.

To our knowledge, the first suggestion of an augmented Krylovspace method that in-
cluded both the deflation of the matrix and the correspondingprojection of the initial residual
came from Nicolaides [48], who submitted on May 13, 1985, such a deflated CG algorithms
based on the three-term recursions for iterates and residuals. Independently, Dostál [13] sub-
mitted in January 1987 a mathematically equivalent deflatedCG algorithm based on the well-
known coupled two-term recursions; he even gave an estimatefor the improvement of the
condition number. In June 1987 Mansfield [41] submitted additional numerical evidence for
what he referred to as Nicolaides’ method of deflation, but hewas actually using a 2-term CG
algorithm. The same algorithm was more than ten years later again discovered by Erhel and
Guyomarc’h [19] (deflation of a previously constructed Krylov subspace), by Saad, Yeung,
Erhel, and Guyomarc’h [54], and, independently, by Vuik, Segal, and Meijerink [61], who
combined it with preconditioning by incomplete Cholesky decomposition. All three papers
refer to Nicolaides [48], but not to Dostál [13] and Mansfield [41], whose articles are much
closer to their work. From a Google scholar search one can conclude that it was Kolotilina
[39] who ultimately promoted Dostál’s paper [13] to a larger audience. But, his two related
papers [14, 15] are not even mentioned by her. Early citations to Mansfield,who also had
two follow up papers, are by Fischer [22] and Kolotilina [39]. To achieve the optimality of
the CG error vector in theA-norm an oblique projection has to be used (see Sections11
and12), which can be viewed as anA-orthogonal projection however, and has nothing to
do with the oblique projections promoted here. Before, in 1992, Kharchenko and Yeremin
[37], followed, in 1994, by Erhel, Burrage, and Pohl [18] suggested GMRESalgorithms with
augmented basis and a corresponding nonsingular right preconditioner that moves the small
eigenvalues to a multiple large eigenvalue. Later Baglama,Calvetti, Golub, and Reichel
[6] constructed a left preconditioner with the same effect; see [16, pp. 286–289] for a brief
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comparison of these three preconditioners. Also in the mid-1990s, Morgan [43] proposed
GMRES with augmented basis but no explicit deflation of the matrix,and de Sturler [11]
suggested an inner-outer GMRES/GCR algorithm with augmented basis and later, in other
publications, several related methods. Saad [52] put together a general analysis of Krylov
space methods with augmented basis, which was further generalized in the above mentioned
survey article of Eiermann, Ernst, and Schneider [16]. Many more publications followed;
see,e.g.,[1, 24, 45, 57, 63] for further references. The starting point for the presentpaper
has been the description of recycled MINRES or RMINRES by Wang, de Sturler, and Paulino
[62], which, after a minor modification that does not change the mathematical properties, fits
exactly into our framework. Their orthogonal projectionP and the corresponding deflated
matrixÂ have been used before,e.g.,in [16, 11, 12]. They are the basic tools of our approach
in 2–4. But so far the oblique projectionP that is the basis of our approaches of Sections5–9
only seems to have been used for Ahuja’s Recycling BICG(RBICG) [4, 5], which does not
fit into our framework; see Section12for how it relates to our work. In particular, the oblique
projection applied by Erlangga and Nabben [20] for their version of deflated GMRES is dif-
ferent from our. In fact, the projection of [20] generalizes the one that is typical for deflated
CG [48, 13, 41]. The connection to some of these alternative choices will be explained in Sec-
tion 11. Our approach is also different from the one of Abdel-Rehim,Morgan, and Wilcox
[2] for their deflated BICGSTAB, and the one of Abdel-Rehim, Stathopoulos, and Orginos
[3] for their Lanczos based combined equation and eigenvalue solver.

We must also mention that in a series of papers that culminates in [21, 47, 60] it has
been shown recently that deflation, domain decomposition, and multigrid can be viewed as
instances of a common algebraic framework.

Outline.We start in Section2 by introducing the basic setting for a particular version of
augmented and deflated GMRES based on an orthogonal projection that annuls approximate
small eigenvalues, in the sense that they get moved to zero. The possibility of breakdowns of
this method and its adaptation to symmetric problems, whereGMRES turns into MINRES,
are then discussed in Sections3–4. In Sections5–6, we modify the basic setting by intro-
ducing an oblique projection that enables us to deflate approximate (possibly generalized)
eigenspaces and to introduce a truly deflated GMRES method. By making use of an adjoint
Krylov space generated bŷAH we next explain in Sections7–9 how we can adapt our ap-
proach to the nonsymmetric Lanczos algorithm and introducea deflated QMR method and
a simplified deflated QMR method. The latter has,e.g.,a well-known application in quan-
tum chromodynamics. Moreover, in Section10we describe a different way of computing the
component of the solution that lies inU , and in Section12we briefly point out that our frame-
work could in principle also be used to define coordinate space based deflated (bi)orthogonal
residual methods that are approximately equivalent to deflated CG and BICG methods.

Notation. We denote the range (or, the image) of a matrixM by R(M). For the
nullspace (or kernel) ofM we writeN (M). Sometimes we introduce the additional notation
M :≡ R(M) for the range. As usual, the first column of then × n unit matrix ise1; addi-
tionally,e1 ∈ Rn+1 is e1 with a extra zero component appended to it. Likewise,Hn andTn

will be (n+ 1)× n matrices whose topn× n submatrices areHn andTn, respectively.

2. Deflation by orthogonal projection; deflated GMRES. Consider a nonsingular lin-
ear systemAx = b of sizeN ×N . LetU ∈ CN×k have full rankk, where1 ≤ k < N , and
set

U :≡ R(U) , Z :≡ AU , Z :≡ R(Z) = AU ,

and

E :≡ ZHZ , Q :≡ ZE−1ZH , P :≡ I−Q = I− ZE−1ZH .
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The subspacesU andZ will be used to augment the search spaces for the approximatesolu-
tionsxn and the corresponding residualsrn :≡ b −Axn, respectively. Note thatQ2 = Q,
P2 = P, QH = Q, andPH = P; so,Q is the orthogonal projection ontoZ, whileP is the
orthogonal projection onto the orthogonal complementZ⊥ of Z.

If the columnsuj of U ∈ C
N×k are chosen to beAHA-orthonormal, so that the columns

of Z = AU form an orthonormal basis ofZ, which we will from now on assume, then
E = Ik and the formulas forQ andP simplify to

(2.1) Q = ZZH , P = I−Q = I− ZZH .

Alternatively, we could compute a QR decomposition ofAU to find a matrixZ with or-
thonormal columns; see Section6, where we will temporarily apply this.

As mentioned in the introduction, the first basic idea is to restrict the Krylov space solver
to Z⊥ by projecting the initial residualr0 into this space and by replacing the original oper-
atorA by its restriction to this space:

r̂0 :≡ Pr0 , Â :≡ PAP .

A corresponding initial approximation̂x0 is not needed. (Anŷx0 ∈ x0 + U would satisfy
r̂0 :≡ Pr0 = P(b −Ax0) = P(b −Ax̂0), and for theoretical purposes we could even set
x̂0 :≡ A−1PAx0 to achieve that̂r0 = Pb−Ax̂0, or x̂0 :≡ A−1(PAx0 +Qb) to achieve
that r̂0 = b − Ax̂0.) Note thatrank Â ≤ N − k sincerankP = N − k, soÂ is always
singular.

Given any initial guessx0, the second basic idea is to approximate the solution
x⋆ :≡ A−1b by iteratesxn from the following affine space:

(2.2) xn ∈ x0 + K̂n + U ,

where

(2.3) K̂n :≡ Kn(Â, r̂0) :≡ span {r̂0, Âr̂0, . . . , Â
n−1r̂0}

is the nth Krylov subspace generated bŷA from r̂0. Since r̂0 ∈ Z⊥ and
R(Â) ⊆ R(P) = Z⊥, we haveK̂n ⊆ Z⊥. The choice (2.2) implies that

(2.4) rn :≡ b−Axn ∈ r0 +AK̂n + Z .

If we construct a nested sequence of orthogonal bases for theKrylov subspaceŝKn by
an Arnoldi process started withv0 :≡ r̂0/β, whereβ :≡ ‖r̂0‖2, we can express this, for
eachn, by the Arnoldi relationÂVn = Vn+1Hn, with Vn :≡

[
v0 . . . vn−1

]
and an

extended(n+1)×n upper Hessenberg matrixHn. But sinceR(Vn) = K̂n ⊆ Z⊥, we have
PVn = Vn, and therefore

(2.5) ÂVn = PAPVn = PAVn ,

so that the Arnoldi relation simplifies to

(2.6) PAVn = Vn+1Hn .

This means that only one projectionP is needed for applyinĝA in Z⊥.
In view of (2.2) we can representxn as

(2.7) xn = x0 +Vnkn +Umn
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with coordinate vectorskn ∈ Cn andmn ∈ Ck. In the usual way, multiplication byA and
subtraction fromb yields then for the residualsrn :≡ b−Axn the representation

(2.8) rn = r0 −AVnkn − Zmn .

Due to the Arnoldi relation (2.6) and the orthogonal decompositionr0 = r̂0 + Qr0 =
v0β + Qr0 this becomes, withCn :≡ ZHAVn ∈ Ck×n andQ = ZZH, and in analogy
to the derivation for the symmetric case in [62]1,

rn = v0β +Qr0 − (P+Q)AVnkn − Zmn

=
[
Z Vn+1

]
q
n
,(2.9)

where

(2.10) q
n
:≡

[
ZHr0
e1β

]
−

[
Ik Cn

O Hn

] [
mn

kn

]
∈ C

k+n+1

may be calleddeflatedGMRES quasi-residualin analogy to the terminology of [28]. One
option is to choosern of minimal 2-norm. Then (2.9) is the key relation for a GMRES-
like approach to this problem:rn is represented in terms of the basis consisting of the
columns ofZ andVn+1. Since we assumeZ to have orthonormal columns as in (2.1),[
Z Vn+1

]
has orthonormal columns too, and the coordinate map is isometric in the

2-norms ofZ ⊕R(Vn+1) ⊆ CN andCk+n+1, respectively, so that

(2.11) ‖rn‖2 = ‖q
n
‖2 =

∥∥∥∥
[

ZHr0
e1β

]
−

[
Ik Cn

O Hn

] [
mn

kn

]∥∥∥∥
2

.

