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CASCADIC MULTIGRID PRECONDITIONER FOR ELLIPTIC EQUATIONS
WITH JUMP COEFFICIENTS *

ZHIYONG LIUT AND YINNIAN HE

Abstract. This paper provides a proof of robustness of the cascadicgridlpreconditioner for the linear finite
element approximation of second order elliptic problems witbreyly discontinuous coefficients. As a result, we
prove that the convergence rate of the conjugate gradiefftadetith cascadic multigrid preconditioner is uniform
with respect to large jumps and mesh sizes.
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1. Introduction. In this paper, we will discuss the cascadic multigrid prefitoned
conjugate gradient method for the linear finite element expration of the second order
elliptic boundary value problem

-V - (wVu) = f, in Q,
(11) U =4dgp, OnFDa
ou
—Wo— = gN, onl'y,
on

whereQ) € R? (d = 1,2,3) is a polygonal or polyhedral domain with Dirichlet bounglar
I'p and Neumann boundadyy. The coefficientv = w(x) is a positive and piecewise
constant function. More precisely, we assume that therdampen disjointed polygonal or
polyhedral regions,,, (m = 1,..., M) satisfyingl J_, ©,, = Q with

m=1

wl,, =wWm, m=1,..., M,
where eachv,, > 0 is a constant. The analysis can be carried through to a moergease
whenw(z) varies moderately in each subdomain.

We assume that the subdomails,, m = 1,..., M, are given and fixed, but may
possibly have complicated geometry. We are concerned Wwithrdbustness of the precon-
ditioned conjugate gradient method with regard to both tleshrsize and jump coefficients.
This model problem is relevant to many applications, sucgraandwater flow I, 9], fluid
pressure predictionLp], electromagnetics/], semiconductor modeling!], electrical power
network modeling §], and fuel cell modeling 14, 15], where the coefficients have large
discontinuities across interfaces between subdomairmsdifferent material properties.

The goal of this paper is to provide a proof of the robustndsth® cascadic multi-
grid preconditioner (CMG-PCQG). In this paper, we improve tlondition nhumber bound for
CMG-PCG toC /(1 — C2h?).

The rest of the paper is organized as follows. In Secfipwe introduce some basic
notation, the PCG algorithm, and some theoretical foundati In Sectior8, we introduce
the cascadic multigrid method and analyze the conditionbarrof the CMG preconditioner.
Section4 contains our conclusions. Followingq], x < y meanse < Cy.
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2. Preliminaries.

2.1. Notation. We introduce the bilinear form

M
a(u,v) = Z Wi (Vu, Vo) r2(,.), 4,0 € HL(Q),

m=1

where H3,(Q) = {v € HY(Q) : v|r, = 0}, and define théd'-norm and seminorm with
respect to any subregidn,,, by

1
ulia,, = IVullog,. lulie, = (ulfq, +lufq,)?.
Thus,
M
a(u,u) = Z wm|u|iﬂm = |uﬁ7w .
m=1
We also need the weightdef-inner product
M
(1w, V)ow = Z win (U, V) L2(0,,)
m=1
and the weighted.?- and H'-norms
3 2 2 41
ullo.w = (w,u)g . lulle = (lullgw + luliw)?.

2.2. The discrete systemsGiven a quasi-uniform triangulatiof, with mesh sizeh,
let

Vi, ={ve HH(Q) :v|, € Pi(7),VT € Tp}

be the piecewise linear finite element space, wiRrelenotes the set of linear polynomi-
als. The finite element approximation df.{) (with homogeneous Dirichlet boundary) is the
functionu € Vj,, such that

a(u,v) = (f,v) —|—/ gnv, Yv € V.

I'n

We define a linear symmetric positive definite operatar);, — V), by
(Au,v)o, = alu,v).
The related inner product and the induced energy norm arateie iy
()a=aly), - lla:=Val, ).
Then, we have the following operator equation
(2.1) Au=F.

