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CONFORMAL MAPPING OF CIRCULAR MULTIPLY CONNECTED DOMAINS
ONTO SLIT DOMAINS *

ROMAN CZAPLAT, VLADIMIR MITYUSHEV f, AND NATALIA RYLKO ¥

Abstract. The method of Riemann—Hilbert problems is used to unify andtpbfy construction of conformal
mappings of multiply connected domains. Conformal mappings lafrary circular multiply connected domains
onto the complex plane with slits of prescribed inclinatians constructed. The mappings are derived in terms of
uniformly convergent Poincarseries. In the proposed method, no restriction on the tmeati the boundary circles
is assumed. Convergence and implementation of the numericabchath discussed.
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1. Introduction. Various numerical methods for conformal mappings of mitigon-
nected domains were discussed in the recent book editedibpat [L0]. When studying
conformal mappings between multiply connected domairis,dbnvenient to introduce the
canonical domains and to study conformal mappings of ayitiomains onto these canon-
ical domains. Multiply connected domains in the extendadmex plane whose boundaries
consist of mutually disjoint circles form one of the most ionfant classes of the canoni-
cal domains. Another class of the canonical domains canefsslit domains bounded by
mutually disjoint parallel (concentric) slits. This claisswell studied theoretically and nu-
merically. Domains bounded by mutually disjoint arbithariented slits are important in
fracture mechanics. Therefore, effective constructiothefconformal mappings of such do-
mains onto circular domains is important for both theomdtand practical applications. The
Schwarz—Christoffel mappings include such mappings asi@peases. At the same time,
domains with polygonal boundaries can be considered asdases of the slit domains.

DeLillo and Kropf [7] (see also references therein) and DelLillo et @.deduced com-
putationally effective formulae for the Schwarz—Chrigbiand canonical slit mappings in
terms of the special infinite products for domains obeyinmeaeometrical restrictions.
Crowdy [3, 4, 5] expressed these infinite products in terms of the Scholtlgin prime
functions. Highly accurate numerical methods based ongkenethods were developed by
Sanawi et al. 18, 19 by reduction to linear integral equations of the secondikin

Riemann—Hilbert problems for multiply connected domaixglieitly or implicitly arise
in the above investigations, since construction of condmMmappings can be reduced to the
solution of Riemann—Hilbert problemd4, 21]. Hence, progress in constructive solution
of Riemann—Hilbert problems yields numerical algorithmgdonstruct conformal mappings.
The review R1] contains some results following this line. The resultsserged in 1] are
based on absolutely convergent series and correspondjogtams which can be construc-
tively applied to multiply connected domains obey georsetriestrictions; see also similar
restrictions in B, 4, 7]. In order to use analogous computational schemes in gec&sas,
Riemann—Hilbert problems were stated in a form which inekiddditional polynomials with
undetermined coefficient2]]. This complicates direct iteration schemes, since antiahdil
system of linear algebraic equations arises. A similar m@thased on a Riemann—Hilbert
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problem with negative winding number was used for conformappings of multiply con-
nected domains close to circular. The computability of comial mappings onto the canoni-
cal domains was discussed by Andreev and McNicHgll [

In this paper, we use the results2] 13, 14] to unify and to simplify applications of
the method of Riemann—Hilbert problems to conformal maggiof multiply connected do-
mains. The theoretical foundation of the method for genardtiply connected domains was
given in [12]. It is based on the generalized Schwarz method for nontaqweing domains
[11] (Einzelschrittverfahren and Gesamtschrittverfahrematations of £1]). In this paper,
the general method is applied to construct conformal mayspad arbitrary circular multiply
connected domains onto the complex plane with slits of pitgsd inclinations. The map-
ping is derived in terms of the uniformly convergent Poirgcaeries 4.13). In the proposed
method, no restriction on the location of the boundary esdls assumed. Undetermined
constants are used but only in the right hand part of the banyntbnditions, which does not
complicate the explicit iterative method.

An implementation of the method to numerical solution of Riemann—Hilbert prob-
lem is based on the method of functional equations. FirstRemann-Hilbert problem is
written as arR—linear problem 12]. Next, the latter problem is reduced to a system of func-
tional equations (without integral terms) with respectuadtions analytic in the disks, the
complement of the multiply connected domain to the complarg. The method of succes-
sive approximations is justified for this system in a funeéibspace in which convergence
is uniform. Straightforward calculations of the successapproximations yields a Poinéar
type series4.13. The Poinca& series converges uniformly for any multiply connected do-
main without any geometrical restrictiof4]. This allows the application of the algorithms
of Delillo et al. [6] and Wegmann41] for arbitrary multiply connected domains in their
simplest version. The main modification is the addition efrte with a fixed finite pointw
into (4.13. This simple correction resolves the problem of conveegeoutlined in [L4].

