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A ROBUST FEM-BEM MINRES SOLVER FOR DISTRIBUTED
MULTIHARMONIC EDDY CURRENT OPTIMAL CONTROL PROBLEMS
IN UNBOUNDED DOMAINS *

MICHAEL KOLMBAUER t

Abstract. This work is devoted to distributed optimal control problerosultiharmonic eddy current prob-
lems in unbounded domains. We apply a multiharmonic approadietogtimality system and discretize in space
by means of a symmetrically coupled finite and boundary elemeritadetaking care of the different physical be-
havior in conducting and non-conducting subdomains, reésedc We construct and analyze a new preconditioned
MinRes solver for the system of frequency domain equatiores skiéw that this solver is robust with respect to the
space discretization and time discretization parameterseas/the involved “bad” parameters like the conductiv-
ity and the regularization parameters. Furthermore, we aadhe asymptotic behavior of the error in terms of the
discretization parameters for our special discretizatareme.
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1. Introduction. The multiharmonic finite element method or harmonic-badaifi-
nite element method has been used by many authors in diffapgiications; see, e.g.,
[4, 15, 17, 37, 46]. Switching from the time domain to the frequency domairowall us
to replace expensive time-integration procedures by théisn of a system of partial dif-
ferential equations for the amplitudes belonging to the-send to the cosine-excitation.
Following this strategy, Copeland et al.1f 12], Bachinger et al.§, 6], and Kolmbauer and
Langer B2] applied harmonic and multiharmonic approaches to paialdtial-boundary
value problems and the eddy current problem.

Furthermore, the multiharmonic finite element method haslyeneralized to multihar-
monic parabolic and multiharmonic eddy current optimaltoarproblems 8, 31]. Indeed,
in [31] a MinRes solver for the solution of multiharmonic eddy @mntroptimal control prob-
lems is constructed that is robust with respect to the dizeteon parameteh and all in-
volved parameters like frequency, conductivity, reluityivand the regularization parameter.
This solver is based on a pure finite element discretizatierbounded domain. Furthermore,
in [30] the results of 32 for the time-harmonic eddy current problem are extendethéo
case of unbounded domains using a symmetric coupling ofriite #lement method (FEM)
and the boundary element method (BEMY]. Even in this case, parameter-robust block-
diagonal preconditioners can be constructed.

The aim of this work is to generalize these ideas of combitirggmultiharmonic ap-
proach and the FEM-BEM coupling method to multiharmonicyeddrrent optimal control
problems:

min J(y, u), s.t. a%—i +curl (vcurly) = u,
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with appropriate periodicity and boundary (radiation) dibions fory. The fast solution of
the corresponding large linear system of finite element &opsis crucial for the competi-
tiveness of this method. Hence, appropriate (parameberstdp preconditioning is an impor-
tantissue. Deriving the optimality system of the optimaitrol problem naturally results in a
saddle point system. Due to the special structure of theilmamthonic time-discretization and
the finite element-boundary element space discretizatierfinally obtain a three-fold saddle
point structure. A new technique of parameter-robust prditimning of saddle point prob-
lems was introduced by Zulehner 7. We explore this technique to construct a parameter-
robust preconditioned MinRes solver for our huge lineatesysof algebraic equations re-
sulting from the multiharmonic finite element-boundarynedmt discretization.

The outline of this work is as follows: in Secti@we summarize some results concern-
ing the appropriate trace spac&s9] and the framework of boundary integral operat@4 [
for eddy current computations. In SectiBnwe introduce the model problem. Sectibis
devoted to the variational formulation of the model problefierein we compute the op-
timality system and derive a space-time variational foatiah. In Sectiorb, we discretize
the optimality system in time and space in terms of a multita@ric finite element-boundary
element coupling method. The construction of a parametaust preconditioner for the dis-
cretized problem is addressed in Sectiorinally, the results presented in Sectibprove
that the discretization scheme is convergent and provigesxpected order of convergence.

2. Preliminaries. Throughout this workg is a generic constant that is independent of
any discretization/{, N) and model parameters (o, v, and \). Furthermore, we use the
generic constant’ that is independent af and vV, but may depend on the other parameters.

2.1. Differential operators and traces. Throughout this work, we use boldface letters
to denote vectors and vector-valued functions. In thisi@ect2 is a generic bounded Lip-
schitz polyhedral domain dR®. We denote by its boundary and by the unit outward
normal to€2. Let(-,-)z,(q) be the inner product i (2) and|| - ||z, ) the corresponding
norm. Furthermore, we denote the product spac&pif)) := L,(Q)3. The underlying
Hilbert space is the space

H(curl, Q) := {v € L2(Q) : curlv € Ly(Q)},
endowed with the graph norm

2 2 2
V[ (curt,0) = V[T, + lcurlv]li, o)

For the traces of a function € H(curl, §2), we fix the following notations: Leyp andyy
denote the Dirichlet tracepu := n x (u x n) and the Neumann traegyu := curlu x n
on the interfacd’, respectively. For the definition of the appropriate trguaces, we use the
definitions of the surface differential operat@sady, curlr, curlp, divr; see, e.g.,§, 9].
The appropriate trace spaces for polyhedral domains hareibroduced by Buffa and Cia-
rlet in [8, 9]. The spaces for the Dirichlet tracg, and the Neumann tracey are given

by

H ? (curlp, ) = {A € H* (D), curlp A € H=3 (1)}
and

H, *(dive,T) = {A € H, *(I), diveA € H (")},

respectively. These spaces are equipped with the corrdsgpgraph norms. Further-
more,H | 2 (curlp, T') is the dual oiHﬂ§ (divr, T') and vice versa. The corresponding duality
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product is the extension of tHe, (") duality product, and in the following it will be denoted
by a subscript

: 1 _1 .
H, 2 (divp,I')xH 2 (curlp,I)

We also need the space

1
2

H,

(divr0,T) := {A € H) * (divy,T) : diveA = 0}
that turns out to be the correct space for the Neumann tramerisetting.

Foru € H(curlcurl,R3\Q) := {u € H(curl,R3\Q) : curlcurlu € Ly(R3\Q)},
the integration by parts formula for the exterior dom&it\ 2 holds

(2.1) (ynu,7pV)r = —(curlu, curl v)g, s\ o) + (curlcurlu, v)y,, &3\ o).

