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CONFORMAL MAPPING OF CIRCULAR MULTIPLY CONNECTED DOMAINS
ONTO SLIT DOMAINS ∗

ROMAN CZAPLA†, VLADIMIR MITYUSHEV †, AND NATALIA RYLKO ‡

Abstract. The method of Riemann–Hilbert problems is used to unify and to simplify construction of conformal
mappings of multiply connected domains. Conformal mappings of arbitrary circular multiply connected domains
onto the complex plane with slits of prescribed inclinationsare constructed. The mappings are derived in terms of
uniformly convergent Poincaré series. In the proposed method, no restriction on the location of the boundary circles
is assumed. Convergence and implementation of the numerical method are discussed.
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1. Introduction. Various numerical methods for conformal mappings of multiply con-
nected domains were discussed in the recent book edited by Kühnau [10]. When studying
conformal mappings between multiply connected domains, itis convenient to introduce the
canonical domains and to study conformal mappings of arbitrary domains onto these canon-
ical domains. Multiply connected domains in the extended complex plane whose boundaries
consist of mutually disjoint circles form one of the most important classes of the canoni-
cal domains. Another class of the canonical domains consists of slit domains bounded by
mutually disjoint parallel (concentric) slits. This classis well studied theoretically and nu-
merically. Domains bounded by mutually disjoint arbitrarily oriented slits are important in
fracture mechanics. Therefore, effective construction ofthe conformal mappings of such do-
mains onto circular domains is important for both theoretical and practical applications. The
Schwarz–Christoffel mappings include such mappings as special cases. At the same time,
domains with polygonal boundaries can be considered as limit cases of the slit domains.

DeLillo and Kropf [7] (see also references therein) and DeLillo et al. [6] deduced com-
putationally effective formulae for the Schwarz–Christoffel and canonical slit mappings in
terms of the special infinite products for domains obeying some geometrical restrictions.
Crowdy [3, 4, 5] expressed these infinite products in terms of the Schottky–Klein prime
functions. Highly accurate numerical methods based on kernel methods were developed by
Sanawi et al. [18, 19] by reduction to linear integral equations of the second kind.

Riemann–Hilbert problems for multiply connected domains explicitly or implicitly arise
in the above investigations, since construction of conformal mappings can be reduced to the
solution of Riemann–Hilbert problems [14, 21]. Hence, progress in constructive solution
of Riemann–Hilbert problems yields numerical algorithms to construct conformal mappings.
The review [21] contains some results following this line. The results presented in [21] are
based on absolutely convergent series and corresponding algorithms which can be construc-
tively applied to multiply connected domains obey geometrical restrictions; see also similar
restrictions in [3, 4, 7]. In order to use analogous computational schemes in general cases,
Riemann–Hilbert problems were stated in a form which includes additional polynomials with
undetermined coefficients [21]. This complicates direct iteration schemes, since an additional
system of linear algebraic equations arises. A similar method based on a Riemann–Hilbert
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problem with negative winding number was used for conformalmappings of multiply con-
nected domains close to circular. The computability of conformal mappings onto the canoni-
cal domains was discussed by Andreev and McNicholl [1].

In this paper, we use the results [12, 13, 14] to unify and to simplify applications of
the method of Riemann–Hilbert problems to conformal mappings of multiply connected do-
mains. The theoretical foundation of the method for generalmultiply connected domains was
given in [12]. It is based on the generalized Schwarz method for non–overlapping domains
[11] (Einzelschrittverfahren and Gesamtschrittverfahren innotations of [21]). In this paper,
the general method is applied to construct conformal mappings of arbitrary circular multiply
connected domains onto the complex plane with slits of prescribed inclinations. The map-
ping is derived in terms of the uniformly convergent Poincaré series (4.13). In the proposed
method, no restriction on the location of the boundary circles is assumed. Undetermined
constants are used but only in the right hand part of the boundary conditions, which does not
complicate the explicit iterative method.

