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A ROBUST FEM-BEM MINRES SOLVER FOR DISTRIBUTED
MULTIHARMONIC EDDY CURRENT OPTIMAL CONTROL PROBLEMS

IN UNBOUNDED DOMAINS ∗

MICHAEL KOLMBAUER †

Abstract. This work is devoted to distributed optimal control problems for multiharmonic eddy current prob-
lems in unbounded domains. We apply a multiharmonic approach to the optimality system and discretize in space
by means of a symmetrically coupled finite and boundary element method, taking care of the different physical be-
havior in conducting and non-conducting subdomains, respectively. We construct and analyze a new preconditioned
MinRes solver for the system of frequency domain equations. We show that this solver is robust with respect to the
space discretization and time discretization parameters as well as the involved “bad” parameters like the conductiv-
ity and the regularization parameters. Furthermore, we analyze the asymptotic behavior of the error in terms of the
discretization parameters for our special discretization scheme.
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1. Introduction. The multiharmonic finite element method or harmonic-balanced fi-
nite element method has been used by many authors in different applications; see, e.g.,
[4, 15, 17, 37, 46]. Switching from the time domain to the frequency domain allows us
to replace expensive time-integration procedures by the solution of a system of partial dif-
ferential equations for the amplitudes belonging to the sine- and to the cosine-excitation.
Following this strategy, Copeland et al. [11, 12], Bachinger et al. [5, 6], and Kolmbauer and
Langer [32] applied harmonic and multiharmonic approaches to parabolic initial-boundary
value problems and the eddy current problem.

Furthermore, the multiharmonic finite element method has been generalized to multihar-
monic parabolic and multiharmonic eddy current optimal control problems [28, 31]. Indeed,
in [31] a MinRes solver for the solution of multiharmonic eddy current optimal control prob-
lems is constructed that is robust with respect to the discretization parameterh and all in-
volved parameters like frequency, conductivity, reluctivity, and the regularization parameter.
This solver is based on a pure finite element discretization of a bounded domain. Furthermore,
in [30] the results of [32] for the time-harmonic eddy current problem are extended tothe
case of unbounded domains using a symmetric coupling of the finite element method (FEM)
and the boundary element method (BEM) [24]. Even in this case, parameter-robust block-
diagonal preconditioners can be constructed.

The aim of this work is to generalize these ideas of combiningthe multiharmonic ap-
proach and the FEM-BEM coupling method to multiharmonic eddy current optimal control
problems:

min J(y,u), s.t.σ
∂y

∂t
+ curl (ν curl y) = u,
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with appropriate periodicity and boundary (radiation) conditions fory. The fast solution of
the corresponding large linear system of finite element equations is crucial for the competi-
tiveness of this method. Hence, appropriate (parameter-robust) preconditioning is an impor-
tant issue. Deriving the optimality system of the optimal control problem naturally results in a
saddle point system. Due to the special structure of the multiharmonic time-discretization and
the finite element-boundary element space discretization,we finally obtain a three-fold saddle
point structure. A new technique of parameter-robust preconditioning of saddle point prob-
lems was introduced by Zulehner in [47]. We explore this technique to construct a parameter-
robust preconditioned MinRes solver for our huge linear system of algebraic equations re-
sulting from the multiharmonic finite element-boundary element discretization.

The outline of this work is as follows: in Section2, we summarize some results concern-
ing the appropriate trace spaces [8, 9] and the framework of boundary integral operators [24]
for eddy current computations. In Section3, we introduce the model problem. Section4 is
devoted to the variational formulation of the model problem. Therein we compute the op-
timality system and derive a space-time variational formulation. In Section5, we discretize
the optimality system in time and space in terms of a multiharmonic finite element-boundary
element coupling method. The construction of a parameter-robust preconditioner for the dis-
cretized problem is addressed in Section6. Finally, the results presented in Section7 prove
that the discretization scheme is convergent and provides the expected order of convergence.

2. Preliminaries. Throughout this work,c is a generic constant that is independent of
any discretization (h, N ) and model parameters (ω, σ, ν, andλ). Furthermore, we use the
generic constantC that is independent ofh andN , but may depend on the other parameters.

2.1. Differential operators and traces. Throughout this work, we use boldface letters
to denote vectors and vector-valued functions. In this section, Ω is a generic bounded Lip-
schitz polyhedral domain ofR3. We denote byΓ its boundary and byn the unit outward
normal toΩ. Let (·, ·)L2(Ω) be the inner product inL2(Ω) and‖ · ‖L2(Ω) the corresponding
norm. Furthermore, we denote the product space byL2(Ω) := L2(Ω)3. The underlying
Hilbert space is the space

H(curl ,Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)} ,

endowed with the graph norm

‖v‖2
H(curl ,Ω) := ‖v‖2

L2(Ω) + ‖curl v‖2
L2(Ω).

For the traces of a functionu ∈ H(curl ,Ω), we fix the following notations: LetγD andγN

denote the Dirichlet traceγDu := n × (u × n) and the Neumann traceγNu := curl u × n

on the interfaceΓ, respectively. For the definition of the appropriate trace spaces, we use the
definitions of the surface differential operatorsgradΓ, curl Γ, curlΓ,divΓ; see, e.g., [8, 9].
The appropriate trace spaces for polyhedral domains have been introduced by Buffa and Cia-
rlet in [8, 9]. The spaces for the Dirichlet traceγD and the Neumann traceγN are given
by

H
− 1

2

⊥ (curlΓ,Γ) := {λ ∈ H
− 1

2

⊥ (Γ), curlΓλ ∈ H− 1

2 (Γ)}

and

H
− 1

2

‖ (divΓ,Γ) := {λ ∈ H
− 1

2

‖ (Γ),divΓλ ∈ H− 1

2 (Γ)},

respectively. These spaces are equipped with the corresponding graph norms. Further-

more,H
− 1

2

⊥ (curlΓ,Γ) is the dual ofH
− 1

2

‖ (divΓ,Γ) and vice versa. The corresponding duality
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product is the extension of theL2(Γ) duality product, and in the following it will be denoted
by a subscriptτ

〈·, ·〉τ := 〈·, ·〉
H

− 1

2

‖
(divΓ,Γ)×H

− 1

2

⊥ (curlΓ,Γ)
.

We also need the space

H
− 1

2

‖ (divΓ0,Γ) :=
{

λ ∈ H
− 1

2

‖ (divΓ,Γ) : divΓλ = 0
}

that turns out to be the correct space for the Neumann trace inour setting.
Foru ∈ H(curl curl , R3\Ω) := {u ∈ H(curl , R3\Ω) : curl curl u ∈ L2(R3\Ω)},

the integration by parts formula for the exterior domainR
3\Ω holds

(2.1) 〈γNu, γDv〉τ = −(curl u, curl v)L2(R3\Ω) + (curl curl u,v)L2(R3\Ω).

The Dirichlet and Neumann trace can be extended to continuous mappings:
LEMMA 2.1 ([8, 9, 24]). The trace operators

γD : H(curl ,Ω) → H
− 1

2

⊥ (curlΓ,Γ) and γN : H(curl curl ,Ω) → H
− 1

2

‖ (divΓ,Γ)

are linear, continuous and surjective.
For more details, we refer the reader to [8, 9] for the precise definition of the trace

spacesH
− 1

2

‖ (divΓ,Γ) andH
− 1

2

⊥ (curlΓ,Γ) and the corresponding analytical framework.