The Dirichlet and Neumann trace can be extended to contsyo@ppings:
LEMMA 2.1 ([8, 9, 24]). The trace operators

vp : H(curl, Q) — HI%(CUTIF,P) and vy : H(curlcurl,Q) — Hi%(din,I‘)
are linear, continuous and surjective.
For more details, we refer the reader &) 9] for the precise definition of the trace

spacesHﬁ (divp,T') andHI% (curlp, I') and the corresponding analytical framework.

2.2. Boundary integral operators and the Calderon projecton. In order to deal with
expressions on the interfadebetween the bounded and unbounded domains, we use the
framework of symmetric FEM-BEM coupling for eddy currenoptems; see44]. The
boundary integral equations for the exterior problem emémm a representation formula.

In the case of Maxwell's equations, this is the Stratton-@&mula for the exterior domain.
Taking into account thaturl curl u = 0 anddiv u = 0 in the exterior domain, the solution
is given by

u(x) = /F(n x curl u)(y)E(x,y)dSy — curl /F(n xu)(y)E(x,y)dSy
Vs [0 B y) dSy.
r

whereE(+, -) is the fundamental solution of the Laplacian in three dinm@rsgiven by

1 1
E(Xay) =T X,yERg,X#y.
4 |x —y]|

Introducing the notations

P 4(u)(x) ::/u(y)E(x,y) dSy,

r

by (0 w)(x) = / (n-u)(y)E(x,y) Sy,

r

Py (nxu)(x):= curlx/r(n x u)(y)E(x,y)dSy,
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we can rewrite the representation formula as

(2.2) u = [ypu] — Y 4[ynvu] = Viby [ynul.

Taking the Dirichlet and the Neumann trace in the represientformula @.2) and deriving
a variational framework, allows us to state a Calderon nrappi a weak setting:

(1, 7p0), = (1, Clypu)), — (1, A(yaw),,  Vpe H[ # (divr0,T),
<’YN117 0>7— = <N(’7Du)a 0>7‘ - <B(’7Nu)a 0>’r? VO < H (CurlF7 )7
where the well-known boundary integral operators are gijen

AN = ’yD’l/JA(A), B\ = ’)/Ni/)A()\),
Cu = ypPm(p), Ny = ynvym(p).
In the following we collect several useful results; sed]] The mappings

(2.3)

A:H *(divp,T) — H‘%(curlr,r),
B:H é(lep, r — (leF, ),
C:H %(Curlp, ) — %(Cuﬂr, D),
N:H %(curln r) — - ? (divp, I)

are linear and bounded. The bilinear forqu (divr0,T") induced by the operatok is
symmetric and positive definite, i.e.,

(X, AN, > c{\\|,\||2 . YAeH| (leFO ).
2(dlvr*,l—‘)

1
The bilinear form onH | * (curly, I') induced by the operatdN is symmetric and negative
semi-definite, i.e.,

—(Np, ) > cll\IchrlpuHiI VpeH,| (curlp,I‘)

,%(F)v
We have the symmetry property
B(1).A)r = (1, (C~I)(N);, Ve H) * (divr0,T), A € H, * (curly, T).

3. The model problem. In this work we consider an optimal control problem with dis-
tributed control of the form: find the stagjeand the control1 that minimizes the cost func-
tional

(3.1) J(y,u) = 1/ ly — yal?dxdt + 5/ lul?dx dt,
2 Ja,x0.1) 2 Ja, x(0,1)
subject to the state equations
a% +curl (vcurly) = u inQq x (0,7),
curl(curly) = 0 in Q9 x (0,7,
divy = 0 in Qs x (0,7),
(3.2) y = O(x|™Y for |x| — oo,
' curly = O(x|™1) for |x| — oo,
y(0) = y(T) in Q,
Vo, xn = ylg, Xxn onT' x (0,7),

veurly|g, xn = curly|g, xn onT x (0,7).
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Hereyq € L2((0,7),L2(€,)) is the given desired state and assumed to be multiharmonic.
The regularization paramet&is supposed to be positive. The computational dorfiain R3

is split into a conducting subdomaf®y, and its non-conducting complemeft. The con-
ducting domairf2; is assumed to be a simply connected Lipschitz polyhedroeyeds the
non-conducting domaif, is the complement af; in R3, i.e., 2, = R3\Q,. Furthermore,

we denote by the interface of the two subdomaiis= Q; N Q. The exterior unit normal
vector ofQ2; onT' is denoted by, i.e., the vecton points from(2; into 2-; see Figure3.1

97

a=0

(ain (conductoy

Fic. 3.1.Decomposition of the computational doméin= R3.

The reluctivityr = v(x) is supposed to be uniformly positive and independeftefl ul,
i.e., we assume the eddy current probleh?)to be linear. Due to scaling arguments, it can
always be achieved that = 1 in ;. The conductivityo is zero in the non-conducting
domain(), and piecewise constant and uniformly positive in the cotahe; :

c>0 ae.inQ; and o(x)=0 a.e.iny,

>
3.3 -
(3.3) (x)>v>0ae.inQ; and v(x)=1 ae.ins.

Existence and uniqueness results for linear and non-linddy current problems in
unbounded domains are provided 9. Therein the space of weakly divergence-free
functions'V is introduced as a subspace Hf(curl, ;). Furthermore, it is shown that
the state equatio(i3.2) has a unique solutiog € L,((0,7), V) with a weak derivative
dy /ot € Ly((0,T), V*). Another approach to prove existence and uniqueness is bive
Arnold and HarrachZ]. Due to the unique solvability of the state equati@m?, the exis-
tence of a solution operat® mappingu to y (i.e., S(u) = y) is guaranteed. By standard
arguments (see, e.g44)) it follows that the unconstrained minimization problefimd the
controlu € Ly ((0,7T),L2(Q2)) that minimizes the cost functional

1 A
B / IS(u) — yq|*dxdt + 5/ lu|?dx dt
J 2y x(0,T) Q1x(0,T)

is also uniquely solvable.