An implementation of the method to numerical solution of theRiemann–Hilbert prob-
lem is based on the method of functional equations. First, the Riemann-Hilbert problem is
written as anR–linear problem [12]. Next, the latter problem is reduced to a system of func-
tional equations (without integral terms) with respect to functions analytic in the disks, the
complement of the multiply connected domain to the complex plane. The method of succes-
sive approximations is justified for this system in a functional space in which convergence
is uniform. Straightforward calculations of the successive approximations yields a Poincaré
type series (4.13). The Poincaŕe series converges uniformly for any multiply connected do-
main without any geometrical restriction [14]. This allows the application of the algorithms
of DeLillo et al. [6] and Wegmann [21] for arbitrary multiply connected domains in their
simplest version. The main modification is the addition of terms with a fixed finite pointw
into (4.13). This simple correction resolves the problem of convergence outlined in [14].

A number of numerical methods have been developed to investigate multiple crack inter-
actions in fracture mechanics. Most of these methods consider weakly interacting cracks or
parallel cracks. There are a limited number of works relatedto higher order multiple crack in-
teractions, since a huge computational effort is needed forthe solution. Different inclinations
of the cracks complicate numerical schemes. The higher order multiple crack interactions
are the main point of the investigations, because the numerical analysis is simplified if cracks
are sufficiently far away from each other and the number of cracks is small. Therefore, not
all generally presented methods can be applied in practicalcomputations for general loca-
tions of the cracks. Muravin and Turkel [15] modified the Element Free Galerkin method
to get higher order multiple crack interactions. The results of Section6 of the present paper
can be viewed as analytical solutions to higher order multiple crack interaction problems for
Laplace’s equation. Such analytical approximate formulaewere not known even in lower
order multiple crack interactions.

2. Riemann–Hilbert and R–linear problems. Let z = x+ iy denote a complex vari-
able on the complex planeC. Consider non–overlapping disksDk = {z ∈ C : |z−ak| < rk},
k = 1, 2, . . . , n. Let the boundary ofDk, the circle∂Dk, be oriented in the counterclockwise
direction and letD denote the complement of the closed disks|z − ak| ≤ rk in the extended
complex planêC = C ∪ {∞}. Consider the second complex variableζ = u + iv on the
complex plane with slitsΓk lying on the lines,

(2.1) − sinαku+ cosαkv = ck,

whereck are real constants. LetD′ denote the complement of all the segmentsΓk to Ĉ. Let
ζ = ϕ(z) be a conformal mapping of the circular multiply connected domainD ontoD′,
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which transforms the circle|z − ak| = rk to the slitΓk. For definiteness, it is assumed that
ϕ(z) satisfies the hydrodynamic normalization at infinity,

(2.2) ϕ(z) = z + ϕ0 +
ϕ1

z
+
ϕ2

z2
+ . . . .

Such a conformal mapping always exists and is unique up to an arbitrary additive constant for
the given inclinationsαk [8]. It follows from (2.1) thatϕ(z) satisfies the following Riemann–
Hilbert problem [12],

(2.3) Im[e−iαkϕ(t)] = ck, |t− ak| = rk, k = 1, 2, . . . , n,

whereck are undetermined constants,Im stands for the imaginary part. The problem (2.3)
with ck = 0 in classes of meromorphic functions was investigated in [20].

LEMMA 2.1. The problem(2.2)–(2.3) has a unique solution up to an arbitrary additive
constant.

Proof. One of the solutionsϕ(z) exists as a conformal mapping. Letϕ̃(z) be another
solution of (2.2)–(2.3). Then the functionφ(z) = ϕ(z) − ϕ̃(z) is regular at infinity and
satisfies (2.3),

(2.4) Im[e−iαkφ(t)] = ck, |t− ak| = rk, k = 1, 2, . . . , n,

with appropriate constantsck. Equations (2.4) can be also written in the form

(2.5) Re[ieiαkφ(t) − ck] = 0, |t− ak| = rk, k = 1, 2, . . . , n,

In order to prove thatφ(z) ≡ constant, we follow Vekua’s lines [20]. Let

(2.6) t(s) = ak + rk exp

(
is

rk

)

be the complex equation of the circle|t− ak| = rk with a natural parameters. Differentiate
(2.4) along|t− ak| = rk with respect tos,

Im[e−iαkφ′(t)t′s] = 0, |t− ak| = rk, k = 1, 2, . . . , n.

Hence, the functione−iαkφ′(t)t′s is real on|t− ak| = rk. Multiply (2.5) by this function,

(2.7) Re[iφ(t)φ′(t)t′s − cke
−iαkφ′(t)t′s] = 0, |t− ak| = rk, k = 1, 2, . . . , n.