As in the original GMRES method [53] the minimization of‖rn‖2 reduces in thenth step
to a least squares problem for minimizing the right-hand side of (2.11), which can be solved
recursively by updating in each iteration the QR decomposition of the(n+1)×n Hessenberg
matrixHn. Note that the firstk columns of the least square problem are in diagonal form,
hence,a fortiori in upper triangular form already. Hence, the(k + n + 1) × (k + n) least
squares problem in (2.11) decouples from the beginning into an(n + 1) × n least squares
problem forkn and an explicit formula formn:

(2.12) min ‖rn‖2 = min ‖q
n
‖2 = min

kn∈Cn

‖e1β −Hnkn‖2 , mn := ZHr0 −Cnkn .

This decomposition of the problem suggests that we search first for a solution of the
reduced least squares problem, that is, determine a suitable sizen, the matricesVn and
Hn resulting from the Arnoldi process, and the corresponding solution kn in coordinate
space. This first stage can be understood as solving the singularly preconditioned system
PAx = Pb by standard GMRES, or as solvinĝAx̂ = r̂0 in Z⊥ by GMRES. Subsequently,
we may calculate the relatedmn. There is no need to computemn for all n since the2-norm
of the residualrn is not affected by the second stage ifmn is chosen according to (2.12).

We will call the resulting algorithmdeflatedGMRES though it is not equivalent to the
methods introduced by Morgan [43] and Chapman and Saad [9] under this name.2 Our pro-
posal also differs from those of Kharchenko and Yeremin [37] and Erhel, Burrage, and Pohl

1To change to the notation of [62] substitute, in particular,Z  C andCn  Bn.
2In both [9] and [43] a cycle of deflated GMRESconsists in first applying a fixed number of GMRESsteps with

A starting fromx0 (instead of usinĝA andx̂0), and then addingk orthogonalization steps to the vectorsAuj . This
yields at the end an(m+ k+ 1)× (m+ k) least squares problem. So the orthogonal projectionP is only applied
at the end of each cycle. For an alternative interpretation and realization of Morgan’s method see [16, §4.3] and [44].
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[18], who construct nonsingular preconditioners that move small eigenvalues away from zero.
However, in Section5 we will come up with another proposal for the nonsymmetric case,
which we think is better suited to deflate approximate eigenpairs.

3. Breakdowns of deflated GMRES.Unfortunately, in general, the deflated GMRES

method of Section2 can break down since the Arnoldi process described by the relation
ÂVn = Vn+1Hn, which is used to set up the least squares problem in (2.12), is applied
with a singular matrixÂ. The least squares problem originates from solvingÂx̂ = r̂0 by
GMRES for somex̂ ∈ Z⊥. SinceR(Â) ⊆ Z⊥ and r̂0 ∈ Z⊥, the linear system and the
Arnoldi process are restricted toZ⊥. Hence, it is the restriction of̂A to Z⊥ which matters.
This restriction is singular if and only ifrank Â < N − k = dimZ⊥. But recall that in
applications the eigenvalues of this restriction are supposed to approximate the nondeflated
‘large’ eigenvalues ofA; therefore, in practice it is very unlikely that the restriction is singular
and breakdowns can occur.

If rank Â < N − k, it may happen thatv0 ∈ N (Â) ∩ Z⊥ or that, for somen > 1,
vn−1 ∈ N (Â) ∩ R(Â) ⊆ N (Â) ∩ Z⊥. ThenÂvn−1 = o and, trivially, the component
orthogonal toK̂n = R(Vn) of this vector is also zero and cannot be normalized. Moreover,
VH

nÂvn−1 = VH
no = o, so the last column ofHn is zero except for its undetermined

(n + 1, n)–element, which we may set equal to0 too. In particular, the top square part
Hn of Hn is singular. Hence, the Arnoldi process terminates after detecting the invariant
subspaceR(Vn) = K̂n, and GMRES breaks down. Note thatdim (ÂK̂n) = rank (ÂVn) =
rank (VnHn) = n− 1 sincerankHn = n− 1. Is this the only type of breakdown?

The application of Krylov space methods to singular systemshas been investigated in
detail by Freund and Hochbruck [27, §§ 3-4] and others. In particular, the application of
GMRES to such systems has been analyzed by Brown and Walker [8]. Lemma 2.1 of [8]
adapted to our situation reads as follows.

LEMMA 1. If GMRES is applied toÂx̂ = r̂0 and ifdim K̂n = n holds for somen ≥ 1,
then exactly one of the following three statements holds:

(i) dim(ÂK̂n) = n− 1 andÂx̂ 6= r̂0 for everyx̂ ∈ K̂n;
(ii) dim(ÂK̂n) = dim K̂n+1 = n, x̂n :≡ Vnkn is uniquely defined, and̂Ax̂n = r̂0;
(iii) dim(ÂK̂n) = n, dim K̂n+1 = n+ 1, x̂n is uniquely defined, but̂Ax̂n 6= r̂0.
We call Case (i) abreakdownof GMRES, Case (ii) theterminationof GMRES, and

Case (iii) thecontinuationof GMRES. (In contrast, Brown and Walker [8] and other authors
also call Case (ii) a breakdown, although in this case the aimof finding a solution of the linear
system has been achieved.) Note that Case (i) implies thatdim K̂n+1 = n, hence also in this
case the Krylov space is exhausted.

In the situation wherêAvn−1 = o discussed before, we have obviously Case (i) since
Arnoldi terminates, but the resulting equatione1β = Hnkn has no solution. That this is
more generally a consequence ofdim(ÂK̂n) = n − 1 can be seen as follows: if we had
chosen forK̂n the so-called Krylov basis, that is

V(K)
n :≡

[
r̂0 Ar̂0 . . . An−1r̂0

]
,

then, in Case (i), the Hessenberg relation resulting aftern steps would bêAV
(K)
n = V

(K)
n H

(K)
n ,

with a companion matrixH(K)
n that has a zero element in its upper right corner, so that

e1 6∈ R(H
(K)
n ). This just reflects the fact that the restriction ofÂ to K̂n has a zero eigenvalue:

the last column ofH(K)
n contains the coefficients of the characteristic polynomial. Note also

that the basis transformation fromVn toV
(K)
n is represented by a triangular matrix and leaves

the direction of the first basis vector invariant.
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Clearly,dim(ÂK̂n) = n − 1 (i.e., Case (i)) holds if and only ifN (Â) ∩ K̂n 6= {o}.
Conversely, if this breakdown condition does not occur for any n, GMRES will ultimately
terminate with Case (ii), where the unique solution ofÂx̂ = r̂0 is found. At intermediate
steps, where Case (iii) occurs,x̂n = Vnkn is the best least squares solution out ofK̂n.

In summary we obtain for deflated GMRES applied toAx = b the following theorem.
THEOREM 2. If r̂0 6∈ N (Â), then as long asN (Â) ∩ K̂n = {o}, the deflatedGMRES

method defined by(2.6)–(2.7) and(2.12) yields in thenth step the approximate solutionxn ∈
x0 + K̂n + U whose residualrn has minimal2-norm.

However, ifN (Â) ∩ Z⊥ 6= {o} and if x0 is chosen such that̂r0 ∈ N (Â), then(and
only then) deflatedGMRES breaks down in the first step wheren = 1. Moreover, at step
n > 1, if (and only if) N (Â) ∩ K̂n 6= {o}, the method breaks down when attempting to
constructvn. In case of a breakdown, the search spacex0 + K̂n + U does not contain the
exact solutionx⋆.

If Z⊥ is A–invariant, breakdowns cannot happen,Cn = O, and the Arnoldi relation
(2.6) can be replaced by

(3.1) AVn = Vn+1Hn .

Proof. It remains to prove the last two sentences. Firstly, for a proof by contradiction,
assume that the search space containsx⋆, sox⋆ :≡ A−1b = x0 + x̂⋆ + u⋆, wherex̂⋆ ∈ K̂n

andu⋆ ∈ U . Then, sincePAu⋆ = o andPAx̂⋆ = Âx̂⋆,

o = b−A(x0 + x̂⋆ + u⋆)

= Pr0 −PAx̂⋆ −PAu⋆ + (I−P)(r0 −Ax̂⋆ −Au⋆)

= (r̂0 − Âx̂⋆) +Q(r0 −Ax̂⋆ −Au⋆) .

Since the first parenthesis is inZ⊥, while the second term is inZ, both must be zero. In
particular, we must havêr0 = Âx̂⋆. However, this contradicts case (i) of Lemma1, which
applies when deflated GMRES breaks down and says thatx̂⋆ 6∈ K̂n.

Secondly, ifZ⊥ isA–invariant, we have in extension of (2.5) at thenth step

(3.2) ÂVn = PAPVn = PAVn = AVn .

This implies that solving the system̂Ax̂ = r̂0 with GMRES (and starting vector̂x0 = o)
is equivalent to solvingAx̂ = r̂0 with GMRES. SinceA is nonsingular, there are no break-
downs (described by Case (i) of Lemma1), and ultimately the solution will be found (i.e.,
Case (ii) will occur).

Finally, sinceR(Vn) ⊆ Z⊥ and the latter set is assumed to beA–invariant, we have
R(AVn) ⊆ AZ⊥ = Z⊥, so thatCn = ZHAVn = O.

Eqs. (3.1) and (3.2) suggest that in the case whereZ⊥ is A–invariant we might apply
GMRES with A instead ofPA. But in some cases this might be risky due to round-off
effects: round-off components inZ may grow fast sinceA−1 has large eigenvalues there.

Note that for n = 0 the breakdown condition̂r0 ∈ N (Â) can be written as
N (Â) ∩ K̂0 6= {o}, in accordance with the breakdown condition for thenth step.