A number of numerical methods have been developed to imastmultiple crack inter-
actions in fracture mechanics. Most of these methods censidakly interacting cracks or
parallel cracks. There are a limited number of works reladgrdgher order multiple crack in-
teractions, since a huge computational effort is needethéosolution. Different inclinations
of the cracks complicate numerical schemes. The higher ondétiple crack interactions
are the main point of the investigations, because the nealexnalysis is simplified if cracks
are sufficiently far away from each other and the number ofkgas small. Therefore, not
all generally presented methods can be applied in praatmaputations for general loca-
tions of the cracks. Muravin and Turkelq] modified the Element Free Galerkin method
to get higher order multiple crack interactions. The resoftSectiornb of the present paper
can be viewed as analytical solutions to higher order meliipack interaction problems for
Laplace’s equation. Such analytical approximate formwaee not known even in lower
order multiple crack interactions.

2. Riemann—Hilbert and R—linear problems. Let z = x + iy denote a complex vari-
able on the complex plarf@ Consider non—overlapping disks, = {z € C: |z—ax| < ri},
k=1,2,...,n. Let the boundary o), the circleoDy, be oriented in the counterclockwise
direction and letD denote the complement of the closed disks- a;| < r in the extended
complex planeC = C U {o0}. Consider the second complex varialgle= u + iv on the
complex plane with slit§'; lying on the lines,

(2.1) — sin agu + cos apv = ¢,

wherec,, are real constants. Lé?’ denote the complement of all the segmdntgso C. Let
¢ = ¢(z) be a conformal mapping of the circular multiply connectedndo D onto D',
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which transforms the circle: — ay| = 7, to the slitT'. For definiteness, it is assumed that
©(z) satisfies the hydrodynamic normalization at infinity,

(2.2) gp(z):z—l—goo—&—ﬂ—i-%?—&—....
z oz

Such a conformal mapping always exists and is unique up todtnay additive constant for
the given inclinationsy [8]. It follows from (2.1) that(z) satisfies the following Riemann—
Hilbert problem [L2],

(2.3) Imle " o(t)] =cp, |t—ar| =71k k=1,2,...,n,

wherec;, are undetermined constanisy stands for the imaginary part. The problethd)
with ¢, = 0 in classes of meromorphic functions was investigate@@j. [

LEMMA 2.1. The problenm(2.2—(2.3) has a unique solution up to an arbitrary additive
constant.

Proof. One of the solutions(z) exists as a conformal mapping. Leétz) be another
solution of @.2—(2.3). Then the functiony(z) = ¢(z) — ¢(z) is regular at infinity and
satisfies 2.3),

(2.4) Imle " ¢(t)] = cx, |t—ar|=r, k=1,2,...,n,
with appropriate constants. Equations2.4) can be also written in the form
(2.5) Refie" ¢(t) —cp] =0, |t—ap| =1, k=1,2,...,n,

In order to prove thad(z) = constant, we follow Vekua’s lines 20]. Let

(2.6) t(s) = ar + riexp <:>

be the complex equation of the cirdle— a| = 7 with a natural parametet. Differentiate
(2.4 along|t — aj| = 7 with respect tos,

Im[e™ ¢ (t)t.] =0, |t —ax| =1, k=1,2,...,n.
Hence, the functioa—‘“* ¢’ (¢)t, is real on|t — ax| = 1. Multiply (2.5) by this function,
(2.7) Relip(t)¢' ()t — cke ™ ¢/ ()] =0, |t —ap| =7k, k=1,2,...,n.

Integrate 2.7) on s overdD,
(2.8)

Re
oDy

i / o) (t)dt + »_ cre™ " ¢’(t)dt] =0, |t—ap|=rk, k=1,2,...,n.
JOD k=1

Here, the relatiodD = — U}_, dD, is used. Each integrqiaDk ¢'(t)dt in (2.8) is equal
to zero, since the increment ¢ft) along every circleédD;, vanishes. Application of Green’s
formula,

1
/ wzdrdy = — wdz,
D 2t Jop

to the first integral in2.8) yields

/ 16 (2)|2dady = 0.
D
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Therefore(z) is a constantD

REMARK 2.2. One can see that Lemrfdl is valid for an arbitrary multiply connected
D with smooth boundary.