Integrate (2.7) ons over∂D,
(2.8)

Re

[
i

∫

∂D

φ(t)φ′(t)dt+

n∑

k=1

cke
−iαk

∫

∂Dk

φ′(t)dt

]
= 0, |t− ak| = rk, k = 1, 2, . . . , n.

Here, the relation∂D = − ∪n
k=1 ∂Dk is used. Each integral

∫
∂Dk

φ′(t)dt in (2.8) is equal
to zero, since the increment ofφ(t) along every circle∂Dk vanishes. Application of Green’s
formula,

∫

D

wzdxdy =
1

2i

∫

∂D

wdz,

to the first integral in (2.8) yields
∫

D

|φ′(z)|2dxdy = 0.
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Therefore,φ(z) is a constant.
REMARK 2.2. One can see that Lemma2.1 is valid for an arbitrary multiply connected

D with smooth boundary.
The problem (2.3) can be reduced to theR–linear problem [14],

(2.9) ϕ(t) = ϕk(t) + e2iαkϕk(t) + ieiαkck, |t− ak| = rk, k = 1, 2, . . . , n,

whereϕk(z) is analytic in|z − ak| < rk and continuously differentiable in|z − ak| ≤ rk.
Differentiate (2.9) with respect tos along the circles|t − ak| = rk and divide the results by
t′(s) = i t−ak

rk
calculated using (2.6),

(2.10) ψ(t) = ψk(t) − e2iαk

(
rk

t− ak

)2

ψk(t), |t− ak| = rk, k = 1, 2, . . . , n,

whereψ(z) = ϕ′(z) andψk(z) = ϕ′
k(z).

3. Functional equations. The R–linear problem (2.10) can be reduced to functional
equations. Let

z∗(m) =
r2m

z − am

+ am

denote the inversion with respect to the circle|t − am| = rm. Following [12, 14] introduce
the function,

Φ(z) :=






ψk(z) +
∑

m 6=k e
2iαm

(
rm

z−am

)2

ψm

(
z∗(m)

)
, |z − ak| ≤ rk,

k = 1, 2, . . . , n,

ψ(z) +
∑n

m=1 e
2iαm

(
rm

z−am

)2

ψm

(
z∗(m)

)
, z ∈ D,

analytic in the domainsDk (k = 1, 2, . . . , n) andD. Calculate the jump across the circle
|t− ak| = rk,

∆k := Φ+(t) − Φ−(t), |t− ak| = rk,

whereΦ+ (t) := limz→t z∈D Φ(z) , Φ− (t) := limz→t z∈Dk
Φ(z). Using (2.10) we get

∆k = 0. It follows from the principle of analytic continuation thatΦ(z) is analytic in the
extended complex plane. Moreover,ψ(∞) = ϕ′(∞) = 1 yieldsΦ(∞) = 1. Then Liouville’s
theorem implies thatΦ(z) ≡ 1. The definition ofΦ(z) in |z − ak| ≤ rk yields the following
system of functional equations,
(3.1)

ψk(z) = −
∑

m 6=k

e2iαm

(
rm

z − am

)2

ψm

(
z∗(m)

)
+ 1, |z − ak| ≤ rk, k = 1, 2, . . . , n.

Let ψk(z), k = 1, 2, . . . , n, be a solution of (3.1). Then the functionψ(z) can be found from
the definition ofΦ(z) in D,

(3.2) ψ(z) = −

n∑

m=1

e2iαm

(
rm

z − am

)2

ψm

(
z∗(m)

)
+ 1, z ∈ D ∪ ∂D.
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4. Method of successive approximations.Solution to the functional equations (3.1) is
based on the following general result [9].

THEOREM 4.1. LetA be a compact operator in a Banach spaceB and letf ∈ B. If, for
any complex numberν satisfying the inequality|ν| ≤ 1, the equation,

x = νAx,

has only the zero solution, then the unique solution of the equation,

x = Ax+ f,

can be found by the method of successive approximations. Theapproximations converge in
B to the solution

x =

∞∑

k=0

Akf.