Indeed, 2.1) can be reduced to a linear system of equations with coefficrtrix
A= @l aiy = a(603) = [ Vo, Vo,

Here, {¢;}!'_, are natural nodal basis in the spdde For the sake of simplicity, in the
following sections we still viewA as the coefficient matrix.
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2.3. Preconditioned conjugate gradient (PCG) method.The well known conjugate
gradient method is the basis of the preconditioning tealiq be studied in this paper. The
PCG method can be viewed as a conjugate gradient methodedpplithe preconditioned
systems

BAu = BF.

Here, B is a symmetric positive definite operator, known as a preitionér of A. Note
that BA is symmetric with respect to the inner product)z-: (or (-,-)4). Regarding the
implementation of the PCG algorithm, we refer to monogrdghs0, 11].

Letug,k = 0,1,..., be the solution sequence of the PCG algorithm. It is well kmow
that

)
2.2) =l < 2 (%‘;gjﬁ) s — woll

which implies that the PCG method generally convergesiféstéesmaller the condition num-
berk(BA) is.
Consider now the right-preconditioned method for the syst@.1),

ABx =F, wu= Bux.
Simple calculations give

(u,u)a = (2, 2) BT aB>
(U, BAU/)A = (fI)7 qua',‘)BTAB7
(BAu, BAu)s = (ABz, ABx)gr AR -

So, the convergence rate estimate?) is accurate also for the right-preconditioned method.

3. Cascadic multigrid preconditioner. In this section, we introduce the cascadic multi-
grid preconditioner. The cascadic conjugate-gradienhote{CCG-algorithm, in short) was
proposed by P. Deuflhar&][and developed by V. V. Shaidurot?]. In 1996, F. A. Borne-
mann B] extended it to the case where the CG iteration on each reéinelavel is replaced
by some general smoother, like the traditional candidatesreetric Gauss-Seidel, SSOR or
damped Jacobi iteration. They call such “one-way multignethods cascadic multigrid
methods. In this paper, we will apply the ideas of both P. Deufl and F. A. Bornemann.
We only use CG iteration at the finest level while using tiadgl iteration methods on other
levels. That is to say, we will obtain a better preconditioaethe finest level through com-
putation on some coarse levels. And then, By) we can prove the convergence rate of the
cascadic multigrid method.

3.1. Some notation.For problem (1.1) (with homogeneous Dirichlet boundaryeg
a nested family of triangulations, we have the linear finiearent spaces

VocViC---CVp :VCH&(Q)

The finite element approximations at levedre given byu € V, such that

(3.2) a(u,v) = (f,v) +/ gnv, Yv e V.
I'n

The cascadic multigrid method for (1.1) can be defined asvial
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e smoothingn, times of 8.1) on the coarsest level with a given initial guegs= u,,
to obtain an initial guess for the next finer level througlerpblation;

e smoothingm times of 3.1) on the finest level, to obtain a final approximation to
the solution.
Following [3], denoting the basic iterative procedure on each level byoierator.7,
the cascadic multigrid method can be rewritten as:
1. US = UQ,
2. up = Tymeui_1,0=1,2,..., L.
Here 7, .,,, denotesn, steps of the basic iteration applied at legel
We consider the following type of basic iteration for theeagivproblem at levet, with
initial vectorv € V,:

(3.2) U — Tt m, v = Rm, (u— ),

with a linear mappingz,. ..., : Vi, — V; for the error propagation. We call the basic iteration
an energy reducing smoother, if it obeys the smoothing ptigse

—1

h

(3.3) [ Re.m,vlla < c— |2
my

and

(3.4) [Rem,vlla < [[v]la,

foranyv € V.

Here0 < r < 1, andmy is the number of steps of the basic iteration applied at l&vel
As shown in B] and [6], the symmetric Gauss-Seidel, SSOR and damped Jacoltiateeae
smoothers in the sense &.8) and @3.4), with parameter = 1/2. A detailed proof of 8.3
and @.4) is provided in f].