The problem 2.3) can be reduced to tHe-linear problem 4],

(2.9) o(t) = i(t) + eQia’“gpk(t) + ey, [t —ag| =71k, k=1,2,...,n,

wheregy(2) is analytic in|z — ax| < 7, and continuously differentiable i — aj| < ry.
Differentiate @.9) with respect tos along the circlegt — ay| = r; and divide the results by
t'(s) = 1% calculated using2.6),

2
(2.10)  P(t) = Pu(t) — > (tikak) Urt), Jt—akl =71 k=1,2,...,n,
wherey(z) = ¢'(z) andyy,(z) = ¢} (2).
3. Functional equations. The R-linear problem Z.10 can be reduced to functional
equations. Let
7.2

Hy = =2+ ap,
Z — G

denote the inversion with respect to the cirgle- a,,,| = r,,,. Following [12, 14] introduce
the function,

) 27—/ N
V)4 L e (328) o (31 )» Iz el <1

B(z) = k=1,2,...,n,

U(2) + Py ¥ (Zfrgm)Q P (Z{m)), z €D,

analytic in the domain®;, (k = 1,2,...,n) andD. Calculate the jump across the circle
|t — ak| =Tk,

Api= () = & (1), |t — ax| = .

where®™ (t) := lim,_; ,ep ®(2), = (t) := lim,_; ,ep, P (z). Using .10 we get
Ay = 0. It follows from the principle of analytic continuation thét(z) is analytic in the
extended complex plane. Moreoveioo) = ¢'(c0) = 1yields®(oo) = 1. Then Liouville’'s
theorem implies tha®(z) = 1. The definition of®(z) in |z — ax| < r yields the following
system of functional equations,

(3.1)

2
Yi(z) = — Z e2iom (z . > Ui (z(*m)) +1, |z—ap| <rp, k=1,2,...,n.
m

m#k

Letyy(z),k =1,2,...,n, be asolution ofE.1). Then the function)(z) can be found from
the definition of®(z) in D,

n 2 - 00000
_ 210y, T'm %
32 ()= ;L:; e (z - am) G (2) +1, 2€DUID,
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4. Method of successive approximationsSolution to the functional equation3.() is
based on the following general resuli.[

THEOREMA4.1. Let A be a compact operator in a Banach spagand letf € B. If, for
any complex number satisfying the inequalitj| < 1, the equation,

r = vAx,
has only the zero solution, then the unique solution of thexgon,
x = Ax + f,

can be found by the method of successive approximationsaggreximations converge in
BB to the solution

Introduce a spac# (D) consisting of functions analytic ib* = U?_, Dy, and Hlder
continuous in the closure @+ endowed with the norm,

w(t)| —wl(t
(41) HWH = sup |w(7‘)| + sup M
teaD+ tiocoDt |t —t2]

)

where0 < o < 1,9D" = U}_,0Dy, = —9D is the boundary oD . The spacé{(D*) is
Banach, since the norm iH(D™) coincides with the norm of functionsdttler continuous
ondDT (sup on DT U ADT in (4.1) is equal tosup on D). It follows from Harnack’s
theorem that convergence in the spatieD™) implies the uniform convergence in the closure
of DT.

THEOREM 4.2. The systen(3.1) has a unique solution for any circular multiply con-
nected domairD. This solution can be found by the method of successive sippaitions
convergent in the spadd(D™), i.e., uniformly convergent in every digk— ax| < ry.

Proof. Let |v| < 1. Consider equations ik (D) with a compact operator on the right
side [12],

2 - 00000

. Tm B

(4.2) Pr(z) = —v Y eom (z - am) U (2m)s 2= anl Srus k=120,
m#k

Let ¢, (z) be a solution 0f4.2). Introduce the functio(z) analytic inD and Hblder con-

tinuous in its closure as follows,

n 2
(4.3) W(z) = —v Y eZem (z”“) U (z;m)), 2 e DUaD.