2.2. Boundary integral operators and the Calderon projection. In order to deal with
expressions on the interfaceΓ between the bounded and unbounded domains, we use the
framework of symmetric FEM-BEM coupling for eddy current problems; see [24]. The
boundary integral equations for the exterior problem emerge from a representation formula.
In the case of Maxwell’s equations, this is the Stratton-Chuformula for the exterior domain.
Taking into account thatcurl curl u = 0 anddiv u = 0 in the exterior domain, the solution
is given by

u(x) =

∫

Γ

(n × curl u)(y)E(x,y) dSy − curl x

∫

Γ

(n × u)(y)E(x,y) dSy

+ ∇x

∫

Γ

(n · u)(y)E(x,y) dSy,

whereE(·, ·) is the fundamental solution of the Laplacian in three dimensions given by

E(x,y) :=
1

4π

1

|x − y| , x,y ∈ R
3,x 6= y.

Introducing the notations

ψA(u)(x) :=

∫

Γ

u(y)E(x,y) dSy,

ψV (n · u)(x) :=

∫

Γ

(n · u)(y)E(x,y) dSy,

ψM (n × u)(x) := curl x

∫

Γ

(n × u)(y)E(x,y) dSy,
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we can rewrite the representation formula as

(2.2) u = ψM [γDu] − ψA[γNu] −∇ψV [γnu].

Taking the Dirichlet and the Neumann trace in the representation formula (2.2) and deriving
a variational framework, allows us to state a Calderon mapping in a weak setting:

(2.3)
〈µ, γDu〉τ = 〈µ,C(γDu)〉τ − 〈µ,A(γNu)〉τ , ∀µ ∈ H

− 1

2

‖ (divΓ0,Γ),

〈γNu,θ〉τ = 〈N(γDu),θ〉τ − 〈B(γNu),θ〉τ , ∀θ ∈ H
− 1

2

⊥ (curlΓ,Γ),

where the well-known boundary integral operators are givenby

Aλ := γDψA(λ), Bλ := γNψA(λ),

Cµ := γDψM(µ), Nµ := γNψM(µ).

In the following we collect several useful results; see [24]. The mappings

A : H
− 1

2

‖ (divΓ,Γ) → H
− 1

2

⊥ (curlΓ,Γ),

B : H
− 1

2

‖ (divΓ,Γ) → H
− 1

2

‖ (divΓ,Γ),

C : H
− 1

2

⊥ (curlΓ,Γ) → H
− 1

2

⊥ (curlΓ,Γ),

N : H
− 1

2

⊥ (curlΓ,Γ) → H
− 1

2

‖ (divΓ,Γ)

are linear and bounded. The bilinear form onH
− 1

2

‖ (divΓ0,Γ) induced by the operatorA is
symmetric and positive definite, i.e.,

〈λ,Aλ〉τ ≥ cA1 ‖λ‖2

H
− 1

2

‖
(divΓ,Γ)

, ∀λ ∈ H
− 1

2

‖ (divΓ0,Γ).

The bilinear form onH
− 1

2

⊥ (curlΓ,Γ) induced by the operatorN is symmetric and negative
semi-definite, i.e.,

−〈Nµ,µ〉τ ≥ cN1 ‖curlΓµ‖2

H− 1

2 (Γ)
, ∀µ ∈ H

− 1

2

⊥ (curlΓ,Γ).

We have the symmetry property

〈B(µ),λ〉τ = 〈µ, (C − Id)(λ)〉τ , ∀µ ∈ H
− 1

2

‖ (divΓ0,Γ),λ ∈ H
− 1

2

⊥ (curlΓ,Γ).

3. The model problem. In this work we consider an optimal control problem with dis-
tributed control of the form: find the statey and the controlu that minimizes the cost func-
tional

(3.1) J(y,u) =
1

2

∫

Ω1×(0,T )

|y − yd|2dxdt +
λ

2

∫

Ω1×(0,T )

|u|2dx dt,

subject to the state equations

(3.2)

σ ∂y
∂t + curl (ν curl y) = u in Ω1 × (0, T ),

curl (curl y) = 0 in Ω2 × (0, T ),
div y = 0 in Ω2 × (0, T ),

y = O(|x|−1) for |x| → ∞,
curl y = O(|x|−1) for |x| → ∞,

y(0) = y(T ) in Ω1,
y|Ω1

× n = y|Ω2
× n onΓ × (0, T ),

ν curl y|Ω1
× n = curl y|Ω2

× n onΓ × (0, T ).
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Hereyd ∈ L2((0, T ),L2(Ω1)) is the given desired state and assumed to be multiharmonic.
The regularization parameterλ is supposed to be positive. The computational domainΩ = R

3

is split into a conducting subdomainΩ1 and its non-conducting complementΩ2. The con-
ducting domainΩ1 is assumed to be a simply connected Lipschitz polyhedron, whereas the
non-conducting domainΩ2 is the complement ofΩ1 in R

3, i.e.,Ω2 = R
3\Ω1. Furthermore,

we denote byΓ the interface of the two subdomains,Γ = Ω1 ∩ Ω2. The exterior unit normal
vector ofΩ1 onΓ is denoted byn, i.e., the vectorn points fromΩ1 into Ω2; see Figure3.1.

W1W2
Σ=0 Σ>0

HconductorLHairL

G n

n2
n1

FIG. 3.1.Decomposition of the computational domainΩ = R
3.

The reluctivityν =ν(x) is supposed to be uniformly positive and independent of|curl u|,
i.e., we assume the eddy current problem (3.2) to be linear. Due to scaling arguments, it can
always be achieved thatν = 1 in Ω2. The conductivityσ is zero in the non-conducting
domainΩ2 and piecewise constant and uniformly positive in the conductor Ω1:

(3.3)
σ ≥ σ(x) ≥ σ > 0 a.e. inΩ1 and σ(x) = 0 a.e. inΩ2,

ν ≥ ν(x) ≥ ν > 0 a.e. inΩ1 and ν(x) = 1 a.e. inΩ2.

Existence and uniqueness results for linear and non-lineareddy current problems in
unbounded domains are provided in [29]. Therein the space of weakly divergence-free
functionsV is introduced as a subspace ofH(curl ,Ω1). Furthermore, it is shown that
the state equation(3.2) has a unique solutiony ∈ L2((0, T ),V) with a weak derivative
∂y/∂t ∈ L2((0, T ),V∗). Another approach to prove existence and uniqueness is given by
Arnold and Harrach [2]. Due to the unique solvability of the state equation (3.2), the exis-
tence of a solution operatorS mappingu to y (i.e., S(u) = y) is guaranteed. By standard
arguments (see, e.g., [44]) it follows that the unconstrained minimization problem:find the
controlu ∈ L2((0, T ),L2(Ω)) that minimizes the cost functional

1

2

∫

Ω1×(0,T )

|S(u) − yd|2dxdt +
λ

2

∫

Ω1×(0,T )

|u|2dxdt

is also uniquely solvable.

4. The variational formulation. In order to solve our minimization problem, we for-
mulate the optimality system, also called the Karush-Kuhn-Tucker system; see, e.g., [44].
Therefore, we formally consider the Lagrangian functional

L(y,u,p) := J (y,u) +

∫

Ω×(0,T )

(

σ
∂y

∂t
+ curl (ν curl y) − u

)

· p dxdt.
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Deriving the necessary optimality conditions

Findy,u,p :











∇pL(y,u,p) = 0,

∇yL(y,u,p) = 0,

∇uL(y,u,p) = 0,

yields a system of partial differential equations. We observe thatu = λ−1p in Ω1 × (0, T ),
and hence we can eliminate the control. Therefore, we end up with the following reduced
optimality system: find the statey and the co-statep such that

(4.1)

σ
∂y

∂t
+ curl (ν curl y) − λ−1p = 0 in Ω1 × (0, T ),

curl (curl y) = 0 in Ω2 × (0, T ),

div y = 0 in Ω2 × (0, T ),

−σ
∂p

∂t
+ curl (ν curl p) + y − yd = 0 in Ω1 × (0, T ),

curl (curl p) = 0 in Ω2 × (0, T ),

div p = 0 in Ω2 × (0, T ),

p = O(|x|−1), y = O(|x|−1) for |x| → ∞,

curl p = O(|x|−1), curl y = O(|x|−1) for |x| → ∞,

p(0) = p(T ), y(0) = y(T ) in Ω1.

