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Abstract. We present new integral representations for the matrixpth root and its Fŕechet derivative and then
investigate the computation of these functions by numerical quadrature. Three different quadrature rules are consid-
ered: composite trapezoidal, Gauss-Legendre and adaptive Simpson. The problem of computing the matrixpth root
times a vector without the explicit evaluation of thepth root is also analyzed and bounds for the norm of the matrix
pth root and its Fŕechet derivative are derived.
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1. Introduction. Let p ≥ 2 be a positive integer. Given a matrixA ∈ R
n×n with

eigenvalues not belonging to the closed negative real axis,there exists a unique real matrix
X such thatXp = A, whose eigenvalues lie on the sector of the complex plane defined by
−π/p < arg(z) < π/p, wherearg(z) denotes the argument of the complex numberz. This
unique matrixX is called theprincipal pth root of A and will be denoted byA1/p. For
background on matrixpth roots and general matrix functions, see [20].

The sensitivity of a matrix function to small perturbationsin the data (at first order) is
measured by a condition number based on the norm of the Fréchet derivative. Let
A,E ∈ R

n×n. The Fŕechet derivative of a matrix functionf at A in the direction ofE
is a linear operatorLf (A) that maps each “direction matrix”E to Lf (A,E) such that

f(A + E)− f(A)− Lf (A,E) = o(‖E‖).

The Fŕechet derivative of the matrix functionf may not exist atA, but if it does it is unique
andLf (A,E) coincides with the directional (or Ĝateaux) derivative off atA in the direction
E. Any consistent matrix norm‖.‖ onR

n×n induces the operator norm

‖Lf (A)‖ := max
‖E‖=1

‖Lf (A,E)‖,

which allows one to define the condition number off atA

κf (A) :=
‖Lf (A)‖ ‖A‖
‖f(A)‖ .

Here one uses the same notation to denote both the matrix normand the induced operator
norm. Once an approximation to the matrixLf (A,E) is known, some algorithms are avail-
able to estimate‖Lf (A)‖ and the condition numberκf (A). A well known example is the
power method on the Fréchet derivative. For more details about Fréchet derivatives of matrix
functions, see [20, ch. 3] and the references therein.

One of the goals of this work is to investigate numerical quadrature for the computation
of the Fŕechet derivative of the matrixpth root,Lx1/p(A,E). GivenA,E ∈ R

n×n, with A
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having no eigenvalue on the closed negative real axis, the Fréchet derivative of the matrixpth
root exists andLx1/p(A,E) is the unique solution of the generalized Sylvester equation

p−1
∑

j=0

(

A1/p
)p−1−j

X
(

A1/p
)j

= E

(see [20, Theorem 3.8] and [25, Sec. 2.5]). It can be proved that its Frobenius norm can be
written as

‖Lx1/p(A)‖F =

∥

∥

∥

∥

∥

∥

∥





p−1
∑

j=0

[

(

A1/p
)T
]j

⊗
(

A1/p
)p−1−j





−1
∥

∥

∥

∥

∥

∥

∥

2

(see Problem7.4 and its solution in [20]). Here ‖.‖F and ‖.‖2 denote, respectively, the
Frobenius and the2-norm, and⊗ denotes the Kronecker product. An effective method for
computing the Fŕechet derivative of the matrixpth root was recently proposed in [6].

A well-known integral representation of the principal matrix pth root of A is given by
([17], [20, p. 174])

(1.1) A1/p =
p sin(π/p)

π
A

∫ ∞

0

(tpI + A)−1 dt.

This integral representation over the non negative real line will be the basis of our work. From
(1.1) we derive new integral representations for both the matrixpth root and its Fŕechet deriva-
tive and then investigate quadrature for these integrals. Three different types of quadrature
are considered: composite trapezoidal, Gauss-Legendre and adaptive Simpson. Our numeri-
cal experiments show that while Gauss-Legendre quadratureis a good choice for computing
the matrixpth root A1/p, it is the composite trapezoidal rule that presents the bestperfor-
mance for the Fŕechet derivative.

Another topic of investigation in this paper is the computation of A1/pb, whereb is a
vector. Whereas the methods for computingA1/p involve in generalO(n3) arithmetic oper-
ations, the computation ofT 1/pb by quadrature, withT triangular, quasi-triangular or upper
Hessenberg, can be performed with justO(n2) operations. Triangular and Hessenberg forms
of A can be found by the Schur and Hessenberg decompositions, respectively. As observed
previously in [9, 16], this reinforces the role of integral representations andquadrature in
the matrix functions computation problem. We recall that integral representations for matrix
functions have been known for a long time, but just recently they have been used for practical
computations.

It is worth noting that many technical problems arising in areas such as control, geog-
raphy, finance and healthcare involve the computation of thematrix pth root. For papers
including applications see the references in [21]. We add three recent papers containing ap-
plications: [7], [24] and [26].

This paper is organized as follows. In Section2 we show that the integral in (1.1) can
be written as a sum of an integral over a finite range plus an integral over an infinite range
with norm bounded by a constant. We also show that new integral representations for both
the matrixpth root and its Fŕechet derivative over a finite range can be derived from (1.1),
by choosing an appropriate change of variable. Since all theintegral representations involve
a resolvent function, some estimates for the norm of this function are revisited in Section3
and used to obtain bounds for the norm of the matrixpth root and its Fŕechet derivative. The
difficulty of finding sharp and practical error estimates is discussed. Composite trapezoidal,
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Gauss-Legendre and adaptive Simpson rules are implementedin Sections5, 6, and7 for the
evaluation of the matrixpth root, the matrixpth root times a vector and the Fréchet derivative,
respectively. Numerical experiments are carried out to illustrate and understand the behavior
of these three types of quadrature. Finally, in Section8, we draw some conclusions.

Notation: Unless otherwise stated, throughout the textp ≥ 2 will denote a positive
integer,A a real matrix with no eigenvalue on the closed negative real axis and‖.‖ a consis-
tent matrix or operator norm;‖.‖F and‖.‖2 stand for the Frobenius norm and the2-norm,
respectively.

2. Integral representations. We start by proving that the integral in (1.1) can be split
into two integrals, where the norm of the second one, over an infinite range, can be bounded
by a constant. This result provides an important contribution to understand the behavior of
the matrixpth root integral representation (1.1).

THEOREM 2.1. Let A have no eigenvalues on the closed negative real axis. If
r ≥ (2‖A‖)1/p, then

(2.1) A1/p =
p sin(π/p)

π
A

(∫ r

0

(tpI + A)−1 dt +

∫ ∞

r

(tpI + A)−1 dt

)

,

where
∥

∥

∥

∥

∫ ∞

r

(tpI + A)−1 dt

∥

∥

∥

∥

≤ 2 r1−p

p− 1
.