Introduce a spaceH(D+) consisting of functions analytic inD+ = ∪n
k=1Dk and Ḧolder

continuous in the closure ofD+ endowed with the norm,

(4.1) ||ω|| = sup
t∈∂D+

|ω(t)| + sup
t1,2∈∂D+

|ω(t1)| − ω(t2)|

|t1 − t2|α
,

where0 < α ≤ 1, ∂D+ = ∪n
k=1∂Dk = −∂D is the boundary ofD+. The spaceH(D+) is

Banach, since the norm inH(D+) coincides with the norm of functions Ḧolder continuous
on ∂D+ (sup onD+ ∪ ∂D+ in (4.1) is equal tosup on ∂D+). It follows from Harnack’s
theorem that convergence in the spaceH(D+) implies the uniform convergence in the closure
of D+.

THEOREM 4.2. The system(3.1) has a unique solution for any circular multiply con-
nected domainD. This solution can be found by the method of successive approximations
convergent in the spaceH(D+), i.e., uniformly convergent in every disk|z − ak| ≤ rk.

Proof. Let |ν| ≤ 1. Consider equations inH(D+) with a compact operator on the right
side [12],

(4.2) ψk(z) = −ν
∑

m 6=k

e2iαm

(
rm

z − am

)2

ψm

(
z∗(m)

)
, |z − ak| ≤ rk, k = 1, 2, . . . , n.

Let ψk(z) be a solution of (4.2). Introduce the functionφ(z) analytic inD and Ḧolder con-
tinuous in its closure as follows,

(4.3) ψ(z) = −ν

n∑

m=1

e2iαm

(
rm

z − am

)2

ψm

(
z∗(m)

)
, z ∈ D ∪ ∂D.

Calculating the differenceψ(t) − ψk(t) on each|t − ak| = rk, we arrive at theR–linear
conjugation relations,

(4.4) ψ(t) = ψk(t) − νe2iαk

(
rk

t− ak

)2

ψk(t), |t− ak| = rk.

Moreover, (4.3) implies thatψ(∞) = 0. Let |ν| < 1. According to [2] theR–linear problem
(4.4) has only zero solutions. Hence, the system (4.2) also has only zero solutions. Consider
now the case|ν| = 1, whereν = e2iθ for someθ. Then (4.4) can be written in the form

(4.5) e−i(θ+αk)ψ(t) = e−i(θ+αk)ψk(t) − ei(θ+αk)

(
rk

t− ak

)2

ψk(t), |t− ak| = rk.
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Integration of (4.5) with respect tos yields

(4.6) e−iαkφ(t) = e−iαkφk(t) + eiαkφk(t) + dk, |t− ak| = rk,

whereφ′(z) = e−iθψ(z), φ′k(z) = e−iθψk(z), dk are constants of integration andφ(z) is
analytic inD. The imaginary part of (4.6) gives the problem,

Im e−iαkφ(t) = Im dk, |t− ak| = rk,

which has only constant solutions in accordance with Lemma2.1. Then, (4.6) yields

Re e−iαkφk(t) = hk, |t− ak| = rk,

for some constanthk. Therefore, eachφk(z) is also a constant. Thenψ(z) ≡ 0 and
ψk(z) ≡ 0.

Theorem4.1yields the convergence of the method of successive approximations applied
to the system (3.1).

Letψk(z) be a solution to the system of functional equations (3.1). Letw ∈ D be a fixed
point not equal to infinity. Introduce the functions

(4.7) φm(z) =

∫ z

w∗

(m)

ψm(t)dt+ φm(w∗
(m)), |z − am| ≤ rm, m = 1, 2, . . . , n,

and

(4.8) ω(z) =

n∑

m=1

e2iαm

[
φm

(
z∗(m)

)
− φm

(
w∗

(m)

)]
, z ∈ D.

The functionsω(z) andφm(z) analytic inD and inDm, respectively, and continuously
differentiable in the closures of the domains considered. One can see from (4.7) that the
functionφm(z) is determined byψm(z) up to an additive constant which vanishes in (4.8).
The functionω(z) vanishes atz = w. Investigate the functionω(z) on the boundary ofD. It
follows from (4.8) andt = t∗(k) (|t− ak| = rk) for each fixedk that

(4.9) ω(t) = e2iαk

[
φk (t) − φk

(
w∗

(k)

)]
+ Ψk(t),

where

Ψk(z) =
∑

m 6=k

e2iαm

[
φm

(
z∗(m)

)
− φm

(
w∗

(m)

)]
.