In the usual manner, we derive a space-time variational formulation. Multiplying (4.1) by
space and time dependent test functions(v,w) = (v(x, t),w(x, t)) ∈ L2((0, T ),W2) and
integrating over the space-time domainΩ × (0, T ), we arrive at the following variational
form: find (y,p) ∈ H1((0, T ),W1) such that

(4.2)

∫ T

0

(

σ
∂y

∂t
,v

)

L2(Ω1)

dt +

∫ T

0

(ν curl y, curl v)L2(Ω1) dt

−
∫ T

0

(ν curl y, curl v)L2(Ω2) dt − 1

λ

∫ T

0

(p,v)L2(Ω1) dt

= 0,

−
∫ T

0

(

σ
∂p

∂t
,w

)

L2(Ω1)

dt +

∫ T

0

(ν curl p, curlw)L2(Ω1) dt

−
∫ T

0

(ν curl p, curlw)L2(Ω2) dt +

∫ T

0

(y,w)L2(Ω1) dt

=

∫ T

0

(yd,w)L2(Ω1) dt,

with the appropriate decay and periodicity conditions of (4.1). HereW1 andW2 are appro-
priate weighted Sobolev spaces onR

3; cf. [24].

5. Discretization scheme.The space-time variational formulation (4.2) is the starting
point of our discretization in time and space. We discretizein time in terms of a multihar-
monic approach. For the resulting system of frequency domain equations, a symmetric cou-
pling method is applied to both the state variable and the co-state variable of each modek.
This coupling method allows us to reduce the unbounded exterior domainΩ2 to the bound-
ary Γ. The resulting variational formulation is discretized by standard finite and boundary
elements.
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5.1. Reduction of the exterior domain to the boundary.Applying the integration by
parts formula (2.1) in the exterior domainΩ2 and using the fact that

curl curl y = 0 and curl curl p = 0 in Ω2,

allows us to reduce the variational problem to one that is just living on the closure of the
conductivity domainΩ1:

(5.1)

∫ T

0

(

σ
∂y

∂t
,v

)

L2(Ω1)

dt +

∫ T

0

(ν curl y, curl v)L2(Ω1) dt

−
∫ T

0

〈γNy, γDv〉τdt − 1

λ

∫ T

0

(p,v)L2(Ω1) dt = 0,

−
∫ T

0

(

σ
∂p

∂t
,w

)

L2(Ω1)

dt +

∫ T

0

(ν curl p, curlw)L2(Ω1) dt

−
∫ T

0

〈γNp, γDw〉τdt +

∫ T

0

(y,w)L2(Ω1) dt =

∫ T

0

(yd,w)L2(Ω1) dt.

Later, the expressions on the interfaceΓ are dealt with in terms of a symmetrical coupling
method [13].

5.2. Multiharmonic discretization. Let us assume that the desired stateyd is multi-
harmonic, i.e.,yd has the form

(5.2) yd =
N

∑

k=0

yc
d,k cos(kωt) + ys

d,k sin(kωt),

where the Fourier coefficients are given by the formulas

yc
d,k =

2

T

∫ T

0

yd cos(kωt)dt and ys
d,k =

2

T

∫ T

0

yd sin(kωt)dt.

We mention that the multiharmonic representation (5.2) can also be seen as an approximation
of a time-periodic desired stateyd by a truncated Fourier series. Due to the linearity of the
optimality system (4.1), the statey and the co-statep are multiharmonic as well and therefore
also have representations in terms of a truncated Fourier series, i.e.,

(5.3) y =

N
∑

k=0

yc
k cos(kωt) + ys

k sin(kωt) and p =

N
∑

k=0

pc
k cos(kωt) + ps

k sin(kωt),

with unknown coefficients (yc
k,ys

k) and (pc
k,ps

k). Using the multiharmonic representa-
tion (5.3), we can state the optimality system (5.1) in the frequency domain. Consequently,
the problem that we deal with reads as follows: for each modek = 0, 1, . . . , N , find the
Fourier coefficients(yc

k,ys
k,pc

k,ps
k) ∈ H(curl ,Ω1)

4 such that

(5.4)

kω(σys
k,vc

k)L2(Ω1) + (ν curl yc
k, curl vc

k)L2(Ω1)

−〈γNyc
k, γDvc

k〉τ − λ−1(pc
k,vc

k)L2(Ω1) = 0,

−kω(σyc
k,vs

k)L2(Ω1) + (ν curl ys
k, curl vs

k)L2(Ω1)

−〈γNys
k, γDvs

k〉τ − λ−1(ps
k,vs

k)L2(Ω1) = 0,

−kω(σps
k,wc

k)L2(Ω1) + (ν curl pc
k, curlwc

k)L2(Ω1)

−〈γNpc
k, γDwc

k〉τ + (yc
k,wc

k)L2(Ω1) = (yc
d,k,wc

k)L2(Ω1),

kω(σpc
k,ws

k)L2(Ω1) + (ν curl ps
k, curlws

k)L2(Ω1)

−〈γNps
k, γDws

k〉τ + (ys
k,ws

k)L2(Ω1) = (ys
d,k,ws

k)L2(Ω1),
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for all test functions(vc
k,vs

k,wc
k,ws

k) ∈ H(curl ,Ω1)
4. Note that the modek = 0 has to be

treated separately. Clearly we do not have to solve forps
0 andys

0, sincesin(0ωt) = 0, and
therefore, fork = 0, (5.4) reduces to a2×2 system for determining the Fourier coefficientspc

0

andyc
0. Due to theL2(0, T ) orthogonality of the sine and cosine functions, we obtain a

total decoupling of the Fourier coefficients with respect tothe modesk. Therefore, for the
purpose of solving, it is sufficient to have a look at a time-harmonic approximation, i.e.,
yd = yc

d cos(ωt) +ys
d sin(ωt). Consequently, in the next sections, we analyze the following

variational problem: find(yc,ys,pc,ps) ∈ H(curl ,Ω1)
4 such that

ω(σys,vc)L2(Ω1) + (ν curl yc, curl vc)L2(Ω1)

−〈γNyc, γDvc〉τ − λ−1(pc,vc)L2(Ω1) = 0,

−ω(σyc,vs)L2(Ω1) + (ν curl ys, curl vs)L2(Ω1)

−〈γNys, γDvs〉τ − λ−1(ps,vs)L2(Ω1) = 0,

−ω(σps,wc)L2(Ω1) + (ν curl pc, curlwc)L2(Ω1)

−〈γNpc, γDwc〉τ + (yc,wc)L2(Ω1) = (yc
d,wc)L2(Ω1),

ω(σpc,ws)L2(Ω1) + (ν curl ps, curlws)L2(Ω1)

−〈γNps, γDws〉τ + (ys,ws)L2(Ω1) = (ys
d,ws)L2(Ω1),

for all test functions(vc,vs,wc,ws) ∈ H(curl ,Ω1)
4.

5.3. Symmetric coupling method.We are now in a position to state the coupled vari-
ational problem, following the approach of Hiptmair in [24]. Using the Calderon map (2.3)
and introducing the Neumann data as additional unknowns

λc := γNyc, λs := γNys, ηc := γNpc, ηs := γNps,

allows us to state the eddy current problem in a framework that is suited for a FEM-BEM
discretization. For simplicity, we introduce the abbreviation

Υ := (yc,λc,ys,λs), Ψ := (pc,ηc,ps,ηs),

Φ := (wc,ρc,ws,ρs), Θ := (vc,µc,vs,µs).