—a
m=1 m

Calculating the difference (t) — ¢ (t) on each|t — ax| = 7, we arrive at théR—linear
conjugation relations,

2
; T
@0 60 = u(t) = verer () @, el =
Moreover, @.3) implies that(oco) = 0. Let|v| < 1. According to P] the R—linear problem
(4.4) has only zero solutions. Hence, the systén?)(also has only zero solutions. Consider
now the casév| = 1, wherev = €% for somef). Then @.4) can be written in the form

2
(45) 672(9+ak)w(t) —_ 671(0+ak)wk(t) o eZ(GJrak) <t_kak> ’l/)k(t), |t _ ak| = 7.
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Integration of @.5) with respect tos yields

(46) eiiakd)(t) = e gf)k(t) + etk gbk(t) + dy, ‘t — ak| =Tk,

where¢'(2) = e~¥(2), ¢, (2) = e *i(2), di are constants of integration andz) is
analytic inD. The imaginary part of4.6) gives the problem,

Im eiiakd)(t) =Im dka ‘t - ak| =Tk,
which has only constant solutions in accordance with LerirhaThen, &.6) yields
Re eiiakqﬁk(t) = hk, |t — ak| =Tk,

for some constank,. Therefore, each,(z) is also a constant. Then(z) = 0 and
Yi(z) = 0.

Theoremd.lyields the convergence of the method of successive appatixins applied
to the system3.1). O

Let ¢, (z) be a solution to the system of functional equatidhg)( Letw € D be a fixed
point not equal to infinity. Introduce the functions

@7 on() = [ a0+ bnut), - anl v m=120m,
Wim)
and

(4.8) w(z) = i eem {d’m (#m) —om (w’&mﬂ , zeD.

m=1

The functionsv(z) and¢,,(z) analytic inD and inD,,,, respectively, and continuously
differentiable in the closures of the domains considerede Can see from4(7) that the
function ¢,,(z) is determined by}, (z) up to an additive constant which vanishes4rgj.
The functionw(z) vanishes at = w. Investigate the functiow(z) on the boundary oD. It
follows from (4.8) andt = ) (It — ax| = ri) for each fixedk that

(4.9) w(t) = e*ox {@c(t) — bk (wg‘k))] + Wk(t),

where

0= 3 fon () - om (07

m#£k

Using the relation12]

d 7% rm N TN
a P’m <Z<>)] - <z_"£m> O () 12 = aml > i

calculate the derivative

Vi) == D e¥on ( f”;mf Y (Zm)-

m#k
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Application of (3.1) yields

Ui(2) =¥e(2) =1, |z —ai| < 1.
Then @.9) and @.7) imply that

eTIu(t) = e [¢k OREY (wz‘mﬂ e or(t) — b del, [t — an] =i,
wheredy, is a constant of integration. Calculating the imaginant péathe relation gives
(4.10) Im[e " (w(t) +t)] = pr, |t — ar| = &,

wherepy, is a constant. Comparing (L0 and @.3) and using Lemma&.1we conclude that
the required conformal mapping has the form

(4.11) v(z) = z + w(z) + constant,

wherew(z) is calculated by4.8).

Application of the method of successive approximations3t@)@nd term-by-term inte-
gration of the obtained uniformly convergent series yidldsexact formula,
(4.12)

or(2) =qp + 2+ Z e (2(k1) — Wiky)) Z Z 2k = k) (28 ) = Wik
k1#k k1#k ka#k1

2i(og, —p, +x *
FYL D Y ) G Wigkk) s 12— ak] <

k1#k ka#k1 k3#ka

Using @.8) and @.12), we write the function4.11) up to an arbitrary additive constant in the
form

(413)  p(z) =2+ Z 2mk(z )~ Wy T Z Z k=) (20 4 — Wi k)
k=1

k=1 k1 #k

+ Z Z Z Bilen= akl+ak2 ( (k2k1k) Ekkzk?lk)) RIEEER

k=1 k1 £k ka#£k1

5. Numerical examples.Following [6, 7] one can use formulad(13 in computations.
We use another implementation based on the functional iemsa@B.1). The method of suc-
cessive approximations is applied t8.1). We start with the initial guesa;;(o)( ) =1,
k =1,...,n. The iteration is then given by

it+1 A m it —
l(€ ZeQLx (Zam> ()(( ))—|—1 |z—a;€\§r;€,k—1,...,n.