Using the relation [12]

d

dz

[
φm

(
z∗(m)

)]
= −

(
rm

z − am

)2

φ′m

(
z∗(m)

)
, |z − am| > rm,

calculate the derivative

Ψ′
k(z) = −

∑

m 6=k

e2iαm

(
rm

z − am

)2

ψm

(
z∗(m)

)
.
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Application of (3.1) yields

Ψ′
k(z) = ψk(z) − 1, |z − ak| ≤ rk.

Then (4.9) and (4.7) imply that

e−iαkω(t) = eiαk

[
φk (t) − φk

(
w∗

(k)

)]
+ e−iαk [φk(t) − t+ dk], |t− ak| = rk,

wheredk is a constant of integration. Calculating the imaginary part of the relation gives

(4.10) Im[e−iαk(ω(t) + t)] = pk, |t− ak| = rk,

wherepk is a constant. Comparing (4.10) and (2.3) and using Lemma2.1 we conclude that
the required conformal mapping has the form

(4.11) ϕ(z) = z + ω(z) + constant,

whereω(z) is calculated by (4.8).
Application of the method of successive approximations to (3.1) and term-by-term inte-

gration of the obtained uniformly convergent series yieldsthe exact formula,
(4.12)
ϕk(z) = qk + z +

∑

k1 6=k

e2iαk1 (z∗(k1)
− w∗

(k1)
) +

∑

k1 6=k

∑

k2 6=k1

e2i(αk1
−αk2

)(z∗(k2k1)
− w∗

(k2k1)
)

+
∑

k1 6=k

∑

k2 6=k1

∑

k3 6=k2

e2i(αk1
−αk2

+αk3
)(z∗(k3k2k1)

− w∗
(k3k2k1)

) + . . . , |z − ak| ≤ rk.

Using (4.8) and (4.12), we write the function (4.11) up to an arbitrary additive constant in the
form

(4.13) ϕ(z) = z +

n∑

k=1

e2iαk(z∗(k) − w∗
(k)) +

n∑

k=1

∑

k1 6=k

e2i(αk−αk1
)(z∗(k1k) − w∗

(k1k))

+

n∑

k=1

∑

k1 6=k

∑

k2 6=k1

e2i(αk−αk1
+αk2

)(z∗(k2k1k) − w∗
(k2k1k)) + . . . .

5. Numerical examples.Following [6, 7] one can use formula (4.13) in computations.
We use another implementation based on the functional equations (3.1). The method of suc-
cessive approximations is applied to (3.1). We start with the initial guess,ψ(0)

k (z) = 1,
k = 1, . . . , n. The iteration is then given by

ψ
(it+1)
k (z) = −

∑

m 6=k

e2iαm

(
rm

z − am

)2

ψ
(it)
m

(
z∗(m)

)
+ 1, |z − ak| ≤ rk, k = 1, . . . , n.

The approximations converge uniformly for any location of non–overlapping disks. Further,
the functionψ(z) is constructed by (3.2). The conformal mappingϕ(z) is constructed by
integration ofψ(z). The results reported here are from a Mathematicac© implementation.
The functionsψ(z) andϕ(z) are calculated in a symbolic form that has advantages in appli-
cations. For instance, this method can yield analytical formulae to describe the macroscopic
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properties of fractured media; see the next section. Examples are presented in Figs.5.1–5.2.
Details of the numerics are given in Tables5.1and5.2. Note that in this symbolic implemen-
tation, the cost of each iteration increases rapidly as the number of iterations increases; see
Table5.1. Also, note that the number of iterations needed to achieve agiven level of accuracy
increases as the circles become closer to touching; see Table 5.2. (A preliminary numerical
method, similar to [21, Sec. 12.4], which only updates values of theψ(it)

k (z)’s on the circles,
|z−ak| = rk, using Fourier series, has been implemented in MATLAB . It is much faster than
the symbolic calculation, but does not yield analytic formulae. We plan to report on tests of
this method in a future paper.)