We mention thatΥ represents the variables corresponding to the statey, Ψ represents the vari-
ables corresponding to the adjoint statep, andΦ andΘ are the corresponding test functions.
According to the definition ofΥ andΨ, we introduce the appropriate product space

W := H(curl ,Ω1) × H
− 1

2

‖ (divΓ0,Γ) × H(curl ,Ω1) × H
− 1

2

‖ (divΓ0,Γ).
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Therefore, we end up with the weak formulation of the reducedsymmetric coupled optimality
system: find(Υ,Ψ) ∈ W2 such that

(5.5)

ω(σys,vc)L2(Ω1) + (ν curl yc, curl vc)L2(Ω1) − λ−1(pc,vc)L2(Ω1)

−〈N(γDyc), γDvc〉τ + 〈B(λc), γDvc〉τ = 0,

〈µc, (C − Id)(γDyc)〉τ − 〈µc,A(λc)〉τ = 0,

−ω(σyc,vs)L2(Ω1) + (ν curl ys, curl vs)L2(Ω1) − λ−1(ps,vs)L2(Ω1)

−〈N(γDys), γDvs〉τ + 〈B(λs), γDvs〉τ = 0,

〈µs, (C − Id)(γDys)〉τ − 〈µs,A(λs)〉τ = 0,

−ω(σps,wc)L2(Ω1) + (ν curl pc, curlwc)L2(Ω1) + (yc,wc)L2(Ω1)

−〈N(γDpc), γDwc〉τ + 〈B(ηc), γDwc〉τ = (yc
d,wc)L2(Ω1),

〈ρc, (C − Id)(γDpc)〉τ − 〈ρc,A(ηc)〉τ = 0,

ω(σpc,ws)L2(Ω1) + (ν curl ps, curlws)L2(Ω1) + (ys,ws)L2(Ω1)

−〈N(γDps), γDws〉τ + 〈B(ηs), γDws〉τ = (ys
d,ws)L2(Ω1),

〈ρs, (C − Id)(γDps)〉τ − 〈ρs,A(ηs)〉τ = 0,

for all test functions(Φ,Θ) ∈ W2. For simplicity, we introduce the bilinear formA repre-
senting the latter variational problem:

A((Υ,Ψ), (Φ,Θ)) := a(Υ,Φ) + b(Φ,Ψ) + b(Υ,Θ) − c(Ψ,Θ),

where the bilinear formsa, b andc are given by

a(Υ,Φ) = (yc,wc)L2(Ω1) + (ys,ws)L2(Ω1),

b(Υ,Θ) = ω(σys,vc)L2(Ω1) − ω(σyc,vs)L2(Ω1) +
∑

j∈{c,s}
(ν curl yj, curl vj)L2(Ω1)

− 〈N(γDyj), γDvj〉τ + 〈B(λj), γDvj〉τ
+

〈

µj, (C − Id)(γDyj)
〉

τ
−

〈

µj,A(λj)
〉

τ
,

c(Ψ,Θ) = λ−1(pc,vc)L2(Ω1) + λ−1(ps,vs)L2(Ω1).

Using this notation, we can state (5.5) in the abstract form: Find(Υ,Ψ) ∈ W2 such that

(5.6) A((Υ,Ψ), (Φ,Θ)) =
∑

j∈{c,s}
(yj

d,wj)L2(Ω1),

for all test functions(Φ,Θ) ∈ W2. Indeed, the bilinear formA is symmetric and indefinite.
Well-posedness of the variational problem (5.6) will be shown in the next section using the
Theorem of Babǔska-Aziz [3]. The variational formulation (5.6) is the starting point of the
discretization in space.

REMARK 5.1. In the multiharmonic setting, the variational problemreads as follows:
find (Υ,Ψ) ∈ W2N+1, with Υ = (Υ0, . . . ,ΥN ) andΨ = (Ψ0, . . . ,ΨN ) such that

(5.7) AN ((Υ,Ψ), (Φ,Θ)) =

N
∑

k=0

∑

j∈{c,s}
(yj

d,k,wj)L2(Ω1),
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for all test functions(Φ,Θ) ∈ W2N+1. Here the big bilinear formAN is given by

AN ((Υ,Ψ), (Φ,Θ)) :=

N
∑

k=0

Ak((Υk,Ψk), (Φk,Θk)),

whereAk denotesA, with ω formally replaced bykω.

5.4. Discretization in space.We now use a quasi-uniform and shape-regular triangu-
lation Th of the domainΩ1 with mesh sizeh > 0 with tetrahedral elements.Th induces a
meshKh of triangles on the boundaryΓ = ∂Ω1. On these meshes we considerND1(Th),
the Ńed́elec basis functions of order1 [34, 35], a conforming finite element subspace of
H(curl ,Ω1). Moreover, we use the space of divergence-free Raviart-Thomas [38] basis
functionsRT 0

0(Kh) := {λh ∈ RT 0(Kh),divΓλh = 0}, a conforming finite element sub-

space ofH
− 1

2

‖ (divΓ0,Γ). Furthermore, the discrete FE-BE subspaceWh of W is given by

Wh := ND1(Th) ×RT 0
0(Kh) ×ND1(Th) ×RT 0

0(Kh).

The corresponding discrete variational problem is stated as: find(Υh,Ψh) ∈ W2
h such that

(5.8) A((Υh,Ψh), (Φh,Θh)) =
∑

j∈{c,s}
(yj

d,wj
h)L2(Ω1),

for all test functions(Φh,Θh) ∈ W2
h.

6. Preconditioning and implementation. This section is devoted to the fast solution of
the variational problem (5.8). After recalling an abstract well-posedness and preconditioning
result [47], we use this theory to construct a parameter-robust preconditioner for our problem.
Additionally, we address the practical realization of thistheoretical preconditioner.

6.1. Abstract preconditioning theory. In this subsection we briefly recall an abstract
result of Zulehner [47]. Let V and Q be Hilbert spaces with the inner products(·, ·)V

and(·, ·)Q. The associated norms are given by‖ · ‖V =
√

(·, ·)V and‖ · ‖Q =
√

(·, ·)Q.
Furthermore, letX be the product spaceX = V × Q, equipped with the inner product

((v, q), (w, r))X = (v, w)V + (q, r)Q,

and the associated norm

‖(v, q)‖X =
√

((v, q), (v, q))X .

Consider a mixed variational problem in the product spaceX = V ×Q: find z = (w, r) ∈ X
such that

A(z, y) = F(y), for all y ∈ X,

with

A(z, y) = a(w, v) + b(v, r) + b(w, q) − c(r, q) and F(y) = f(v) + g(q),

for y = (v, q) andz = (w, r). We introduceB ∈ L(V,Q∗) and its adjointB∗ ∈ L(Q,V ∗)
by

〈Bw, q〉 = b(w, q) and 〈B∗r, v〉 = 〈Bv, r〉.
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Furthermore, we denote byA ∈ L(X,X∗) the operator induced by

〈Ax, y〉 = A(x, y).

The next theorem provides necessary and sufficient conditions for parameter-independent
bounds and can be found in Zulehner [47].

THEOREM 6.1 ([47, Theorem 2.6]).If there are constantscw, cr, cw, cr > 0 such that

cw‖w‖2
V ≤ a(w,w) + ‖Bw‖2

Q∗ ≤ cw‖w‖2
V , for all w ∈ V

and

cr‖r‖2
Q ≤ c(r, r) + ‖B∗r‖2

V ∗ ≤ cr‖r‖2
Q, for all r ∈ Q,

then

c‖z‖X ≤ ‖Ax‖X∗ ≤ c‖z‖X , for all z ∈ X(6.1)

is satisfied with constantsc, c > 0 that depend only oncw, cw, cr, cr.

