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COMPUTATION OF THE MATRIX PTH ROOT AND ITS FR ECHET
DERIVATIVE BY INTEGRALS *
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Abstract. We present new integral representations for the matifixroot and its Fechet derivative and then
investigate the computation of these functions by numerigaticature. Three different quadrature rules are consid-
ered: composite trapezoidal, Gauss-Legendre and adaptn@s8n. The problem of computing the matyith root
times a vector without the explicit evaluation of thih root is also analyzed and bounds for the norm of the matrix
pth root and its Fechet derivative are derived.
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1. Introduction. Let p > 2 be a positive integer. Given a matrix € R™*" with
eigenvalues not belonging to the closed negative real thaése exists a unique real matrix
X such thatX? = A, whose eigenvalues lie on the sector of the complex planaatkhy
—n/p < arg(z) < m/p, wherearg(z) denotes the argument of the complex numhefhis
unique matrixX is called theprincipal pth root of A and will be denoted by'/?. For
background on matrixth roots and general matrix functions, se€][

The sensitivity of a matrix function to small perturbatiansthe data (at first order) is
measured by a condition number based on the norm of tleehEt derivative. Let
A, E € R™"™™, The Féchet derivative of a matrix functiofi at A in the direction of &
is a linear operatoL ¢ (A) that maps each “direction matrix? to L (A, E) such that

f(A+ E) = f(A) = Ly (A, E) = o(|| E)-

The Féchet derivative of the matrix functiofhmay not exist at4, but if it does it is unique
andL (A, E) coincides with the directional (or&@eaux) derivative of at A in the direction
E. Any consistent matrix norrij.|| onR™*™ induces the operator norm

L¢(A)|| := max ||L¢(A, E)|,
LA = max LA, B

which allows one to define the condition numberfadit A

oo LA
A=

Here one uses the same notation to denote both the matrix aodnthe induced operator
norm. Once an approximation to the matfix (A, E) is known, some algorithms are avail-
able to estimatél L ;(A)|| and the condition numbet;(A). A well known example is the
power method on the Echet derivative. For more details abouéénet derivatives of matrix
functions, seed0, ch. 3] and the references therein.

One of the goals of this work is to investigate numerical gatade for the computation
of the Fiéchet derivative of the matriath root, L1/, (A, E). Given A, E € R"*", with A
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having no eigenvalue on the closed negative real axis, thehlet derivative of the matrixth
root exists and.,.,» (A, E) is the unique solution of the generalized Sylvester eqoatio

5 () () -

Jj=0

(see RO, Theorem 3.8] and?b5, Sec. 2.5]). It can be proved that its Frobenius norm can be
written as

-1
p—1

I Lyi/o(A)||F = E:[(AQW)T}ag(A;m)plj

7=0
2
(see Problent.4 and its solution in 20]). Here|.||r and||.||2 denote, respectively, the
Frobenius and the-norm, andx denotes the Kronecker product. An effective method for
computing the Fechet derivative of the matripth root was recently proposed ifi]
A well-known integral representation of the principal nvatpth root of A is given by

([17], [20, p. 174))
\p P sin(m/p) o » .
(1.1) A 4—?——AA (1 + A)~" dt.

This integral representation over the non negative realill be the basis of our work. From
(1.1) we derive new integral representations for both the mattixoot and its Fechet deriva-
tive and then investigate quadrature for these integralsed different types of quadrature
are considered: composite trapezoidal, Gauss-Legendragaptive Simpson. Our humeri-
cal experiments show that while Gauss-Legendre quadret@rgood choice for computing
the matrixpth root A'/?, it is the composite trapezoidal rule that presents the pedgor-
mance for the Fechet derivative.

Another topic of investigation in this paper is the compigiatof A'/7?b, whereb is a
vector. Whereas the methods for computitiy? involve in general(n?) arithmetic oper-
ations, the computation af'/?b by quadrature, witll” triangular, quasi-triangular or upper
Hessenberg, can be performed with jost?) operations. Triangular and Hessenberg forms
of A can be found by the Schur and Hessenberg decompositiopgcte®ly. As observed
previously in P, 1€], this reinforces the role of integral representations gnddrature in
the matrix functions computation problem. We recall thaggnal representations for matrix
functions have been known for a long time, but just recefmiythave been used for practical
computations.

It is worth noting that many technical problems arising ieas such as control, geog-
raphy, finance and healthcare involve the computation ofntlagrix pth root. For papers
including applications see the referencesam][ We add three recent papers containing ap-
plications: [7], [24] and [26].

This paper is organized as follows. In Sect®dmwe show that the integral irl(1) can
be written as a sum of an integral over a finite range plus agrat over an infinite range
with norm bounded by a constant. We also show that new integpaesentations for both
the matrixpth root and its Fechet derivative over a finite range can be derived fram)(
by choosing an appropriate change of variable. Since alintiegral representations involve
a resolvent function, some estimates for the norm of thigtion are revisited in Sectiod
and used to obtain bounds for the norm of the mattixroot and its Fechet derivative. The
difficulty of finding sharp and practical error estimates isctdissed. Composite trapezoidal,
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Gauss-Legendre and adaptive Simpson rules are implemieng=ttionss, 6, and7 for the
evaluation of the matrixth root, the matrixpth root times a vector and the&ahet derivative,
respectively. Numerical experiments are carried out testiate and understand the behavior
of these three types of quadrature. Finally, in Sec8owe draw some conclusions.

Notation: Unless otherwise stated, throughout the text- 2 will denote a positive
integer, A a real matrix with no eigenvalue on the closed negative neialand||.|| a consis-
tent matrix or operator norm|.||» and||.||> stand for the Frobenius norm and theorm,
respectively.