4. The variational formulation. In order to solve our minimization problem, we for-
mulate the optimality system, also called the Karush-Kiihoker system; see, e.g44].
Therefore, we formally consider the Lagrangian functional

L(y,u,p) :=J(y,u) +/

0
(O’y + curl (v curly) — u) -pdxdt.
Qx(0,T)

ot



ETNA
Kent State University
http://etna.math.kent.edu

236 M. KOLMBAUER

Deriving the necessary optimality conditions
VpL(y,u,p) =0,
Findy,u,p: VyL(y,u,p) =0,
VuLl(y,u,p) =0,
yields a system of partial differential equations. We obséhatu = A\~'pin Q; x (0,7),

and hence we can eliminate the control. Therefore, we enditptie following reduced
optimality system: find the stageand the co-statp such that

aaa—i’—&—curl(ucurly) -2 'p=o0 in Qy x (0,7),
curl (curly) =0 in Qs x (0,7),
divy =0 in Q, x (0,7),
—a%—lz +curl(vcurlp)+y —yqa =0 inQ; x (0,7),
(4.1) curl(curl p) =0 in Qs x (0,7),
divp=0 in Qy x (0,7),

p=0(x]"), y =O(x|™") for |x| — oo,

curlp = O(|x| ™), curly = O(]x|™1) for |x| — oo,

p(0) = p(7), y(0) = y(T) in Q.

In the usual manner, we derive a space-time variational dtation. Multiplying 4.1) by
space and time dependent test functionsw) = (v(x,t), w(x,t)) € La((0,7), W) and
integrating over the space-time domdinx (0,7"), we arrive at the following variational
form: find (y,p) € H'((0,7), W1) such that

T oy T
/ (Jat,v) dt+/ (veurly,curl v)y,, q,) dt
0 La(91) 0

T T
1
7/0 (vcurly, curl v)p,(q,) dt — X/o (P, V)L, () dt

:O7

(4.2) T T
_/ (gap,w) dt+/ (vcurlp, curl W), (o, dt
0 ot L2(Q1) 0

T T
_/O (ycurlp,curlw)Lz(Qz)dt—&—/O (¥, W)Ly () dt

T
= / (Ya, W)L, (0,) dt,
0

with the appropriate decay and periodicity conditions/dof). HereW; andW are appro-
priate weighted Sobolev spacesk#; cf. [24].

5. Discretization scheme.The space-time variational formulation.p) is the starting
point of our discretization in time and space. We discreftizéme in terms of a multihar-
monic approach. For the resulting system of frequency domqiations, a symmetric cou-
pling method is applied to both the state variable and thstate variable of each mode
This coupling method allows us to reduce the unboundediext@gomain(2, to the bound-
ary I'. The resulting variational formulation is discretized hgralard finite and boundary
elements.
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5.1. Reduction of the exterior domain to the boundary. Applying the integration by
parts formula2.1) in the exterior domai), and using the fact that

curlcurly =0 and curlcurlp=0 in,,

allows us to reduce the variational problem to one that isljugg on the closure of the
conductivity domairf2;:

T ay T
/ <a,v) dt—i—/ (veurly, curl v)y, (q,) dt
o \ 9 i, 0

T 1 T
_/o (WNY,vDV)-dt — X/o (p7V)L2(Ql)dt =0,

T ap T
f/ <a,w) dt+/ (veurlp,curl w)y, q,) dt
0 at Lg(Ql) 0

T T T
—/ <7NPa7DW>Tdt+/ (YaW)Lg(Szl)dt:/ (Yd7W>L2(Ql)dt-
0 0 0

Later, the expressions on the interfdCare dealt with in terms of a symmetrical coupling
method [L3].

5.2. Multiharmonic discretization. Let us assume that the desired stageis multi-
harmonic, i.e.yq has the form

(5.1)

N
(5.2) Ya = Z yg,k cos(kwt) + yfl’k sin(kwt),
k=0
where the Fourier coefficients are given by the formulas
Yok = = yacos(kwt)dt and y3, = —/ ya sin(kwt)dt.
’ T Jo ’ T Jo

We mention that the multiharmonic representatiorz)(can also be seen as an approximation
of a time-periodic desired stage; by a truncated Fourier series. Due to the linearity of the
optimality system4.1), the statey and the co-statp are multiharmonic as well and therefore
also have representations in terms of a truncated Fouriessee.,

N N

(53) y= Z vy cos(kwt) + yy sin(kwt) and p = Z Py, cos(kwt) + pi, sin(kwt),
k=0 k=0

with unknown coefficientsy(;,y;) and @5, p}). Using the multiharmonic representa-
tion (5.3), we can state the optimality system 1) in the frequency domain. Consequently,
the problem that we deal with reads as follows: for each mede 0,1,..., N, find the
Fourier coefficientsy, y$, pg. py) € H(curl, Q;)* such that
kw(oyy: Vi)z (o) + (veurlyg, curl v, )
—(Wyg V) — A (PE Vi) La(e)) = 0,
—kw(oyy, vi)La () + (vcurlyg, curl vi)p, o))
_<7Ny15(7’7Dvlsc>T - Ail(piavi)Lg(Ql) = Oa
—kw(opR, Wi )L, () + (v eurl pg, curl wi)p, (o))
—(WWPL Y DWE)r + (Vi Wi )La (1) = (Y10 Wi )La(Q1)
kw(oP, Wi)La (o) + (v curl pi, curl wi)p, (o,)

—(YNPR YD W) + (Vi Wi Lo (1) = (Ve Wi)La(91)

(5.4)
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for all test functiong vy, vi, wg, wi) € H(curl,Q;)*. Note that the modé = 0 has to be
treated separately. Clearly we do not have to solvepfpandyg, sincesin(Owt) = 0, and
therefore, fok = 0, (5.4) reduces to & x 2 system for determining the Fourier coefficiepfs
andyg. Due to theL,(0,7") orthogonality of the sine and cosine functions, we obtain a
total decoupling of the Fourier coefficients with respectite modes:. Therefore, for the
purpose of solving, it is sufficient to have a look at a timeahanic approximation, i.e.,
ya = y§ cos(wt) 4+ y§ sin(wt). Consequently, in the next sections, we analyze the follgwin
variational problem: findy®, y*, p¢, p*) € H(curl, Q;)* such that

w(oy®, v®)L, ) + (v curly®, curl VC)LZ(QI)
—(wyS, 10V = A7HPE, V)L ar) = 0,
—w(oy®,v®)L,(0,) + (veurly®, curl v¥)p, o))
— vy v — AP, V)L, =0,
7w(0pS,WC)L2(Ql) + (v curl p®, curl WC)LZ(QI)
=P W) + (¥, W)L, ) = (Y3 WO)La(0u)
w(op®, W)L, () + (v eurl p?, curl we)p, (o))