m#k

The approximations converge uniformly for any location ohroverlapping disks. Further,
the functioni(z) is constructed by3.2). The conformal mapping(z) is constructed by
integration ofy(z). The results reported here are from a Mathem&idmplementation.
The functionsy(z) andp(z) are calculated in a symbolic form that has advantages iri-appl
cations. For instance, this method can yield analyticahidae to describe the macroscopic
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properties of fractured media; see the next section. Exasngle presented in Figs.1-5.2.
Details of the numerics are given in Tab4 and5.2. Note that in this symbolic implemen-
tation, the cost of each iteration increases rapidly as tmeher of iterations increases; see
Table5.1 Also, note that the number of iterations needed to achigreem level of accuracy
increases as the circles become closer to touching; see Fabl(A preliminary numerical
method, similar to21, Sec. 12.4], which only updates values of m%t)(z)’s on the circles,

|z —ar| = 7k, using Fourier series, has been implemented ATMB . It is much faster than
the symbolic calculation, but does not yield analytic folagu We plan to report on tests of
this method in a future paper.)

The speed at which4(13 converges to its limit (the rate of convergence) depends on
the choice of the poini. The pointw = oo is the unique exceptional point i for which
the series4.13 can diverge [4]. This unlucky infinite point tacitly was taken in previous
numerical methods7] 11] which led to geometrical restrictions to get absolutelyargent
algorithms. Ifw € D\{co}, the series4.13 always uniformly converges. However, con-
vergence can be slow because of the eventual conditionabogence. Our computations
show that the rate of convergence is high when the poiig close to all the centeks, and
simultaneously is far away from the surrounding centers: ifstance, in Fig5.2, w = g
is the geometrical center dp, butw = 0 andw = g are equidistant from four surrounding
points. For this reason we put = 0 at “the middle ofD” in the computations presented in
Figs.5.1-5.2

=05

: i) ﬁ
SREETEEEI LREE m FR Y et — —]
L 0.5

—05[

FiG. 5.1. Conformal mapping of the exterior of 3 disks with the centdra; = % az = % e%”,
az = % e~ 3™ ofthe radii,r1 = 72 = r3 = 0.2, onto the plane with slits of the inclinations; = 0, a2 = %,
as = 3, respectively.

6. Application to multiple crack interaction. The present section is based on the re-
sults [L6] where the dipole matriyM for circular inclusions were analytically calculated. The
effective conductivity tensoA of the dilute composites can by obtained through the dipole
matrix M [17],

B v v -1 3
6.1) A=1-ZMm <I+§M) + O,
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FIG. 5.2. Conformal mapping of the exterior of 12 disks with the ceme'r%[ml - % + i(ma —
%)] (m1 = 0,1,2,3, ma = 1,2,3) of the radii 0.1 onto the plane with slits of the inclinations
2.45,3.00,1.21,0.88,2.37361, 2.45,1.98, 2.37,0.75, 2.74,0.23, 2.36 randomly chosen of0, 7).

TABLE 5.1
Dependence of the CPU time spent in the Mathem&tiarnel on the number of iterations for three disks.

it | time(s) it | times(s)
0| 0.08 6 10.3
1 0.20 7 29.3
2 2.44 8 107.4
3 6.17 9 436.2
4 7.28 10| 1902.8
5] 5.13

wherev is the concentration of inclusions aiids the identity matrix. Before computation of
the dipole matrix, we note that it is invariant under confatrmapping. Therefore, formula
(6.1) and the results1e] for circular holes can be applied to fracture materials bg of the
conformal mapping4.13.

Let G be an arbitrary multiply connected domain bounded by pigise smooth curves
0Gy, k =1,2,...,n. Letn(r) denote the unit outward normal vectordé:;, at the pointr
written as a complex value. Followind§] consider theéR—linear condition,

PO (r) = (1) = PP () + €, 7 € Gk, b =1,2,.

3
—~
N
._.'

where¢ = 1 or ¢ = —i. The function)(¢)(7) at infinity has the asymptotic behavior

()
VO (1) ~ m* 1 +0 L .
il

27 T2
The matrix
Rem®  Im m®
(6.2) M= ( Rem(=  Im m(=9 )

is called the dipole matrix.