2. Integral representations. We start by proving that the integral id.() can be split
into two integrals, where the norm of the second one, ovenfinite range, can be bounded
by a constant. This result provides an important contrdsutd understand the behavior of
the matrixpth root integral representation.(l).

THEOREM 2.1. Let A have no eigenvalues on the closed negative real axis. |If

r > (2] Al)"7, then

1)  ave_psn/p) , (/ (71 + A) L dt + / (71 + A)~! dt> ,
™ JO Jr
Proof. Assume that € [r, ocof, with r > (2HAH)1/’). This ensures thgtA/t?|| < 1 and

we can write
p —1 py—1 A - 1 - k A g
(P14 A)" = (") I+t77 :t?k_o(_l) w)

where

2rl-p

[wwv+Ar4ﬁH§

Integrating over the range, oo, some calculation shows that
0o > _l)k A k
tPI+ A)~tdt =P _ VR 4 .
[ (1 +4) ! Z;mk+n—1 e

The conditionr > (2HAH)1/” means thall A/r?|| < 1/2. Sincep > 2

k

S () | < Sl
kzop(k—kl)—l P *kzop(k—kl)—l rP
R <1>k
< — —
pilkzo 2
2
<7’
<oTT

and then the result follows. 0O

Theorem?2.1 gives a bound for the truncation error arising when we replhe infinite
interval in (L.1) by a finite one. To illustrate this, consider for instanceatn® A with norm
| All = 102 andp = 7. Forr = 10 > (2||A[))*/7,

. 10
‘MU?7WWVUA/)@U+A)1ﬁH§&2xm5.
a 0
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Increasing- to 50, one has
: 50
HA1/7 - MA/ T+ A" dtH <21x107°.
m 0
This is of particular interest if one wants to approximatel) by quadrature. Assume that

X — Al/p — ZMA()Q + Xo),

™

where
X, = / (tPI+A)"tdt and X, :/ (tPT + A)~ ! at,
0 r

and a quadrature rule is appliedm yielding the approximatiotX; with an absolute error
I1X:1 — X1 <e If X = %(“/”)AXl denotes the corresponding approximatiomtd?
andr is such that271=7/(p — 1) < ¢, then

<. _ psin(r/p) %
e — %) < PPN 4y (1, - )+ xal)

™

22) spw““”M»G+2“w)
s p—1

2p sin(7/p)

IN

[Ale.

Let £ € R™*" be a matrix such that + E has no eigenvalues on the closed negative real
axis. Using (.1) together with some algebra, an integral representatiothi® perturbation
of the matrixpth root follows,

(23) (At E)Vp At/ = PSDT/D) / (P14 A+ E) BT+ A)~ dt.
m 0

Considering only first-order perturbation arguments, aegral representation for the&eshet

derivative arises,

(2.4) Loin(A, B) = Psinm/p) / P(PI+ A) VBT + A)~L dt.
™ 0

This formula can also be obtained froBy Eq. (8)] by making the substitutian= ?.
The analogue of Theoreth1for the Féchet derivative is stated below.
THEOREM2.2. Let A, E € R™*™, Assume in addition that has no eigenvalue on the
closed negative real axis and dengte) = t7(t?1 + A) " E(t? 1+ A)~1.If r > (2]|A)*/?,
then

(2.5) L,w(AE)= M (/OT g(t) dt + /TOO g(t) dt) ,

where

> 2pt-p
t) dt|| < E|.
[ <2 e
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Proof. Proceed similarly to the proof of Theorekl a

Another manner of dealing with the integral over an infiniteerval (L.1) is the reduction
to an integral over a finite range by appropriately changiagables. One possibility is to
consider the Cayley transforin= (1+x)/(1—2). Some calculation enables one to conclude
that

s

(2.6) AP = MA /1 (1—2)P 2 [(1+2)PT + (1 —2)PA]"" da.

Since we are assuming thdthas no eigenvalues on the closed negative real axis, the inte
grand in @.6) has no singularities in the intervgh1, 1]. Moreover, the function is contin-
uous on that interval. Other changes of variable also résdihite intervals. For instance,
t=uxz/(1—z) leads to

. 1
Al/p — MA / (1—2)P 2 [2PT 4 (1 — :v)pA]*l de,
™ 0

andt = tanf to
. /2
Aty = 2/ / (cos§)P~2[(sin ) I + (cos B)? A]™" do.
m 0

Assume thatr satisfies the assumptions of Theorebnl The substitution
t = (1+2)/(1 — z) in both the integrals on the right-hand side &f1j leads to a split-
ting of the integral 2.6), allowing us to write

Avp 2P SnT/p) Sii(”/p)A (/:“(1 — )P 2 [(L+2)PT + (1 — )P A" da

1
(2.7) + / (1—z)P 2 [(1+2)P T+ (1 — )P A" dw) ,

with

2rl—p

p—1"~

A change of variables can also turn the improper integ?a)(into a proper integral. For
instance, witht = (1 4+ z)/(1 — z), the integral 2.4) can be transformed to

(2.8)  L(A E) = 2250(/p) / (14 2)°(1 — 2)"2 [h(z)] " B [h(z)]"" dax,

T —1

whereh(z) = (1 +z)P1 + (1 — x)PA.
Alternative representations for theé&ehet derivative can be derived by performing the
variable transformations= x/(1 — ) and¢ = tan 6 in (2.4).

3. Bounds for||A/P|| and ||L,./»(A)]||. Several bounds available in the literature for
general matrix functions (see, for instanc2),[p. 102] and the references therein) can be
adapted to the particular case of the mapik root. However, some of them seem to be
of little interest for practical use, because they may noshharp and it is not clear how to
evaluate them. Our goal in this section is to derive new bedadthe matrixpth root and its



ETNA

Kent State University
http://etna.math.kent.edu

MATRIX pTH ROOT AND FRECHET DERIVATIVE BY INTEGRALS 419

Fréchet derivative by means of the integral representatiddeeased in the previous section,
and investigate under which conditions they may have istédrem a practical point of view.
We shall note that the problem of boundifig /|| and|| L./, (A)|| reduces to bounding the
resolvent functions that are involved in the integral repraations. Bounds for the resolvent
can be found for instance in ] and [27], where we can observe that unless severe restrictions
are imposed on the matrit, finding a satisfactory bound valid for all with no eigenvalues
on the closed negative real axis seems to be out of reach.