—(yWP%5 W) + (Y5, W)L, 00 = (V3 Wo)La (1)

for all test functiongv®, vs, we, w®) € H(curl, Q)%

5.3. Symmetric coupling method. We are now in a position to state the coupled vari-
ational problem, following the approach of Hiptmair i24]. Using the Calderon ma(3)
and introducing the Neumann data as additional unknowns

A¢ =Ny, A% = NyS, n° = ynp°, n° == Ynp°,

allows us to state the eddy current problem in a frameworkithauited for a FEM-BEM
discretization. For simplicity, we introduce the abbréizia

T = (y°, A% y%, %), U= (p°,n° p%.n°),
P = (chpcawsaps)v = (chucvvsall’s)'

We mention thall represents the variables corresponding to the gtaberepresents the vari-
ables corresponding to the adjoint stateand® and© are the corresponding test functions.
According to the definition ofr and ¥, we introduce the appropriate product space

W :=H(curl, Q) x H, * (divr0,T) x H(curl,2,) x H; * (divr0,T).
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Therefore, we end up with the weak formulation of the redusygdmetric coupled optimality
system: find Y, ¥) € W? such that
w(oy®, vy, + (veurly®, curl v¥), q,) — )\_1(pc7VC)L2(Q1)
—(N(vpy°),70v®)r + (B(X®),7pv°)- =0,
(n®,(C = 1d)(ypY®)), — (1%, A(X%)) . =0,

—w(oy®, V)L, (0, + (veurly® curl v¥)p, ) — A
—(N(py®),7pVv®)r + (B(XA%),7pv®)- =
(1®,(C—1d)(7py®)), — (K, A(N)), =

—w(op®, W)L, (,) + (v curl pe, CuerC)Lz(Ql) + (¥ W)L, (1)

—(N(pp°), ypw) - + (B(n°),7pW®), = (yd> “)La(21)
(p°,(C =1d)(7pP?)), — (P°, A(N°)), =
w(op®, W)L, (q,) + (v curl p*, curl w® )Lz(Ql) + (y°,w )Lz(Ql)
—(N(vpp®), 70wW*)- + (B(n°), 7o W*)r = (y3 W*)La(01)
(p*,(C = 1d)(pp%)), — (p*, A(n%)), =0,

w

s
vV )Lz(Ql)
T 7

T a

(5.5)

for all test functiong ®, ©) € W?2. For simplicity, we introduce the bilinear ford repre-
senting the latter variational problem:

AT, 0),(2,0)) :=a(T, D)+ (P, V) + b(Y,0) — ¢(V,0),
where the bilinear forms, b andc are given by

a(T,®) = (¥, W)L,y (0,) + (V% W¥)La (),
b(Y,0) = w(oy®, v¥)L, () — WOy, V)L, (i) + Z (v curlyj,curlvj)L2(Ql)
j€{ec.s}
— (N(ypy?), ypv)7 + (B(N),7pV),
+ (W, (C—1d)(vpy))), — (W, AN))_,
c(W,0) = A1 (p% v L) + AT (P Vo) La(0y)-

Using this notation, we can state.§) in the abstract form: FindY', ¥) € W? such that

(56) A((Tvqj)’ (q)’@)) = Z (de’ )Lz (1)

j€{c,s}

for all test functiong®, ©) € W2. Indeed, the bilinear fornd is symmetric and indefinite.
Well-posedness of the variational problefg) will be shown in the next section using the
Theorem of Babska-Aziz [3]. The variational formulation.6) is the starting point of the
discretization in space.

REMARK 5.1. In the multiharmonic setting, the variational problezads as follows:
find (¥, ¥) € W2+ with X = (Ty,...,Ty) and¥ = (U, ..., ¥y) such that

(5.7) AN ((T ), Z Z dek7 L2 Q)

k=0 je{c,s}
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for all test functiong ®, ®) € W?2N+1, Here the big bilinear formd” is given by

N

AN((Tv ‘I’)v ((1)7 9)) = ZAk((Tka \Ilk)» ((I)kv @k))7

k=0
whereA;, denotesA, with w formally replaced by:w.

5.4. Discretization in space.We now use a quasi-uniform and shape-regular triangu-
lation 7;, of the domain©2; with mesh sizeéh > 0 with tetrahedral elementsZ;, induces a
meshk;, of triangles on the boundafdy = 9Q;. On these meshes we considéD; (7,),
the Necelec basis functions of orddr [34, 35], a conforming finite element subspace of
H(curl, Q). Moreover, we use the space of divergence-free RaviartABisoR8] basis
functionsRTg(lCh) = {An € R7((K}),divrAn = 0}, a conforming finite element sub-

1

space oiHF (divr0,T'). Furthermore, the discrete FE-BE subsphgeof W is given by
Wi, := ND1(Tp,) x RTY(K1) x ND1(T,) x RT(Kn).
The corresponding discrete variational problem is stasedind (Y1, ¥;,) € W7 such that
(5.8) AT, 0n), (@0, 00)) = Y (¥h Wh)La(@u)s
Jj€fe,s}
for all test functiong @5, ©5,) € W3.

6. Preconditioning and implementation. This section is devoted to the fast solution of
the variational problem5(8). After recalling an abstract well-posedness and prec¢immiing
result 7], we use this theory to construct a parameter-robust paittoner for our problem.
Additionally, we address the practical realization of tthisoretical preconditioner.

