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FEJER ORTHOGONAL POLYNOMIALS AND RATIONAL MODIFICATION
OF A MEASURE ON THE UNIT CIRCLE *

JUAN-CARLOS SANTOS-LEONT
Abstract. Relations between the monic orthogonal polynomials assatisith a measure on the unit circle and
the monic orthogonal polynomials associated with a rationaifitzation of this measure are known. In this paper
we deal with some generalization in order to give an expligiression of the Féj orthogonal polynomials on the
unit circle. Furthermore we give a simple and efficient aldorntto compute the monic orthogonal polynomials
associated with a rational modification of a measure.
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1. Introduction. Let i be a finite and positive Borel measure on the unit circle
T ={z €C, |z| = 1}. The measurg provides an inner product

(G = /T f()aD)duz), f.gel

on the spacél of algebraic polynomials with complex coefficients.

Orthogonalising the basiél, z, 22, ...} by the Gram-Schmidt process with respect to
this inner product we obtain a sequence of algebraic orthalgmolynomials known aSze@
polynomials see, e.g.,13, 14]. We denote by{ o, (z; i) }52, the sequence of monic Szieg
polynomials orthogonal with respect tg and by{ o (z; 1)}, where

Q’:.(Z?M) = ann(]‘/z’ :u’)7 n = 07 ]‘3 2) ce
the sequence oéversed polynomiald et
() = / 2 Rdp(z), k=0,%£1,£2,...
T

be themomentsorresponding to the measuge Let us consider the Hermitian (take into
account thaty, (1) = v—x (1)) Toeplitz matrices, called moment matrices, given by

o)  v-1(p) oo v=n(p)
() vo(e) oo Yenga(p)

M, = : : . ,nm=0,1,2,....
%@) Yn-1() - 0w

Let A, = det(M,), n=0,1,2,...(A_; = 1). Since for any nonvanishing column vector
v = (vg,v1,...,v,)t, it holds that

TMyv = (p,p), = [[ 1p(2)[2du(z) > 0,
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wherep(z) = vg + v12z + - -+ + v,2", we conclude thafl/,, is positive definite and hence
A, >0, n =12 ....Itis immediate to show (based on linear dependence pregeofi
rows in a determinant) that the monic Saggplynomials admit the expressiop(z; 1) = 1
and

Yo(u)  v—1(m) o y—n(p)
. () ) o Yengr(p)
WD) on(sm) =5 —| : L =123
[ Y (7)Y (7) BSOS A (1)
1 z 2"

Sincev, () = v—x(p) andA,, > 0, it follows that the reversed polynomials admit the
expressiorp(z; 1) = 1 and

Yo(w) () o ()
. v_1 () Yo(w) oo Yn-1(p)
(1.2) Q;;(Z;IU)ZA X ,n=123,....
[ Y (7) BT 07) ISR AT ()
2" zn-1 .. 1

From (1.1) and (L.2) is deduced that the polynomials, (z; ) and o (z; ) satisfy the or-
thogonality conditions

m o 07 Ogmgn_17
(L3) (on(zi ), 2" ‘{ An/Any, m=n,
and
/. m\ An/An—la m = 07
(1.4) (on (=), 2™ ) = { 0, 1<m<n.

The polynomials,, (z; ) satisfy the forward recurrence relations (see, edj), [

oo(z; 1) =1,
(15) Qn('z; ,LL) = ZQn—l(Z; ,LL) + 5n9;—1(z; .u)a n= 13 25 37 ey
Thus

0y (2 p) = 1,

Q;kl(z’ﬂ) - gnzgn—l(z7u) + Q:L—l(z;,u‘)v n= 172333 veee

The coefficients,, are calledverblunsky coefficient®©bserve from1.5) thatd,, = 0,,(0; 1).
They can be computed from.§), taking into account1(.3)-(1.4), in terms of the moments
~ (1) by the following procedure known dasvinson’s algorithn{see [LQ)),

n

L onlzip) =Yg\

=0

n—1
S
(zon-1(230),1) _ =0

(0h_1(zm),1) iq(nfl)

i 'YjJrlfn(M)

Op = —

Jj=0
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The Verblunsky coefficients play an important role in the stamction of Szeg quadrature
formulas on the unit circlesee p]. Sze@ quadrature formulas (see, e.d])[are used for the
approximation of integrals on the unit circle of the form

/T F(2)dp(2).