For the sake of simplicity, we writ¢; ,,,, and Ry ,,, as.7; and R, respectively. Then
the right cascadic multigrid preconditionBrcan be defined as:

L
B:H%.
=1

3.2. Eigenvalue analysis of BA.The analysis of the cascadic multigrid preconditioner
relies on the following three lemmas.
LEMMA 3.1.The linear operator

L—1
P= H T A
=1

is bounded orV.
Proof. We only need to prove thdt is continuous at 0. For any, € V;, C V such that
v, — 0, from (3.2) we have

u — %Un = R((U - 'Un)a
u— 0 = Ry(u — 0),
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which implies
Tpvy,, = Rpv,, .
Using 3.4), we have
0 < [|[Zevnlla = [[Revalla < [lonfla — 0,

which implies.%v,, — 0. Since.7; is boundedpP is bounded too. [

LEMMA 3.2.LetD, L, and L™ be the diagonal, lower triangular, and upper triangluar
part of A, respectively. ThetD~tu,u)a < h2(u,u)4, for anyu € V. Hereh = hy, is the
mesh size at the finest level.

Proof. Sinceg; is a piecewise linear function,
Q5 = / w ‘V¢z|2 = wl/ |V¢l|2 2 wihd72.
Q Q;

Following [17], we have
n
(Du,u)q > h?2 Zwﬂuiﬁ,w > h % (u,u) 4 - a
=1

LEMMA 3.3.1f R, satisfieq3.4), then for anyu € V there exist a constant > 0 such
that

(Reu,u)a < m(D_lu,u)A .

Proof. If not, then for any natural numberthere exists,, € V' such that
(Revn,vp)a > n(D g, vp) 4 -

Take u,, = v,/||vnl|la € V, so that||u,||a = 1. By dividing both sides of the above
inequality by||v,,||4, we obtain

_ 1 1 1
(D 1un7un)A < *(Rﬁunaun)A S *HRZun”A”un”A S - .
n n n

SinceV is completeu,, — up in V. Souy € V and|ugl|a = 1. Taking the limit of the
above inequality, we have

(D™ ug, up)a

< 0.
(up, up) A

This is a contradiction with the definition af;. 0

THEOREM 3.4. There exist constants; > 0 and Cs> > 0, which depend only on the
connectivity of the mesh, such that

)\maX(AB> < 017 )\min(AB) Z 1-— 02h2 .
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Proof. To prove the upper bound, we used), (3.4), the Schwarz inequality, and
Lemma3.1 Lettingv = Pu, for anyu € V, we obtain

(u, BAu)a  (u, Tpv)a  (uw,u)a — (u, Rpu)a + (u, Rpv)a

(u,u) (u,u) A (u,u) A
(u, Rpv)a <14 (u, u)XQ(RL’U, RLU)114/2
(u,u) 4 (u,u) A

:1+{Uﬁwam}U2g1+{@WM}u2

(u,u) A (u,u)
[ Pulla

Julla —

<1+

To prove the lower bound, we usg.?), Lemma3.2, and Lemm&3.3

(u, BAu)a  (u, Tpv)a  (u,u)a — (u, Rpu)a + (u, Rpv) a

(u,u) 4 (u,u) 4 - (u,u) 4
—1
S mDTw WA Sy e g
(uvu)A

REMARK 3.5. From Theorer3.4, we know that

G

k(AB) < .
( )71—02/12

Whenh — 0, k(AB) < C.

The following theorem states that the CMG-PCG algorithmoiditiced above behaves much
better than other methods.

THEOREM 3.6. For the CMG-PCG algorithm, the convergence rate estin{até) be-
comes

lu — wrfla _ <011+02h2>’“
||u—u0||A ~\Ci+1—-Cyh2 ’

whereC, and C; are constants independent of coefficients and mesh sizendrhber of
iterations needed to satis| —uela ¢ for a given tolerance € (0,1), satisfies

u—uo| A

log(e
k> sl
- IOg C1=14+C5h:
C1+1—-C2h2

4. Conclusions. In this paper, we provided a proof of robustness of the cascadlti-
grid preconditioner for the linear finite element approxima of second order elliptic prob-
lems with strongly discontinuous coefficients. We analyttesl eigenvalues of the CMG-
preconditioner and found that the condition number of thecpnditioned systems can be
bounded by, /(1 — C2h?). The convergence rate of the CMG-PCG method is uniform with
respect to the jump coefficients and mesh size.
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