Proof. Assume thatt ∈ [r, ∞[, with r ≥ (2‖A‖)1/p. This ensures that‖A/tp‖ < 1 and
we can write

(tpI + A)−1 = (tp)−1

(

I +
A

tp

)−1

=
1

tp

∞
∑

k=0

(−1)k

(

A

tp

)k

.

Integrating over the range[r, ∞[, some calculation shows that

∫ ∞

r

(tpI + A)−1 dt = r1−p
∞
∑

k=0

(−1)k

p(k + 1)− 1

(

A

rp

)k

.

The conditionr ≥ (2‖A‖)1/p means that‖A/rp‖ ≤ 1/2. Sincep ≥ 2
∥

∥

∥

∥

∥

∞
∑

k=0

(−1)k

p(k + 1)− 1

(

A

rp

)k
∥

∥

∥

∥

∥

≤
∞
∑

k=0

1

p(k + 1)− 1

∥

∥

∥

∥

A

rp

∥

∥

∥

∥

k

≤ 1

p− 1

∞
∑

k=0

(

1

2

)k

≤ 2

p− 1
,

and then the result follows.
Theorem2.1 gives a bound for the truncation error arising when we replace the infinite

interval in (1.1) by a finite one. To illustrate this, consider for instance a matrix A with norm
‖A‖ = 102 andp = 7. Forr = 10 > (2‖A‖)1/7,

∥

∥

∥

∥

A1/7 − 7 sin(π/7)

π
A

∫ 10

0

(t7I + A)−1 dt

∥

∥

∥

∥

≤ 3.2× 10−5.
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Increasingr to 50, one has

∥

∥

∥

∥

A1/7 − 7 sin(π/7)

π
A

∫ 50

0

(t7I + A)−1 dt

∥

∥

∥

∥

≤ 2.1× 10−9.

This is of particular interest if one wants to approximate (1.1) by quadrature. Assume that

X = A1/p =
p sin(π/p)

π
A(X1 + X2),

where

X1 =

∫ r

0

(tpI + A)−1 dt and X2 =

∫ ∞

r

(tpI + A)−1 dt,

and a quadrature rule is applied toX1 yielding the approximationX̃1 with an absolute error
‖X1 − X̃1‖ ≤ ǫ. If X̃ = p sin(π/p)

π AX̃1 denotes the corresponding approximation toA1/p

andr is such that2 r1−p/(p− 1) ≤ ǫ, then

‖A1/p − X̃‖ ≤ p sin(π/p)

π
‖A‖

(

‖X1 − X̃1‖+ ‖X2‖
)

≤ p sin(π/p)

π
‖A‖

(

ǫ +
2 r1−p

p− 1

)

(2.2)

≤ 2p sin(π/p)

π
‖A‖ǫ.

LetE ∈ R
n×n be a matrix such thatA+E has no eigenvalues on the closed negative real

axis. Using (1.1) together with some algebra, an integral representation for the perturbation
of the matrixpth root follows,

(2.3) (A + E)1/p −A1/p =
p sin(π/p)

π

∫ ∞

0

tp(tpI + A + E)−1E(tpI + A)−1 dt.

Considering only first-order perturbation arguments, an integral representation for the Fréchet
derivative arises,

(2.4) Lx1/p(A,E) =
p sin(π/p)

π

∫ ∞

0

tp(tpI + A)−1E(tpI + A)−1 dt.

This formula can also be obtained from [3, Eq. (8)] by making the substitutiont = xp.
The analogue of Theorem2.1for the Fŕechet derivative is stated below.
THEOREM 2.2. Let A,E ∈ R

n×n. Assume in addition thatA has no eigenvalue on the
closed negative real axis and denoteg(t) = tp(tpI +A)−1E(tpI +A)−1. If r ≥ (2‖A‖)1/p,
then

(2.5) Lx1/p(A,E) =
p sin(π/p)

π

(∫ r

0

g(t) dt +

∫ ∞

r

g(t) dt

)

,

where
∥

∥

∥

∥

∫ ∞

r

g(t) dt

∥

∥

∥

∥

≤ 2 r1−p

p− 1
‖E‖.
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Proof. Proceed similarly to the proof of Theorem2.1.
Another manner of dealing with the integral over an infinite interval (1.1) is the reduction

to an integral over a finite range by appropriately changing variables. One possibility is to
consider the Cayley transformt = (1+x)/(1−x). Some calculation enables one to conclude
that

(2.6) A1/p =
2p sin(π/p)

π
A

∫ 1

−1

(1− x)p−2 [(1 + x)pI + (1− x)pA]
−1

dx.

Since we are assuming thatA has no eigenvalues on the closed negative real axis, the inte-
grand in (2.6) has no singularities in the interval[−1, 1]. Moreover, the function is contin-
uous on that interval. Other changes of variable also resultin finite intervals. For instance,
t = x/(1− x) leads to

A1/p =
p sin(π/p)

π
A

∫ 1

0

(1− x)p−2 [xpI + (1− x)pA]
−1

dx,

and t = tan θ to

A1/p =
p sin(π/p)

π
A

∫ π/2

0

(cos θ)p−2 [(sin θ)p I + (cos θ)p A]
−1

dθ.

Assume that r satisfies the assumptions of Theorem2.1. The substitution
t = (1 + x)/(1 − x) in both the integrals on the right-hand side of (2.1) leads to a split-
ting of the integral (2.6), allowing us to write

A1/p =
2p sin(π/p)

π
A

(

∫
r−1

r+1

−1

(1− x)p−2 [(1 + x)pI + (1− x)pA]
−1

dx

+

∫ 1

r−1

r+1

(1− x)p−2 [(1 + x)pI + (1− x)pA]
−1

dx

)

,(2.7)

with
∥

∥

∥

∥

∥

∫ 1

r−1

r+1

(1− x)p−2 [(1 + x)pI + (1− x)pA]
−1

dx

∥

∥

∥

∥

∥

≤ 2 r1−p

p− 1
.

A change of variables can also turn the improper integral (2.4) into a proper integral. For
instance, witht = (1 + x)/(1− x), the integral (2.4) can be transformed to

(2.8) Lx1/p(A,E) =
2p sin(π/p)

π

∫ 1

−1

(1 + x)p(1− x)p−2 [h(x)]
−1

E [h(x)]
−1

dx,

whereh(x) = (1 + x)pI + (1− x)pA.
Alternative representations for the Fréchet derivative can be derived by performing the

variable transformationst = x/(1− x) andt = tan θ in (2.4).