Consider the resolvent involved if.(),

(3.1) ft) = (tPT + A~

with ¢ € [0, oo[. The value of the norm of the resolveftlepends in particular on how close
the eigenvalues ofl are to the closed negative real axis. To illustrate thispugetonsider
p = 7 and the matrix

e? 0 0
A= 0 cos(f) —sin(0)
0 sin(d)  cos(6)

with eigenvalueg® andcos(#) + isin(6). Figure3.1displays the values of the norm of the
resolvent||(tPI + A)~!|| against: for two different pairs of valuess = —2, 6 = 37 /4 and

a = —5, § = 3.13. The peak aboveé = 1 is typical and becomes higher &sapproaches
7 (that is, as the two conjugate eigenvalues appreath This predicts some difficulties in
bounding the corresponding resolvent.

norm of the resolvent
150. - T T T

T T
— © —a=-2, 6=3m4

—#*— a=-5, 6=3.13

IItPr+A) )

Fic. 3.1.Norm of the resolverjt(t”T + A) ™| for t € [0, 2], withp = 7, fora = —2, 0 = 37 /4
anda = —5, 6 = 3.13.

This phenomenon is well understood in light of the pseuddsadheory. Recall that
for a given matrixA ande > 0, thee-pseudospectrura.(A) of A is the set ofz € C such
that||(z1 — A)~!|| > ¢! (see 7)), that is,o.(A) is the open subset of the complex plane
bounded by the~! level curve of the norm of the resolvent. For the mattixiefined above,
Figure 3.2 shows the boundaries of (4) for some values of betweenl0~* and 10, from
inner to outer. Eigenvalues are marked by a cross. The &fttside plot corresponds to
the valuess = —2, § = 37/4 and the right-hand side plot o = —5, # = 3.13. Since
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—tP €] — 00, 0], the norm of the resolvenB(l) attains large values whenever the contours
cross the closed negative real axis very closely to an eajeewfA.

Boundaries for a=-2, 6=314 Boundaries for a=-5, 6=3.13

2 -1 -08 -06 -04 -02 0 02
X X

Fic. 3.2. Boundaries of the:-pseudospectrum off with a = —2, § = 37/4 (left) and
a = —5, § = 3.13 (right) for somee € [107*, 10].

Letd(z,0(A)) denote the distance between the complex numlserd the spectrum of
A, 0(A) ={A1,..., \n}, thatis,

d(z,0(A)) = )\gl(r}q) |z — Al

Assuming thatz ¢ o(A), the following error estimate for the resolvent is avaitbl
in[13, p. 12]:

(3.2) IGI =) e < = Amkﬂ

k=0

)

where

n 1/2
V(4) = (IIAII% -> |/\k|2>
k=1

can be interpreted as a quantity measuring the departutefrafm normality. If in particular
Ais normal, theny(A) = 0, and therefore3.2) simplifies to

1

(=1 - A)71||2 = m .

Another simplification of 8.2) occurs whenA is diagonalizable. Indeed, assuming that
A = SDS~1, with S nonsingular andD diagonal,

r(5)

J— 71 . —
T = A7 < g o

wherex(S) = ||S||2|| S~ ||z stands for the condition number 6t

To compute an estimate for the norm of the resolvent using,(it is helpful to write
d(z,0(A)) as an elementary function afor to find a lower bound depending an This
seems to be difficult for a general mattikwith no eigenvalues on the closed negative real
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axis. However, assuming that all the eigenvalued ¢ié on the open right-half plane, for the
particular resolvent3.1), the inequality

(3.3) d(—tP,0(A)) > B(A) + t*

holds for allt € [0, 0o, whereS(A) := min{Re()\) : X € o(A)}. In particular, if the spec-
trum of A is real positive, §.3) becomes an equality. The following result is a consequence
of Theorem2.1and the discussion above.

THEOREM 3.1. Let A, E € R™*", with A having eigenvalues on the open right-half
plane, and le3(A) := min{Re()\) : A € o(A)}. Assume that > (2[|A]]2)"/?.
(i) Puttingy(A) = (A% — Xk, \Aklz)m, we have

o < 0L ) oy 201

and

psine/o) (7 (e Dl \T 2
||L;r,l/P(A)||2 < T (A t (k_o \/E(B(A) +tp)k‘+1> dt + be 1) .

(ii) If Ais diagonalizable, with = SDS~1, then

L2 1-p
4oy < 2D g, (wis) [ oo '
ﬂ thp pfl
and

sin(m " P rio?
[Lgr/e (A2 < % <[”°(S)]2/0 (Q(A)t—f—tp)? dit 2p— 1 > ’

wherex(S) is the condition number &f with respect to th@-norm.

