Electronic Transactions on Numerical Analysis. Volume 39, pp. 202-230, 2012. Copyright © 2012, Kent State University. ISSN 1068-9613. ETNA Kent State University http://etna.math.kent.edu

CREATING DOMAIN MAPPINGS*

KENDALL ATKINSON† AND OLAF HANSEN[‡]

Abstract. Consider being given a mapping $\varphi: S^{d-1} \xrightarrow[onto]{1-1} \partial \Omega$, with $\partial \Omega$ the (d-1)-dimensional smooth boundary surface for a bounded open simply-connected region Ω in \mathbb{R}^d , $d \geq 2$. We consider the problem of constructing an extension $\Phi: \overline{B}_d \xrightarrow[onto]{1-1} \overline{\Omega}$ with B_d the open unit ball in \mathbb{R}^d . The mapping is also required to be continuously differentiable with a non-singular Jacobian matrix at all points. We discuss ways of obtaining initial guesses for such a mapping Φ and of then improving it by an iteration method.

Key words. domain mapping, multivariate polynomial, constrained minimization, nonlinear iteration

AMS subject classifications. 65D99

^{*}Received January 25, 2012. Accepted for publication April 23, 2012. Published online June 26, 2012. Recommended by T. DeLillo.

[†]Departments of Mathematics & Computer Science, University of Iowa, Iowa City, IA 52242 (kendall-atkinson@uiowa.edu).

[‡]Department of Mathematics, California State University at San Marcos, San Marcos, CA 92096 (ohansen@csusm.edu).