3. Bounds for‖A1/p‖ and ‖Lx1/p(A)‖. Several bounds available in the literature for
general matrix functions (see, for instance, [20, p. 102] and the references therein) can be
adapted to the particular case of the matrixpth root. However, some of them seem to be
of little interest for practical use, because they may not besharp and it is not clear how to
evaluate them. Our goal in this section is to derive new bounds for the matrixpth root and its
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Fréchet derivative by means of the integral representations addressed in the previous section,
and investigate under which conditions they may have interest from a practical point of view.
We shall note that the problem of bounding‖A1/p‖ and‖Lx1/p(A)‖ reduces to bounding the
resolvent functions that are involved in the integral representations. Bounds for the resolvent
can be found for instance in [13] and [27], where we can observe that unless severe restrictions
are imposed on the matrixA, finding a satisfactory bound valid for allA with no eigenvalues
on the closed negative real axis seems to be out of reach.

Consider the resolvent involved in (1.1),

(3.1) f(t) = (tpI + A)−1,

with t ∈ [0, ∞[. The value of the norm of the resolventf depends in particular on how close
the eigenvalues ofA are to the closed negative real axis. To illustrate this, letus consider
p = 7 and the matrix

A =





ea 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)





with eigenvaluesea andcos(θ) ± i sin(θ). Figure3.1displays the values of the norm of the
resolvent‖(tpI + A)−1‖ againstt for two different pairs of values:a = −2, θ = 3π/4 and
a = −5, θ = 3.13. The peak abovet = 1 is typical and becomes higher asθ approaches
π (that is, as the two conjugate eigenvalues approach−1). This predicts some difficulties in
bounding the corresponding resolvent.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

t

||(
tp I+

A
)−

1 ||

norm of the resolvent

 

 
a=−2, θ=3π/4
a=−5, θ=3.13

FIG. 3.1.Norm of the resolvent‖(tpI + A)−1‖ for t ∈ [0, 2], with p = 7, for a = −2, θ = 3π/4
anda = −5, θ = 3.13.

This phenomenon is well understood in light of the pseudospectra theory. Recall that
for a given matrixA andǫ > 0, theǫ-pseudospectrumσǫ(A) of A is the set ofz ∈ C such
that‖(zI − A)−1‖ > ǫ−1 (see [27]), that is,σǫ(A) is the open subset of the complex plane
bounded by theǫ−1 level curve of the norm of the resolvent. For the matrixA defined above,
Figure3.2 shows the boundaries ofσǫ(A) for some values ofǫ between10−4 and10, from
inner to outer. Eigenvalues are marked by a cross. The left-hand side plot corresponds to
the valuesa = −2, θ = 3π/4 and the right-hand side plot toa = −5, θ = 3.13. Since
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−tp ∈] −∞, 0], the norm of the resolvent (3.1) attains large values whenever the contours
cross the closed negative real axis very closely to an eigenvalue ofA.

x

y
Boundaries for a=−2, θ=3π/4

−2 −1 0 1 2
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Boundaries for a=−5, θ=3.13

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
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−0.4

−0.2

0

0.2

0.4

0.6

FIG. 3.2. Boundaries of theǫ-pseudospectrum ofA with a = −2, θ = 3π/4 (left) and
a = −5, θ = 3.13 (right) for someǫ ∈ [10−4, 10].

Let d(z, σ(A)) denote the distance between the complex numberz and the spectrum of
A, σ(A) = {λ1, . . . , λn}, that is,

d(z, σ(A)) = min
λ∈σ(A)

|z − λ|.

Assuming thatz /∈ σ(A), the following error estimate for the resolvent is available
in [13, p. 12]:

(3.2) ‖(zI −A)−1‖2 ≤
n
∑

k=0

(γ(A))k

√
k! [d(z, σ(A))]k+1

,

where

γ(A) =

(

‖A‖2F −
n
∑

k=1

|λk|2
)1/2

can be interpreted as a quantity measuring the departure ofA from normality. If in particular
A is normal, thenγ(A) = 0, and therefore (3.2) simplifies to

‖(zI −A)−1‖2 =
1

d(z, σ(A))
.

Another simplification of (3.2) occurs whenA is diagonalizable. Indeed, assuming that
A = SDS−1, with S nonsingular andD diagonal,

‖(zI −A)−1‖2 ≤
κ(S)

d(z, σ(A))
,

whereκ(S) = ‖S‖2‖S−1‖2 stands for the condition number ofS.
To compute an estimate for the norm of the resolvent using (3.2), it is helpful to write

d(z, σ(A)) as an elementary function ofz or to find a lower bound depending onz. This
seems to be difficult for a general matrixA with no eigenvalues on the closed negative real
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axis. However, assuming that all the eigenvalues ofA lie on the open right-half plane, for the
particular resolvent (3.1), the inequality

(3.3) d(−tp, σ(A)) ≥ β(A) + tp

holds for allt ∈ [0,∞[, whereβ(A) := min{Re(λ) : λ ∈ σ(A)}. In particular, if the spec-
trum of A is real positive, (3.3) becomes an equality. The following result is a consequence
of Theorem2.1and the discussion above.

THEOREM 3.1. Let A,E ∈ R
n×n, with A having eigenvalues on the open right-half

plane, and letβ(A) := min{Re(λ) : λ ∈ σ(A)}. Assume thatr ≥ (2‖A‖2)1/p.

(i) Puttingγ(A) =
(

‖A‖2F −
∑n

k=1 |λk|2
)1/2

, we have

‖A1/p‖2 ≤
p sin(π/p)

π
‖A‖2

(

∫ r

0

n
∑

k=0

[γ(A)]k√
k! (β(A) + tp)k+1

dt +
2 r1−p

p− 1

)

and

‖Lx1/p(A)‖2 ≤
p sin(π/p)

π





∫ r

0

tp

(

n
∑

k=0

[γ(A)]k√
k! (β(A) + tp)k+1

)2

dt +
2 r1−p

p− 1



 .

(ii) If A is diagonalizable, withA = SDS−1, then

‖A1/p‖2 ≤
p sin(π/p)

π
‖A‖2

(

κ(S)

∫ r

0

1

β(A) + tp
dt +

2 r1−p

p− 1

)

and

‖Lx1/p(A)‖2 ≤
p sin(π/p)

π

(

[κ(S)]2
∫ r

0

tp

(β(A) + tp)2
dt +

2 r1−p

p− 1

)

,

whereκ(S) is the condition number ofS with respect to the2-norm.