More bounds are given in the next theorem.
THEOREM3.2. Let A € R™*" satisfy the conditiof{] — A|| = w < 1, and assume that

r > (2[|A])"/". Then

: T 1—p
) < P sin(m/p) / 1 2r

and

p sin(7/p) /T 1 2 2pi-p
. 1/p < — Pl—m—— .
@5) L) < P <0t o) o

Proof. Sincet € [0, co[ and||I — Al = w < 1, we can write

(tPT+ A" = (P + 1) — (I — A))~"

1 IﬁI—A -
St 41
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and then
1 1
PT+ A)7 Y <
@1+ 4) ||_(tp+1)<1_tpwﬂ>
1
(3.9 T

By Theorem2.1, (3.4) follows. For anyE' € R™*™, Theorem2.2 guarantees that

2rl-p
-1

p sin(w/p " , 102
N A = e e R =

).

max || L, (A, E)|| < max {psm(ﬂ/p) (/ tP||E|| H(tPIJrA)ﬂH? dt
IEl=1 Il Ell=1 ™ 0

27rt—P
E
B ) ],

and, for the induced operator norm, we have the inequality

B7) (L)) < LD (/ |1+ A7 e+ i;rl_p) .
0

T -1

Hence,

Now (3.5) follows from (3.6) and @.7). a
Note that all the integrals appearing in the bounds of Thesfz1and3.2are scalar and
thus can be estimated by scalar quadrature.

4. Matrix integrals. Given a matrix valued function depending on a parameter
fit€la,b] — f(t) e R™*"

satisfying some requirements related with integrabilityd aifferentiability, the integral
f; f(t) dt and the derivativg”’(t) are defined componentwis&4, Sec. 11.2.6]. With some
precautions, scalar quadrature can be extended to mategrals. The following theorem
plays an important role in the study of matrix integrals. iite a bound for the truncation
error arising in the approximation of a matrix integral byagiuature.

THEOREM 4.1. [23] Let [a,b] be a finite interval. Assume that> 0, t; € [a,b)
andw; € R, 7 = 1,2,...,m, be such that for any scalar functignthat is & + 1 times
differentiable ona, b],

m

b
JRCEE

Letf : [a,b] — R™*" be such thaif (**1)(t) exists for allt € [a,b]. Then

b m
’ / f(t)dt — Zwif(ti)

< ¢ max (k+1) .
< amax [g* 0 (¢)]

< ¢ max || f*H(s)].
s€la,b]
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At first glance, Theorem.1 may lead us to think that the error formula of a given scalar
quadrature

b m
[ o= Y wigle) =g 00,

for some¢ € [a, b], can be extended to matrix quadrature. Unfortunately,ighi®t true in
general because a choice of a single [a, b] such that

b m
[ @ de= Y wipe) = fH0),
a i=1

for a matrix valued functiorf : [a,b] — R™*"™, may not be possible. For a simple counter—
example, considef(t) as being ar2 x 2 diagonal matrix with different entries.

One of the aims of this paper is to investigate numerical tatace for computingd!/?,
AYPhandL,.,,(A, E). Many numerical methods to approximate integrals are alkil(see
for instance §] and [L0]), but we restrict our study to three popular methods: cositpo
trapezoidal, Gauss-Legendre and adaptive Simpson rules.

Given f : [a,b] — R™*™ having derivatives of second order foe [a, b], the compos-
ite trapezoidal rule allows one to write

/bf(t) dt = T(h) + er.,

where
h m—1
(4.1) T(h) = 5 (f(to) + f(tm)) +h Y f(tx)
k=1
ander denotes the truncation error. Recall thgt= «, t4,...,t,, = b are equally spaced

points partitioning the intervak, b] andh = ¢, — t5_;.
By Theorem4.1the composite trapezoidal truncation error can be bounged b

b—a

(4.2) lexll < *557h* max [1F(5)]
This error formula raises the question of how to find a bounidffoon [a, b]. This is a major
difficulty in the case of the integrals representidd/” and L./, (A, ) because the inte-
grands involve resolvents; see the discussion on bounds@wents in the previous section.
Nevertheless, for a matrid sufficiently close to the identity such thipf — A|| < 1 finding
a bound for the second derivative 6fis possible, as we will see later iB.(). The need of
this restriction onA is also reported ing] for the matrix logarithm.

Another technique to estimate the trapezoidal truncatior & based on Richardson ex-
trapolation. For a sufficiently smallh, the composite trapezoidal rule satisfies

[8, pp. 10, 529]
fron-s(2)]-2frw-s()

with 7 (h) defined by ¢.1).

)

(4.3) |
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The relation 4.3) is very useful in practical computations because it avtigsuse of
derivatives. Recall that a similar relation holds for thenpmsite Simpson rule, which is the
basis of the adaptive Simpson quadrature.

It is worth noting that when the number of subintervalds doubled the function eval-
uations in7 (h) can be reused fof (h/2). Since the computation of a matrix function
f(t) € R™™ involves in generaD(n?) arithmetic operations, this represents an important
advantage of the trapezoidal rule for matrix integrals.

The m-point Gauss-Legendre quadrature rule is a widely used adetbr numerical
evaluation of integrals,

1 m
(4.4) /1 Ft)dt =" wif(t:) + eor,
- =1

with ey, representing the truncation error. Thgs are called the weights and thes are the
nodes [LQ]. For several values o, the weights and the nodes can be found in the literature
and several routines are available for their computatidnAttending to the formula for the
scalar truncation error (see, for instance),[(2.7.11)]) and to Theorem.1, the truncation
error for matrix quadrature can be bounded by

(4.5) leonll < e DT @S]l
@m £ D(2m))? <5,

For integrals ovefa, b], the change of variable

t= %((b—a)er (a+0b))

maps the intervala, b] onto the standard intervak1,1]. The Gauss-Legendre rule is very
popular in the scalar case, which is due in part to its opiiakroperties. Nevertheless it
has the drawback of not allowing the reuse of the functioruatgons when passing from
m to 2m. One possible way to overcome this is to consider Gaussfibrules (see
[8, sec. 5.3.3] and the references therein), which are cartstitfrom Gaussian rules. The
extension of Gauss-Kronrod rules to matrix functions isadiressed here but it seems to be
a very interesting topic for future research. The truncagoor estimate4.5) may be useless

if the expression of theth derivative off is unknown or complicated. An alternative is to
use an estimate similar td.(3).