6.1. Abstract preconditioning theory. In this subsection we briefly recall an abstract
result of Zulehner47]. Let V and @ be Hilbert spaces with the inner produgts-)y

and(-,-)o. The associated norms are given|py|lv = /(-,-)v and|| - |l = +/(-,")o-
Furthermore, leX be the product spacE = V' x @, equipped with the inner product

((U7 q)a (w7 T))X = (Uv w)V + (Qa T)Qv
and the associated norm

10, 9)llx = v ((v,9), (v,9))x-

Consider a mixed variational problem in the product spiice V x Q: find z = (w,r) € X
such that

A(z,y) = F(y), forallye X,
with
A(z,y) = a(w,v) + b(v,r) + b(w,q) —c(r,q) and F(y) = f(v) + g(q),

fory = (v,q) andz = (w,r). We introduceB € L(V,Q*) and its adjointB* € L(Q, V™)
by

(Bw,q) =b(w,q) and (B*r,v) = (Bv,r).
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Furthermore, we denote by € L(X, X*) the operator induced by
(Az,y) = A(z,y).

The next theorem provides necessary and sufficient conditior parameter-independent
bounds and can be found in Zulehnér]
THEOREM®6.1 ([47, Theorem 2.6]) If there are constants,, c,., ¢, ¢ > 0 such that

collwll < a(w,w) + || Bwl

o- <Culwl}, forallweV

and

eIl < c(ryr) + 1B |} <@ lirlgy, forallre @,
then
(6.1) izllx < ||Az||x- <7¢|z]|x, forallze X

is satisfied with constants ¢ > 0 that depend only on,, ¢, ¢, ¢,.

Indeed, in addition to the qualitative result ferand ¢, Theorem6.1 also provides a
quantitative estimate afandc in terms ofc,,, ¢, ¢,., ¢.. Tracking the proof of the previous
theorem in §7], the constantg andg fulfill the rough estimate

(=3+V8) (win (£,¢,)° + & min (3,¢,)°)
[ .
(6.2) 4 max (\/ET max(1,¢,), /Cu max(l,éw))

@ < V2 max <\/E,. max(1,%,), \/w max(l,w,.)) .

We mention that these estimates are not sharp. As exposéd jiap immediate consequence
of (6.1) is an estimate of the condition numbeA):

K(A) = HAHL(X,X*)HA_lHL(X*,X) <

o 1ol

Therefore, robust estimates of the forénl) imply a robust estimate for the condition number.
More precisely, §.1) means that solving the discrete variational problem cotatewith the
inner product inX will supply a good preconditioner fod.

6.2. Well-posedness in some non-standard norms: a constitive approach. In[31],
Kolmbauer and Langer state a parameter-robust well-pessdresult for the FEM discre-
tization of the eddy current optimal control problem in a bded domain. Using the tech-
nigue of interpolation spaces, they introduce a paranugpendent non-standard norm
in H(curl, Q;)* and show that the inf-sup and sup-sup conditions that appehe theo-
rem of Bab&ka-Aziz are fulfilled with constants independent of angdtization and model
parameters. Indeed we re-use this result for the FEM-digecedomain(2;. Furthermore,
we have to take into account the different parameter sattimghe conducting domaif},
and the non-conducting domaity; cf. (3.3). Since the exterior domaif, is reduced to the
boundary, we incorporate the boundary integral operatoterims of a Schur complement
approach. Consequently, for tig-part we define the non-standard norm

1
||YH3”-'1 = (V Curlya Curly)Lz(ﬂl) + w(UYay)Lz(Ql) + T(y7Y)L2(521)

A
<B>‘7 ’YDY>72'

— (N .
(Nypy,vpy)r + sup AN,

_1
A€H 2 (divr0,D)
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For the interface part, we just use the single layer potendiathat induces a norm
_1
onH, 2 (divp0,T):

1A% = (AX, A)-.

These definitions give rise to a norm in the product spate

. . 1 . .
63 1D = > (ﬁ (1971, +INIE] + 5 (1915 + wn%}) :
j€{c,s}
The main result is summarized in the following lemma thainetathat an inf-sup condition
and a sup-sup condition are fulfilled with the parameteepehdent constant% and2.
LEMMA 6.2. We have

(T 0)e, < sup ACLIL@ON oy gy

- , <
7 wory:  (@.0)]e,

forall (T, V) € W2.

Proof. This proof follows the same strategy as the proof3dy] [for the ©; part. We
directly verify the inf-sup and sup-sup condition. By an aypiate distribution of the regu-
larization parametek and applying Cauchy'’s inequality several times, the sypesundition
follows with constan®. For the special choice of the test function

(@,0) = ($1,01) +2(P2,02) + (©3,03) + (P4, O4),
given by
(91,01) := (T, —V),

1 1 1 1
Dy, 0,5) = ¢ — °, S, — Ay, —VAXS, VAYS, \f)\s)
(®2,02) (ﬁp AP ﬁn Ay Ay
1 1 1 1
®3,03) := S, — s, < VY, VXS, VA ‘Z—\f)\)\c),
(®3,03) ( ST AT AP \[\’7 Ay®, y
1 1
1,00 = (0,-Lxe 0, o,ﬁc,o,ﬁs),
(4,04) ( 7 \5\ n n
the inf-sup condition follows with consta%. a

So far, we obtained a well-posedness result for our problétm thre nice parameter-
independent constam% and2. For applications, one has to know how to deal with the

individual parts of the nornj - ||¢,. Especially, the contribution from the interface

<B>‘7 ’YDY>72'

—(N . TPV
(NYpy,vpy)r + sup AN,

)\GH 2 (divro,I)

is difficult to deal with. In the next subsections, we invgate how to avoid the contributions
from the interface terms to the norfh- ||z, and to preserve good constants in the well-
posedness results at the same time. Therefore, we intradatightly modified norm that
still involves the contribution from the boundary and press parameter-robust constants in
the well-posedness result. The important point is thatdliggt modification allows us to get
rid of the boundary contribution later on.
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6.3. Well-posedness in non-standard norms: a useful gendization. A simple ob-
servation yields that for fixed parameterso, andv, the problem %.8) is well conditioned
for A > 1. Therefore, the additional-scaling in 6.3) is not necessary for this parameter set.
This is taken into account by introducing the shortsut min(1, \) and the definition of a
new norm for the2, -part.