More bounds are given in the next theorem.
THEOREM 3.2. LetA ∈ R

n×n satisfy the condition‖I −A‖ = ω < 1, and assume that

r ≥ (2‖A‖)1/p. Then

(3.4) ‖A1/p‖ ≤ p sin(π/p)

π
‖A‖

(∫ r

0

1

1− ω + tp
dt +

2 r1−p

p− 1

)

and

(3.5) ‖Lx1/p(A)‖ ≤ p sin(π/p)

π

(

∫ r

0

tp
(

1

1− ω + tp

)2

dt +
2 r1−p

p− 1

)

.

Proof. Sincet ∈ [0, ∞[ and‖I −A‖ = ω < 1, we can write

(tpI + A)−1 = ((tp + 1)I − (I −A))
−1

=
1

tp + 1

(

I − I −A

tp + 1

)−1
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and then

‖(tpI + A)−1‖ ≤
(

1

tp + 1

)

(

1

1− ω
tp+1

)

=
1

1− ω + tp
.(3.6)

By Theorem2.1, (3.4) follows. For anyE ∈ R
n×n, Theorem2.2guarantees that

‖Lx1/p(A,E)‖ ≤ p sin(π/p)

π

(∫ r

0

tp‖E‖
∥

∥(tpI + A)−1
∥

∥

2
dt + ‖E‖2 r1−p

p− 1

)

.

Hence,

max
‖E‖=1

‖Lx1/p(A,E)‖ ≤ max
‖E‖=1

{

p sin(π/p)

π

(∫ r

0

tp‖E‖
∥

∥(tpI + A)−1
∥

∥

2
dt

+‖E‖2 r1−p

p− 1

)}

,

and, for the induced operator norm, we have the inequality

(3.7) ‖Lx1/p(A)‖ ≤ p sin(π/p)

π

(∫ r

0

tp
∥

∥(tpI + A)−1
∥

∥

2
dt +

2 r1−p

p− 1

)

.

Now (3.5) follows from (3.6) and (3.7).
Note that all the integrals appearing in the bounds of Theorems3.1and3.2are scalar and

thus can be estimated by scalar quadrature.

4. Matrix integrals. Given a matrix valued function depending on a parameter

f : t ∈ [a, b] −→ f(t) ∈ R
n×n

satisfying some requirements related with integrability and differentiability, the integral
∫ b

a
f(t) dt and the derivativef ′(t) are defined componentwise [14, Sec. 11.2.6]. With some

precautions, scalar quadrature can be extended to matrix integrals. The following theorem
plays an important role in the study of matrix integrals. It gives a bound for the truncation
error arising in the approximation of a matrix integral by quadrature.

THEOREM 4.1. [23] Let [a, b] be a finite interval. Assume thatc > 0, ti ∈ [a, b]
and wi ∈ R, i = 1, 2, . . . ,m, be such that for any scalar functiong that is k + 1 times
differentiable on[a, b],

∣

∣

∣

∣

∣

∫ b

a

g(t) dt−
m
∑

i=1

wig(ti)

∣

∣

∣

∣

∣

≤ c max
ξ∈[a,b]

|g(k+1)(ξ)|.

Letf : [a, b] −→ R
n×n be such thatf (k+1)(t) exists for allt ∈ [a, b]. Then

∥

∥

∥

∥

∥

∫ b

a

f(t) dt−
m
∑

i=1

wif(ti)

∥

∥

∥

∥

∥

≤ c max
s∈[a,b]

‖f (k+1)(s)‖.
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At first glance, Theorem4.1may lead us to think that the error formula of a given scalar
quadrature

∫ b

a

g(t) dt−
m
∑

i=1

wig(ti) = c g(k+1)(ξ),

for someξ ∈ [a, b], can be extended to matrix quadrature. Unfortunately, thisis not true in
general because a choice of a singleξ ∈ [a, b] such that

∫ b

a

f(t) dt−
m
∑

i=1

wif(ti) = c f (k+1)(ξ),

for a matrix valued functionf : [a, b] −→ R
n×n, may not be possible. For a simple counter–

example, considerf(t) as being an2× 2 diagonal matrix with different entries.

One of the aims of this paper is to investigate numerical quadrature for computingA1/p,
A1/pb andLx1/p(A,E). Many numerical methods to approximate integrals are available (see
for instance [8] and [10]), but we restrict our study to three popular methods: composite
trapezoidal, Gauss-Legendre and adaptive Simpson rules.

Givenf : [a, b] −→ R
n×n having derivatives of second order fort ∈ [a, b], the compos-

ite trapezoidal rule allows one to write

∫ b

a

f(t) dt = T (h) + ǫT ,

where

(4.1) T (h) =
h

2
(f(t0) + f(tm)) + h

m−1
∑

k=1

f(tk)

andǫT denotes the truncation error. Recall thatt0 = a, t1, . . . , tm = b are equally spaced
points partitioning the interval[a, b] andh = tk − tk−1.

By Theorem4.1the composite trapezoidal truncation error can be bounded by

(4.2) ‖ǫT ‖ ≤
b− a

12
h2 max

s∈[a,b]
‖f ′′(s)‖.

This error formula raises the question of how to find a bound for f ′′ on [a, b]. This is a major
difficulty in the case of the integrals representingA1/p andLx1/p(A,E) because the inte-
grands involve resolvents; see the discussion on bounding resolvents in the previous section.
Nevertheless, for a matrixA sufficiently close to the identity such that‖I − A‖ < 1 finding
a bound for the second derivative off is possible, as we will see later in (5.1). The need of
this restriction onA is also reported in [9] for the matrix logarithm.

Another technique to estimate the trapezoidal truncation error is based on Richardson ex-
trapolation. For a sufficiently smallh, the composite trapezoidal rule satisfies
[8, pp. 10, 529]

(4.3)

∥

∥

∥

∥

∥

∫ b

a

f(t) dt− T
(

h

2

)

∥

∥

∥

∥

∥

≈ 1

3

∥

∥

∥

∥

T (h)− T
(

h

2

)∥

∥

∥

∥

,

with T (h) defined by (4.1).
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The relation (4.3) is very useful in practical computations because it avoidsthe use of
derivatives. Recall that a similar relation holds for the composite Simpson rule, which is the
basis of the adaptive Simpson quadrature.

It is worth noting that when the number of subintervalsm is doubled the function eval-
uations inT (h) can be reused forT (h/2). Since the computation of a matrix function
f(t) ∈ R

n×n involves in generalO(n3) arithmetic operations, this represents an important
advantage of the trapezoidal rule for matrix integrals.