Let G(m) := >.7", w; f(t;) be them-point Gauss-Legendre quadrature andXet=
f_ll f(t) dt. By (4.5 it can be shown thatG(m) — X|| tends to zero wheneven — oc.
Assume thatn is sufficiently large so thatG(m) — X || = e and||G(2m) — X|| = ce, with
0<c<0.5. If||G(m) — G(2m)| < &, then

1G(m) = X[| < |G(m) = G(2m)[| + [|G(2m) — X[,

1

=¢ Hence
—C

thatis,e < ¢ + ce, or equivalentlye <
(4.6) 1G(2m) — X|| < G(m) — G(2m)].

The third method that we are concerned with is the adaptirgSon quadrature3| 10,
12]. In the scalar case, it involves extrapolation technicames is particularly recommended
for integrals with functions that strongly vary in differeparts of the intervala,b]. The
MATLAB routinequad implements the algorithm of Gander and Gautsdl#.[| Here we
will use an adaptation of this algorithm for matrix integral
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5. Computing A'/? by quadrature. The composite trapezoidal rule applied to the in-
tegral (L.1) produces an approximation to the matptk root affected by the erra#, whose
norm can be estimated by.@). This estimate involves second order derivatives of the-in
grand functionf(t) = (t?1 + A)~!, which can be given by the expression

F(t) = pP 2 OF (= (p — 1)I + 2pt7 £(1)).

Under the assumptiof/ — A|| = w < 1, (3.6) allows one to obtain the bounds

1
< -
1Ol < 77—
and
:r-P
Pt < —————
I fOI < o=

that are valid for alt € [0, r], with » > 0. Therefore,

" p—2 1 ? rP
51) o< (2) (pe e ).
forall ¢ € [0,7]. It turns out that this bound is not of much interest from acfical point
of view. Indeed, some tests we have carried out showed thestmate of the truncation
error based on5 1) may be very conservative and finding the number of subiatsrin
the trapezoidal rule by means of this bound may predict aelargthan one really needs.
Moreover, it requires the strong restrictign — A|| < 1.

The same problem occurs with Gauss-Legendre rules, bettaisstimate4.5) involves
nth order derivatives of (t). With the assumptiofi/ — A|| < 1, a bound for the norm of
the truncation erroeq;, (see ¢.4)) may be obtained. Nevertheless, our experience with the
bound 6.1) predicts a deterioration when the order of the derivatineseases.

By virtue of these difficulties in bounding the truncatiomagrof quadrature and attend-
ing to (2.2), it may not be easy to find a minimain Theoren?.1that guarantees a prescribed
accuracy. We have to deal with two sources of errors: ther amising from discarding the
integral over the rangp, oo[ and the quadrature truncation error. Moreover, some nwaleri
experiments carried out with the integral {) have shown that the number of function evalu-
ations required in quadrature may be prohibitive. Thuspfactical purposes, it is preferable
to work with the integral representatio®.6) instead of {.1).

Two algorithms for the computation of the matyith root by quadrature applied to the
integral @.6) are proposed below. The first uses the composite trapdzoigsand the sec-
ond the Gauss-Legendre rule. To avoid the computation ofdbkelvent of matrices with
eigenvalues nearby the closed negative real axis, thalinititrix A is preconditioned by the
computation of one matrix square roét [L9], that shifts all the eigenvalues to the open right
half plane. This is possible because

(5.2) Al/P — |:(A1/2k)1/17:| 2k |

for all & € N. We recall that matrix square roots have been used suctlgssfthe com-
putation of the matrix logarithm2P] and the matrixpth root [21] in combination with Paé
approximation. A prior Schur decomposition df = QTQT will also be computed. This
costs abou®5sn? (see [L4, Algorithm 7.5.2]), but attending to the fact that many ftioo
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evaluations have to be computed, this will contribute taucedthe computational cost. ‘If
is triangular, evaluating the integrand ia §),

fl@)= (=22 [(L+ a2l + (1 - a)T] ",

by Gaussian elimination with partial pivoting requires abe? /3 arithmetic operations . The
number of subintervals in the composite trapezoidal rulehvei estimated by4.3).

According to @.6), a possibility for estimating the number of nodes and wksigh
Gauss-Legendre rules is by requiring thigt(2m) — G(m)|| satisfies a prescribed tolerance,
whereG(m) := >, w; f(t;). Unfortunately, it is not clear how to find a sufficiently larg
m to guarantee that4(6) holds. An alternative is to require instead that the nornthef
residual

(5.3) IX7 — Al

be smaller than a given tolerance, whéfe= %WP)A G(m). If this tolerance is not met,
m should be increased to, s&n. Assuming thatY = A'/? is the exacpth root of 4, the
residual 6.3) can be viewed as the backward errorXf that is, it can be interpreted as a
perturbation inA. Indeed, ifF is a matrix such thak = (A + F)'/?, one hag” = X? — A,

A similar strategy is suggested id,[Algorithm 2.1]. The Frobenius norm will be used
throughout our experiments.

ALGORITHM 5.1. Let A € R™*™ have no eigenvalues on the closed negative real axis,
let p > 2 be an integeryn a positive integer andol a given tolerance. This algorithm
approximatesA'/? by the composite trapezoidal rule for the integrald).

1. Find the real Schur decompositioh = QT'Q”, whereQ is orthogonal andl’ is
quasi upper triangular;

2. Compute one square root ®f let 7, := T"/2;

3. Seth =2/mandxy, = -1+ kh,k=0,1,...,m;

4. ComputeZ (h) := B(f(xo) + f(xm)) +h S5, flax), where

fl@)= (=2 2 [(1+2)’T + (1 - 2)PT]

and7 (h/2);
5. Double the number of subintervais«— 2m until (1/3)||7(h)—7 (h/2)||F < tol;

. 2
6. AP~ (20 ) (1, T (0/2)) Q.