The speed at which (4.13) converges to its limit (the rate of convergence) depends on
the choice of the pointw. The pointw = ∞ is the unique exceptional point inD for which
the series (4.13) can diverge [14]. This unlucky infinite point tacitly was taken in previous
numerical methods [7, 11] which led to geometrical restrictions to get absolutely convergent
algorithms. Ifw ∈ D\{∞}, the series (4.13) always uniformly converges. However, con-
vergence can be slow because of the eventual conditional convergence. Our computations
show that the rate of convergence is high when the pointw is close to all the centersak and
simultaneously is far away from the surrounding centers. For instance, in Fig.5.2, w = i

6

is the geometrical center ofD, butw = 0 andw = i
3 are equidistant from four surrounding

points. For this reason we putw = 0 at “the middle ofD” in the computations presented in
Figs.5.1–5.2.

-0.5 0.5

-0.5

0.5

-0.5 0.0 0.5 1.0

-0.5

0.0

0.5

FIG. 5.1. Conformal mapping of the exterior of 3 disks with the centersat a1 = 1√
3

, a2 = 1√
3

e
2
3

πi,

a3 = 1√
3

e−
2
3

πi of the radii,r1 = r2 = r3 = 0.2, onto the plane with slits of the inclinations,α1 = 0, α2 = π

6
,

α3 = π

2
, respectively.

6. Application to multiple crack interaction. The present section is based on the re-
sults [16] where the dipole matrixM for circular inclusions were analytically calculated. The
effective conductivity tensorΛ of the dilute composites can by obtained through the dipole
matrixM [17],

(6.1) Λ = I −
ν

π
M

(
I +

ν

2π
M

)−1

+O(ν3),
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-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.4

-0.2

0.2

0.4

0.6

-0.5 0.0 0.5

-0.4

-0.2

0.0

0.2

0.4

0.6

FIG. 5.2. Conformal mapping of the exterior of 12 disks with the centers at 1

3
[m1 − 3

2
+ i(m2 −

3

2
)] (m1 = 0, 1, 2, 3, m2 = 1, 2, 3) of the radii 0.1 onto the plane with slits of the inclinations

2.45, 3.00, 1.21, 0.88, 2.37361, 2.45, 1.98, 2.37, 0.75, 2.74, 0.23, 2.36 randomly chosen on(0, π).

TABLE 5.1
Dependence of the CPU time spent in the Mathematicac© kernel on the number of iterations for three disks.

it time(s) it times(s)
0 0.08 6 10.3
1 0.20 7 29.3
2 2.44 8 107.4
3 6.17 9 436.2
4 7.28 10 1902.8
5 5.13

whereν is the concentration of inclusions andI is the identity matrix. Before computation of
the dipole matrix, we note that it is invariant under conformal mapping. Therefore, formula
(6.1) and the results [16] for circular holes can be applied to fracture materials by use of the
conformal mapping (4.13).

LetG be an arbitrary multiply connected domain bounded by piece-wise smooth curves
∂Gk, k = 1, 2, . . . , n. Letn(τ) denote the unit outward normal vector to∂Gk at the pointτ
written as a complex value. Following [16] consider theR–linear condition,

ψ(ξ)(τ) = ψ
(ξ)
k (τ) − [n(τ)]2ψ

(ξ)
k (τ) + ξ, τ ∈ ∂Gk, k = 1, 2, . . . , n,

whereξ = 1 or ξ = −i. The functionψ(ξ)(τ) at infinity has the asymptotic behavior

ψ(ξ)(τ) ∼
m(ξ)

2π

1

τ2
+O

(
1

|τ |3

)
.

The matrix

(6.2) M =

(
Re m(1) Im m(1)

Re m(−i) Im m(−i)

)

is called the dipole matrix.
The dipole matrix (6.2) has the same form for the potentialsψ(ξ)(z) andΨ(ξ)(ζ) related

by the conformal mappingζ = ϕ(z) given by (4.13). Two iterations of the scheme described
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TABLE 5.2
Details of the numerics are given for the domains with the same centers,ak, and inclinations,αk, as the

domain in Fig.5.1, but with increasing radii,r1 = r2 = r3 = r. Data for each radius (r) are the computed values
of the inclinations (α), the maximal deviation of the computed points on the slits from the line approximations (d),
and the lengths of the slits (ℓ) at each step of the iteration (it). Note that the number of iterations increases asr

approaches0.5, where forr = 0.5 the circles would touch.