The following simple2×2 example taken from [31] exemplifies a breakdown in the first
step:

(3.3) A :≡

[
0 1
1 0

]
, P :≡

[
1 0
0 0

]
, PA =

[
0 1
0 0

]
, r0 :≡

[
1
0

]
,
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whereÂ = PAP = O andv0 = r̂0 = r0, henceÂv0 = o. So,Z = N (P) = span {e2},
Z⊥ = span {e1}, v0 ∈ N (Â) ∩ Z⊥ here, and we have a breakdown in the first step.

We will generalize this example in the Appendix, where we will show that breakdowns
are also possible at any later step up ton = N − 1.

Based on Theorem2 we may formulate conditions that characterize thepossibilityof
breakdowns in case of an unlucky choice ofx0, that is, an unluckŷr0 ∈ Z⊥.

COROLLARY 3. DeflatedGMRES can break down in the first Arnoldi step(for deter-
miningv1) if and only if the following four equivalent conditions hold:

(1) N (Â) ∩ Z⊥ 6= {o} ,
(2) AZ⊥ ∩ Z 6= {o} ,
(3) AZ⊥ + Z 6= CN ,
(4) rank Â < n− k .

If these conditions are fulfilled for some givenA andZ, then we can choosex0 (if b is
given), so thatGMRES breaks down in the first step.

The equivalent Conditions(1)–(4) are also necessary for deflatedGMRES to break down
in a later step.

Conversely, a breakdown cannot occur in any step if equalityholds in Conditions(1)–(4),
or, equivalently, ifN (Â) = Z, that is, if AZ⊥ ⊕Z = CN .

Proof. According to Theorem2, Condition (1) characterizes the possibility of a break-
down in the first step. It says that breakdowns are possible ifand only if there existsy =
Py ∈ Z⊥\{o} with PAy = PAPy = Ây = o, that is, witho 6= Ay ∈ N (P) = Z.
This is equivalent to Condition (2). Moreover, sincedimZ = k anddimAZ⊥ = dimZ⊥ =
N − k, the second condition is equivalent to the third one. Finally, Z = N (P) ⊆ N (Â) and
therefore Condition (1) implies thatdimN (Â) > dimZ = k , that is,rank Â < n − k, and
vice versa.

For a breakdown at stepn > 1 we need, by Theorem2, N (Â) ∩ K̂n 6= {o}. Since
K̂n ⊆ span {r̂0}+R(Â) ⊆ Z⊥, Condition (1) must hold.

Conditions for the impossibility of breakdowns are obtained by negating the Condi-
tions (1)–(4), noting that alwaysN (Â) ⊇ Z, and observing the dimension statements given
above.

Finally, we point out the following fact.
COROLLARY 4. The assumption thatZ⊥ is A-invariant is sufficient, but not necessary

for guaranteeing that no breakdown can occur.
Proof. SinceA is nonsingular,Z⊥ is A-invariant if and only ifAZ⊥ = Z⊥. This

condition means that on the left-hand side of the negated Condition (3) of Corollary 3 we
have an orthogonal direct sum:

AZ⊥ ⊕Z = Z⊥ ⊕Z = C
N .

However,AZ⊥ ⊕ Z = CN will hold wheneverAZ⊥ ∩ Z = {o}; hence, the condition
thatZ⊥ beA-invariant appears not to be necessary for guaranteeing no breakdowns. The
following example proves this claim.

Example.We slightly modify the example of (3.3) by choosing

A :≡

[
1 1
1 0

]
, P :≡

[
1 0
0 0

]
, PA =

[
1 1
0 0

]
, Â =

[
1 0
0 0

]
= P .

As before,Z = span {e2}, but nowAZ⊥ = A span {e1} = span {e1 + e2} 6= Z⊥. Hence,
AZ⊥ ⊕Z = C2. Consequently, for anŷr0 = Pr0 6= o there will be no breakdown.
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Remarks.(i) Note that whenA is not Hermitian, then the property thatZ⊥ isA–invariant
does not imply thatZ isA–invariant, andvice versa.

(ii) In case of a breakdown we might restart deflated GMRES with a new column
zk+1 := vn appended toZ. Repeating this measure if needed we will ultimately find a
least square problem of type (2.11) with residual‖rn‖2 = 0 and with, say, the originalk
replaced byk + ℓ. However, we cannot find the approximate solutionxn from (2.7) unless
we know the preimagesuk+i satisfyingvk+i = Auk+i, i = 1, . . . , ℓ.

(iii) Some further results on breakdowns of deflated GMRES and on how to avoid them
in deflated MINRES are given in [31].3

4. Spectral deflation for symmetric problems. If A is Hermitian, then so iŝA, and
therefore the Arnoldi process can be replaced by a three-term symmetric Lanczos process, and
the extended Hessenberg matrixHn of the previous section turns into an extended tridiagonal
matrixTn, for which a symmetric Lanczos relation

(4.1) PAVn = Vn+1Tn

holds and whose upper square partTn is Hermitian. AdeflatedM INRES algorithm called
RM INRES for the so simplified setting has been described in detail by Wang, de Sturler, and
Paulino [62]. The same update procedure as in the original MINRES method [49] can be
applied to find the QR decomposition ofTn. Wanget al.[62] also show that the approximate
solutionsxn can still be updated by short recurrences. This is also seen from the fact stressed
here and in [31] that the results of RMINRES can be found by solving first the projected
problemÂx̂ = r̂0 in Z⊥ by MINRES and then adding to the solution a correction term inZ;
see Section10.

In the Hermitian case the properties of deflated GMRES given in Theorem2 and Corol-
lary 3 persist and also hold for deflated MINRES. In particular, the possibility of a breakdown
in the first step is still illustrated by the2×2 example in (3.3). The possibility of a breakdown
at a later step is still proven by the example in the Appendix,since the matrixA there is real
symmetric.

We can reformulate the first part of Theorem2 for deflated MINRES as follows.
THEOREM 5. LetA be Hermitian; then so iŝA. If r̂0 6∈ N (Â) = R(Â)⊥, then as long

asN (Â)∩ K̂n = {o}, the deflatedM INRES method obtained by adapting deflatedGMRES

to the symmetric case yields in thenth step the approximate solutionxn ∈ x0 + K̂n + U
whose residualrn has minimal2-norm.

Conversely, ifN (Â)∩K̂n 6= {o} for somen ≥ 1 then(and only then) deflatedM INRES

breaks down in thenth step.
Again, breakdowns cannot occur ifZ⊥ is A–invariant, and in this case the projected

Lanczos relation (4.1) can be replaced by the Lanczos relation

(4.2) AVn = Vn+1Tn .

A special feature of the symmetric case is thatZ⊥ is A–invariant if and only ifZ is
A–invariant. This is due to the fact that eigenspaces belonging to different eigenvalues are
mutually orthogonal, and higher dimensional eigenspaces can be split up in mutually orthog-
onal ones if needed. The definition̂A = PAP and the fact thatP is the orthogonal projection
ontoZ⊥ yield then the following result on the spectral deflation ofA.

THEOREM 6. Let A be Hermitian. IfZ is A–invariant, thenZ⊥ is alsoA–invariant
and the restrictions ofA, Â, andO toZ andZ⊥ satisfy

(4.3) Â
∣∣
Z
= O

∣∣
Z
, Â

∣∣
Z⊥

= A
∣∣
Z⊥

.

3Note, however, that̂A is defined differently in [31].
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Of course, (4.3) holds also ifA is non-Hermitian, and, by chance, bothZ andZ⊥ are
A-invariant.

5. Deflation by oblique projection: basic setting.So far we have based deflated GM-
RES and MINRES on orthogonal projectionsQ andP :≡ I − Q, but for GMRES and
other solvers for nonsymmetric linear systems of equationsit is more appropriate to con-
sider oblique projections since the eigenspaces ofA are typically not mutually orthogonal.
Our approach is based on the natural splitting ofC

N into the direct sum of twoA–invariant
subspaces. In general, the corresponding decomposition ofthe residual search space will no
longer be an orthogonal one. We therefore modify the settingof Section2 as follows.

Let U ∈ CN×k andZ̃ ∈ CN×k have full rankk, and assume they are chosen such that
the matrixE defined by

Z :≡ AU , E :≡ Z̃HZ

is nonsingular. Then set

U :≡ R(U) , Z :≡ R(Z) = AU , Z̃ :≡ R(Z̃) ,

and

(5.1) Q :≡ ZE−1Z̃H , P :≡ I−Q = I− ZE−1Z̃H .

Note that stillQ2 = Q andP2 = P, but now

(5.2) QZ = Z , QZ̃⊥ = {o} , PZ = {o} , PZ̃⊥ = Z̃⊥ ,

where, as before,̃Z⊥ denotes the orthogonal complement ofZ̃. So,Q is the oblique pro-
jection ontoZ alongZ̃⊥, whileP is the oblique projection ontõZ⊥ alongZ. In particular,
N (P) = Z,R(P) = Z̃⊥. Again, the subspacesU andZ will be used to augment the search
spaces for the approximate solutionsxn and the corresponding residualsrn, respectively.

If the k columns̃zj of Z̃ are chosen biorthogonal to thek columnszj of Z, which means
that these two sets of columns form dual bases ofZ̃ andZ, thenE = Z̃HZ = Ik and the
formulas forQ andP simplify as before:

(5.3) Q = ZZ̃H , P = I−Q = I− ZZ̃H .

Note that this is automatically true if we choose the columnsof Z as (right-hand side) eigen-
vectors ofA and the columns of̃Z as the corresponding left eigenvectors. This property even
generalizes to multiple eigenvalues and defective matrices if the eigenvectors are suitably
chosen.

As in Section2 we further let

r̂0 :≡ Pr0 , Â :≡ PAP .