1
IlyllF = (veurly, curly)y, q,) + @(0Y,¥)Ly01) + \/A(y y Y )La (1)

<B}\7’7Dy>2
_ (N . p
(Nvpy,vpy)r + Sup 7< AN ),

)\EH (leFO T)

Indeed, this means that for the case: A < 1 we re-use the parameter-robust ndrm|| z,
and for the case > 1 we just drop the\-scaling. This small modification will be essential
to derive an easy computable preconditioner in the nexisedConsequently, we can define
a new norm in the product spake?:

1
\[5\

Furthermore, this decomposition directly gives rise togpkiting

[CRIE=ES (ﬂ [ly? 1% + I3 ]3] +

j€{c,s}

(e’ 117 + ||nd|%]> :

1
1O, ®) 1 =2 17IIZ, + KII‘PII%N

with

1712, = D (VALY I3+ IX13])

j€fe,s}t

Indeed, this splitting is of importance since accordindg®rotation of Theoreri.1we have
the following correspondence - |3 = || - ||z, and|| - |2, = %H - ||g,. The main result
is summarized in the following lemma that states that arsug-condition and a sup-sup
condition are fulfilled with parameter-independent contsta

LEMMA 6.3. We have

A((T, W), (9,0))
(Y, Wlle < @orns  (@,0)]e

<) (T, ¥)lle,

for all (YT,¥) € W?2, wherec and ¢ are generic constants independent of any involved
discretization or model parameters.

Proof. In order to show the inf-sup and sup-sup conditionfgrwe use Theorerf. 1
We start by showing an inf-sup and a sup-sup conditiodfgr). Using Cauchy’s inequality
several times immediately yields

b(Y, ©) >
sup - < 4| Tz,
eew xlIOIZ, ~

For the special choice of the test function= ©, + 20, + ©3 given by

61 = (_ys7 _Asaycv)‘c)7 92 = (yc7 _Ac7ys7 _)\5)7 63 = (07Hc707/~1's)u
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we obtain

. 2
(||T||%1 - Eje{c,s} ||YJ||i2(Q)) - b(Y,0)2
4|72, ~eew 110]32,

By definition, we have
a0, 1) = > ¥,
je{e.s}
Using the trivial inequality:® + 16 > 1 (a? +b%) > £ (a+b)?, we obtain the inf-sup bound
b(Y,0)?

oo 1 1812,

. 2 . 2
_ (Sreen W) . (112, = Zieteny 11209
- ITTZ,

a(Y, 1) +

1
> SITI,

and the sup-sup bound

b(T 07 _

a(T,71) +
el ~

4||T||C17 vY e W.

For the second estimate, again an inf-sup and a sup-supticonidir b can be derived in the
same manner. The following estimates are the second irggredi

a1 : 1 -
M5 2 Pl | @0 <5 >0 P,

je{c,s} j€{c,s}

Thus, we have the inf-sup bound

b(D, )2
c(\I/’\Ij)_|_ sup u
oew |1®lIg,
~ 2 1 2 1 jl2 2
3 (Sietes 2P, ) X (113, = ey H1¥312 0 )
) Tw|, 4Lz,

| V

1 A1) 1
,mln (}\ 4) KH\I}H(QTN

and the sup-sup bound

2
C(\Ij’\:[j) + sup M

1
4=||W)2, Y eW.
ocw |12, )\” le.

Summarizing, we have, = 1/8,¢, = 4, ¢, = %mm (i, 4) ande¢, = 4. Combining
these estimates according &@4), we obtain the final estimate

Ses A<
c > (3—5) (256+2%) A and ¢ < 2V/4.
65536\ A>
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It is easy to verify that is uniformly bounded from below by a constant independent.of
Consequently, the lower and upper bound are independeniaheolved parameters. O

In general, an inf-sup bound fa#2 does not imply such a lower bound on a subspace.
However, in this case the same result holds indeed for the ffément subspad®? c W?
since the proof can be repeated for the finite element fumetitep by step.

LEMMA 6.4.We have

cll(Th, W)l < sup AT, Wn), (Pn, On))

<e[(Th, ¥n)lle,
(®n,0n)EW? [(®n,On)llc

for all (T, ¥),) € W7, wherec and¢ are generic constants independent of any involved
discretization or model parameters.

From Lemma6.3 and Lemmab.4 in combination with the Theorem of Baska-Aziz,
we immediately conclude that there exists a unique soluifdhe corresponding variational
problems §.6) and 6.8), and that the solution continuously depends on the datanamly in
all involved parameters.

6.4. A canonical preconditioner.

6.4.1. Q,-part. For practical applications, we want to get rid of the integfe&Schur
complement contribution to thg - || norm. Here the\-scaling is essential to show an
equivalence to a simpler norm, where the equivalence cotsstae independent af, A,
ando. Consequently, we can get rid of the additional expressionlving the boundary
integral operators and can use

lyll% := (veurly, curly)p,(o,) + w0y, ¥)Ly@0) + (¥, ¥)La(0)-

min(1, A)

In order to obtain this simpler norijy || z, we have to pay the price that the norm equivalence
depends on the minimal value of the reluctivityi.e.,

(6.4) Iyll% < lylF < ¢ max(1,27 )|y %

Herec depends on the norm bounds for the boundary integral ops@BtandN, the ellip-
ticity constant forA, and the constant in the trace theoreinl) but not onh, N, A, w, o,
andv. Note that this type of equivalencé.{) is not available for thd - || =, norm.

6.4.2. Interface part. In the following, we also need the finite element sp&c€;,),
the space of scalar, continuous, and piecewise linear téiment functions on the inter-
facekCy. Using the identity (e.g.1[4])

(Acurlrop, curl rop)r = (Don, ¥n) iz iy, Von, ¥n € S1(Kn),

whereD : H'/2(I') — H~'/2(T") is the hyper-singular operator for the Laplacian, allows us
to use tools from the Galerkin boundary element methods &pldce problems. In order to
construct a basis for the finite element sp&E? (K5, ), we use the identity

RTL(Kp) = curl 181 (Kp),

which holds true for a simply connected interfdcg. Indeed, in the following we use the
semi-norm

[6[|% := (Do, @) pr1/2(r
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for the boundary element part. In fact, this semi-norm is ama the finite element
spaceS} (Kr) = S1(Kx)\R, characterized by

SY(Ky) = {én € S1(Kp) : / én(x)dSy = 0}.
JKn
We enforce the zero average by adding the equation

P(Qﬁh,wh) = ¢}L(X)de . w}L(X)de =0

Kn
to our variational problem for all relevant functiog$, ¢;, 5, andv;.