Cost. (29 4+ 2)n?.

The cost of Algorithmb.1 can be interpreted as follow85n3 for the real Schur decom-
position,n?/3 for the computation of one matrix square root of a block wiaar matrix in
Step 2,mn?/3 for m functions evaluations (note that refers to the final number of subin-
tervals) and3n® + 2n3 /3 to compute the approximation for tipeh root in Step 6.

ALGORITHM 5.2. Let A € R™*" have no eigenvalues on the closed negative real axis,
let p > 2 be an integeryn a positive integer andol a given tolerance. This algorithm
approximatesA'/? by the Gauss-Legendre rule for the integrald).

1. Find the real Schur decomposition.4f= QT Q”, whereQ is orthogonal andl’ is
quasi upper triangular;
2. Compute one square root ®f T, := T'/2;
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3. Computeg(m) := > ;" | wy f(xx), where
fla) = (1 =a)" 2 [(1+2)’T + (1 - 2)"Te]

andwy, xy are, respectively, the weights and nodes ofithpoint Gauss-Legendre
rule;

4. DenotingX := 2”%Wp)ﬂ G(m), double the number of weights (and nodes)
m — 2m until | X? — T||p < tol;

5. AP ~ (2;0 sin(ﬂ/P)>2 QT g(m))2 Qr.

T

Cost. 28n3 + (my + 1)%3 + m,, wherem is the total number of function evaluations and
m,- is the total cost of the operations involved in Step 4.

In contrast to the trapezoidal rule, each time the numbereaiflats (and nodes) is dou-
bled the previously computed function evaluations caneatdused. This represents an ad-
ditional cost in Gauss-Legendre rules in comparison wipéerzoidal rule. ling is the initial
number of nodes taken in Algorith&2 and assuming that this number is doubdetimes,
then the total number of function evaluationsrigs = (1+2+...+29)m,. The computation
of eachX in Step4 involves about:? /3 operations and the computation of the norm of the
residual|| X? — A||» about2n?|log, p|/3, where|a| denotes the floor of, by the binary
powering algorithm. So the total cost of Stéfs m,. = (q/3)(n> +2n3|log, p|) operations.
We are assuming that the nodes and weights are known.

The adaptive Simpson quadrature is another method thabwitionsidered in our nu-
merical examples. An algorithm for this successful mettayépproximating scalar integrals
is proposed in12] and is implemented in the MLAB routinequad. Since it does not work
with matrix integrals, we have carried out minor modificas@nd adapted it to matrices. The
resulting algorithm includes a prior Schur decompositiod autputs the number of function
evaluationsn ¢. The total cost i28n> + (ms + 1)n?/3 arithmetic operations.

The three algorithms mentioned above, Algoritbm, Algorithm 5.2 and the modified
adaptive Simpson, were implemented imxMAB with unit roundoffu ~ 1.1 x 10716, The
following twelve matrices were used in our tests:

A; = 3xeye(10) + gallery(‘rando’, 10); k(A4;) = 14.6115;

As = gallery(’lehmer’, 8); K(Ag) = 78.1523;

Az = 6 * eye(15) + randn(15); k(Asz) = 27.0730;

Ay = 6% eye(15) + randn(15); K(Ag) = 20.9047;

A = expm(rand(10)); k(As5) = 357.8323;

Ag = expm(rand(10)); k(Ag) = 583.5014;

A7 = rand(10)"2; k(A7) = 1.6565 x 10%;
Ag = rand(10)°2; k(As) = 2.0091 x 10%
Ag = gallery('frank’, 8); k(Ag) = 3.0320 x 105;
Ayp = pascal(8); k(A1) = 2.0667 x 107;
Aq1 = expm(randn(10)); k(A1) = 1.3780 x 106;
A12 = randn(lO)‘Q; H(Alg) = 8.6168 x 10°.

In the first experiment we assumed that= 7, tol = 10~° and that the initialn in
Algorithms 5.1 and5.2is m = 20. To decide about the quality of the computed result we
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evaluated the relative residudlq]
_ | X7 — Allr
4l || 222 (219" e X0

(5.4) pa(X)

)

F

where X is the computecbth root. The results are shown in Figusel. The picture on
the left-hand side plots the number of function evaluatiomslved in each computation and
the picture on the right-hand side plots the values of thatiked residual §.4) associated
with X ~ A'/7 by the three algorithms. We abbrevialeap for Algorithm 5.1, GL for

Algorithm 5.2 andAS for the modified adaptive Simpson.
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Fic. 5.1. Number of function evaluations (left) and relative residual (right) for Algaonith.1
(Trap), Algorithm5.2 (GL) and the modified adaptive SimpsaisYwith p = 7, tol = 1075, m = 20
(the initial value ofm).

Figure 5.1 shows that the Gauss-Legendre rule (AlgoritBr) performs considerably
better than the other rules, both in number of function estéduns and relative residual. The
adaptive Simpson quadrature does not perform as well ac®geAlthough it requires in
general fewer function evaluations than the trapezoidal the value of the relative residual
is larger and strongly varies for the same tolerance.

The three algorithms were also tested for the smaller toteraol = 10~'4. We no-
ticed that the computational effort increased considgratith hundreds or even thousands of
function evaluations involved. Then we combined the thigerdghms with the square root-
ing and squaring technique which exploitsd). With the exception of the Gauss-Legendre
guadrature, no significant reduction of the number of fuorcgvaluations has occurred. Al-
though we have not found any connection betweereRabroximation and Gauss-Legendre
guadrature for the integral(6), this quadrature seems to work very well when combined
with a prior computation of a certain numblef square roots ensuring the condition

17— AV < 1.