Note that still

(5.4) N (Â) ⊇ N (P) = Z , R(Â) ⊆ R(P) = Z̃⊥ ,

so thatÂ
∣∣
Z̃⊥

, the restriction of̂A to Z̃⊥, is a possibly singular endomorphism ofZ̃⊥. Con-

sequently, the Krylov subspaceŝKn defined in (2.3) are all subsets of̃Z⊥ sincer̂0 ∈ Z̃⊥.
Therefore, we will be able to restrict a Krylov space solver to Z̃⊥.
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The reason for choosing this subspace lies in the following generalization of Theorem6.
Recall that asimpleA–invariant subspaceis anA–invariant subspace with the property that
for any eigenvector it contains, it also contains all the other eigenvectors and generalized
eigenvectors that belong to the same eigenvalue; see [58]. In other words, choosing a simple
A–invariant subspace induces a splitting of the characteristic polynomial into two co-prime
factors and a related decomposition of the Jordan canonicalform.

THEOREM 7. Assume thatZ is a simplek-dimensionalA–invariant subspace and̃Z is
the correspondingAH–invariant subspace, that is, for anyZ, Z̃ ∈ CN×k with Z = R(Z)

andZ̃ = R(Z̃) there areG, G̃ ∈ Ck×k such that, withE :≡ Z̃HZ,

(5.5) AZ = ZG , AHZ̃ = Z̃G̃ , G̃ = E−HGHEH .

ThenZ̃⊥ is alsoA–invariant andZ ⊕ Z̃⊥ = CN . Moreover, the restrictions ofA, Â, and
O to Z andZ̃⊥ satisfy

Â
∣∣
Z
= O

∣∣
Z
, Â

∣∣
Z̃⊥

= A
∣∣
Z̃⊥

.(5.6)

Proof. To fix our mind, let us first choose a special basis forZ and assume thatA has a
Jordan decomposition

(5.7) A
[
Z Z̃⊥

]
=

[
Z Z̃⊥

] [
J O

O J⊥

]
,

where despite our notatioñZ⊥ is at this point not yet known to be related tõZ⊥. Eqn. (5.7)
just reflects the fact thatZ isA–invariant in the assumed sense, thatJ is the Jordan canonical
form of A

∣∣
Z

, and thatZ contains the corresponding eigenvectors and generalized eigenvec-

tors, whileJ⊥ is the Jordan canonical form ofA
∣∣
R(Z̃⊥)

and the columns of̃Z⊥ are the corre-

sponding eigenvectors and generalized eigenvectors. So,Z̃⊥ just consists of the ‘remaining’
eigenvectors and generalized eigenvectors andJ⊥ consists of the ‘remaining’ Jordan blocks.
Clearly,R(Z̃⊥) is also anA–invariant subspace, andZ ⊕ R(Z̃⊥) is a direct sum, but in
general not an orthogonal one. (Actually we could weaken theassumption: we need the
separation of the Jordan blocks ofA into two sets, but we need not that the eigenvalues are
necessarily different in the two sets.)

As is well-known, the rows of the inverse of[ Z Z̃⊥ ] are the left-hand side eigen-
vectors and generalized eigenvectors ofA, or, equivalently, the complex conjugate of the
right-hand side eigenvectors and generalized eigenvectors ofAH. To allow for another pair of
bases for the induced pair of invariant subspaces ofAH, we let, for some nonsingularE and
E⊥ ∈ Ck×k,

(5.8)

[
Z̃H

ZH
⊥

]
:≡

[
E O

O E⊥

] [
Z Z̃⊥

]−1

,

so thatE :≡ Z̃HZ as before, and, in addition,

E⊥ :≡ ZH
⊥Z̃⊥ , Z̃HZ̃⊥ = Ok×(N−k) , ZH

⊥Z = O(N−k)×k .

From the last two equations it follows that indeedR(Z⊥) = Z⊥ andR(Z̃⊥) = Z̃⊥, and
by (5.7) the latter space was seen to beA–invariant. Moreover, multiplying (5.7) from both
sides with the inverse of[ Z Z̃⊥ ] and inserting (5.8) yields

(5.9)

[
Z̃H

ZH
⊥

]
A =

[
E O

O E⊥

] [
J O

O J⊥

] [
E−1 O

O E−1
⊥

] [
Z̃H

ZH
⊥

]
.
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So, the complex-conjugateof the columns ofZ̃ andZ⊥ span left-invariant subspaces. Finally,
taking the Hermitian transpose leads to

(5.10) AH
[
Z̃ Z⊥

]
=

[
Z̃ Z⊥

] [
E−H O

O E−H
⊥

] [
JH O

O JH
⊥

] [
EH O

O EH
⊥

]
,

which implies in particular thatAHZ̃ = Z̃E−HJHEH. This establishes (5.5) in the case
whereG = J andG̃ = E−HJHEH. The general case ofG andG̃ follows by noting that
we did nowhere make any use of the Jordan structure ofJ andJ⊥, but only of the2 × 2
block diagonal structure in (5.7), that is, we referred to the Jordan structure just to ease the
discussion.

On the other hand, when indeed starting from a Jordan decomposition (5.7) of A and
choosing̃Z andZ⊥ so thatE = Ik andE⊥ = IN−k, we turn (5.10) into a Jordan decompo-
sition (with lower bidiagonal Jordan blocks) ofAH.

Finally, it follows from (5.7) and the properties ofP that

Â
[
Z Z̃⊥

]
= PAP

[
Z Z̃⊥

]
= PA

[
O Z̃⊥

]

= P
[
O Z̃⊥J⊥

]
=

[
O Z̃⊥J⊥

]
.(5.11)

So,ÂZ = O, and by comparison with (5.7) we findÂZ̃⊥ = Z̃⊥J⊥ = AZ̃⊥, which proves
(5.6).

But also in the typical situation whereZ andZ̃⊥ are notA–invariant this pair of spaces
is well chosen, as the following simple fact underlines.

LEMMA 8. Let Z, Z̃ ∈ CN×k be given such thatE :≡ Z̃HZ is nonsingular, let
Z :≡ R(Z) and Z̃ :≡ R(Z̃), and chooseZ⊥, Z̃⊥ ∈ CN×(N−k) such that their columns
consist of bases of the orthogonal complementsZ⊥ andZ̃⊥, respectively. Then

(5.12)

[
Z̃H

ZH
⊥

] [
Z Z̃⊥

]
=

[
E O

O E⊥

]
,

where all three matrices are nonsingular. In particular,E⊥ is nonsingular too, and

(5.13) Z ⊕ Z̃⊥ = Z̃ ⊕ Z⊥ = C
N

are both decompositions ofCN into (in general nonorthogonal) complements.
Proof. The block diagonal structure of the right-hand side of (5.12) holds by definition

of Z⊥ andZ̃⊥, but we need to show that on the left-hand side the matrices
[
Z̃ Z⊥

]
and

[
Z Z̃⊥

]
are nonsingular,i.e., their columns are linearly independent.

Let z⊥ be any nonzero element ofZ⊥. So,ZHz⊥ = o andz⊥ 6= o. For a proof by
contradiction, let us assume thatz⊥ is a linear combination of columns of̃Z, i.e.,z⊥ = Z̃k

for somek ∈ C
N−k. Then,

o = ZHz⊥ = ZHZ̃k = EHk ,

which implies thatk = o, and thusz⊥ = o in contrast to our assumption. It follows that
Z̃ ∩ Z⊥ = {o}. An analogue argument shows thatZ ∩ Z̃⊥ = {o}.

Remark.Note that, by definition,Z ⊕ Z⊥ = Z̃ ⊕ Z̃⊥ = CN are two other decom-
positions ofCN , and they even feature orthogonal complements. In contrast, in general, the
decompositions in (5.13) are not orthogonal, but they are adapted to the operatorA if Z is
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exactly or nearlyA–invariant. In (5.7) we assumed thatZ andZ̃⊥ contain eigenvectors and
generalized eigenvectors, which, in general, is not true inthe setting of this and the following
sections. In general, we will have

(5.14) A
[
Z Z̃⊥

]
=

[
Z Z̃⊥

] [
G11 G12

G21 G22

]
,

where the blocksG12 andG21 can be expected to contain only small elements ifZ andZ̃⊥

are nearlyA–invariant.

6. Deflation by oblique projection: truly deflated GMRES. Let us now come to the
details of a correctly deflated GMRES based on the observations of the previous section.
Given an initial guessx0, we choose as in Section2 iteratesxn from

(6.1) xn ∈ x0 + K̂n + U ,

where the Krylov subspaceŝKn are still defined by (2.3). This implies that

(6.2) rn :≡ b−Ax0 ∈ r0 +AK̂n + Z .

We again construct a nested sequence of orthogonal bases forthe Krylov subspaceŝKn by
an Arnoldi process started withv0 :≡ r̂0/β, where nowr̂0 :≡ Pr0 ∈ Z̃⊥ and β :≡

‖r̂0‖2. As before, this is expressed by the Arnoldi relationÂVn = Vn+1Hn. Since
R(Vn) = K̂n ⊆ Z̃⊥, we havePVn = Vn, and therefore again

(6.3) ÂVn = PAPVn = PAVn ,

so that the Arnoldi relation still simplifies to

(6.4) PAVn = Vn+1Hn .

However, recall thatP and, hence,̂A are now defined differently.
In view of (6.1) we representxn again as

(6.5) xn = x0 +Vnkn +Umn

with coordinate vectorskn ∈ Cn andmn ∈ Ck. Regarding the residuals, where we prefer
a representation in terms of an orthonormal basis, we note thatZ cannot be expected to have
such columns, whence we propose to QR-decomposeZ first:

(6.6) Z = ZoRQR , ZH
oZo = Ik .

Then, after insertingAU = Z = ZoRQR, we get

(6.7) rn = r0 −AVnkn − ZoRQRmn .