The m-point Gauss-Legendre quadrature rule is a widely used method for numerical
evaluation of integrals,

(4.4)
∫ 1

−1

f(t) dt =
m
∑

i=1

wif(ti) + ǫGL,

with ǫGL representing the truncation error. Thewi’s are called the weights and theti’s are the
nodes [10]. For several values ofm, the weights and the nodes can be found in the literature
and several routines are available for their computation [1]. Attending to the formula for the
scalar truncation error (see, for instance, [10, (2.7.11)]) and to Theorem4.1, the truncation
error for matrix quadrature can be bounded by

(4.5) ‖ǫGL‖ ≤
22m+1(m!)4

(2m + 1)((2m)!)3
max

s∈[a,b]
‖f (2m)(s)‖.

For integrals over[a, b], the change of variable

t =
1

2
((b− a)x + (a + b))

maps the interval[a, b] onto the standard interval[−1, 1]. The Gauss-Legendre rule is very
popular in the scalar case, which is due in part to its optimality properties. Nevertheless it
has the drawback of not allowing the reuse of the function evaluations when passing from
m to 2m. One possible way to overcome this is to consider Gauss-Kronrod rules (see
[8, sec. 5.3.3] and the references therein), which are constructed from Gaussian rules. The
extension of Gauss-Kronrod rules to matrix functions is notaddressed here but it seems to be
a very interesting topic for future research. The truncation error estimate (4.5) may be useless
if the expression of thenth derivative off is unknown or complicated. An alternative is to
use an estimate similar to (4.3).

Let G(m) :=
∑m

i=1 wif(ti) be them-point Gauss-Legendre quadrature and letX :=
∫ 1

−1
f(t) dt. By (4.5) it can be shown that‖G(m) − X‖ tends to zero wheneverm → ∞.

Assume thatm is sufficiently large so that‖G(m) −X‖ = ǫ and‖G(2m) −X‖ = cǫ, with
0 < c ≤ 0.5. If ‖G(m)− G(2m)‖ ≤ ǫ̃, then

‖G(m)−X‖ ≤ ‖G(m)− G(2m)‖+ ‖G(2m)−X‖,

that is,ǫ ≤ ǫ̃ + cǫ, or equivalently,ǫ ≤ 1
1−c ǫ̃. Hence

(4.6) ‖G(2m)−X‖ ≤ ‖G(m)− G(2m)‖.

The third method that we are concerned with is the adaptive Simpson quadrature [8, 10,
12]. In the scalar case, it involves extrapolation techniquesand is particularly recommended
for integrals with functions that strongly vary in different parts of the interval[a, b]. The
MATLAB routinequad implements the algorithm of Gander and Gautschi [12]. Here we
will use an adaptation of this algorithm for matrix integrals.
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5. Computing A
1/p by quadrature. The composite trapezoidal rule applied to the in-

tegral (1.1) produces an approximation to the matrixpth root affected by the errorǫT , whose
norm can be estimated by (4.2). This estimate involves second order derivatives of the inte-
grand functionf(t) = (tpI + A)−1, which can be given by the expression

f ′′(t) = ptp−2[f(t)]2(−(p− 1)I + 2ptpf(t)).

Under the assumption‖I −A‖ = ω < 1, (3.6) allows one to obtain the bounds

‖f(t)‖ ≤ 1

1− ω

and

‖tpf(t)‖ ≤ rp

rp + 1− ω
,

that are valid for allt ∈ [0, r], with r > 0. Therefore,

(5.1) ‖f ′′(t)‖ ≤ prp−2

(

1

1− ω

)2(

p + 1 + 2p
rp

rp + 1− ω

)

,

for all t ∈ [0, r]. It turns out that this bound is not of much interest from a practical point
of view. Indeed, some tests we have carried out showed that anestimate of the truncation
error based on (5.1) may be very conservative and finding the number of subintervals in
the trapezoidal rule by means of this bound may predict a larger m than one really needs.
Moreover, it requires the strong restriction‖I −A‖ < 1.

The same problem occurs with Gauss-Legendre rules, becausethe estimate (4.5) involves
nth order derivatives off(t). With the assumption‖I − A‖ < 1, a bound for the norm of
the truncation errorǫGL (see (4.4)) may be obtained. Nevertheless, our experience with the
bound (5.1) predicts a deterioration when the order of the derivativesincreases.

By virtue of these difficulties in bounding the truncation error of quadrature and attend-
ing to (2.2), it may not be easy to find a minimalr in Theorem2.1that guarantees a prescribed
accuracy. We have to deal with two sources of errors: the error arising from discarding the
integral over the range[r, ∞[ and the quadrature truncation error. Moreover, some numerical
experiments carried out with the integral (1.1) have shown that the number of function evalu-
ations required in quadrature may be prohibitive. Thus, forpractical purposes, it is preferable
to work with the integral representation (2.6) instead of (1.1).

Two algorithms for the computation of the matrixpth root by quadrature applied to the
integral (2.6) are proposed below. The first uses the composite trapezoidal rule and the sec-
ond the Gauss-Legendre rule. To avoid the computation of theresolvent of matrices with
eigenvalues nearby the closed negative real axis, the initial matrixA is preconditioned by the
computation of one matrix square root [5, 19], that shifts all the eigenvalues to the open right
half plane. This is possible because

(5.2) A1/p =

[

(

A1/2k
)1/p

]2k

,

for all k ∈ N. We recall that matrix square roots have been used successfully in the com-
putation of the matrix logarithm [22] and the matrixpth root [21] in combination with Pad́e
approximation. A prior Schur decomposition ofA = QTQT will also be computed. This
costs about25n3 (see [14, Algorithm 7.5.2]), but attending to the fact that many function
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evaluations have to be computed, this will contribute to reduce the computational cost. IfT
is triangular, evaluating the integrand in (2.6),

f(x) = (1− x)p−2 [(1 + x)pI + (1− x)pT ]
−1

,

by Gaussian elimination with partial pivoting requires about n3/3 arithmetic operations . The
number of subintervals in the composite trapezoidal rule will be estimated by (4.3).

According to (4.6), a possibility for estimating the number of nodes and weights in
Gauss-Legendre rules is by requiring that‖G(2m) − G(m)‖ satisfies a prescribed tolerance,
whereG(m) :=

∑m
i=1 wif(ti). Unfortunately, it is not clear how to find a sufficiently large

m to guarantee that (4.6) holds. An alternative is to require instead that the norm ofthe
residual

(5.3) ‖X̄p −A‖,

be smaller than a given tolerance, whereX̄ := p sin(π/p)
π AG(m). If this tolerance is not met,

m should be increased to, say,2m. Assuming thatX = A1/p is the exactpth root ofA, the
residual (5.3) can be viewed as the backward error ofX̄, that is, it can be interpreted as a
perturbation inA. Indeed, ifF is a matrix such that̄X = (A + F )1/p, one hasF = X̄p−A.
A similar strategy is suggested in [4, Algorithm 2.1]. The Frobenius norm will be used
throughout our experiments.