Indeed, in addition to the qualitative result forc and c, Theorem6.1 also provides a
quantitative estimate ofc andc in terms ofcw, cw, cr, cr. Tracking the proof of the previous
theorem in [47], the constantsc andc fulfill the rough estimate

(6.2)
c ≥ −

(

−3 +
√

5
)

(

c2
r min

(

1
2 , cr

)2
+ c2

w min
(

1
2 , cw

)2
)

4max
(

√

cr max(1, cr),
√

cw max(1, cw)
) ,

c ≤
√

2 max
(

√

cr max(1, cr),
√

cw max(1, wr)
)

.

We mention that these estimates are not sharp. As exposed in [47], an immediate consequence
of (6.1) is an estimate of the condition numberκ(A):

κ(A) = ‖A‖L(X,X∗)‖A−1‖L(X∗,X) ≤
c

c
.

Therefore, robust estimates of the form (6.1) imply a robust estimate for the condition number.
More precisely, (6.1) means that solving the discrete variational problem connected with the
inner product inX will supply a good preconditioner forA.

6.2. Well-posedness in some non-standard norms: a constructive approach. In [31],
Kolmbauer and Langer state a parameter-robust well-posedness result for the FEM discre-
tization of the eddy current optimal control problem in a bounded domain. Using the tech-
nique of interpolation spaces, they introduce a parameter-dependent non-standard norm
in H(curl ,Ω1)

4 and show that the inf-sup and sup-sup conditions that appearin the theo-
rem of Babǔska-Aziz are fulfilled with constants independent of any discretization and model
parameters. Indeed we re-use this result for the FEM-discretized domainΩ1. Furthermore,
we have to take into account the different parameter settings in the conducting domainΩ1

and the non-conducting domainΩ2; cf. (3.3). Since the exterior domainΩ2 is reduced to the
boundary, we incorporate the boundary integral operators in terms of a Schur complement
approach. Consequently, for theΩ1-part we define the non-standard norm

‖y‖2
FI

:= (ν curl y, curl y)L2(Ω1) + ω(σy,y)L2(Ω1) +
1√
λ

(y,y)L2(Ω1)

− 〈NγDy, γDy〉τ + sup

λ∈H
− 1

2

‖
(divΓ0,Γ)

〈Bλ, γDy〉2τ
〈Aλ,λ〉τ

.
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For the interface part, we just use the single layer potential A that induces a norm

onH
− 1

2

‖ (divΓ0,Γ):

‖λ‖2
B := 〈Aλ,λ〉τ .

These definitions give rise to a norm in the product spaceW2

(6.3) ‖(Υ,Ψ)‖2
CI

:=
∑

j∈{c,s}

(√
λ

[

‖yj‖2
FI

+ ‖λj‖2
B
]

+
1√
λ

[

‖pj‖2
FI

+ ‖ηj‖2
B
]

)

.

The main result is summarized in the following lemma that claims that an inf-sup condition
and a sup-sup condition are fulfilled with the parameter-independent constants1√

5
and2.

LEMMA 6.2. We have

1√
5
‖(Υ,Ψ)‖CI

≤ sup
(Φ,Θ)∈W2

A((Υ,Ψ), (Φ,Θ))

‖(Φ,Θ)‖CI

≤ 2‖(Υ,Ψ)‖CI
,

for all (Υ,Ψ) ∈ W2.
Proof. This proof follows the same strategy as the proof in [31] for the Ω1 part. We

directly verify the inf-sup and sup-sup condition. By an appropriate distribution of the regu-
larization parameterλ and applying Cauchy’s inequality several times, the sup-sup condition
follows with constant2. For the special choice of the test function

(Φ,Θ) = (Φ1,Θ1) + 2(Φ2,Θ2) + (Φ3,Θ3) + (Φ4,Θ4),

given by

(Φ1,Θ1) := (Υ,−Ψ),

(Φ2,Θ2) :=

(

1√
λ
pc,− 1√

λ
ηc,

1√
λ
ps,− 1√

λ
ηs,

√
λyc,−

√
λλc,

√
λys,−

√
λλs

)

,

(Φ3,Θ3) :=

(

− 1√
λ
ps,− 1√

λ
ηs,

1√
λ
pc,

1√
λ

ηc,
√

λys,
√

λλs,−
√

λyc,−
√

λλc

)

,

(Φ4,Θ4) :=

(

0,
1√
λ

λc,0,
1√
λ

λs,0,
√

ληc,0,
√

ληs

)

,

the inf-sup condition follows with constant1√
5
.

So far, we obtained a well-posedness result for our problem with the nice parameter-
independent constants1√

5
and2. For applications, one has to know how to deal with the

individual parts of the norm‖ · ‖CI
. Especially, the contribution from the interface

−〈NγDy, γDy〉τ + sup

λ∈H
− 1

2

‖
(divΓ0,Γ)

〈Bλ, γDy〉2τ
〈Aλ,λ〉τ

,

is difficult to deal with. In the next subsections, we investigate how to avoid the contributions
from the interface terms to the norm‖ · ‖FI

and to preserve good constants in the well-
posedness results at the same time. Therefore, we introducea slightly modified norm that
still involves the contribution from the boundary and preserves parameter-robust constants in
the well-posedness result. The important point is that thisslight modification allows us to get
rid of the boundary contribution later on.
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6.3. Well-posedness in non-standard norms: a useful generalization. A simple ob-
servation yields that for fixed parametersω, σ, andν, the problem (5.8) is well conditioned
for λ ≥ 1. Therefore, the additionalλ-scaling in (6.3) is not necessary for this parameter set.
This is taken into account by introducing the shortcutλ̃ = min(1, λ) and the definition of a
new norm for theΩ1-part.

‖y‖2
F := (ν curl y, curl y)L2(Ω1) + ω(σy,y)L2(Ω1) +

1
√

λ̃
(y,y)L2(Ω1)

− 〈NγDy, γDy〉τ + sup

λ∈H
− 1

2

‖
(divΓ0,Γ)

〈Bλ, γDy〉2τ
〈Aλ,λ〉τ

.

Indeed, this means that for the case0 < λ ≤ 1 we re-use the parameter-robust norm‖ · ‖FI

and for the caseλ ≥ 1 we just drop theλ-scaling. This small modification will be essential
to derive an easy computable preconditioner in the next section. Consequently, we can define
a new norm in the product spaceW2:

‖(Υ,Ψ)‖2
C :=

∑

j∈{c,s}

(

√

λ̃
[

‖yj‖2
F + ‖λj‖2

B
]

+
1

√

λ̃

[

‖pj‖2
F + ‖ηj‖2

B
]

)

.

Furthermore, this decomposition directly gives rise to thesplitting

‖(Υ,Ψ)‖2
C =: ‖Υ‖2

C1
+

1

λ̃
‖Ψ‖2

C1
,

with

‖Υ‖2
C1

:=
∑

j∈{c,s}

(√

λ̃
[

‖yj‖2
F + ‖λj‖2

B
]

)

.

Indeed, this splitting is of importance since according to the notation of Theorem6.1we have
the following correspondence:‖ · ‖2

V = ‖ · ‖2
C1

and‖ · ‖2
Q = 1

λ̃
‖ · ‖2

C1
. The main result

is summarized in the following lemma that states that an inf-sup condition and a sup-sup
condition are fulfilled with parameter-independent constants.