Due to the Arnoldi relation (6.4) and the decompositionr0 = r̂0 +Qr0 = v0β +Qr0 this
becomes now, withQ = ZZ̃H = ZoRQRZ̃

H andCn :≡ Z̃HAVn,

rn = v0β +Qr0 − (P+Q)AVnkn − ZoRQRmn

= v0β + ZoRQRZ̃
Hr0 −Vn+1Hnkn − ZoRQRZ̃

HAVnkn − ZoRQRmn

=
[
Zo Vn+1

]
q
n
,(6.8)
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where

(6.9) q
n
:≡

[
q◦
n

q⊥

n

]
:≡

[
RQRZ̃

Hr0
e1β

]
−

[
RQR RQRCn

O Hn

] [
mn

kn

]
∈ C

k+n+1

is thetruly deflatedGMRES quasi-residual.
The columns of eachZo andVn+1 are still orthonormal, but those ofZo need no longer

be orthogonal to those ofVn+1. So, in general,‖rn‖2 6= ‖q
n
‖2, but since

(6.10) rn = Zoq
◦
n +Vn+1q

⊥

n
with Zoq

◦
n = Qrn ∈ Z , Vn+1q

⊥

n
= Prn ∈ Z̃⊥

we have at least

(6.11) ‖q
n
‖22 = ‖q◦

n‖
2
2 + ‖q⊥

n
‖22 = ‖Qrn‖

2
2 + ‖Prn‖

2
2 .

It is therefore tempting to minimize‖q
n
‖2 instead of‖rn‖2, and as in Section2 this amounts

to solving ann× (n+1) least squares problem with the extended Hessenberg matrixHn for
minimizing‖q⊥

n ‖2, that is, for findingkn and subsequently choosingmn such thatq◦
n = o:

(6.12) min ‖q
n
‖2 = min ‖q⊥

n
‖2 = min

kn∈Cn

‖e1β −Hnkn‖2 , mn := Z̃Hr0−Cnkn .

At this point we see that the QR decomposition ofZ is actually not needed since we can
achieve thatq◦

n = o and thusZoq
◦
n = o. In other words, we can representrn as

(6.13) rn =
[
Z Vn+1

]
q̂
n

with

(6.14) q̂
n
:≡

[
qZ
n

q⊥

n

]
:≡

[
Z̃Hr0
e1β

]
−

[
I Cn

O Hn

] [
mn

kn

]
∈ C

k+n+1

and are then lead to the same solution as given by (6.12). Formally there is very little differ-
ence between this algorithm and the one of Section2, but there is an essential mathematical
improvement regarding the deflation ofA. In view of Theorem7 we call the new algorithm
truly deflatedGMRES.

In practice, this algorithm will be applied with restarts, and the matricesZ andZ̃ with
the approximate right and left eigenvectors may be updated at each restart.

Truly deflated GMRES can break down in the same way as deflated GMRES. Here is
the adaptation of Theorem2, which only requires very small changes.

THEOREM 9. If r̂0 6∈ N (Â), then as long asN (Â)∩K̂n = {o}, the truly deflatedGM-
RES method defined by(6.4)–(6.5), (6.9), and (6.12) yields in thenth step the approximate
solutionxn ∈ x0 + K̂n + U whose quasi-residualq

n
defined by(6.9) has minimal2-norm.

However, ifN (Â) ∩ Z̃⊥ 6= {o} and if x0 is chosen such that̂r0 ∈ N (Â), then(and
only then) truly deflatedGMRES breaks down in the first step wheren = 1. Moreover, at
stepn > 1, if (and only if) N (Â) ∩ K̂n 6= {o}, the method breaks down when attempting to
constructvn. In case of a breakdown, the search spacex0 + K̂n + U does not contain the
exact solutionx⋆.

If Z̃⊥ is A–invariant, breakdowns cannot happen,Cn = O, and the Arnoldi relation
(6.4) can be replaced by

(6.15) AVn = Vn+1Hn .

Proof. Essentially we just have to replace in the proof of Theorem2 every occurrence
of Z⊥ by Z̃⊥. This applies also to the last sentence, including (6.15). In that proof we only
made use ofZ andZ⊥ being complimentary subspaces, but not of their orthogonality.

Corollaries3 and4 can also be adapted easily.
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7. Deflation by oblique projection: the adjoint Krylov space. Some very efficient,
computing time and memory space reducing alternatives to GMRES are based on the non-
symmetric Lanczos biorthogonalization process. Our aim ofthe next two sections is to adapt
the approach of the previous two sections to these alternatives, in particular to the quasi-
minimal residual (QMR) method of Freund and Nachtigal [28], which is fully analogous to
GMRES. To this end, we first need to look at the adjoints of the projectionsQ andP of (5.1)
and the adjoint of our restricted operatorÂ :≡ PAP.

The adjoint projections are defined by

(7.1) QH :≡ Z̃E−HZH , PH :≡ I−QH = I− Z̃E−HZH ,

from which we see that the properties (5.2) of Q andP are supplemented as follows:

QZ = Z , QZ̃⊥ = {o} , PZ = {o} , PZ̃⊥ = Z̃⊥ ,(7.2a)

QHZ̃ = Z̃ , QHZ⊥ = {o} , PHZ̃ = {o} , PHZ⊥ = Z⊥ .(7.2b)

So,QH is the oblique projection ontõZ alongZ⊥, whilePH is the oblique projection onto
Z⊥ alongZ̃. In particular,

(7.3) N (P) = Z , N (PH) = Z̃ , R(P) = Z̃⊥ , R(PH) = Z⊥ .

For the adjoint operator̂AH = PHAHPH this means that

(7.4) N (ÂH) ⊇ N (PH) = Z̃ , R(ÂH) ⊆ R(PH) = Z⊥ ,

We define the dual Krylov subspaces (sometimes called the shadow spaces) started from
ṽ0 ∈ Z⊥ by

(7.5) L̂n :≡ Kn(Â
H, ṽ0) :≡ span {ṽ0, Â

Hṽ0, . . . , (Â
H)n−1ṽ0} ⊆ Z⊥ .

Methods based on implicitly or explicitly constructing foreachn a pair of biorthogonal bases
should choose the right and left bases, respectively, such that

R
([

Z Vn

])
= Z ⊕ K̂n+1 ⊆ Z ⊕ Z̃⊥ = C

N ,(7.6a)

R
([

Z̃ Ṽn

])
= Z̃ ⊕ L̂n+1 ⊆ Z̃ ⊕ Z⊥ = C

N .(7.6b)

In the rest of this section let us again consider the case whereZ is A–invariant, which
led to Theorem7 and motivated using deflated solvers in the first place. Theorem7 translates
to the adjoint operator as follows.

THEOREM 10. Under the assumptions of Theorem7, Z̃ andZ⊥ areAH–invariant, and
the restrictions ofAH, ÂH, andO to Z̃ andZ⊥ satisfy

(7.7) ÂH
∣∣
Z̃
= O

∣∣
Z̃
, ÂH

∣∣
Z⊥

= AH
∣∣
Z⊥

.

Proof. We takeZ andZ̃⊥ as given by the Jordan decomposition (5.7), and choosẽZ and
Z⊥, as towards the end of the proof of Theorem7, such thatE = Ik andE⊥ = IN−k. Then,
(5.9) simplifies to

(7.8)

[
Z̃H

ZH
⊥

]
A =

[
J O

O J⊥

] [
Z̃H

ZH
⊥

]
,
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while (5.10) becomes

(7.9) AH
[
Z̃ Z⊥

]
=

[
Z̃ Z⊥

] [
JH O

O JH
⊥

]
.

From the proof of Theorem7 we know already that̃Z andZ⊥ contain in their columns bases
of Z̃ andZ⊥, respectively; so these two spaces areAH–invariant. Finally, in analogy to
(5.11) we have

ÂH
[
Z̃ Z⊥

]
= PHAHPH

[
Z̃ Z⊥

]
= PHAH

[
O Z⊥

]

= PH
[
O Z⊥J

H
⊥

]
=

[
O Z⊥J

H
⊥

]
,(7.10)

from which, by comparison with (7.9), we find the result (7.7).

8. Deflation by oblique projection: deflated QMR. Now we are ready to introduce
a deflated QMRmethod that is analogous to our truly deflated GMRES, but replaces the
Arnoldi process by the nonsymmetric Lanczos process. The latter has the important feature
that it can provide approximations of both right and left eigenvectors. For details about the
QMR method, see Freund and Nachtigal [28]; for a presentation in the notation used here4,
see [32]. Deflated QMR is started with the pair

v0 :≡ r̂0/β = Pr0/β , β :≡ ‖r̂0‖ ,(8.1)

ṽ0 :≡ r̃0/β̃ , β̃ :≡ ‖r̃0‖ ,(8.2)

wherẽr0 must be chosen such thatr̃0 ∈ Z⊥ andr̃H0 r̂0 6= 0. The Arnoldi relation (6.4) is then
replaced by a pair of Lanczos relations

(8.3) PAVn = Vn+1Tn , PHAHṼn = Ṽn+1T̃n ,

where we may enforce that all columns ofVn+1 andṼn+1 have2-norm one, and where

Dn+1 :≡ ṼH
n+1Vn+1

is nonsingular diagonal or, if look-ahead steps [26] are needed, block-diagonal. With this
choice (7.6a) and (7.6b) hold.

So, if we start again from the ansatz (6.5) for the approximate solutionsxn, which implies
the representation (6.7) for the residuals, and if we again QR-decomposeAU = Z = ZoRQR

as in (6.6), we obtain exactly as in (6.8)

rn =
[
Zo Vn+1

]
q
n
,(8.4)

where

(8.5) q
n
:≡

[
q◦
n

q⊥

n

]
:≡

[
RQRZ̃

Hr0
e1β

]
−

[
RQR RQRCn

O Tn

] [
mn

kn

]
∈ C

k+n+1

is now thedeflated QMR quasi-residual. Note that formally the only change is the replace-
ment of the extended Hessenberg matrixHn by an extended tridiagonal matrixTn (or a
block tridiagonal one if look-ahead steps are needed). Thismeans short recurrences (except
for the very unlikely special situation of a long look-aheadstep) and thus no need to store the

4Except that in [32] vk andṽk were calledyk andỹk, respectively.
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columns ofVn andṼn since, in fact, the componentVnkn of the approximate solutionsxn

can be updated step by step, as in MINRES.
Since we have chosen to QR-decomposeZ — assuming that the numberk of its columns

is small — we still have‖q◦
n‖2 = ‖Qrn‖2 as in (6.11). However, the other essential change

is that the columns ofVn+1 are no longer orthogonal, so, in general,‖q⊥

n
‖2 6= ‖Prn‖2,

unlike in (6.11). And, sinceVn has changed, so hasCn :≡ Z̃HAVn.
Nevertheless, as in QMR, we may choose to minimize‖q

n
‖2 instead of‖rn‖2, and as in

Section2 this amounts to solving first ann× (n+1) least squares problem with the extended
tridiagonal matrixTn for minimizing ‖q⊥

n ‖2 and for findingkn. Next,mn is chosen such
thatq◦

n = o:

(8.6) min ‖q
n
‖2 = min ‖q⊥

n
‖2 = min

kn∈Cn

‖e1β −Tnkn‖2 , mn := Z̃Hr0 −Cnkn .