6.4.3. Final estimate. The fact thatcurl  : S(K) — RT (k) is an isomorphism
allows us to introduce new variables

)\i = curlpgbi and ni = curle;{b with QSZ, 77112 € SY(Kn),
P{;, = curlpC,{ and /‘{:, = curl ng with C}{?gi € SY(Kp),
for j € {c, s}. Using these new variables gives rise to the following dedini
Yh o= (5, 05, Y5 65)s Oy, == (Wi, G, Wi G)
\I’h = (pﬁa¢zapia¢i)a @h = (vﬁag}cuvlsmgfsz)

Therefore, the bilinear form of the new variational problestated to 6.7) is given by A,
defined by

A((Tns #n), (0, 6n) 1= AT W), (@4,00)) = > [Plohoch) + P h)] -
j€{c,s}
Using the new finite element product space
Uh = NDl (7;1) X Sl(ICh) X NDl (7;,) X Sl(ICh),
equipped with the norm
- = . , 1 , ,
10, 9= Y (\5 [y 1% + 17 l12] + 7 [Ip7 1% + ||W||§;]> :
i€{e.s) A

gives rise to the following result:
THEOREM6.5. We have

¢ (T, ), (B
ATl < sup AT (20,00)
(&1,0n)U? [[(®n,On)lle

/\

ev/max(L,y=H)|[(Th, Un)l|

for all (T),,0;) e U?, wherec and ¢ are generic constants independent of any involved
discretization or model parameters.

Proof. The proof follows from Lemm&.4, the norm equivalencé(4), and the change
of the variables described in this subsection. O
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6.5. A practical preconditioner. We have to solve the discrete variational problems

connected with the nor@. The solution of the variational problem connected with sup-

plies a good preconditioner for the variational problenpaied with the bilinear form.

In large-scale computations, the individual parts of themand/or preconditionef have

to be replaced by easy “invertible” and robust symmetric positive definite norms and/or

preconditioners such that the spectral equivalence ilitigsa

QﬁHYhH% < lynll% < Eﬁ||}’h||2ﬁp and §g||¢>h||2-p < |l¢nl% §63||¢h||%p7

are valid with positive constantz, ¢z, cg, andcz, which should be independent of the
involved parameters, w, and\ and may only depend polylogarithmically on the space dis-
cretization parameter.

The finite element part corresponding to thenorm requires the solution of the varia-
tional problem

1
(veurlyn, curl vi)r,9,) + w(0¥h, Vh)L,(0)) + ﬁ(yh, Vh)La(2:) = (£, V)L, (a,)-

Depending on the parameter settingo, w, A), candidates for robust and (almost) optimal
preconditioners or solvers are multigrid preconditiorjér2 3], auxiliary space precondition-
ers 25, 45], and domain decomposition precondition€ezs, [40, 41, 42].

The boundary element part corresponding to Faeorm requires the solution of the
variational problem

(D, Yn) ey = (0 Un) ey, Von € SY(Khn).

This problem can be tackled by domain decomposition or feutl methodsZ1, 43], purely
algebraic approaches likg-matrices approximations g, 19] and ACA-methodsT], or al-
ternative techniques like those iB9]. These practical preconditioners can be used to accel-
erate the Minimal Residual methogd] applied to the symmetric and indefinite linear system
with system matrix

M K, - N B M,
. . BT —(A+P) .
M .Y P K, - N B
i . . . . BT —(A+P)
P~ 1K, -N B Y, -A"'M : :
BT —(A+P) . . .
Mo, K, - N B -2 'M
. BT —(A+P) .

The finite element matricedI, M, .,, andK,, and the boundary element matricas B,

andN arise from the discretization ol in a straightforward manner. The corresponding
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block-diagonal preconditione}, is given by

1X(A+P)

S

™

LA+P
_ AATE)
whereF = K, + M, ., + l/ﬁM is the discretization of - || . Combining the previous
results, we obtain that the condition number of the predamrid system can be estimated
by a constant,, that is independent of the meshsizand all involved parameters, k, w,
ando, i.e.,

ke, (€ AR) = C  Anllg, 1AL Chllg, < emax(l,y™!) =c,.

Combining the canonical preconditioner with special casiof the practical preconditioners
yields the precondition&?;, ,, and we obtain the final bound for the condition number of the
preconditioned system
51 % max(¢z,Cp3)
s (C b Ap) < ¢ —— B2
i, Cnpn) < © min(c g, ¢p)
Using the convergence rate estimate of the MinRes methgd (26]), we finally arrive at
the following theorem.
THEOREM6.6. The MinRes method applied to the preconditioned systenemges. At
them-th iteration, the preconditioned residusf™ = C;;)fh — C,;;Ahwzm is bounded by

A -1
ol < 12 e, where g "l TA
me T 14 g2m e ¢, , (CrpAn) +1

REMARK 6.7. So far, from Lemma@.5, we obtain a qualitative estimate for the condition
numbersg, (C; ' A},), where the value, is overestimated and can be very large. Anyhow,
from Lemma6.2 we obtain that for the practical relevant case< A < 1 we have the
following quantitative estimate of the condition number

he, (G0 An) < 2VEmax(1,p ) RXCECB).
v min(cz, ¢z)
Therefore, we also expect for the “well-conditioned“ case> 1 that the constant, is of
acceptable size.