LEMMA 6.3. We have

c‖(Υ,Ψ)‖C ≤ sup
(Φ,Θ)∈W2

A((Υ,Ψ), (Φ,Θ))

‖(Φ,Θ)‖C
≤ c‖(Υ,Ψ)‖C ,

for all (Υ,Ψ) ∈ W2, wherec and c are generic constants independent of any involved
discretization or model parameters.

Proof. In order to show the inf-sup and sup-sup condition forA, we use Theorem6.1.
We start by showing an inf-sup and a sup-sup condition forb(·, ·). Using Cauchy’s inequality
several times immediately yields

sup
Θ∈W

b(Υ,Θ)2

1
λ̃
‖Θ‖2

C1

≤ 4‖Υ‖2
C1

.

For the special choice of the test functionΘ = Θ1 + 2Θ2 + Θ3 given by

Θ1 = (−ys,−λs,yc,λc), Θ2 = (yc,−λc,ys,−λs), Θ3 = (0,µc,0,µs),
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we obtain
(

‖Υ‖2
C1

− ∑

j∈{c,s} ‖yj‖2
L2(Ω)

)2

4‖Υ‖2
C1

≤ sup
Θ∈W

b(Υ,Θ)2

1
λ̃
‖Θ‖2

C1

.

By definition, we have

a(Υ,Υ) =
∑

j∈{c,s}
‖yj‖2

L2(Ω1)
.

Using the trivial inequalitya2 + 1
4b2 ≥ 1

4 (a2 + b2) ≥ 1
8 (a+ b)2, we obtain the inf-sup bound

a(Υ,Υ) + sup
Θ∈W

b(Υ,Θ)2

1
λ̃
‖Θ‖2

C1

≥

(

∑

j∈{c,s} ‖yj‖2
L2(Ω1)

)2

‖Υ‖2
C1

+

(

‖Υ‖2
C1

− ∑

j∈{c,s} ‖yj‖2
L2(Ω)

)2

4‖Υ‖2
C1

≥ 1

8
‖Υ‖2

C1
,

and the sup-sup bound

a(Υ,Υ) + sup
Θ∈W

b(Υ,Θ)2

1
λ̃
‖Θ‖2

C1

≤ 4‖Υ‖2
C1

, ∀Υ ∈ W.

For the second estimate, again an inf-sup and a sup-sup condition for b can be derived in the
same manner. The following estimates are the second ingredient:

λ̃

λ





1

λ̃

∑

j∈{c,s}
‖pj‖2

L2(Ω1)



 ≤ c(Ψ,Ψ) ≤ 1

λ̃

∑

j∈{c,s}
‖pj‖2

L2(Ω1)
.

Thus, we have the inf-sup bound

c(Ψ,Ψ) + sup
Θ∈W

b(Φ,Ψ)2

‖Φ‖2
C1

≥ λ̃

λ

(

∑

j∈{c,s}
1
λ̃
‖pj‖2

L2(Ω1)

)2

1
λ̃
‖Ψ‖2

C1

+

(

1
λ̃
‖Ψ‖2

C1
− ∑

j∈{c,s}
1
λ̃
‖yj‖2

L2(Ω)

)2

4 1
λ̃
‖Ψ‖2

C1

≥ 1

2
min

(

λ̃

λ
,
1

4

)

1

λ̃
‖Ψ‖2

C1
,

and the sup-sup bound

c(Ψ,Ψ) + sup
Θ∈W

b(Φ,Ψ)2

‖Φ‖2
C1

≤ 4
1

λ̃
‖Ψ‖2

C1
, ∀Ψ ∈ W.

Summarizing, we havecw = 1/8, cw = 4, cr = 1
2 min

(

λ̃
λ , 1

4

)

, andcr = 4. Combining

these estimates according to (6.2), we obtain the final estimate

c >

{

3−
√

5
32768 λ ≤ 4
(3−

√
5)(256+λ4)

65536λ4 λ > 4
and c ≤ 2

√
4.
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It is easy to verify thatc is uniformly bounded from below by a constant independent ofλ.
Consequently, the lower and upper bound are independent of any involved parameters.

In general, an inf-sup bound forW2 does not imply such a lower bound on a subspace.
However, in this case the same result holds indeed for the finite element subspaceW2

h ⊂ W2

since the proof can be repeated for the finite element functions step by step.
LEMMA 6.4. We have

c‖(Υh,Ψh)‖C ≤ sup
(Φh,Θh)∈W2

h

A((Υh,Ψh), (Φh,Θh))

‖(Φh,Θh)‖C
≤ c‖(Υh,Ψh)‖C ,

for all (Υh,Ψh) ∈ W2
h, wherec and c are generic constants independent of any involved

discretization or model parameters.
From Lemma6.3 and Lemma6.4 in combination with the Theorem of Babuška-Aziz,

we immediately conclude that there exists a unique solutionof the corresponding variational
problems (5.6) and (5.8), and that the solution continuously depends on the data uniformly in
all involved parameters.

6.4. A canonical preconditioner.

6.4.1. Ω1-part. For practical applications, we want to get rid of the interface Schur
complement contribution to the‖ · ‖F norm. Here thẽλ-scaling is essential to show an
equivalence to a simpler norm, where the equivalence constants are independent ofω, λ,
andσ. Consequently, we can get rid of the additional expression involving the boundary
integral operators and can use

‖y‖2
F̃ := (ν curl y, curl y)L2(Ω1) + ω(σy,y)L2(Ω1) +

1
√

min(1, λ)
(y,y)L2(Ω1).

In order to obtain this simpler norm‖y‖F̃ , we have to pay the price that the norm equivalence
depends on the minimal value of the reluctivityν, i.e.,

(6.4) ‖y‖2
F̃ ≤ ‖y‖2

F ≤ c max(1, ν−1)‖y‖2
F̃ .

Herec depends on the norm bounds for the boundary integral operators B andN, the ellip-
ticity constant forA, and the constant in the trace theorem (2.1) but not onh, N , λ, ω, σ,
andν. Note that this type of equivalence (6.4) is not available for the‖ · ‖FI

norm.

6.4.2. Interface part. In the following, we also need the finite element spaceS1(Kh),
the space of scalar, continuous, and piecewise linear finiteelement functions on the inter-
faceKh. Using the identity (e.g., [14])

〈Acurl Γφh, curl Γψh〉τ = 〈Dφh, ψh〉H1/2(Γ), ∀φh, ψh ∈ S1(Kh),

whereD : H1/2(Γ) → H−1/2(Γ) is the hyper-singular operator for the Laplacian, allows us
to use tools from the Galerkin boundary element methods for Laplace problems. In order to
construct a basis for the finite element spaceRT 0

0 (Kh), we use the identity

RT 0
0 (Kh) = curl ΓS1(Kh),

which holds true for a simply connected interfaceKh. Indeed, in the following we use the
semi-norm

‖φ‖2
B̃ := 〈Dφ, φ〉H1/2(Γ)
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for the boundary element part. In fact, this semi-norm is a norm in the finite element
spaceS0

1 (Kh) = S1(Kh)\R, characterized by

S0
1 (Kh) := {φh ∈ S1(Kh) :

∫

Kh

φh(x)dSx = 0}.

We enforce the zero average by adding the equation

P(φh, ψh) :=

∫

Kh

φh(x)dSx

∫

Kh

ψh(x)dSx = 0

to our variational problem for all relevant functionsφc
h, φs

h, ψc
h andψs

h.

6.4.3. Final estimate.The fact thatcurl Γ : S0
1 (Kh) → RT 0

0(Kh) is an isomorphism
allows us to introduce new variables

λj
h = curl Γφj

h and ηj
h = curl Γψj

h with φj
h, ψj

h ∈ S0
1 (Kh),

ρj
h = curl Γζj

h and µj
h = curl Γξj

h with ζj
h, ξj

h ∈ S0
1 (Kh),

for j ∈ {c, s}. Using these new variables gives rise to the following definition:

Υ̃h := (yc
h, φc

h,ys
h, φs

h), Φ̃h := (wc
h, ζc

h,ws
h, ζs

h),

Ψ̃h := (pc
h, ψc

h,ps
h, ψs

h), Θ̃h := (vc
h, ξc

h,vs
h, ξs

h).