Let us now consider the absolutely continuous meaguren the unit circle given by
du(z) = p/(2)|dz| = Kn(t)dt, where

N .
¥l :
Kn(t) = 1— )
N(t) Z( N+1)”
j=—N
1[N .
(1.6) = 11 Zz_l L z=¢l —n<t<m N=0,1,2,...,

is the Fegr kernel. Hence,

[ 1@au) = [ 1w - " e Ex ().
T T —T

The Fegr kernel is one of the most important summability kernel ouiffer series. The
importance comes from the Fgjs theorem; see, e.g1%, Chapter 3]. This classical theorem
states that for 2-periodic continuous functiong(z) the sequence of Ca® meangoy }

of the partial sums of the Fourier series fifz) converges uniformly tgf («) on [—m, 7). It
holds that

(17) O'N(l’) = % /:r f(x + t)KN(t)dt.

Observe that foRr-periodic continuous functions of the foriff(z) = g(e'®), the Cearo
means admits a representation in terms of an integral onrilieciucle with respect to the
Fejer kernel. Given the connections between Szggadrature formulas and Szegrthogo-
nal polynomials on the unit circle (see, e.@])[they motivates us to study in view of (7)
the Sze@ orthogonal polynomials with respect to the &wekernel and relative to the inner
product

(f,9)kn = f fe)g(et) Ky (t)dt.

They are called~ejér orthogonal polynomials on the unit circte, briefly, Fegr orthogonal
polynomials. Itis known that they are related to orthogguynomials on the real line asso-
ciated with certain generalization of the Jacobi weighttion; see [2]. We clarify that the
Fejer orthogonal polynomials studied in this paper are difiefeom the family introduced
by Fegr, calledFejér polynomialsand studied in7] in view of its applications in the study
of Taylor series. On the other hand, we comment that the stigplynomials related with
the Fegr kernel and the study of modifications of the@&ejummability method are currently
active research areas; sé€g4nd [11], respectively.

For N = 0, one hasKy(t) = 1, t € [—m,x]. In this case, the monic orthogonal
polynomialsp,, (z; Ko) are well known g, (z; Ko) = 2™, n =0,1,2,...; see [L4, pp. 289-
290]. ForN = 1, the monic orthogonal polynomials, (z; K1) are given by

n

Qn(z; Kl) = Z(_l)

k=0

k+1 .
n—k N+ ok

n=20,1,2,...;
n+1
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see B]. Furthermore, it is known (seelP]) that for the set of value® < n < N + 1,

N = 0,1,2,..., the monic orthogonal polynomials associated with theeF&grnel are
given by
00(z; Kn) =1,
1 2N — 2
(1.8) on (25 Kx) = RX ot o,

2N—n+3 2N —n+3

In the literature, as far as we know, an explicit expressibthe monic orthogonal polyno-
mials for the set of values = N + 2, N + 3,...for N = 2,3,4,..., is not given. Such
an explicit expression is given in Secti@rand it constitutes a first goal of our contribution.
For this first goal, it will be relevant, in view oflL(6), to recall the following theorem relative
to orthogonal polynomials with respect to a rational modificn of a measure. Orthogonal
polynomials on the unit circle with respect to a rational rficdtion have been studied in
[3, 4, 8]. (In [1], orthogonal rational functions with respect to a rationadification of a
Borel measure off are studied.)

Let 1 be a finite positive Borel measure @n Let us consider the rational modification

1
du2:| |2du,a¢7

Let {®,,(z; 1)} and{®,(z; u2)} be the monic orthogonal polynomial sequences’ons-
sociated top and uo, respectively, and denote by (z; 1) = 2"®,, (1/Z), the reversed
polynomials.

THEOREML1.1. (See §, Proposition 6 ]) The monic orthogonal polynomials withpest
to 9o on the unit circle7 satisfy

D12z p2) = (2 — An(@)®n (25 1) + Bp(a) @y (25 1), Vn >1

and
o ) = 2 — o Qo)
4)0(27”2)_1’ (1)1( 7/2)_ + ||/1'2H )
where
An(a) = aen+1(ﬂ2) — [||N2| - Zgi(i %‘(@F]
en (i) w2l = >25=0 lai(@)]?
and
1 qn(a )qn( )
B,(a) =
()= G llule—Zj_o Iqj(a)lJ
with

g (t) = / QG 1(2), Qofe) = / W) nd (1) :/ A,
\ €k TO—Z T
Notice that from Theorem.1we cannot implement an algorithm to compute the monic
orthogonal polynomial®,,(z; u2) or, equivalently, the valueg,,(«) and B, («), in terms of
orthogonal polynomial®,,(z; ). In fact, a second goal of our contribution is to implement
such a useful and simple algorithm. This is done in Secion
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2. Explicit expression of the Fegr orthogonal polynomials. The polex of the rational
modification considered in Theoreinlis supposed: ¢ 7. From (1.6) we need to consider
the casex € 7.

