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A MULTIPARAMETER MODEL FOR LINK ANALYSIS OF CITATION GRAPHS*

ENRICO BOZZO'! AND DARIO FASINO#

Abstract. We propose a family of Markov chain-based models for the link analysis of scientific publications.
The PageRank-style model and the dummy paper model discussed in [Electron. Trans. Numer. Anal., 33 (2008),
pp. 1-16] can be obtained by a particular choice of its parameters. Since scientific publications can be ordered by
the date of publication it is natural to assume a triangular structure for the adjacency matrix of the citation graph.
This greatly simplifies the updating of the ranking vector if new papers are added to the database. In addition by
assuming that the citation graph can be modeled as a fixed degree sequence random graph we can obtain an explicit
estimation of the behavior of the entries of the ranking vector.
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1. Introduction. Link analysis aims at exploring the information cached in large datasets
organized as graphs or networks, to infer certain relationships between linked data. Starting
from the popularization of the PageRank [8] and HITS [14] algorithms, link analysis changed
the information retrieval scene in many respects, in particular by improving the effectiveness
of search engines, that became able to rank by importance the retrieved information in an
efficient and query independent way. The definition of the importance indicators is usually
tied to a mathematical model of user navigation within the network. As a notable example,
it is customary to model web surfing as a Markov chain, where the states are web pages or
sites and a transition probability is associated with every hyperlink [ 13, 16]. In this approach,
ranking is related to the mean time spent at every web site by a random surfer and is obtained
by computing the invariant probability vector of the Markov chain and comparing its entries.
To enforce irreducibility in the associated transition matrix, and thus guarantee the existence
of a unique invariant probability vector, the PageRank algorithm modifies the original chain
by allowing random jumps to arbitrary nodes that can be performed with a prescribed prob-
ability usually tuned by means of a parameter 0 < o < 1. The resulting navigation model
corresponds to the Markov process which at every transition with probability o follows a
random walk on the network, and with probability 1 — a “teleports” to a random node. Al-
tough the classical treatment of the PageRank algorithm considers uniform random jumps,
the transition probabilities associated with random jumps may depend on the arrival node,
in which case these probabilities are collected in the so-called personalization vector. For a
comprehensive introduction to the subject see, e.g., [12, 16]. It is also worth mentioning that,
since the web is not static, great attention has been paid to the problem of the influence on
PageRank of link and node updating [3, 17].

Recently link analysis has been proposed also as a tool for ranking scientific authors
and products; see, e.g., [6, 7, 9, 19, 20, 21] and the references therein. The Eigenfactor
metric [5] is one of the most prominent examples. The underlying mathematical models rely
on suitable Markov chains obtained from relationships between papers and/or authors and/or
journals. For example, a collection of papers can be described as a citation graph, where
every publication corresponds to a node and every citation corresponds to a directed edge.
Unlike the PageRank algorithm, in [6, 7, 10] the graph is modified by adding a dummy paper
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endowed by suitably weighted citations to and from all the papers in the collection. With
this addition too, random walks on the citation graph give rise to a regular Markov chain,
and the invariant probability vector of the chain yields a meaningful ranking of the papers
in the collection. For shortness, we will refer to this as to the dummy paper model. We
mention that in [19] link analysis is used in an indirect way in order to obtain improved
versions of bibliometric indicators such as impact factor or h-index, and the dummy paper
model is employed to solve the problem of citations outside the database. In [9, 18, 20] the
authors experiment PageRank-type algorithms in order to rank by importance a set of about
350000 papers published in the American Physical Society journals. They compare the results
with the ranking obtained by simply ordering the papers by the number of citations received.
The two rankings are related but PageRank sometimes gives a high score even to papers
with a not too high number of citations. The authors argue that this is due to the different
weight that references have on the basis of the rank and the number of citations received by
citing papers, and support the opinion that PageRank represents a computationally simple
and effective way to evaluate the relative importance of publications beyond simply counting
citations. Analogous conclusions are also drawn in [21], after a deep analysis of a citation
and coauthorship network comprising about 5000 papers and 6000 authors in informetrics.

In this paper we show that the random jump and the dummy paper models belong to a
wider family of models depending on n parameters 0 < a; < 1, where s = 1,...,n, and
n is the number of papers. The parameters tune the probability of the random jump in such
a way that it can be different for every node. This has to be compared with [22], where the
authors actually came across the same idea while trying to introduce a temporal dimension
in Web search. In addition, working with papers, it is quite natural to assume a triangular
structure in the adjacency matrix that reflects the chronological order of their publication. By
making this assumption, and following the approach suggestedin [11, 12], we will perform an
average case analysis of the family of models under the hypothesis that the citation graph is an
acyclic fixed degree sequence random graph [1]. In this way we obtain an explicit estimate
of the behavior of the entries of the ranking vector for the models of the family. Actually,
the class of random graphs exploited in our average case analysis do not provide accurate
models of citation networks (for example, it cannot cater to intrinsic qualities of the papers);
nevertheless, fixed degree sequence random graphs are one of the most widespread and useful
models of random networks; and the study of that simplified case can already furnish some
valuable insight on the ranking method.

The paper is organized as follows. In Section 2 we recall the now classical model based
on random jumps, introduce the dummy paper model and compare them, showing how they
can be obtained by properly instantiating certain parameters spanning a family of models.
In Section 3 we discuss the assumption of acyclicity in citation graphs and derive some of
its consequences. In Section 4 the triangular structure of adjacency matrices is exploited in
order to study in a direct way the problem of node update. In Section 5 we present an average
analysis of the family of models.