Therefore, the bilinear form of the new variational problemrelated to (5.7) is given byÃ,
defined by

Ã((Υ̃h, Ψ̃h), (Φ̃h, Θ̃h) := A((Υh,Ψh), (Φh,Θh)) −
∑

j∈{c,s}

[

P(φj
h, ζj

h) + P(ψj
h, ξj

h)
]

.

Using the new finite element product space

Uh := ND1(Th) × S1(Kh) ×ND1(Th) × S1(Kh),

equipped with the norm

‖(Υ̃, Ψ̃)‖2
C̃ :=

∑

j∈{c,s}

(

√

λ̃
[

‖yj‖2
F̃ + ‖φj‖2

B̃
]

+
1

√

λ̃

[

‖pj‖2
F̃ + ‖ψj‖2

B̃
]

)

,

gives rise to the following result:
THEOREM 6.5. We have

c‖(Υ̃h, Ψ̃h)‖C̃ ≤ sup
(Φ̃h,Θ̃h)∈U2

h

Ã((Υ̃h, Ψ̃h), (Φ̃h, Θ̃h))

‖(Φ̃h, Θ̃h)‖C̃
≤ c

√

max(1, ν−1)‖(Υ̃h, Ψ̃h)‖C̃ ,

for all (Υ̃h, Ψ̃h) ∈ U2
h, wherec and c are generic constants independent of any involved

discretization or model parameters.
Proof. The proof follows from Lemma6.4, the norm equivalence (6.4), and the change

of the variables described in this subsection.
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6.5. A practical preconditioner. We have to solve the discrete variational problems
connected with the norm̃C. The solution of the variational problem connected with‖·‖C̃ sup-
plies a good preconditioner for the variational problem associated with the bilinear formÃ.
In large-scale computations, the individual parts of the norm and/or preconditioner̃C have
to be replaced by easy “invertible” and robust symmetric andpositive definite norms and/or
preconditioners such that the spectral equivalence inequalities

cF̃‖yh‖2
F̃p

≤ ‖yh‖2
F̃ ≤ cF̃‖yh‖2

F̃p
and cB̃‖φh‖2

B̃p
≤ ‖φh‖2

B̃ ≤ cB̃‖φh‖2
B̃p

,

are valid with positive constantcF̃ , cF̃ , cB̃, and cB̃, which should be independent of the
involved parametersσ, ω, andλ and may only depend polylogarithmically on the space dis-
cretization parameterh.

The finite element part corresponding to theF̃-norm requires the solution of the varia-
tional problem

(ν curl yh, curl vh)L2(Ω1) + ω(σyh,vh)L2(Ω1) +
1

√

λ̃
(yh,vh)L2(Ω1) = (f ,vh)L2(Ω1).

Depending on the parameter setting(ν, σ, ω, λ), candidates for robust and (almost) optimal
preconditioners or solvers are multigrid preconditioners[1, 23], auxiliary space precondition-
ers [25, 45], and domain decomposition preconditioners [26, 40, 41, 42].

The boundary element part corresponding to theB̃-norm requires the solution of the
variational problem

〈Dφh, ψh〉H1/2(Γ) = 〈ρ, ψh〉H1/2(Γ), ∀ψh ∈ S0
1 (Kh).

This problem can be tackled by domain decomposition or multilevel methods [21, 43], purely
algebraic approaches likeH-matrices approximations [18, 19] and ACA-methods [7], or al-
ternative techniques like those in [39]. These practical preconditioners can be used to accel-
erate the Minimal Residual method [36] applied to the symmetric and indefinite linear system
with system matrix

Ãh =























M · · · Kν − N B −Mσ,ω ·

· · · · B
T

−(A + P) · ·

· · M · Mσ,ω · Kν − N B

· · · · · · B
T

−(A + P)
Kν − N B Mσ,ω · −λ

−1
M · · ·

B
T

−(A + P) · · · · · ·

−Mσ,ω · Kν − N B · · −λ
−1

M ·

· · B
T

−(A + P) · · · ·























.

The finite element matricesM, Mσ,ω, andKν and the boundary element matricesA, B,

andN arise from the discretization of̃A in a straightforward manner. The corresponding
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block-diagonal preconditioner̃Ch is given by

C̃h =





































√

λ̃F̃ · · · · · · ·
·

√

λ̃(A + P) · · · · · ·
· ·

√

λ̃F̃ · · · · ·
· · ·

√

λ̃(A + P) · · · ·
· · · · 1√

λ̃
F̃ · · ·

· · · · · 1√
λ̃
(A + P) · ·

· · · · · · 1√
λ̃
F̃ ·

· · · · · · · 1√
λ̃
(A + P)





































,

whereF̃ = Kν + Mσ,ω + 1/
√

λ̃M is the discretization of‖ · ‖F̃ . Combining the previous
results, we obtain that the condition number of the preconditioned system can be estimated
by a constantcν that is independent of the meshsizeh and all involved parametersλ, k, ω,
andσ, i.e.,

κC̃h
(C̃−1

h Ãh) := ‖C̃−1
h Ãh‖C̃h

‖Ã−1
h C̃h‖C̃h

≤ cmax(1, ν−1) = cν .

Combining the canonical preconditioner with special choices of the practical preconditioners
yields the preconditioner̃Ch,p, and we obtain the final bound for the condition number of the
preconditioned system

κC̃h,p
(C̃−1

h,pÃh) ≤ cν
max(cF̃ , cB̃)

min(cF̃ , cB̃)
.

Using the convergence rate estimate of the MinRes method (e.g., [16]), we finally arrive at
the following theorem.

THEOREM 6.6. The MinRes method applied to the preconditioned system converges. At
them-th iteration, the preconditioned residualr2m = C̃−1

h,pfh − C̃−1
h,pÃhw

2m is bounded by

∥

∥r2m
∥

∥

C̃h,p
≤ 2qm

1 + q2m

∥

∥r0
∥

∥

C̃h,p
, where q =

κC̃h,p
(C̃−1

h,pÃh) − 1

κC̃h,p
(C̃−1

h,pÃh) + 1
.

REMARK 6.7. So far, from Lemma6.5, we obtain a qualitative estimate for the condition
numberκC̃h

(C̃−1
h Ãh), where the valuecν is overestimated and can be very large. Anyhow,

from Lemma6.2 we obtain that for the practical relevant case0 < λ < 1 we have the
following quantitative estimate of the condition number

κC̃h,p
(C̃−1

h,pÃh) ≤ 2
√

5 max(1, ν−1)
max(cF̃ , cB̃)

min(cF̃ , cB̃)
.

Therefore, we also expect for the “well-conditioned“ caseλ ≥ 1 that the constantcν is of
acceptable size.