This is similar to what happens with the matrix logarithnt,\idnich Gauss-Legendre quadra-
ture and diagonal P&dapproximation are equivalent; sed].
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The results for the combination of AlgorithBn2 with the square rooting and squaring
technique are displayed in Figute2. They show that Gauss-Legendre quadrature applied
to the integral 2.6) can be seen as a promising method for the maitfixroot computation,
despite being a bit more expensive than other methods suttte &chur-Newton15] and
the Schur-Pa& [21] methods. This is more evident if we incregseFigure5.3 shows the
behavior of Gauss-Legendre quadraturegoe 3, 29, 53, showing that the cost blows up
with p. Gauss-Legendre quadrature is a topic that needs furtkeareh. In particular, one
needs to know sharp error estimates, which are importannhth for instance, the optimal
number of square roots required before applying the Gaegehdre quadrature.
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Fic. 5.2. Number of function evaluations (left) and relative residual (right) for Alganith.2
combined with the square rooting and squaring techniquefer 7, tol = 10~*, m = 20.

6. Computing A'/?b. Assuming that a given matrix functiof{ A) allows an integral
representation, quadrature provides an interesting ndefilvocomputing the vectoy (A)b,
whereb € R"™, without the explicit computation of (A) [9]. This method becomes more
effective when combined with an initial reduction 4fto a simpler form, such as Hessenberg
or Schur forms. In this section we investigate the specifgeaaf computingd'/?b by a
quadrature rule applied tQ (©).

Let A = QTQ™, with Q orthogonal and” quasi triangular, be the real Schur decompo-
sition of A. For f(z) = (1 — 2)P~2[(1 4+ )1 + (1 — z)?T]" ", we have

1 m
/ f(z) de ~ Zwkf(ffk),
-1 k=1

where the values ab;, andxy, (k = 1,...,m) depend on the chosen quadrature. Hence

m

1
Q (/ f(x) dm) QTb~Q Zwk(l—mk)p_ka,
-1 k=1
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Fic. 5.3. Number of function evaluations (left) and relative residual (right) for Algarith.2
combined with the square rooting and squaring technique for three valugs @ = 3, 29, 53, and

tol = 1071°, m = 20.

where each vectay;. is then x 1 vector solution of the, x n quasi triangular system of linear
equations

(6.1) (1 + 20)PT + (1 — @)PT) gy, = Q0.

Each linear system of this type can be solvedfnarithmetic operations which means that
any function evaluation in the quadrature can be carriedroat(n?) arithmetic operations
instead ofO(n?) involved in the function evaluations for the matyith root quadrature; see
Section5. Thus the total cost for the matrpth root times a vector using
AY/Ph 2p sin(m/p) QT Zwk(l — 21)? 2y,
T k=1

wherey;, is given by 6.1), is about26n?® + 2mn?.
Composite trapezoidal, Gauss-Legendre and adaptive Simmodes have been imple-
mented in MATLAB . We have computed

APy i=1,...,12

for the same matriced, ..., Ay, tested in Sectio® andb; = randn(lenght(A;),1). To
avoid too many function evaluations, the three rules wereliined with the relation

AVPy = (Al/Q)l/p (Al/“‘)l/p b,

which involves the prior computation of one square roodef The main reason is to avoid
the resolvent of a matrix with eigenvalues nearby the clossghtive real axis. The three
rules have to be applied twice: first to compute= (A1/2)1/pb and then to compute
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Al/rp = (A1/2)1/p b. At first glance it seems that this increases the total nurabemction
evaluations but we shall note that, at least in our testsntimber of function evaluations

required for computing = (Al/Q)l/p b is in general less than half of the number required
for A1/7b. The results are shown in Figuéel for p = 7, tol = 10~ andm = 20.
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Fic. 6.1. Number of function evaluations (left) and relative error (right) of compdsitpezoidal,

Gauss-Legendre and adaptive Simpson rules for approximating thervA@,‘ff}bi, T =1,...,12,
combined with the computation of one square rgot: 7, tol = 107°, m = 20.
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putation of one square root with= 7, tol = 1071°, m = 20.
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To estimate the relative error

Ib — AMPb||
[AYPD]p

with b being the computed approximation fdf/?b, we have assumed that the “exact” vector
A'/Pp s the result of multiplying the computed!'/? (with relative residual less or equal than
the unit roundoff) by the vectar.

Since the number of function evaluations required by the pmsite trapezoidal rule is
the largest, this rule has been excluded in the next expatimdnere the tolerance has been
reduced tacol = 10719, The results are depicted in Figuse?, which evidences once more
the good performance of the Gauss-Legendre rule.

7. Computing the Fréchet derivative. Let A, E € R™*", with A having no eigenvalue
on the closed negative real axis. Denotingr) := (1 + z)?(1 — z)?~2 and
h(z) = (14 x)?I + (1 — 2)P A, the integrand inZ.8) can be written as

For anyz € [—1, 1], computingg(x) is equivalent to solving two coupled matrix equations,
hz)X = a(z)E, Yh(x)=X,

where X andY represent the matrices to be determinedAlfs triangular, each function
evaluationg(z) costs aboun? operations.

To investigate quadrature for the integralg), we proceed as in Sectidn We consider
three algorithms for evaluating theéahet derivativel 1/, (A, E): Algorithm 7.1, which is
based on the composite trapezoidal rule, Algorithr® involving Gauss-Legendre quadra-
ture, and a modification of the Gander and Gautschi's ada@impson method. All the
algorithms involve a prior Schur decomposition4fto reduce the cost and the computation
of one matrix square root to avoid the evaluation of the re=a of a matrix with eigenvalues
nearby the closed negative real axis. It is possible to coethie algorithms with both the
Schur decomposition and matrix square roots by virtue ofdhewing two properties of the
Fréchet derivative,

(71) Lwl/P(AvE) = QLwl/P(Tv QTEQ) QTv

whereA = QT'Q", with Q orthogonal and” quasi triangular, is the Schur decomposition of
A (see RO, Problem 3.2]) and

(7.2) Lovso(A B) = Lys (A7, Ly (AY2, Lssa(A, E)) ).