ALGORITHM 5.1. Let A ∈ R
n×n have no eigenvalues on the closed negative real axis,

let p ≥ 2 be an integer,m a positive integer andtol a given tolerance. This algorithm
approximatesA1/p by the composite trapezoidal rule for the integral (2.6).

1. Find the real Schur decompositionA = QTQT , whereQ is orthogonal andT is
quasi upper triangular;

2. Compute one square root ofT ; let T2 := T 1/2;
3. Seth = 2/m andxk = −1 + kh, k = 0, 1, . . . ,m;
4. ComputeT (h) := h

2 (f(x0) + f(xm)) + h
∑m−1

k=1 f(xk), where

f(x) = (1− x)p−2 [(1 + x)pI + (1− x)pT2]
−1

,

andT (h/2);
5. Double the number of subintervalsm← 2m until (1/3)‖T (h)−T (h/2)‖F ≤ tol;

6. A1/p ≈
(

2p sin(π/p)
π

)2

Q (T2 T (h/2))
2
QT .

Cost. (29 + m
3 )n3.

The cost of Algorithm5.1can be interpreted as follows:25n3 for the real Schur decom-
position,n3/3 for the computation of one matrix square root of a block triangular matrix in
Step 2,mn3/3 for m functions evaluations (note thatm refers to the final number of subin-
tervals) and3n3 + 2n3/3 to compute the approximation for thepth root in Step 6.

ALGORITHM 5.2. Let A ∈ R
n×n have no eigenvalues on the closed negative real axis,

let p ≥ 2 be an integer,m a positive integer andtol a given tolerance. This algorithm
approximatesA1/p by the Gauss-Legendre rule for the integral (2.6).

1. Find the real Schur decomposition ofA = QTQT , whereQ is orthogonal andT is
quasi upper triangular;

2. Compute one square root ofT , T2 := T 1/2;
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3. ComputeG(m) :=
∑m

k=1 wkf(xk), where

f(x) = (1− x)p−2 [(1 + x)pI + (1− x)pT2]
−1

andwk, xk are, respectively, the weights and nodes of them-point Gauss-Legendre
rule;

4. DenotingX̃ := 2p sin(π/p)
π T2 G(m), double the number of weights (and nodes)

m← 2m until ‖X̃p − T‖F ≤ tol;

5. A1/p ≈
(

2p sin(π/p)
π

)2

Q(T2 G(m))2 QT .

Cost. 28n3 + (mf + 1)n3

3 + mr, wheremf is the total number of function evaluations and
mr is the total cost of the operations involved in Step 4.

In contrast to the trapezoidal rule, each time the number of weights (and nodes) is dou-
bled the previously computed function evaluations cannot be reused. This represents an ad-
ditional cost in Gauss-Legendre rules in comparison with trapezoidal rule. Ifm0 is the initial
number of nodes taken in Algorithm5.2 and assuming that this number is doubledq times,
then the total number of function evaluations ismf = (1+2+ . . .+2q)m0. The computation
of eachX̃ in Step4 involves aboutn3/3 operations and the computation of the norm of the
residual‖X̃p − A‖F about2n3⌊log2 p⌋/3, where⌊a⌋ denotes the floor ofa, by the binary
powering algorithm. So the total cost of Step4 is mr = (q/3)(n3 +2n3⌊log2 p⌋) operations.
We are assuming that the nodes and weights are known.

The adaptive Simpson quadrature is another method that willbe considered in our nu-
merical examples. An algorithm for this successful method for approximating scalar integrals
is proposed in [12] and is implemented in the MATLAB routinequad. Since it does not work
with matrix integrals, we have carried out minor modifications and adapted it to matrices. The
resulting algorithm includes a prior Schur decomposition and outputs the number of function
evaluationsmf . The total cost is28n3 + (mf + 1)n3/3 arithmetic operations.

The three algorithms mentioned above, Algorithm5.1, Algorithm 5.2 and the modified
adaptive Simpson, were implemented in MATLAB with unit roundoffu ≈ 1.1× 10−16. The
following twelve matrices were used in our tests:

A1 = 3 ∗ eye(10) + gallery(′rando′, 10); κ(A1) = 14.6115;
A2 = gallery(′lehmer′, 8); κ(A2) = 78.1523;
A3 = 6 ∗ eye(15) + randn(15); κ(A3) = 27.0730;
A4 = 6 ∗ eye(15) + randn(15); κ(A4) = 20.9047;
A5 = expm(rand(10)); κ(A5) = 357.8323;
A6 = expm(rand(10)); κ(A6) = 583.5014;
A7 = rand(10)̂ 2; κ(A7) = 1.6565× 104;
A8 = rand(10)̂ 2; κ(A8) = 2.0091× 104;
A9 = gallery(′frank′, 8); κ(A9) = 3.0320× 105;
A10 = pascal(8); κ(A10) = 2.0667× 107;
A11 = expm(randn(10)); κ(A11) = 1.3780× 106;
A12 = randn(10)̂ 2; κ(A12) = 8.6168× 105.

In the first experiment we assumed thatp = 7, tol = 10−5 and that the initialm in
Algorithms 5.1 and5.2 is m = 20. To decide about the quality of the computed result we
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evaluated the relative residual [15]

(5.4) ρA(X̄) :=
‖X̄p −A‖F

‖A‖F
∥

∥

∥

∑p−1
i=0

(

X̄p−1−i
)T ⊗ X̄i

∥

∥

∥

F

,

whereX̄ is the computedpth root. The results are shown in Figure5.1. The picture on
the left-hand side plots the number of function evaluationsinvolved in each computation and
the picture on the right-hand side plots the values of the relative residual (5.4) associated
with X̄ ≈ A1/7 by the three algorithms. We abbreviateTrap for Algorithm 5.1, GL for
Algorithm 5.2andAS for the modified adaptive Simpson.
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FIG. 5.1. Number of function evaluations (left) and relative residual (right) for Algorithm 5.1
(Trap), Algorithm5.2 (GL) and the modified adaptive Simpson (AS) with p = 7, tol = 10−5, m = 20
(the initial value ofm).

Figure5.1 shows that the Gauss-Legendre rule (Algorithm5.2) performs considerably
better than the other rules, both in number of function evaluations and relative residual. The
adaptive Simpson quadrature does not perform as well as expected. Although it requires in
general fewer function evaluations than the trapezoidal rule, the value of the relative residual
is larger and strongly varies for the same tolerance.