Let w(t) be a weight function on the unit circle

(2.1) w(t) = |q(e™)|?, t € [-m, 7],

whereq(z) is an algebraic polynomial not identically equal to zerot Le,(z; w)} be the
monic orthogonal polynomial sequence with respeet {t). We assume that the polynomials
on(z;w) are known. On the other hand, consider the rational modidicai(¢) given by

q(e™)
et — o

2
, t€[-mm], aeC.

(2.2) W(t) =

If & € 7 then itis assumed thag{a) = 0. We denote by{p,,(z; w)} the monic orthogonal
polynomial sequence with respectddt).

THEOREM2.1. Letw(t) be the weight functior(1) andw(t) be a rational modification
w(t) = w(t; ) of the form R.2) with « = «g € 7. Then the monic orthogonal polynomials
with respect tau(t) satisfy

Qn—i—l(z;ﬁ}) = (Z - An(ao))gn(z; w) + Bn(aO)Q;(Z; w),Vn > 1,

whereA,, («p) and B, («y) are given as in Theorerh. L

Proof. The proof is based on a continuity argument on the paramet&enote by
E={2€C, |z| > 1} and byD = {z € C, |z| < 1} the exterior and the interior
of the unit disc of the complex plane, respectively. Let ussider the absolutely contin-
uous measureg and ps on the unit circle given bylu(z) = p/(2)|dz| = w(s)ds and
duo(z) = ﬁdu(z) = w(s)ds, a ¢ T, z = €', s € [—m,7|. For these measures we
apply Theoreni.l The corresponding functiong (¢) take the form

gi<2; w) lq(2)|?ds, z=¢", t€E.
—z

1 ™
ar(t) = veg(w) /—7\'

Observe that the functiong (¢) areLaurent polynomialin the variable, that is, functions of
the formZZ:m cxz®, e, €C, —0o <m < k < n < oco. (Specifically, the functionsy, ()
are Laurent polynomials that vanish at infinity.) Hence, filmectionsgy () are continuous
functions in€. Furthermore, fot = «y € 7 the valueg,(ay) exists since foryy € 7 is
assumed that(ap) = 0.

On the other hand, according té, [Proposition 1] we get

An(w(; )

n—1
~ 2
= ||lw(;a)| — g;(a)]* >0, a€f.
e i) ;u( )

Thus, by continuity

An(@(ie)) \|w<-;a>||—iqu<a>\2
j=0

a—ao,€E An_l(w) a—ap,a€E

n—1
= [l@(;a0)ll = Y laj(ao) .
j=0
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Since the moments;, (@) = v, (w; a) = 7 e~ **w(t; ar)dt are continuous functions of,
the determinanf\,, (w(+; «v)) is also a continuous function ef and one can write
An(w(a)) _ Ap(@(;a0))

acapaes Ap_1(w) | Ap_y(w)

FurthermoreA,, (w(+; o)) andA,,_; (w) are positive values since they are the determinants
of positive definite matrices. We have obtained

i a n—1
(2.3) W = [|@(-; a0)]| = Z lgj (@) [* > 0.
n—1(W =0

From the continuity of the functiong, (¢) in £ (for ¢t € D the functionsy (¢) are also contin-
uous since they are algebraic polynomials), we obtain that

1o (5 )l — 30 qj<a>|2]
o5 0)]| = X070 s ()2

Ap(a) =« [

and

By L lw(..aqm)qn(a) ]

1 -1
ant M = 22550 lgj(@)?

are continuous functions af in £. Additionally, the valuesd,,(«g) and B, (ag) are well
defined by virtue of2.3).
By virtue of Theorem.1it holds that

(2.4) Ont1(2W(5 ) = (2 = Ap(@))on(z;w) + Bp(a) oy (z;w), a € €.
Taking limits,

im  on41(290(5 @) = ont1(2;0(5 o))
a—ag,a€E

since the momentsy (w) = ~,(w;«) are continuous functions af and the orthogonal

polynomials depend continuously on the moments in viewlaf)( The right-hand side of

(2.4) tends to(z — A, (o)) on(z; w) + By (ap)e; (z;w) by the continuity property of the

functionsA,,(«) and B, («). The statement of the theorem follovis.