The identity {.2) follows immediately from the application of the chain r{ig9, Th. 3.4] to

the identity
2
Al/P — ((A1/2)1/p) .

We shall recall thaf,; := L,1,2(A, E) is the unique matrix that satisfies the Sylvester equa-
tion A2 L, + L, AY? = F and thatl,» (A, E) = AE + EA; see PO, ch. 6]. One of the
most popular methods for solving the Sylvester equatiorues t Bartels and Stewar®]|
MATLAB codes for this method are available in the Matrix Functioolbox [18]. If T is
triangular, findingX such that’ X + XT = E requires aboun?® arithmetic operations.
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ALGORITHM 7.1.LetA, E € R™"*™, with A having no eigenvalue on the closed negative
real axis, letp > 2 be an integeryn a positive integer andol a given tolerance. This
algorithm approximated .,» (A, E') by the composite trapezoidal rule for the integralg).

1. Find the real Schur decomposition.df= QTQ”, whereQ is orthogonal andl" is
quasi upper triangular;
Compute one square root df 7, := T"/2;
EvaluateE; := QTEQ);
. Find L in the Sylvester equatich, L, + Ly 15 = Eq;
Seth =2/mandxz, = -1+ kh, k=0,1,...,m;
. Compute7 (h) = &(f(zo) + f(xm)) + h Y py" f(ax), where

f(x) = (4P (l=2)P 2 [(L+2)P T + (1= 2)PTo] " Ly [(1+2)P T+ (1 - 2)PTo)

and7 (h/2);

. Double the number of subintervals < 2m until (1/3)||7 (k) —7 (h/2)||F < tol;
Ly := 2@ (1 19),

Ly :=Ty/P Ly + LTy,

. Law(AE) ~ QL3QT.

SNIESFREN

o © ™~

1
Cost. (36 + 2m + 3)n?.

ALGORITHM 7.2. Let A € R™*™ have no eigenvalues on the closed negative real axis,
let p > 2 be an integeryn a positive integer andol a given tolerance. This algorithm
approximated.:,» (A, E) by the Gauss-Legendre quadrature for the integga8).

1. Find the real Schur decomposition.df= QTQ”, whereQ is orthogonal andl" is
quasi upper triangular;
Compute one square rootdf T, := T/?;
Evaluatel;, := QT EQ);
. Find Ly in the Sylvester equatich, I, + L, Ty = Ey;
. Computef(m) = >, wy f(xx), where

f@) = ()P (L=o)P 2 (L4 2)P T+ (L= a)PTo] " Ly [(L+@)PT + (1 - 2)PTe] ",

andw, xy are, respectively, the weights and nodes ofithpoint Gauss-Legendre
quadrature;
. Double the number of weights (nodes) uijtil(2m) — G(m)||r < tol (see {.6));
Loy = 2p Sil;(ﬂ'/l))g(zm)’
Ly :=Ty/P Ly + LTy "
. Lw(A E)~ QL3QT.

R wN

©w N o

Cost. (36 + 2my + +)n?, wheremy is the total number of function evaluations.

Algorithm 7.1, Algorithm 7.2and a modified version of the adaptive Simpson quadrature
were implemented in MTLAB. The modified adaptive Simpson was also combined with the
Schur decomposition and the computation of one square rblo¢ results for the Frchet
derivatives

Low(Ai, B, i=1,2,...,12,

where theA;’s are the matrices of SectichandE; = randn(length(4;)), are displayed in
Figure7.1l The relative residual is the same that has been uses] iEq. (5.1)]:

M vee(E) = vee(E) |
1M £ vee(E) [+

(7.3) p(A E) =
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. - J N
whereL ~ L1/, (A, E) andM := Z?;é {(Al/f’)T} ® (AV/P)” "7 We can observe that
in our tests the modified adaptive Simpson has a poor perfucenalt requires the largest

number of function evaluations and has the highest relagig@ual. Surprisingly, it is the
trapezoidal rule that gives the best results.
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Fic. 7.1. Number of function evaluations (left) and relative residual (right) for Algarith.1

(Trap), Algorithm 7.2 (GL) and the modified adaptive Simpsas) with p = 7, tol = 107° and
m = 20.
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Fic. 7.2.Number of function evaluations (left) and relative residual (right) for Alganith 1 with
p=3,53,97,tol = 107>, m = 20.

The formulae for the total cost of the algorithms do not depdinectly onp. But our
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experience with the computation of thi root in Sectiorb tell us that the number of function
evaluations is likely to increase. This is clear in Figare, where the Fechet derivative
L,»n(4;,E;),i=1,...,12, is evaluated by the trapezoidal rule for three differeriuga
of p.

8. Conclusions. In this work we have derived new integral representatiomdte ma-
trix pth root and its Fechet derivative. Such integral representations have bseshto bound
those functions and to develop algorithms for their comiporta Three numerical integra-
tion methods have been considered: composite trapezaial@aussian-Legendre rule and
adaptive Simpson quadrature. Our experiments have shoparticular that the combina-
tion of Gaussian quadrature with matrix square roots andriggi can be seen as an effective
method for the computation of the matrixh root, whereas the composite trapezoidal rule
has revealed to be a good choice for thédhret derivative, at least in computations that do
not require high accuracy. The approximation of the mattixroot times a vector by quadra-
ture has been also addressed. The Gauss-Legendre ruleohied fw be once more the right
choice to work out that approximation. However, the Gausgedndre rule for the matrixth
root has not been completely understood yet, mainly beganastical error estimates for the
truncation error are lacking. This is a topic that needsertresearch.
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