As in Section6, the QR decomposition ofZ is seen to be unnecessary. Updating the least
squares problem (8.6) by updating the QR decomposition ofTn is done as in MINRES and
QMR.

Also deflated QMR can break down in the same way as deflated GMRES. The corre-
sponding adaptation of the first part of Theorem2 again requires only minor changes. But
additionally, QMR may break down due to a serious breakdown of the nonsymmetric Lanc-
zos process; see,e.g.,[26, 32] for a discussion of these breakdowns. They can nearly always
be circumnavigated by look-ahead.

THEOREM 11. If r̂0 6∈ N (Â), then as long asN (Â) ∩ K̂n = {o} and as long as there
are no serious Lanczos breakdowns, the deflated QMR method defined by(6.5) and (8.3)–
(8.6) yields in thenth step the approximate solutionxn ∈ x0+ K̂n+U whose quasi-residual
q
n

defined by(8.5) has minimal2-norm.

However, apart from Lanczos breakdowns, ifN (Â) ∩ Z̃⊥ 6= {o} and if x0 is chosen
such that̂r0 ∈ N (Â), then(and only then) deflated QMR breaks down in the first step where
n = 1. Moreover, at stepn > 1, if (and only if)N (Â)∩K̂n 6= {o}, the method breaks down
when attempting to constructvn. In case of these two latter types of breakdown, the search
spacex0 + K̂n + U does not contain the exact solution.

Proof. Here, we have to replace in the proof of Theorem2 not only every occurrence
of Z⊥ by Z̃⊥, but alsoVH

n by ṼH
n , Hn by Tn, ‘orthogonality toK̂n ’ by ‘orthogonality to

L̂n ’, and ‘Arnoldi’ by ‘Lanczos’. Then the arguments remain thesame as in the proof of
Theorem9.

9. Deflation by oblique projection: deflated simplified QMR. If A is Hermitian and
the Lanczos biorthogonalization algorithm is started withṽ0 = v0, then it simplifies to the
symmetric Lanczos algorithm sincẽVn = Vn andT̃n = Tn = Tn. Consequently, QMR
just simplifies to MINRES, where, in particular, only one matrix-vector product is needed
per step. As pointed out by Freund [25] there are other situations where one can profit from
a similar simplification. In fact, Rutishauser [50] made the point that, in theory, the matrix-
vector product byAH in the nonsymmetric Lanczos algorithm can be avoided since,for every
square matrixA there exists a nonsingular matrixS such thatAT = SAS−1, that is,AT is
always similar toA; see,e.g.,[35, p. 134] for a proof of this result. Choosing̃v0 = Sv0

yields thenṽn = Svn for n > 0; therefore, the multiplication byAH can be replaced by a
multiplication byS followed by complex conjugation. The vectorsṽn are temporarily needed
to compute the recursion coefficients stored inTn.

However, in general, the spectral decomposition ofA is needed to constructS, and
this makes this idea normally unfeasible. But there are someinteresting situations, where
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the matrixS is known and simple to multiply with. Freund [25] lists several classes ofS-
symmetricandS-Hermitian matrices satisfying by definitionATS = SA, S = ST and
AHS = SA, S = SH, respectively. But we note that the symmetry conditionsS = ST or
S = SH are not needed for the simplification.

In one popular application of deflated Krylov space methods,the Wilson formulation of
the lattice Dirac operator in lattice Quantum Chromodynamics (QCD), the Wilson matrixA
has the formA = I−κW, whereκ ∈ R andW isS-Hermitian for a diagonal matrixS with
diagonal elements±1. See [7, 10, 29] for early contributions making use of this feature and
[2, 1, 46, 57] for some samples of the many publications that make use of deflation in lattice
QCD.

So, compared to QMR, simplified QMR reduces the cost in both time and memory.
Regarding modifications for the deflated version, there is not much change before one gets to
the details of an implementation. In particular, (8.4)–(8.6) remain unchanged.

10. An alternative interpretation of the augmentation component. We have seen
that in each of the deflated Krylov space methods presented here and based on the ansatz
xn = x0 +Vnkn+Umn, the solution can be found in two steps: first, an(n+1)×n least-
square problem with an extended Hessenberg or tridiagonal matrix is solved forkn, then
an explicit formula formn is evaluated in order to determine the augmentation component
Umn of the approximate solution and the corresponding augmentation component−Zmn

of the residual. As mentioned, the first part can be viewed as applying the corresponding
standard Krylov space method to the singular linear systemÂx̂ = r̂0. For example, in
deflated GMRES, checking the derivation of the least-square problem in (2.12),

min ‖qn‖2 = min
kn∈Cn

‖e1β −Hnkn‖2 ,

we readily see that it is the coordinate space equivalent of the least squares problem

(10.1) ‖Vn+1 (e1β −Hnkn) ‖2 = ‖r̂0 −PAVnkn‖2 = ‖r̂0 − ÂVnkn‖2 = min!

in the spaceZ⊥. On the other hand,mn := ZHr0 −Cnkn yields in residual space

(10.2) Zmn = ZZHr0 − ZCnkn = Qr0 −QAVnkn ,

a formula relating three vectors inZ. The corresponding correction for the iterates is

(10.3) Umn = UZHr0 −UCnkn = UZHb−UZHA(x0 +Vnkn) .

Now, let us define, with the optimalkn,

x̂n :≡ Vnkn , x̃n :≡ x0 +Vnkn = x0 + x̂n ,

so thatxn = x0 + x̂n +Umn = x̃n +Umn. Then (10.1)–(10.3) take the form
∥∥∥r̂0 − Âx̂n

∥∥∥
2
= min

x̂∈K̂n

∥∥∥r̂0 − Âx̂

∥∥∥
2
,(10.4)

‖P(b−Ax̃n)‖2 = min
x̃∈x0+K̂n

‖P(b−Ax̃)‖2 ,(10.5)

Zmn = Q(r0 −Ax̂n) = Q(b−Ax̃n) ,(10.6)

Umn = UZH(r0 −Ax̂n) = UZH(b−Ax̃n) .(10.7)

This clarifies for deflated GMRES the relationship between the problems in coordinate space
and those in the Krylov subspacêKn ⊆ Z⊥, in the affine spacex0 + K̂n ⊆ x0 +Z⊥, and in
the augmented spacex0 + K̂n + U .
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Likewise, with differently defined matricesVn+1, Hn, Q, P, Cn, and the new matrix
Z̃, and thus also with different̂A, r̂0, andK̂n, the least squares problem of truly deflated
GMRES in (6.12) corresponds to one iñZ⊥ that is formally identical with (10.1) and can be
recast as (10.4) or (10.5). Moreover, the formulamn := Z̃Hr0 −Cnkn yields in the residual
space still (10.6), while in the search space of the approximants we get analogously to (10.7)

(10.8) Umn = UZ̃H(r0 −Ax̂n) = UZ̃H(b−Ax̃n) .

The property that (10.4) and (10.5) remain valid can be understood from the fact that in
(6.11) the term‖q◦

n‖ = ‖Qrn‖ vanishes for the optimal choice ofxn, while for the other
term‖q⊥

n
‖ = ‖Prn‖ the coordinate map is still isometric because the basis ofK̂n+1, which

consists of the columns ofVn+1, is orthonormal. But, in general, even if̃Z⊥ isA–invariant,
rn is no longer the minimal residual fromr0 +AK̂n + Z, sinceZ andK̂n ⊆ Z̃⊥ need not
be orthogonal to each other.

For deflated QMR, the restricted minimal norm properties (10.4) – (10.5) are no longer
valid, but the derivations of (10.6) and (10.8) remain unchanged, although the matricesVn+1,
Tn, andCn have again new meanings.

Yet another interpretation of the augmentation componentUmn is found as follows. Let
us consider the oblique projection framework of Sections5–8 first, withE :≡ Z̃HZ = Ik as
in our presentation of truly deflated GMRES and deflated QMR. We further define

(10.9) MA :≡ UZ̃H , QA :≡ I−MAA = I−UZ̃HA ,

noting that bothMAA andQA are projections. Inserting them into (10.8) we obtain

Umn = MA(b−Ax̃n) = MAb− (I−QA)x̃n ,

and we end up with

(10.10) xn = x̃n +Umn = x̃n +MAb− (I−QA)x̃n = QAx̃n +MAb .

This formula holds for truly deflated GMRES and for deflated QMR. An analogous formula
holds in the situation of Sections2–4, that is, for GMRES and MINRES deflated with orthog-
onal projections. We have to replaceZ̃ byZ and the pairMA, QA by

(10.11) MAH :≡ UZH , QAH :≡ I−MAHA = I−UZHA

to obtain likewise

(10.12) xn = x̃n +Umn = QAH x̃n +MAHb .

The last formula is the ‘correction formula’ of Theorem 2.2 in [31] for the case whereB = A

there and our normalizationE = Ik holds. Both (10.10) and (10.12) relate the approximate
solutionsxn of the augmented and deflated method to the approximate solutions x̃n of a
deflated but not augmented method:x̃n ∈ x0 + K̂n. The termUmn = MA(b −Ax̃n) or
Umn = MAH(b−Ax̃n), respectively, is the ‘correction’ due to augmentation.