Consider the weight functiomwy (t) = [eN* — 1|2, N = 1,2,.... Observe that
Ky(t) = wy(t) = N:—IM’ N > 0, is the Fegr kernel, seel(6). With the
help of some computational experiments basedlo?) (ve state the following

THEOREM?2.2. The reversed polynomialg, (z; wy) = 2" 0, (1/Z; wy) of the monic or-
thogonal  polynomials o, (z;wy) with respect to the weight function
wy(t) = |etNt —1]?, N > 1, are given by

1, n=01,... N—1,
(25) on(ziwy) = 1 U%H

- ENURIHI=R) oy = NN 41,

5 et

where| x| denotes the integer part af
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Proof. Let N > 1 be fixed. The momentsy(wy), ¢ = 0,£1,+2,. .., for the weight
functionwy (t) are given byyo(wy) = 47, y—n(wy) = yn(wy) = =27, andyy(wy) =
0, otherwise. We have to show thé&t’ (z; wx), 1wy # 0 and (o} (z;wn), 2wy = 0,
{=1,2,...,n. This is clearly fulfilled if0 < n < N — 1. Consider now» > N. It holds,
(05 (z;wN), Dy = % (L% +2) # 0. Note that all the exponents of the variable
in the polynomialg? (z; wy) are multiples ofN. Hence, if¢ = 1,2,...,n, is not a multiple
of N, then (o} (z;wn),2")wy = 0. 1f £ = 1,2,...,n is a multiple of N, then/ = sN,
s=1,2,...,[ ] Inthis case,

x . 1 1
<Qn(2;wN)vZZ>’wN - [W Qn(Z;wN)Zsil\f <2—ZN - ZN> dt
:47T<2|.JT\L7J_S+1_LK/J_S+2

[x)+1 I

This completes the proofl
Thus, we have determined the monic orthogonal polynomaigls; wy ) by virtue of the
relationo, (z; wy) = 2"} (1/Z; wn ), obtaining

2", n=0,1,...,N—1,
(2.6) on(zwN) = L R

e Y ke NURIHER o = NN 1

5l +1 Pt

Taking into account that

~ 1 wN+1(t)
Kn(t) = t)= — T2
N() wN() N+1|ezt_1|2 ’
Theorem2.1 gives a way to find an explicit expression of the&fejrthogonal polynomials
on the unit circle. Nevertheless, this results in a large@mhof tedious calculations. For this
reason we proceed alternatively as follows.
THEOREM2.3.Letk and/, 0 < k, ¢ < n, be constants such that

Dy = | oz Be (grleiwh |

Then
Ont1(2;W) = (2 — Ap) 0n(2;w) + Bpoy, (z;w),
where
_ <2Qn(z,w),zk>w <Qn(sz)7zk>w
A"“ Gon(ziw) g (oh(z5w), 20 |/
and
<Qn(27w)7zk>ﬁ) <an(va)azk>ﬁl
Bn = ‘ <Qn(2’w)v'ze>@ <Z9n(zaw)vzz>ﬁ) /Dn

(There are values df and/ such thatD,, # 0 as is shown in Theorei.4, below.)
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Proof. By virtue of Theorem2.1 there exist constantsl,, and B, such that
On+1(z;W) = (2 — Ay) on(z;w) + Byl (z;w). Foranyy, 0 < v < n, it holds that
(Ont1(z30), 2" )5 = 0 = (z0n(2;w), ") — Anlon(2z;w), 2")5 + Bn{on (23 w), 2")w-
The proof follows from the classical Cramer’s rule.
The momentsy, (wy), k = 0,+£1,£2,..., N =0,1,2,..., for the Fegr kernel are
given by (seel?)

i k .
%(u?zv)=/ e My (t)dt = 2”( _N‘Tll) if [k < N,
0, if [k| > N.

—T

We need the following observation

(on(zrwn11), 2" M) an = (h(zrwN11), 27 F) gy = (On(Z5wN11), 2 )iy, 0 <k <m,
for the next theorem that gives the explicit expression efrttonic Fegr orthogonal polyno-
mialso,(z; Ky)forn=N+1,N+2,...,andN =1,2,....