7. Discretization error analysis. In this section, we give a complete estimate of the
error depending on the discretization parameterh. Since we assume the desired state to have
a multiharmonic representation, we do not introduce a discretization error in time. Further-
more, the discretization error is analyzed for the time-harmonic case since for the multihar-
monic case the same estimates are valid by summing over all modesk = 0, . . . , N . We
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obtain an optimal estimation of the discretization error interms of the approximation error in
the non-standard norm‖ · ‖C

‖(Υ,Ψ) − (Υh,Ψh)‖C ≤ c inf
(Φh,Θh)∈W2

h

‖(Υ,Ψ) − (Φh,Θh)‖C ,

with the constantc only depending on the geometry but not on the mesh widthh, the involved
parameterω, k, σ, ν, andλ, and the solution(Υ,Ψ). Due to the norm equivalence of the
standard graph norm‖ · ‖W2 of the product spaceW2, given by

‖(Υ,Ψ)‖2
W2 :=

∑

j∈{c,s}

[

‖yj‖2
H(curl ,Ω1)

+ ‖λj‖2

H
− 1

2

‖
(divΓ,Γ)

+ ‖pj‖2
H(curl ,Ω1)

+ ‖ηj‖2

H
− 1

2

‖
(divΓ,Γ)

]

,

to the non-standard norm‖ · ‖C , i.e.,

C‖(Υ,Ψ)‖W2 ≤ ‖(Υ,Ψ)‖C ≤ C‖(Υ,Ψ)‖W2 ,

we obtain the Cea-type estimate in the norm of the product spaceW2 as well, i.e.,

(7.1) ‖(Υ,Ψ) − (Υh,Ψh)‖W2 ≤ C inf
(Φh,Θh)∈W2

h

‖(Υ,Ψ) − (Φh,Θh)‖W2 ,

with a constantC that is independent of the mesh widthh and the solution(Υ,Ψ). Therefore,
it remains to estimate the approximation error for both theΩ1-part and the interface part.
We start by recalling a well-known result for estimating theapproximation error in terms of
the interpolation error. LetΠ be the canonical interpolation operator for the finite element
spaceND1(Th). Then the following interpolation error estimate is valid.

LEMMA 7.1. For y ∈ Hs(curl ,Ω1), s > 1
2 , the interpolation error can be estimated

by

‖y − Πy‖H(curl ,Ω1) ≤ Chmin(1,s)
(

‖y‖Hs(Ω1) + ‖curl y‖Hs(Ω1)

)

,

where the constantC is independent of the mesh sizeh.
Proof. See [10].
In order to give a bound for the approximation error on the boundary, we use the fact that

we are estimating Neumann traces of the interior functions.

LEMMA 7.2. For λ = γNy ∈ H
− 1

2

‖ (divΓ0,Γ), the approximation error can be esti-
mated by

inf
λh∈RT 0

0
(Kh)

‖λ − λh‖
H

− 1

2

‖
(divΓ,Γ)

≤ C‖curl y − Πcurl y‖H(curl ,Ω1),

where the constantC is independent of the mesh sizeh.
Proof. See [24, Theorem 8.1].
The main result of the space discretization error analysis for the time-harmonic eddy

current optimal control problem is summarized in the next theorem.
THEOREM 7.3. Let the solution(yc,ys,pc,ps) of the eddy current optimal control

problem be as regular as

yj ∈ Hs(Ω1), curl yj ∈ Hs(Ω1), curl curl yj ∈ Hs(Ω1), j ∈ {c, s},
pj ∈ Hs(Ω1), curl pj ∈ Hs(Ω1), curl curl pj ∈ Hs(Ω1), j ∈ {c, s},
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for somes > 1
2 . Then the following estimate holds:

‖(Υ,Ψ) − (Υh,Ψh)‖W2 ≤ Chmin(1,s)

(

∑

j∈{c,s}
‖yj‖Hs(Ω1) + ‖curl yj‖Hs(Ω1)

+ ‖curl curl yj‖Hs(Ω1) + ‖pj‖Hs(Ω1) + ‖curl pj‖Hs(Ω1) + ‖curl curl pj‖Hs(Ω1)

)

,

where the constantC is independent of the mesh sizeh.
Proof. The key tools of this proof are the the Cea-type estimate (7.1) in combination with

the approximation properties in Lemma7.1and Lemma7.2. Indeed, we have

inf
λh∈RT 0

0
(Kh)

‖λ − λh‖
H

− 1

2

‖
(divΓ,Γ)

≤ C‖curl y − Πcurl y‖H(curl ,Ω1)

≤ Chmin(1,s)
(

‖curl y‖Hs(Ω1) + ‖curl curl y‖Hs(Ω1)

)

,

and

inf
yh∈ND1(Th)

‖y − yh‖H(curl ,Ω1) ≤ ‖y − Πy‖H(curl ,Ω1)

≤ Chmin(1,s)
(

‖y‖Hs(Ω1) + ‖curl y‖Hs(Ω1)

)

.

By applying the previous two estimates to each component of the product spaceW2, the
desired result follows.

Of course, the previous result also holds for all modesk = 0, . . . , N and therefore also
for the multiharmonic case by summing over all modesk = 0, . . . , N .

8. Conclusion. The method developed in this work shows great potential for solving
distributed optimal control problems for multiharmonic eddy current problems in an efficient
and optimal way. The key points of our method are the usage of anon-standard time dis-
cretization technique in terms of a truncated Fourier series, a space discretization in terms
of a symmetric FEM-BEM coupling method, and the construction of parameter-independent
solvers for the resulting system of equations in the frequency domain. The theory devel-
oped in this paper establishes a theoretical estimate of theconvergence rate of MinRes as a
solver when our proposed preconditioner is applied. Due to the natural decoupling of the
frequency domain equations, an efficient parallel implementation of the solution procedure is
straightforward.

Indeed, the theory developed in this paper shows two possibilities to construct efficient
and parameter-robust solvers:

• If the theoretical preconditioner corresponding to the norm ‖ · ‖CI
can be replaced

by an efficient and parameter-robust practical preconditioner, we obtain a fully para-
meter-robust solver. This issue is subject to future research.

• Otherwise, we can use the canonical preconditioner corresponding to the simpler
norm‖ · ‖F̃ . This preconditioner can be realized by standard preconditioners, but
we have to pay the price that we loose robustness with respectto the reluctivityν.

In some applications, it is reasonable to add so-called box constraints in the conducting
domainΩ1 for the controlu or/and the statey to an optimal control problem like (3.1)-(3.2).
In the standard approach, these constraints can be handled by a simple projection to the
box [33], leading to a non-linear optimality system that can be solved by superlinearly con-
vergent semi-smooth Newton methods [22, 27]. Unfortunately, in the multiharmonic ap-
proach, box constraints foru or/andy cannot be handled in such an easy way. However, box
constraints for their Fourier coefficients can be treated bysuch a projection. Indeed, using
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the framework of [20] and the preconditioners constructed in our work, efficientsolvers for
the Jacobi-systems, which arise at each step of the semi-smooth Newton method applied to
the latter mentioned constrained optimization problems, can be constructed. The resulting
solvers are at least robust in the discretization parametersh andN ; cf. [28].

A general time-periodic desired stateyd can be approximated in terms of a truncated
Fourier series, i.e., a multiharmonic representation. Therefore, we introduce a time-discreti-
zation error due to the truncation of the Fourier series. Letus assume that the solution of the
interior problem be as regular as(y,p) ∈ Hr((0, T ),H(curl ,Ω1)

2)∩H2r((0, T ),L2(Ω1)
2)

for somer ≥ 1
2 and(y(·, t),p(·, t)) ∈ Hs(curl curl ,Ω1)

2 for somes > 1
2 . Then an a-priori

error estimate for the space and time discretization error of orderO(hmin(1,s) +N−r) can be
shown. Therefore, for smooth desired states, we obtain a higher order of convergence.

Anyway, the preconditioners proposed and analyzed in this paper can be useful for all
these cases, too. The application of our solver to practicalproblems, including different
control and observation domains or the presence of control or/and state constraints, will be
presented in a subsequent paper.

Acknowledgment. I want to thank Ulrich Langer for fruitful and enlightening discus-
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proximations to the Laplace screen and Lamé crack problems, J. Numer. Math., 12 (2004), pp. 311–330.
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