The three algorithms were also tested for the smaller tolerancetol = 10−14. We no-
ticed that the computational effort increased considerably, with hundreds or even thousands of
function evaluations involved. Then we combined the three algorithms with the square root-
ing and squaring technique which exploits (5.2). With the exception of the Gauss-Legendre
quadrature, no significant reduction of the number of function evaluations has occurred. Al-
though we have not found any connection between Padé approximation and Gauss-Legendre
quadrature for the integral (2.6), this quadrature seems to work very well when combined
with a prior computation of a certain numberk of square roots ensuring the condition

‖I −A1/2k‖ < 1.

This is similar to what happens with the matrix logarithm, for which Gauss-Legendre quadra-
ture and diagonal Padé approximation are equivalent; see [11].
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The results for the combination of Algorithm5.2 with the square rooting and squaring
technique are displayed in Figure5.2. They show that Gauss-Legendre quadrature applied
to the integral (2.6) can be seen as a promising method for the matrixpth root computation,
despite being a bit more expensive than other methods such asthe Schur-Newton [15] and
the Schur-Pad́e [21] methods. This is more evident if we increasep. Figure5.3 shows the
behavior of Gauss-Legendre quadrature forp = 3, 29, 53, showing that the cost blows up
with p. Gauss-Legendre quadrature is a topic that needs further research. In particular, one
needs to know sharp error estimates, which are important to find, for instance, the optimal
number of square roots required before applying the Gauss-Legendre quadrature.
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FIG. 5.2. Number of function evaluations (left) and relative residual (right) for Algorithm 5.2
combined with the square rooting and squaring technique forp = 7, tol = 10−14, m = 20.

6. Computing A
1/pb. Assuming that a given matrix functionf(A) allows an integral

representation, quadrature provides an interesting method for computing the vectorf(A)b,
whereb ∈ R

n, without the explicit computation off(A) [9]. This method becomes more
effective when combined with an initial reduction ofA to a simpler form, such as Hessenberg
or Schur forms. In this section we investigate the specific case of computingA1/pb by a
quadrature rule applied to (2.6).

Let A = QTQT , with Q orthogonal andT quasi triangular, be the real Schur decompo-
sition ofA. Forf(x) = (1− x)p−2 [(1 + x)pI + (1− x)pT ]

−1, we have

∫ 1

−1

f(x) dx ≈
m
∑

k=1

wkf(xk),

where the values ofwk andxk (k = 1, . . . ,m) depend on the chosen quadrature. Hence

Q

(∫ 1

−1

f(x) dx

)

QT b ≈ Q
m
∑

k=1

wk(1− xk)p−2yk,
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FIG. 5.3. Number of function evaluations (left) and relative residual (right) for Algorithm 5.2
combined with the square rooting and squaring technique for three values of p: p = 3, 29, 53, and
tol = 10−10, m = 20.

where each vectoryk is then×1 vector solution of then×n quasi triangular system of linear
equations

(6.1) [(1 + xk)pI + (1− xk)pT ] yk = QT b.

Each linear system of this type can be solved inn2 arithmetic operations which means that
any function evaluation in the quadrature can be carried outin O(n2) arithmetic operations
instead ofO(n3) involved in the function evaluations for the matrixpth root quadrature; see
Section5. Thus the total cost for the matrixpth root times a vector using

A1/pb ≈ 2p sin(π/p)

π
QT

m
∑

k=1

wk(1− xk)p−2yk,

whereyk is given by (6.1), is about26n3 + 2mn2.
Composite trapezoidal, Gauss-Legendre and adaptive Simpson rules have been imple-

mented in MATLAB . We have computed

A
1/p
i bi, i = 1, . . . , 12

for the same matricesA1, . . . , A12 tested in Section5 andbi = randn(lenght(Ai), 1). To
avoid too many function evaluations, the three rules were combined with the relation

A1/pb =
(

A1/2
)1/p (

A1/2
)1/p

b,

which involves the prior computation of one square root ofAi. The main reason is to avoid
the resolvent of a matrix with eigenvalues nearby the closednegative real axis. The three

rules have to be applied twice: first to computeb̃ =
(

A1/2
)1/p

b and then to compute
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A1/pb =
(

A1/2
)1/p

b̃. At first glance it seems that this increases the total numberof function
evaluations but we shall note that, at least in our tests, thenumber of function evaluations

required for computing̃b =
(

A1/2
)1/p

b is in general less than half of the number required
for A1/pb. The results are shown in Figure6.1for p = 7, tol = 10−5 andm = 20.
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FIG. 6.1. Number of function evaluations (left) and relative error (right) of compositetrapezoidal,
Gauss-Legendre and adaptive Simpson rules for approximating the vector A

1/p
i bi, i = 1, . . . , 12,

combined with the computation of one square root;p = 7, tol = 10−5, m = 20.
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FIG. 6.2. Number of function evaluations (left) and relative error (right) of Gauss-Legendre and
Adaptive Simpson rules for approximating the vectorA

1/p
i bi, i = 1, . . . , 12, combined with the com-

putation of one square root withp = 7, tol = 10−10, m = 20.
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To estimate the relative error

‖b̄−A1/pb‖F
‖A1/pb‖F

,

with b̄ being the computed approximation forA1/pb, we have assumed that the “exact” vector
A1/pb is the result of multiplying the computedA1/p (with relative residual less or equal than
the unit roundoff) by the vectorb.

Since the number of function evaluations required by the composite trapezoidal rule is
the largest, this rule has been excluded in the next experiment, where the tolerance has been
reduced totol = 10−10. The results are depicted in Figure6.2, which evidences once more
the good performance of the Gauss-Legendre rule.

7. Computing the Fréchet derivative. LetA,E ∈ R
n×n, with A having no eigenvalue

on the closed negative real axis. Denotingα(x) := (1 + x)p(1 − x)p−2 and
h(x) := (1 + x)pI + (1− x)pA, the integrand in (2.8) can be written as

g(x) := α(x) [h(x)]
−1

E [h(x)]
−1

.

For anyx ∈ [−1, 1], computingg(x) is equivalent to solving two coupled matrix equations,

h(x)X = α(x)E, Y h(x) = X,

whereX andY represent the matrices to be determined. IfA is triangular, each function
evaluationg(x) costs about2n3 operations.