11. Other projections used in augmentation and deflation methods. Many publica-
tions on particular augmentation and deflation methods apply projections that are different
from the projectionsP that are the basis of our approach. In this section we introduce two
parameter-dependant projectionsPB andQB that cover many of published proposals, the
parameterB being a nonsingular matrix of the same size asA. The most relevant choices for
B are
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definition null space range range ifB = A

PB I−AMB Z (BHŨ)⊥ Z̃⊥

QB I−MBA U (AHBHŨ)⊥ (AHZ̃)⊥

ÂB PBA = PBAQB = AQB U (BHŨ)⊥ Z̃⊥

TABLE 11.1
The projectionsPB andQB and the projected operator̂AB for a generalization of the situation of Sections5–8 .

1. B = I for deflated CG, BICG, and FOM [51],
2. B = AH for deflated CR, GCR [17], M INRES, and GMRES,
3. B = A for deflated BICR [56].

We start here from a setting suitable for deflated BICG and BICR that will be treated fully in
[30]. Then we specialize it to the setting for CG, FOM, CR, GCR, MINRES, and GMRES

considered in [31], which covers most of the published approaches.
Similar to the situation in our Sections5–8 we let

U :≡ R(U) , Z :≡ AU , Z :≡ R(Z) ,

Ũ :≡ R(Ũ) , Z̃ :≡ AHŨ , Z̃ :≡ R(Z̃) ,

but now we exchangeE by a more generalEB ∈ Ck×k and introduce a matrixM ∈ CN×N

that replaces ourQ:

EB :≡ ŨHBAU , M :≡ UE−1
B

ŨH .

Of course, we assume thatEB is nonsingular. Finally, we introduce two projectionsPB and
QB as well as a corresponding projectionÂB of A, all defined in Table11.1, which also lists
kernels and ranges of these three operators. In the case whereB = I these operators have
been used by Erlangga and Nabben [20].

In contrast, by comparingEB with E we see that in Section5 the choice wasB = A.
In this case we have

EA = E , AMA = ZE−1Z̃H = Q , PA = P , QA = I−MA2 , ÂA = PA .

Note thatQA is the same as in (10.9) if E = Ik sinceMA = UE−1
A

ŨHA = UE−1Z̃H =

UZ̃H = MA. However,Â 6= ÂA in general. But the following holds:
THEOREM 12. For the projected operatorŝA of Sections5–8 andÂB of Table11.1with

B = A holds

(11.1) Â
∣∣
Z
= O

∣∣
Z
, Â

∣∣
Z̃⊥

= ÂA

∣∣
Z̃⊥

.

Moreover, under the assumptions of Theorem7, whereZ ⊕ Z̃⊥ = CN ,

(11.2) Â
∣∣
Z
= ÂA

∣∣
Z
= O

∣∣
Z
, Â

∣∣
Z̃⊥

= ÂA

∣∣
Z̃⊥

= A
∣∣
Z̃⊥

,

and thereforêA = ÂA onCN .
Proof. By definition, Â = PAP, whereP is a projection withN (P) = Z and

R(P) = Z̃⊥. Consequently,̂A
∣∣
Z
= O

∣∣
Z

and

Â
∣∣
Z̃⊥

= PAP
∣∣
Z̃⊥

= PA
∣∣
Z̃⊥

= PAA
∣∣
Z̃⊥

= ÂA

∣∣
Z̃⊥

.



ETNA
Kent State University 

http://etna.math.kent.edu

177

definition null space range range ifB = AH

PB I−AMB Z (BHU)⊥ Z⊥

QB I−MBA U (AHBHU)⊥ (AHZ)⊥

ÂB PBA = PBAQB = AQB U (BHU)⊥ Z⊥

TABLE 11.2
The projectionsPB andQB and the projected operator̂AB for a generalization of the situation of Sections2–4.

Moreover, ifZ isA–invariant,

ÂAZ = PAZ ⊆ PZ = {o}.

Finally, under the assumptions of Theorem7, alsoZ̃⊥ isA–invariant and, by (5.6),

Â
∣∣
Z̃⊥

= A
∣∣
Z̃⊥

.

Altogether, we obtain (11.2) and, sinceZ ⊕ Z̃⊥ = CN under these assumptions, there holds
Â = ÂA onCN .

An analogous result holds in the situation of Sections2–4. There is no dual space there,
so we redefine

EB :≡ UHBAU , M :≡ UE−1
B

UH .

PB, QB, andÂB can be defined as before, but their ranges slightly differ; see Table11.2.
This is the situations considered in [31]. (But note that ourB is defined differently and equals
BH in the notation of [31].) The case whereB = I covers deflated CG [48, 13, 41, 61, 19, 54]
and is also a topic of study in [21, 47, 60] and related work.

ComparingEB with E of Section2 we see thatB = AH here. Then we have

EAH = E , AMAH = ZE−1ZH = Q , PAH = P , QAH = I−MAHA , ÂAH = PA .

Now QAH is the same as in (10.11) if E = Ik sinceMAH = UE−1
AHU

HAH = UE−1ZH =

UZH = MAH . The following analog of Theorem12holds:
THEOREM 13. For the projected operatorŝA of Sections2–4 andÂB of Table11.2with

B = AH holds

(11.3) Â
∣∣
Z
= O

∣∣
Z
, Â

∣∣
Z⊥

= ÂAH

∣∣
Z⊥

.

Moreover, ifZ andZ⊥ areA–invariant, then

(11.4) Â
∣∣
Z
= ÂAH

∣∣
Z
= O

∣∣
Z
, Â

∣∣
Z⊥

= ÂAH

∣∣
Z⊥

= A
∣∣
Z⊥

,

and thereforêA = ÂAH onCN .
Proof. The proof is fully analogous to the one of Theorem12and is left out here.
In summary, the two slightly different projectionsP used here in Sections2–4 and in

Sections5–8 coincide with the projectionsPAH andPA defined in Table11.2(for B = AH)
and Table11.1 (for B = A), respectively, but they differ from the projectionsPI defined
there whenB = I. The latter projections are those used in deflated CG [48, 13, 41] and
deflated BICG [30]. Moreover, even whenP = PAH or P = PA our deflated operator
Â = PAP differs in general from the deflated operatorsÂAH andÂA, respectively, unless
Z andZ⊥ or Z̃⊥ are exactly right and leftA–invariant subspaces.
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12. Deflated quasi-(bi)orthogonal residual methods.The GMRES algorithm of Saad
and Schultz [53] is just one incidence of a so-called minimal residual (MR) method: a Krylov
space solver whose iterates and residuals restricted by

(12.1) xn ∈ x0 +Kn(A, r0) , rn ∈ r0 +AKn(A, r0)

have the minimal norm property‖rn‖2 = min! , which is equivalent to the Galerkin condition

(12.2) rn ⊥ AKn(A, r0) .

Other methods with the same mathematical properties are theGeneralized Minimum Resid-
ual (GCR) method [17], the MINRES algorithm of Paige and Saunders [49] for Hermitian
matrices, and, the Conjugate Residual (CR) method of Stiefel [59] for Hpd matrices. While
M INRES and GMRES transplant the problem into coordinate space, CG and GCR usedi-
rectly recursions forxn andrn.

There is an analogue family of so-called orthogonal residual (OR) methods, where (12.2)
is replaced by another Galerkin condition,

(12.3) rn ⊥ Kn(A, r0) ,

which implies that the residuals are mutually orthogonal. This family includes the ubiquitous
conjugate gradient (CG) method of Hestenes and Stiefel [34] for Hpd matrices, which has the
property that the residuals have minimalA−1–norm, or, equivalently, the error vectors have
minimalA–norm. Another one is the Full Orthogonalization Method (FOM) of Saad [51].
Of course, ifA is not Hpd, there is noA−1–norm, and therefore no minimal norm property.
Moreover, for somen an iterate characterized by (12.1) and (12.3) need not exist. Therefore
there is little interest in this method.

Of much greater importance is the biconjugate gradient (BICG) method of Lanczos [40]
and Fletcher [23], where the Galerkin condition (12.3) is replaced by the Petrov-Galerkin
condition

(12.4) rn ⊥ Kn(A
H, r̃0) ,

with a freely selectablẽr0. There is still the drawback that iterates may not exist and further
breakdown problems lurk (see,e.g.,[32]), but this is balanced by the enormous advantage
of short recurrences for iterates and residuals. Eq. (12.4) implies that the residualsrn and
the so-called shadow residualsr̃n of the fictitious linear systemAHx̃ = r̃0 (with initial
approximatioñx0 := o) are mutually biorthogonal.

If we consider a transplantation of an OR method to coordinate space, it follows imme-
diately thatrn = r0+AVnkn is a scalar multiple ofvn, the(n+1)th basis vector generated
by the Arnoldi or the nonsymmetric Lanczos process, respectively. Moreover, inserting the
Arnoldi relationAVn = Vn+1Hn or the Lanczos relationAVn = Vn+1Tn we see that the
coordinate vectorkn satisfies

(12.5) Hnkn = e1β or Tnkn = e1β ,

respectively, with then × n matricesHn andTn that are the ‘upper parts’ of the matrices
Hn andTn used in the coordinate space based MR methods. Solving recursively these linear
systems by LR or QR factorization we obtain coordinate basedOR methods. In the case
of the tridiagonal matricesTn it is possible to derive short recurrences for the iterates and
residuals, but this means essentially that we apply a CG-like or BICG-like algorithm.
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In this section we want to point out that we can define augmented and deflated meth-
ods that are not quite (bi)orthogonal residual methods, butmight be calleddeflated quasi-
(bi)orthogonal residual methodsand have the property that they turn intodeflated (bi)orthog-
onal residual methodsif K isA–invariant. We start again from

(12.6) xn = x0 +Vnkn +Umn , rn = r0 −AVnkn − Zmn .

and a representation ofrn in terms of the basis ofKn+1⊕Z given by
[
Vn+1 Z

]
. Deflated

CG [48, 13, 41, 61, 19, 54] and deflated FOM are normally characterized by

(12.7) rn ⊥ K̂n ⊕ U .

For CG,i.e., for HpdA, it has been implicitly shown in various ways [13, 36, 48] (see also
[19, Thm. 4.1] and [54, Thm 4.2]) that this implies the following optimality result, for which
we provide the sketch of a straightforward proof.