THEOREM2.4.Letn =m(N +1)+s, m>1, 0<s < N.Then

(21 10n) = mN +2N+m+1—s
Ot S ON) = 2T N+ 2N +mt2—s
whereg} (z; wn41) and g, (z; wn+1), (n > N + 1), are given by 2.5) and .6), respec-

tively.
Proof. Consider the values = n and? = 0 in Theorem2.3. It holds that

o5 (z;wN 1)
mN +2N +m+2—s

)

) on(z;wWN41) +

(on(ziwN1), 2wy = (0n (25 WN11), 1)y = 2T,

<ZQH(Z; wNJrl)v Zn>1DN = <Qn(z§wN+1)v Zn71>ﬁJN

" n 27 S
<Qn(2;wN+1),Z >wN <Qn(z§wN+1)71>u?N = 1+L Py <1— N+1)’

27 s+1
zZon(z;w Doy =7—"-—1———].
(on(si ). Vs = g (1 )

Hence, after some computations we get

D — <Qn(2,’l,UN+1),Zn>ru‘)N <Q,>:L(Z;'LUN+1),ZTL>1DN
" <Qn(z;wN+1)al>1DN <Q;kL(Z;wN+1)7]‘>U_)N

_ 4An*(m®N? +2m2N +m? + 2mN? + 4mN + 2m + 2Ns + 25 — s?)
B (m+1)2(N +1)2

wherem = | %5 |. Taking into accoun2mN? > s*, from Theorem2.3we deduce

#0,

Qn+1(z; 7JJN) = (Z - An) Qn(z§ wN—i—l) + BWLQjL(z; wN—i—l)

where

An <ZQH(Z;wN+1)7Zn>7I)N <Q:;(ZawN+1)a " DN /Dn

z
(zon(z;0N+1), Day (0 (z5wN41), Dy

_mN—|—2N+m+1—S
T mN+2N+m+2—s
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and
B - _ <Qn(z§wN+l)7Zn>U3N <ZQH(Z;wN+1)7Zn>7JJN /D
" <Q7L(Z§'LUN+1)71>7IJN <ZQ7L(Z§'LUN+1)71>U7N "
1

T mNA4+2N+m+2—5s

The proof is completdl

In the following theorem we give the whole sequence of mowiéiForthogonal polyno-
mials.

THEOREM2.5.LetN > 1 be given. The monic Fejorthogonal polynomials,, (z; Kn)
reproduce

o0(z; Kn) =1
and
mN+2N+m+1—s o (z;wn 1)
i ;K = - ) N ’
on1(2 Ky) (z mN+2N+m+2—s>gn(zwN+1)+mN+2N+m+2—s

wheren = m(N +1) +s > 0,m = [§5] >0, 0 < s < N, and whereg}, (z; wy) and
on(z;wy) are given by 2.5) and @.6), respectively.

Proof. Form > 1, and hencex > N + 1, we deal with the monic Féj orthogonal poly-
nomialse, (z; Knx) given in Theoren®.4. Form = 0, is easy to check that they reproduce
the monic F&gr orthogonal polynomials fdr < n < N givenin (L.8). O

COROLLARY 2.6. Let N > 1 be given. The Verblunsky coefficiedts = §,,(Ky),

n=0,1,2,..., corresponding to the Féj kernelK v (t) are given by, = 1 and

N
_—_ if n= N+1 =0,1,2,...
I DN T ifn=m(N+1),m=0,1,2,...,
5n+1:
1

(m+2)(N+1)—s"’

fn=m(N+1)+s1<s<Nm=0,1,2,....

Proof. The above expression for the Verblunsky coefficiemtéKn) = 0,(0; Kn)
follows from Theoren®.5and Eq. £.6). O
EXAMPLE 2.7. We considerN = 3. Then we deal with the Fej kernel
- 1 wy(t
K3(t) = ws(t) = 4|eif4—(i|2'
sponding monic orthogonal polynomials(z; K3) are, according to Theoreth5,

Consider, for example; = 0,1,2,...,10. Then, the corre-

00(z; K3) =1,
7 1,
01(z: K3) = (2 — g)QO(Z; wy) + g@o(Z; wy)
_,_3
— it
6
02(2; K3) = (2 — 2)o1(z;wa) + =07 (2 wa)
1
=222+
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5 1
03(2; K3) = (2 — g)gg(z;w) + —05(%;wy)