slit α = 0 slit α =
π

6 slit α =
π

2

it α d ℓ α d ℓ α d ℓ

r = 0.3
0 0.0722 0.0525 1.2644 0.4854 0.0737 1.1286 1.4933 0.0199 1.2084
1 0.0028 0.0060 1.3209 0.5246 0.0043 1.0659 1.5682 0.0145 1.1961
2 0.0014 0.0011 1.3108 0.5236 0.0019 1.0749 1.5706 0.0008 1.1761
3 0.0002 0.0002 1.3104 0.5237 0.0002 1.0760 1.5706 0.0003 1.1777
4 0.0000 0.0000 1.3105 0.5236 0.0000 1.0757 1.5708 0.0000 1.1780

r = 0.4
0 0.1176 0.1398 1.7706 0.4616 0.2054 1.4479 1.4369 0.0672 1.6384
1 0.0035 0.0457 1.8999 0.5285 0.0315 1.3405 1.5643 0.0782 1.5653
2 0.0108 0.0169 1.8384 0.5204 0.0220 1.3862 1.5682 0.0093 1.4678
3 0.0023 0.0038 1.8314 0.524 0.0061 1.3894 1.5676 0.0087 1.4874
4 0.0009 0.0017 1.8358 0.5242 0.0011 1.3851 1.5700 0.0022 1.4935
5 0.0003 0.0004 1.8351 0.5235 0.0007 1.3855 1.5704 0.0005 1.4914
6 0.0000 0.0002 1.8350 0.5236 0.0001 1.3857 1.5707 0.0002 1.4913

r = 0.49
0 0.1555 0.2729 2.3062 0.4417 0.4297 1.7130 1.3804 0.1564 2.0700
1 0.0219 0.2686 2.5205 0.5378 0.1542 1.6022 1.4208 0.4744 1.8432
2 0.0459 0.1350 2.2575 0.4947 0.1665 1.7339 1.5415 0.0769 1.6625
3 0.0189 0.0807 2.3054 0.5209 0.1046 1.7020 1.5534 0.1635 1.6509
4 0.0253 0.0907 2.2539 0.5383 0.0544 1.6644 1.5466 0.0872 1.7374
5 0.0063 0.0424 2.2659 0.5164 0.0383 1.6728 1.5496 0.0852 1.6580
6 0.0013 0.0294 2.2079 0.5254 0.0373 1.6672 1.5587 0.0507 1.6707
7 0.0049 0.0219 2.2160 0.5250 0.0124 1.6554 1.5638 0.0279 1.6549
8 0.0064 0.0193 2.2184 0.5222 0.0149 1.6567 1.5642 0.0195 1.6547
9 0.0013 0.0075 2.2164 0.5241 0.0045 1.6597 1.5667 0.0102 1.6455
10 0.0005 0.0057 2.2088 0.5239 0.0043 1.6603 1.5690 0.0078 1.6451

in [16, formulae (2.8), Thm 2.1] yield the following approximate formulae,

m(1) = −2π




n∑

k=1

r2k −

n∑

k=1

∑

m 6=k

(
rkrm

ak − am

)2


 ,

m(−i) = −2π




n∑

k=1

r2k +
n∑

k=1

∑

m 6=k

(
rkrm

ak − am

)2


 .

The above formulae are obtained in the circular domainD on the planez. The same formulae
hold for the conformally equivalent domainD′ with slits on the planeζ. In order to get
formulae in terms of the geometrical parameters of the domain D′, the inverse mapping to
(4.13) has to be investigated. This study and higher order formulae for the dipole matrix will
be obtained by applications of the iterative scheme [16] in a separate paper.
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7. Discussion.A numerical method for conformal mappings of circular multiply con-
nected domains onto the plane with slits of prescribed inclinations is constructed in the
present paper. First, the problem is reduced to the Riemann–Hilbert problem (2.3) which can
be written in the form of theR–linear problem (2.10). The latter one is reduced to the system
of functional equations (3.2). These functional equations have the following two advantages.
They contain only compositions of the functions (not any integrals) easily realized in sym-
bolic computations. Fewer iterations are needed to yield a useful approximation. Moreover,
uniform convergence takes place for any locations of the disks. These features yield a uni-
fied method based on direct iterations to construct conformal mappings without geometrical
restrictions imposed in the previous works.

Acknowledgments. The authors are grateful to the referees for suggesting improve-
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mentation of their method in MATLAB .
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