The dipole matrix 6.2) has the same form for the potential§) (z) and ¥ (€ (¢) related
by the conformal mapping = ¢(z) given by @.13. Two iterations of the scheme described
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TABLE 5.2
Details of the numerics are given for the domains with theesaentersaj, and inclinations,«;., as the
domain in Fig.5.1, but with increasing radiir; = ro = r3 = r. Data for each radius«) are the computed values
of the inclinations &), the maximal deviation of the computed points on the sbis tthe line approximationsiy,
and the lengths of the slitg)(at each step of the iteratiori#). Note that the number of iterations increasesras
approaches).5, where forr = 0.5 the circles would touch.

slita=0 S|ita=% S|ita=%

it « d V4 « d £ « d V4

r=20.3

0.0722  0.0525 1.2644 | 0.4854 0.0737 1.1286 | 1.4933 0.0199 1.2084
0.0028 0.0060 1.3209 | 0.5246 0.0043 1.0659 | 1.5682 0.0145 1.1961
0.0014 0.0011 1.3108 | 0.5236 0.0019 1.0749 | 1.5706 0.0008 1.1761
0.0002 0.0002 1.3104 | 0.5237 0.0002 1.0760 | 1.5706 0.0003 1.1777
0.0000  0.0000 1.3105 | 0.5236  0.0000 1.0757 | 1.5708 0.0000 1.1780

= w N = O

r=04

0.1176 0.1398 1.7706 | 0.4616 0.2054 1.4479 | 1.4369 0.0672 1.6384
0.0035 0.0457 1.8999 | 0.5285 0.0315 1.3405 | 1.5643 0.0782 1.5653
0.0108 0.0169 1.8384 | 0.5204 0.0220 1.3862 | 1.5682 0.0093 1.4678
0.0023 0.0038 1.8314 | 0.524 0.0061 1.3894 | 1.5676 0.0087 1.4874
0.0009 0.0017 1.8358 | 0.5242 0.0011 1.3851 | 1.5700 0.0022 1.4935
0.0003 0.0004 1.8351 | 0.5235 0.0007 1.3855 | 1.5704 0.0005 1.4914
0.0000 0.0002 1.8350 | 0.5236 0.0001 1.3857 | 1.5707 0.0002 1.4913

DT W= O

r =0.49

0.1555 0.2729 2.3062 | 0.4417 0.4297 1.7130 | 1.3804 0.1564 2.0700
0.0219 0.2686 2.5205 | 0.5378 0.1542 1.6022 | 1.4208 0.4744 1.8432
0.0459 0.1350 2.2575 | 0.4947 0.1665 1.7339 | 1.5415 0.0769 1.6625
0.0189 0.0807 2.3054 | 0.5209 0.1046 1.7020 | 1.5534 0.1635 1.6509
0.0253 0.0907 2.2539 | 0.5383 0.0544 1.6644 | 1.5466 0.0872 1.7374
0.0063 0.0424 2.2659 | 0.5164 0.0383 1.6728 | 1.5496 0.0852 1.6580
0.0013 0.0294 2.2079 | 0.5254 0.0373 1.6672 | 1.5587 0.0507 1.6707
0.0049 0.0219 2.2160 | 0.5250 0.0124 1.6554 | 1.5638 0.0279 1.6549
0.0064 0.0193 2.2184 | 0.5222 0.0149 1.6567 | 1.5642 0.0195 1.6547
0.0013 0.0075 2.2164 | 0.5241 0.0045 1.6597 | 1.5667 0.0102 1.6455
0.0005 0.0057 2.2088 | 0.5239 0.0043 1.6603 | 1.5690 0.0078 1.6451

© 00O U= W~ O

—
o

in [16, formulae (2.8), Thm 2.1] yield the following approximataiulae,

- wlEa £x ()]

k=1 m#k

2
o= 2 S 305 (1)

k=1 m#k

The above formulae are obtained in the circular domiaion the plane.. The same formulae
hold for the conformally equivalent domaiR’ with slits on the plan€. In order to get
formulae in terms of the geometrical parameters of the dom¥j the inverse mapping to
(4.13 has to be investigated. This study and higher order formfdathe dipole matrix will
be obtained by applications of the iterative scheff} jn a separate paper.
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7. Discussion.A numerical method for conformal mappings of circular npullti con-
nected domains onto the plane with slits of prescribed mations is constructed in the
present paper. First, the problem is reduced to the Rientditimert problem ¢.3) which can
be written in the form of thé&®—linear problem.10). The latter one is reduced to the system
of functional equations3(2). These functional equations have the following two adages.
They contain only compositions of the functions (not anygnals) easily realized in sym-
bolic computations. Fewer iterations are needed to yieldedull approximation. Moreover,
uniform convergence takes place for any locations of thksdighese features yield a uni-
fied method based on direct iterations to construct confomagopings without geometrical
restrictions imposed in the previous works.
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ments to the paper and to Tom DeLillo for stimulating disomss and for sharing his imple-
mentation of their method in MrLAB.
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