6
5 1
_ 3 9.1
T T
4 1,
04(z; K3) = (2 — 5)93(Z;w4) + 5@3(Z;w4)
4 1
_oa_ 451
=z 52 + 5
11 1,
05(2; K3) = (2 — E)Q4(Z;w4) + 5@4(2;11)4)
1
10 1,
06(2; K3) = (2 — ﬁ)g5(z;w4) + ﬁ@s(z;M)
10 1 1 5 1
_ .6 _ Y5 -4 -2 Y
ottt Tyt Tt
9 1,
07(2; K3) = (2 — E)Qe(z;wz;) + TOQ(,(Z;U&L)
9 1 9 1
_ 7T _ 26 =4 -3 22 o
=900 Tt T Tt T

08(2 K3) = (2 — S)or(zwa) + - 03 (25 wa)

9 9
8 5 4 1
_ 8 _ =27 2.4 =3 -
P Tttty Tt Ty
15 1,
00(2; K3) = (2 — 1) 0s(#5wa) + o 08(23w4)
11 2 7 1
_ .9 _ -8 =25 _ 1 .4 .=
TR Ty Tt Ty
14 1,
010(2; K3) = (2 = 7p)ea(z3wa) + 50623 wa)
14 1 2 28 2 1 14 1
=210 - 04 B S S St - =

15 45 3 45 45 3 45 15

We point out that these polynomials were computed as an deampl2], although there
they were calculated using a different method.

3. Computation of the monic orthogonal polynomials assoctad with a rational
modification of a measure. Let 1 be a finite positive Borel measure @nh Consider the
rational modification

d~:
H e =ap

du, o ¢ T.

By virtue of Theoreml.1, there are constant$,, and B,, such that

Ony1(2; 1) = (2 — An)on(2; 1) + Broy, (25 ).

The formulas for these constants given in Theotiefinare not appropriate for computation.
In this section we are interested in obtaining a simple afidiefit algorithm to compute the
orthogonal polynomials,, (z; i) in terms of the orthogonal polynomials, (z; 1¢). With this
goal and as a starting point we give alternative expresgmnrite constantsl,, andB,,.
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We remark that the results in this section also hold for wefighctionsw(¢) of the form
(2.1 and a rational modificatiom(¢) of the form @.2). In this case, the existence of the
constantsd,, and B, is proved in Theoren2.1

THEOREM3.1.Letn > 1 be given. Then

(3.1) Ont1(2; 1) = (2 — An)on(2; 1) + Broj, (25 1)
where

A =0¢<Q"+1(25ﬂ)79n+1(2§ﬂ)>ﬁ
n {on(z 1), on (2 1))0

and

(zon(z3p), )y +alzon1 (), Vi

B, = —
(05 (25 11), 1)

Proof. From 3.1) and taking into account th&b,, (z; 1), 1),, = 0, we can write

(Ons1(25 1), 1), = (200 (25 1), 1)+ Brlon (25 14), 1) 0
Note that
~ " it. ~ — 1 —1 d
(Con (@ = [ oenlei) (14 o a6 —ae™) U
- _a<ZQn+1(Z; ﬂ)a 1>/1

The value ofB,, follows. From (3.1) we can write

(Ony1(z5 1), 0n(25 1)) = (2 = An)on(2; 1), 0n (25 ) +
(3.2) B (o5 (25 1), 0n (25 1)) -

The following relations hold

s

(Ont1(z3 1), on (23 10))p = / ont1(e"5 @) 0n (e p) (14 |af® — ae™ —@e™) dit

= —alont1(2 1), 0n11 (25 1)) — @0 (1) (z0n11 (25 /1), iy
(zon (2 1); 0n (23 1)) = On (1) (z0n (25 1), 1) s
(0n (23 1)s (25 1)) i = On ) (0 (25 1), 1) -
Replacing these relations and the obtained valuB,pin (3.2), we getA,,. 0
The unknown value$p,,+1(z; it), on+1(2; 2)) 5 @and(zon+1(z; i), 1) 5 appearing in the

obtained expression of,, and B,, are iteratively computed within the next algorithm.
THEOREM3.2.For n > 1 it holds that

Gusa() = 50,(0) + 3 IO (5, 7)1 1)

Proof. By settingz = 0 in (3.1) we obtain

©D e
<ZQTL(Z5 ,LL), 1># + a<29n+1(z§ ﬂ)a 1>ﬁ
(o3 (25 1), 1) '

n(1)
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Using the recurrence relatiod.f) for 1 andn + 1, we get