7. Discretization error analysis. In this section, we give a complete estimate of the
error depending on the discretization paraméte8ince we assume the desired state to have
a multiharmonic representation, we do not introduce a diszation error in time. Further-
more, the discretization error is analyzed for the timayi@ric case since for the multihar-
monic case the same estimates are valid by summing over aésto= 0,..., N. We
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obtain an optimal estimation of the discretization errateirms of the approximation error in
the non-standard norih- ||¢
T, 0) — (Th, ¥ <c inf T,0)—(P,,0 ,
(T, ) = (Th, Vn)lle (éh,@h)evvgu( ) = (®r:On)llc
with the constant only depending on the geometry but not on the mesh widthe involved

parametew, k, o, v, and A, and the solutioY, ¥). Due to the norm equivalence of the
standard graph nori- ||,y of the product spack/?, given by

1O = D2 | I e oy + INIZ
ie{e.s} (e

+ 1P Fxgewrt ) + 17117 ’
1P’ 1 (curt 01) ”n]”Hf(divr,F)

to the non-standard norfh- ||c, i.e.,
SN, ) we < (X, 9)]le < CII(T,9) [z,
we obtain the Cea-type estimate in the norm of the productesp® as well, i.e.,

(7.1) (T, W) = (Th, Up)llw= <€ inf (T, ¥) = (Pn, On)|lwe2,
(®r,On)EW?

with a constant that is independent of the mesh widtfand the solutioffY', ¥). Therefore,
it remains to estimate the approximation error for both $hepart and the interface part.
We start by recalling a well-known result for estimating #pmproximation error in terms of
the interpolation error. LeEI be the canonical interpolation operator for the finite eletme
spaceND; (7). Then the following interpolation error estimate is valid.

LEMMA 7.1. Fory € H5(curl, (), s > 1, the interpolation error can be estimated
by

Iy — Iy [ (curt ,01) < CR™™E) (|ly|lms o) + [lcurly|la=@,)) »

where the constant' is independent of the mesh size
Proof. See [L0]. a
In order to give a bound for the approximation error on theratany, we use the fact that
we are estimating Neumann traces of the interior functions.
_1
LEMMA 7.2. For A = yyy € H,* (divr0,T), the approximation error can be esti-
mated by
inf A—A 1 < C||curly — Ilcurl curl Q1)
ARERTO(Kn) | h||HH %(divr,l‘) < Yy Y|l H(eurl 01)
where the constand' is independent of the mesh size
Proof. See p4, Theorem 8.1]. a
The main result of the space discretization error analymigHe time-harmonic eddy
current optimal control problem is summarized in the negbtiem.

THEOREM 7.3. Let the solution(y®,y®, p¢, p®) of the eddy current optimal control
problem be as regular as

yl € H3(Qy), curlyd € H3(Q)), curlcurlyl € H(Q,), j € {c, s},
p' € H(Qy), curlpd € H3(Qy), curlcurlp! € H5 (), j <€ {c, s},
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for somes > % Then the following estimate holds:

(T, ®) = (T, Un) w2 SChmin(l’s)( Y 1Y e @) + leurly? [aeq,)
j€{ec,s}

+ ||curlcurlyj||HS(Ql) + Hpj”HS(Ql) + chrlpriHHS(Ql) + ||curl curlpj||HS(Ql)>,

where the constart’ is independent of the mesh size
Proof. The key tools of this proof are the the Cea-type estimat® {n combination with
the approximation properties in Lemrial and Lemma/.2. Indeed, we have

inf A—A 1 < Cllcurly — Ilcurl
AERTY(Kn) || h||HH é(divF,F) > || y Y||H(cur1 Q1)

< O ([[eurly |lae o, + [leurleurly|lusa,))

and

inf — < —1II
thJ\lfr'lel(Th) ||y YhHH(curl,Ql) = ||y yHH(curl,Ql)

< Ch™ ) (|ly|lg= (o) + lleurly|lmgsq,)) -

By applying the previous two estimates to each componenh@fproduct spac#/?, the
desired result follows. ]

Of course, the previous result also holds for all mokles 0, ..., N and therefore also
for the multiharmonic case by summing over all modes 0, ..., N.

8. Conclusion. The method developed in this work shows great potential dbrirsg
distributed optimal control problems for multiharmoniadgdurrent problems in an efficient
and optimal way. The key points of our method are the usagenafnastandard time dis-
cretization technique in terms of a truncated Fourier seiespace discretization in terms
of a symmetric FEM-BEM coupling method, and the constructbparameter-independent
solvers for the resulting system of equations in the frequatomain. The theory devel-
oped in this paper establishes a theoretical estimate afdheergence rate of MinRes as a
solver when our proposed preconditioner is applied. Dudn¢onatural decoupling of the
frequency domain equations, an efficient parallel impleta@m of the solution procedure is
straightforward.

Indeed, the theory developed in this paper shows two pdisisibito construct efficient
and parameter-robust solvers:

e If the theoretical preconditioner corresponding to thenmdr- ||, can be replaced
by an efficient and parameter-robust practical preconuktionve obtain a fully para-
meter-robust solver. This issue is subject to future resear

e Otherwise, we can use the canonical preconditioner casrepg to the simpler
norm || - || z. This preconditioner can be realized by standard preciondits, but
we have to pay the price that we loose robustness with regpdu reluctivityw.

In some applications, it is reasonable to add so-called bastcaints in the conducting
domain$; for the controlu or/and the statg to an optimal control problem like3(1)-(3.2).

In the standard approach, these constraints can be hangladsimple projection to the
box [33], leading to a non-linear optimality system that can be sdlgy superlinearly con-
vergent semi-smooth Newton method?,[27]. Unfortunately, in the multiharmonic ap-
proach, box constraints far or/andy cannot be handled in such an easy way. However, box
constraints for their Fourier coefficients can be treatedish a projection. Indeed, using
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the framework of 20] and the preconditioners constructed in our work, efficesivers for
the Jacobi-systems, which arise at each step of the senuteriewton method applied to
the latter mentioned constrained optimization problenas, lse constructed. The resulting
solvers are at least robust in the discretization param&tand NV; cf. [29].

A general time-periodic desired stagg can be approximated in terms of a truncated
Fourier series, i.e., a multiharmonic representation.réfoee, we introduce a time-discreti-
zation error due to the truncation of the Fourier series.usedssume that the solution of the
interior problem be as regular &g, p) € H"((0,T), H(curl, Q;)?)NH?"((0,T),L2(1)?)
forsomer > 1 and(y(-,t), p(-,t)) € H*(curlcurl, Q;)? for somes > 1. Then an a-priori
error estimate for the space and time discretization efrorder O (h™*(15) + N=7) can be
shown. Therefore, for smooth desired states, we obtaintehigrder of convergence.

Anyway, the preconditioners proposed and analyzed in thgepcan be useful for all
these cases, too. The application of our solver to practioattlems, including different
control and observation domains or the presence of contfahd state constraints, will be
presented in a subsequent paper.
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