To investigate quadrature for the integral (2.8), we proceed as in Section5. We consider
three algorithms for evaluating the Fréchet derivativeLx1/p(A,E): Algorithm 7.1, which is
based on the composite trapezoidal rule, Algorithm7.2, involving Gauss-Legendre quadra-
ture, and a modification of the Gander and Gautschi’s adaptive Simpson method. All the
algorithms involve a prior Schur decomposition ofA to reduce the cost and the computation
of one matrix square root to avoid the evaluation of the resolvent of a matrix with eigenvalues
nearby the closed negative real axis. It is possible to combine the algorithms with both the
Schur decomposition and matrix square roots by virtue of thefollowing two properties of the
Fréchet derivative,

(7.1) Lx1/p(A,E) = QLx1/p(T,QT EQ)QT ,

whereA = QTQT , with Q orthogonal andT quasi triangular, is the Schur decomposition of
A (see [20, Problem 3.2]) and

(7.2) Lx1/p(A,E) = Lx2

(

A1/p, Lx1/p

(

A1/2, Lx1/2(A,E)
))

.

The identity (7.2) follows immediately from the application of the chain rule[20, Th. 3.4] to
the identity

A1/p =

(

(

A1/2
)1/p

)2

.

We shall recall thatL1 := Lx1/2(A,E) is the unique matrix that satisfies the Sylvester equa-
tion A1/2 L1 + L1 A1/2 = E and thatLx2(A,E) = AE + EA; see [20, ch. 6]. One of the
most popular methods for solving the Sylvester equation is due to Bartels and Stewart [2].
MATLAB codes for this method are available in the Matrix Function Toolbox [18]. If T is
triangular, findingX such thatTX + XT = E requires about2n3 arithmetic operations.
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ALGORITHM 7.1. LetA,E ∈ R
n×n, withA having no eigenvalue on the closed negative

real axis, letp ≥ 2 be an integer,m a positive integer andtol a given tolerance. This
algorithm approximatesLx1/p(A,E) by the composite trapezoidal rule for the integral (2.8).

1. Find the real Schur decomposition ofA = QTQT , whereQ is orthogonal andT is
quasi upper triangular;

2. Compute one square root ofT , T2 := T 1/2;
3. EvaluateE1 := QT EQ;
4. FindL1 in the Sylvester equationT2 L1 + L1 T2 = E1;
5. Seth = 2/m andxk = −1 + kh, k = 0, 1, . . . ,m;
6. ComputeT (h) = h

2 (f(x0) + f(xm)) + h
∑m−1

k=1 f(xk), where

f(x) = (1+x)p(1−x)p−2 [(1 + x)pI + (1− x)pT2]
−1

L1 [(1 + x)pI + (1− x)pT2]
−1

,

andT (h/2);
7. Double the number of subintervalsm← 2m until (1/3)‖T (h)−T (h/2)‖F < tol;
8. L2 := 2p sin(π/p)

π T (h/2),

9. L3 := T
1/p
2 L2 + L2T

1/p
2 ;

10. Lx1/p(A,E) ≈ QL3Q
T .

Cost. (36 + 2m + 1
3 )n3.

ALGORITHM 7.2. Let A ∈ R
n×n have no eigenvalues on the closed negative real axis,

let p ≥ 2 be an integer,m a positive integer andtol a given tolerance. This algorithm
approximatesLx1/p(A,E) by the Gauss-Legendre quadrature for the integral (2.8).

1. Find the real Schur decomposition ofA = QTQT , whereQ is orthogonal andT is
quasi upper triangular;

2. Compute one square root ofT , T2 := T 1/2;
3. EvaluateE1 := QT EQ;
4. FindL1 in the Sylvester equationT2 L1 + L1 T2 = E1;
5. ComputeG(m) =

∑m
k=1 wkf(xk), where

f(x) = (1+x)p(1−x)p−2 [(1 + x)pI + (1− x)pT2]
−1

L1 [(1 + x)pI + (1− x)pT2]
−1

,

andwk, xk are, respectively, the weights and nodes of them-point Gauss-Legendre
quadrature;

6. Double the number of weights (nodes) until‖G(2m)−G(m)‖F < tol (see (4.6));
7. L2 := 2p sin(π/p)

π G(2m),

8. L3 := T
1/p
2 L2 + L2T

1/p
2 ;

9. Lx1/p(A,E) ≈ QL3Q
T .

Cost. (36 + 2mf + 1
3 )n3, wheremf is the total number of function evaluations.

Algorithm 7.1, Algorithm 7.2and a modified version of the adaptive Simpson quadrature
were implemented in MATLAB . The modified adaptive Simpson was also combined with the
Schur decomposition and the computation of one square root.The results for the Fréchet
derivatives

Lx1/p(Ai, Ei), i = 1, 2, . . . , 12,

where theAi’s are the matrices of Section5 andEi = randn(length(Ai)), are displayed in
Figure7.1. The relative residual is the same that has been used in [6, Eq. (5.1)]:

(7.3) ρ(A,E) =
‖M vec(L̃)− vec(E)‖F
‖M‖F ‖ vec(L̃)‖F

,
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whereL̃ ≈ Lx1/p(A,E) andM :=
∑p−1

j=0

[

(

A1/p
)T
]j

⊗
(

A1/p
)p−1−j

. We can observe that

in our tests the modified adaptive Simpson has a poor performance. It requires the largest
number of function evaluations and has the highest relativeresidual. Surprisingly, it is the
trapezoidal rule that gives the best results.
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FIG. 7.1. Number of function evaluations (left) and relative residual (right) for Algorithm 7.1
(Trap), Algorithm 7.2 (GL) and the modified adaptive Simpson (AS) with p = 7, tol = 10−5 and
m = 20.
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FIG. 7.2.Number of function evaluations (left) and relative residual (right) for Algorithm 7.1with
p = 3, 53, 97, tol = 10−5, m = 20.

The formulae for the total cost of the algorithms do not depend directly onp. But our
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experience with the computation of thepth root in Section5 tell us that the number of function
evaluations is likely to increase. This is clear in Figure7.2, where the Fŕechet derivative
Lx1/p(Ai, Ei), i = 1, . . . , 12, is evaluated by the trapezoidal rule for three different values
of p.

8. Conclusions. In this work we have derived new integral representations for the ma-
trix pth root and its Fŕechet derivative. Such integral representations have beenused to bound
those functions and to develop algorithms for their computation. Three numerical integra-
tion methods have been considered: composite trapezoidal rule, Gaussian-Legendre rule and
adaptive Simpson quadrature. Our experiments have shown inparticular that the combina-
tion of Gaussian quadrature with matrix square roots and squaring can be seen as an effective
method for the computation of the matrixpth root, whereas the composite trapezoidal rule
has revealed to be a good choice for the Fréchet derivative, at least in computations that do
not require high accuracy. The approximation of the matrixpth root times a vector by quadra-
ture has been also addressed. The Gauss-Legendre rule has proved to be once more the right
choice to work out that approximation. However, the Gauss-Legendre rule for the matrixpth
root has not been completely understood yet, mainly becausepractical error estimates for the
truncation error are lacking. This is a topic that needs further research.
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