(3.4) (20n41(2; ), 1>ﬁ = _5n+2(ﬂ)<92+1(2§ ), g
= —Ony2(f)(0n+1(2; 1), 0nt1(25 1))

and

(3.5) (z0n(z3p), 1) = =01 ()0 (25 1), 1)y = =01 () (on (25 1), 0n (25 1)) -

The result follows substituting3(4) and @.5) into (3.3) and solving ford,, 1o (f). O
The proposed algorithm to compute the constahisand B,, is given below. We will
use the relation

(on (2 1), en (2 1)) = (@n—1(2; 1), 0n—1(z ) (1 = |6 (A) "), = 1,2,

which is a consequence of the recurrenté)(
ALGORITHM 3.3. Algorithm to compute the constamts and B,

Input: «, 70([1)7 ’Y—l(ﬂ)v 7—2([1)3 n, <QZ(Z;N)7 QE(Z;/‘»#’ ¢=1,2,...,n,and
o), £=1,2,....,n+ 1.

Output: Ay, By, £ =1,2,...,n

Computation of the initial values; (1), (zo1(z; ), 1), (01(2; i), 01(2; 1))z @andda(f2).

Computed; (i) from (o1 (= /i), 1) = (= + 61(R), 1) = 0.

Step 1.6, () — — Y.

Yo(ft)
Compute(zo: (23 1), 1) = (2(z + 61(1)), 1) g = y—2(2) + 61 (i) y-1(f2)-
Step 2.(zo1(z; 1), D — v—2() + 01 (i) y-1(R);

Compute(os (=: 1), 012 1)) = (20(z: 1), 20(z: ) (1= 15(3) %) = 70(7) <1 - ‘7—1@)

Step 3.(01(z; 1), 01(2; 1)) i = Yo (/1) (1 - ‘

o ez, e
Step 4.02() (o1(z ), 01 (2 )
Step 5. for =1,2,...,ndo
(0041(2; i), Qz+1(2 M)) (0e(z
A (0041 (25 1), Qé+1(z /1)>
(25 1))
1

I
(0e(25 1), 0 ) oes

- « 0e\Z5 ), 0025 [ ~ .
5Z+2(M) — 655(#’) + = <Qg+1(z,[;[,) Qg.i,_l(Z,/J/)) (5£+1(#) - 6‘6“1’1(1“))’

(z0e1(23 1), 1) — —0pt2(ft)(0e41(2; 1), Qe+1(Z;ﬁ)>ﬁ;
ComputeB, by TheorenB.1and @.5).

B, o1 (p){0e(z; 1), 0025 1)) — Az 0041 (25 1), 1)z,
(00(z3 1), 00(25 1))

—

end

Observe that the number of operations needed to compuend By, £k =1,...,n,is
O(n). Once these constants are computed, the orthogonal polgiswni z; ;1) are obtained
from the relatiorp, 1 (z; &) = (2—Axk) ok (2; 1)+ B oy (z; ). On the other hand, Levinson’s
algorithm [LO] computes the Verblunsky coefficienis; (iz) };;_, with a number of operations
of orderO(n?). Then the orthogonal polynomials (z; i) can be obtained from the forward
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recurrence relatiorny (z; it) = zox—1(%; ) + 0% (1) o)., (2; it). This reduction in the number
of operations in our method is natural. One expects a resluati the number of operations
when computing the orthogonal polynomials associated witlational modification of a
measure if one uses the orthogonal polynomials of the imiteasure.

ExamMPLE 3.4. We have implemented a Maple procedure to illustratptbposed algo-
rithm.  We executed the procedure for the previously comsidleweight function
- 1 U}4(t)
4 et — 12
initial dataace = 1, o(w3) = 2w, y_1(w3) = 37” and~y_o(w3) = 7. Furthermore, we need

ni49 .

that (o, (z; wa), 0n (2 W4))w, = Wz(tf';iﬁl)’ n >0, andd, (ws) = #H if n=4m, m >0
andé, (ws) = 0, otherwise. The obtained values 4f, and B,, are the ones obtained by the
corresponding formula foA,, and B,, given in Theoren2.5.

wy(t) = |e™t —1|? and its rational modifications () = K3(t) . We need the

Acknowledgments. The author thanks the anonymous reviewer for numerous tielpf
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