THEOREM 14. AssumeA is Hpd, defineKn and U as in Section2, and let again
x⋆ :≡ A−1b. Then the condition(12.7) implies thatxn is optimal in the sense that‖xn −

x⋆‖A is minimal under the restrictionxn ∈ x0 + K̂n ⊕ U .
Proof. Assumexn andrn are represented as in (12.6), and let

Ψ(kn,mn) :≡
1
2 ‖xn − x⋆‖

2
A = 1

2 ‖x0 +Vnkn +Umn − x⋆‖
2
A .

Then straightforward differentiation shows that

∂Ψ

∂kn

= − rHnVn ,
∂Ψ

∂mn

= − rHnU ,

and

∂2Ψ

(∂kn)2
= VH

nAVn ,
∂2Ψ

∂kn ∂mn

= O ,
∂2Ψ

(∂mn)2
= UHAU .

Any stationary point is characterized by zero gradients, that is, byrn ⊥ R(Vn) = Kn and
rn ⊥ R(U) = U . Moreover, we have there a minimum sinceVH

nAVn andUHAU are Hpd.

The deflated CG algorithms of [48, 13, 41, 61, 19, 54] fulfill condition (12.7), and thus
maintain global optimality. For deflation they implicitly or explicitly apply oblique projec-
tions, namelyPI or QI of Table11.2(with B = I andAT = A, so thatPI = QT

I
). Dostál

[13] calls MA a conjugate projection. Moreover, these algorithms are all based on recur-
rences for iterates and residuals, so they are not coordinate space based. But unlessZ is
exactlyA–invariant, the approach promoted in this paper which leadsto the decomposition
K̂n ⊕Z is in conflict with a global optimization criteria valid for̂Kn ⊕ U . To obtain simple
coordinate space based methods we may drop global optimality and replace (12.7) by

(12.8) rn ⊥ K̂n ⊕Z .

We will call a method with this property adeflated quasi-orthogonal residual (DQOR) method.
For such a method we have the following trivial corollary.

COROLLARY 15. Under the assumptions of Theorem14, if Z is A–invariant, the con-
dition (12.8) implies thatxn is optimal in the sense that‖xn − x⋆‖A is minimal under the
restriction(12.1).

Proof. If Z isA–invariant,U = A−1Z = Z. So, (12.8) implies (12.7) here.
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With the quasi-residualq
n

of (2.10), the condition (12.8) transforms into

(12.9) q
n
⊥ C

k+n

if we considerCk+n as the subspace ofCk+n+1 characterized by a zero last component. This
means that the firstk + n components ofq

n
must be zero, that is,

(12.10)

[
Ik Cn

O Hn

] [
mn

kn

]
=

[
ZHr0
e1β

]
.

This system is upper block triangular with a unit(1, 1) block, and therefore it reduces to
a linear system with the(2, 2) block for computingkn and an explicit formula formn, in
complete analogy to the least squares problem (2.11) that we solved before:

(12.11) Hnkn = e1β , mn := ZHr0 −Cnkn .

In the setting of deflated GMRES of Section2 these two formulas define a corresponding
particular DQOR method. IfA is Hermitian, we can replaceHn by the tridiagonalTn and
profit from short recurrences for updatingxn.

In the setting of truly deflated GMRES of Section6, whereq
n

is defined by (6.9), the
conditions (12.8) and (12.9) are no longer equivalent. For simplicity we may just fulfil the
latter, which yields (12.10), except thatZH is replaced bỹZH, so that (12.11) turns into

(12.12) Hnkn = e1β , mn := Z̃Hr0 −Cnkn .

This defines another particular DQOR method.
Finally, in the setting of deflated QMR of Section8 condition (12.9) leads to

(12.13) Tnkn = e1β , mn := Z̃Hr0 −Cnkn .

As can be readily verified, in this setting condition (12.9) is equivalent to

(12.14) rn ⊥ L̂n ⊕ Z̃ ,

which characterizes adeflated quasi-biorthogonal residual (DQBIOR) method. The Recy-
cling BICG (RBICG) method of Ahuja [4, 5] seems to be of this type.

DQOR and DQBIOR methods are in general not optimal. But we think that this is a
minor disadvantage. It is shared by the class of orthogonal residual methods, whose residual
norms depend in a well-known way discovered by Paige and Saunders [49] from those of the
corresponding MR method; see,e.g.,[16] and [33].

Conclusions. We have described several augmented and deflated Krylov methods for
solving Ax = b that all fit into a common theoretical framework. They are coordinate
space based in the sense that we generate recursively bases for the augmented search spaces
K̂n ⊕ U andK̂n+1 ⊕ Z for the iteratesxn and the corresponding residualrn, respectively,
and determine the coordinates ofxn. Here,Z = AU . The typical examples are deflated
M INRES, GMRES, and QMR. Details differ from the proposals in the literature: for MINRES

a little, for GMRES much more.
We assume that a basis forU is given, and that typically, but not necessarily, this sub-

space is close to anA–invariant subspace belonging to eigenvalues of small absolute value.
Deflation replaces these by zero. We point out that the deflated operator̂A :≡ PAP and the
corresponding Krylov subspaceŝKn :≡ Kn(Â, r̂0) generated from̂r0 :≡ Pr0 can be chosen
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in different ways. For deflated MINRES an orthogonal projectionP on Z⊥ is appropriate.
The same projection is also the standard for deflated GMRES. We suggest for non-Hermitian
A another choice: an oblique projection ontõZ⊥ alongZ. Here Z̃ is an approximately
left A–invariant subspace corresponding to the same eigenvaluesasU andZ. This choice
has the major advantage that in the case of exactA–invariance, these eigenspaces are really
deflated in the sense that the kernel ofÂ containsU = Z, while on Z̃⊥ the operatorŝA
andA coincide. The so deflated methods are based on the nonorthogonal decomposition
Z ⊕ K̂n+1 ⊆ Z ⊕ Z̃⊥ = CN , which needs to be complimented by an analogous nonorthog-
onal decompositioñZ ⊕ L̂n+1 ⊆ Z̃ ⊕ Z⊥ = CN for the shadow residual search space if
the nonsymmetric Lanczos algorithm is applied to generate the bases. These decompositions
lead to truly deflated GMRES and deflated QMR.

As further alternatives we suggest deflated quasi-orthogonal residual (DQOR) methods
and deflated quasi-biorthogonal residual (DQBIOR) methods that are simple analogs of the
deflated MR and QMR methods discussed before.

While the deflated operatorŝA we promote are defined differently from those in most of
the literature (except for the one in,e.g.,[62], which coincides in the symmetric case), we can
show that in the case whereZ is exactlyA–invariant our deflated operators are equivalent
with those (for Hermitian and non-Hermitian problems, respectively) that are discussed in two
companion papers [31, 30] and have the widely used standard form, but are geared towards
different Petrov-Galerkin conditions.
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Appendix: An example where deflatedM INRES and GMRES break down after any
given number of steps.Let us consider examples of sizeN × N that are of the following
form:

A :=




0 1 oT

1 0 oT

o o M


 , P :=




1 0 oT

0 0 oT

o o IN−2


 ,

whereM is a symmetric nonsingular(N − 2)× (N − 2) matrix whose minimal polynomial
is of degreeκ, where1 ≤ κ ≤ N − 2. Clearly,A is real symmetric and nonsingular too. We
obtain

PA =




0 1 oT

0 0 oT

o o M


 , Â = PAP =




0 0 oT

0 0 oT

o o M


 ,

so that in the notation of Section2 we have in particular

Z = N (P) = span {e2} ,

Z⊥ = R(P) = C
N ⊖ span {e2} ,

AZ⊥ = R(AP) = C
N ⊖ span {e1} ,

N (Â) = span {e1, e2} ,

N (Â) ∩ Z⊥ = span {e1} .
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We can chooseb andx0 such thatr0 = r̂0 = Pr0 =
[
1 0 wT

]T
, wherew satisfies

(12.15) w =

κ∑

i=1

βi M
iw

with βκ 6= 0. Here,1 −
∑κ

i=1 βiζ
i is a comonic representation of the minimal polynomial

of M. Relation (12.15) is achieved by choosingw in general position with respect to the
eigenvectors ofM. For example, we could choose

M = diag {1, 1, . . . , 1︸ ︷︷ ︸
N−κ−1

, 2, . . . , κ}

andw as a vector of ones.
The firstκ+ 1 Krylov vectorŝr0, Â r̂0, . . . , Âκ r̂0 are




1
0
w


 ,




0
0

Mw


 ,




0
0

M2w


 , . . . ,




0
0

Mκw


 .

They are linearly independent, hence a basis ofK̂κ+1. In view of (12.15) they satisfy

r̂0 −
κ∑

i=1

βi Â
i r̂0 = e1 ∈ span {e1} = N (Â) ∩ Z⊥ .

Consequently,N (Â) ∩ K̂κ+1 6= {o}, whence according to Theorems2 and5 deflated GM-
RESand deflated MINRES (and thus also RMINRES of [62]) break down when attempting to
constructvκ+1, while, obviously, they do not break down before. To understand this better
consider the image of the Krylov basis under the mappingÂ, which spanŝAK̂κ+1:




0
0

Mw


 ,




0
0

M2w


 , . . . ,




0
0

Mκw


 ,




0
0

Mκ+1w


 .

Due to (12.15) theseκ + 1 vectors are linearly dependent, sodim ÂK̂κ+1 = κ only, which
shows that we have Case (i) of Lemma1, namely a breakdown during stepκ + 1 of the
Arnoldi process. Here,2 ≤ κ+ 1 < N .

For a breakdown in the first step we could, for example, consider the same type ofA
with an arbitraryM combined withP = e1e

T
1 and an arbitraryw. ThenÂ = O, and the

method will fail for any initialr̂0 6= o.
However, as we mentioned in the beginning of Section3, a breakdown is very unlikely if

Z is chosen such that an approximately invariant subspace is deflated and the deflated eigen-
values are well separated from the not deflated ones. In our exampleAZ = span {Ae2} =
span {e1}, soZ is not at all approximately invariant.
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