2. A family of models. Given n papers numbered from 1 to n, let A = (a;;) be the
n X n matrix such that a;; = 1 if paper ¢ cites paper j, and a;; = 0 elsewhere. This matrix
is the adjacency matrix of the citation graph of the paper collection. Moreover, let e be the
vector of appropriate order whose entries are all ones, and let a = Ae, a = (ay,...,a,)T.
The entry q; is the out-degree of node ¢ and counts the number of papers in the collection that
are cited by paper ¢. We want to define a meaningful ranking of the given set of papers, based
on the invariant probability vector of a suitable Markov chain describing random walks on
the citation graph. To set up the notation, we define the vector w = (wy, ... ,wn)T, where
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fori=1,...,n

v {1 ifai=0
71 0 otherwise,

and we construct the matrix A = A + wp®, where p = (p1,...,pn)T

vector sometimes called personalization vector. Let us set

is a positive stochastic

o |1 ifa; =0
A= Dla‘g((sla HE) ;6n)7 51 - { ]-/az otherwise.
Then, the matrix AA is row stochastic, i.e., AAe = e. In this paper we consider the family
of Markov chains associated to the parametrized matrix

@2.1) T = DoAA+ (I — Dg)ep”,
where
D, = Diag(ai,-..,an), 0<a; <1, i=1,...,n,

and, of course I denotes the identity matrix. The random walk interpretation of a Markov
chain associated to I' is straightforward: the parameter «; represents the probability of not
performing a random jump starting from node ¢; and the number p; is the probability of
arriving in node ¢ after a random jump. The matrix I' is positive and, by virtue of Perron
theorem (see, e.g., [16]), there exists a unique positive vector 7 such that 7Te = 1 and
7T = 7T, The vector 7 is the invariant probability vector of the Markov chain associated to
T'; its entries can be used for ranking purposes, since they quantify the probability of visiting
each node during random walks.

2.1. Special cases. Suitable choices for the matrix D, give rise to special cases, already
discussed in the literature. By choosing D, = al,

(2.2) T'=aAAd+ (1-a)ep’.

This matrix is often referred to as the Google matrix of the network, and plays a fundamental
role in the PageRank algorithm.

Various authors already studied the use of different values of « for every node. For exam-
ple, by choosing a;; = a;/(1+a;) fori = 1,. .., n after simple passages, the expression (2.1)
simplifies to

(2.3) I = DA+ Dep”, D = Diag(es - 5 )»

and this can be shown to be equivalent to the addition to the network of a dummy node
as described in [15, Section 6.3] and exploited, e.g., in [6, 7, 10]. Actually, let us ideally
introduce a dummy node in the network and add a link from every node to the dummy node
and in addition a link from the dummy node to node j weighted with transition probabilities
pj, for j = 1,...,n, such that the vector p is positive and stochastic. The probability of the
transition from node ¢ to node j in the modified network is the sum of the probability of a
direct transition from 4 to j and of a transition passing through the dummy node,

aij +—p'
1+ a; 1+ a; 7

and this is exactly the (i, j)-entry of the matrix T in (2.3).
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As another example, in [4] random walks are used as a tool for sampling complex net-
works. In order to mitigate the sensitivity of the invariant probability vector from the param-
eter a in (2.2) with p = %e and, at the same time, accelerate the convergence of the power
iteration, the authors choose to set @; = a;/(a + a;) in (2.1). The resulting transition matrix
is

I'=DA+ gDeeT,
n

where

1
o+a;

D=Diag(d1,...,dn), dz=

This is easily seen to be equivalent to introducing a dummy node and setting the probability
of jumping from the node 7 to the dummy node equal to a/(a + a;). Note that the original
dummy node approach is obtained by setting oo = 1.

2.2. The invariant probability vector. By arguments that are well known in the PageR-
ank setting (see, e.g., [15, Section 5.2]), the invariant probability vector of I" can be computed
by solving a linear system, as shown in the following theorem.

THEOREM 2.1. Let w be the invariant probability vector of T in (2.2), which is the
positive vector such that m'T' = nT and nTe = 1. Moreover, let x be the solution of

(2.4) zT(I — D,AA) =pT.
Then, x and 7 differ by a multiplicative constant as

1
;L'T = —7‘[’T‘

1- Zi:ai >0 QT

Proof. The eigenvalue problem wT(DaAA\ + (I = Dy)ep?) = w¥' can be easily recast
as the linear system 77 (I — DQAA\) = [#T(I — D,)e]p*. Note that the quantity within
square brackets is a scalar. From the normalization condition nTe = 1 and the definition
A=A+ pr, with some algebra we derive

7T (I = DaAA) = [1 — 77 Dy (e — Aw)]pT.

Observing that Aw = w, we obtain

1

T -1 T
I—D,AA) " = .
a ) 1—7TTDa(e—w)7r

To complete the proof it suffices to expand the expression of 77 D (e — w). O

As a consequence of the preceding theorem, 7 can be obtained by normalization of z,
n = (1/eTx)z. Hence, x is equivalent to 7 for ranking purposes. Moreover, since by
construction || Do AA|| < 1, the power series expansion

(2.5) Z =(I-DaAA)™ =) (D,AA),
k=0

is convergent, whence we can express z also as

2 =pTZ = pTZ(DaAA)k.
=0
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Observe that, if a; = 0 (that is, the ¢th node is dangling) then «; does not influence the
ranking in any way, since the ¢th row of D,AA is zero. Hence, we can safely assume that
a; = 0 whenever a; = 0.

Finally, note that for D, — O one has

o = pT (I + Do AA) + O(||Dall?).

This equation can be seen as a generalization of formula (2) in [9], which in our notation
becomes

1 1
=1 il 2
x; n( +azaj> + O(a?)
]
and describes the behaviour for small a of the invariant probability vector in the PageRank
model (2.2) with p = Le.

3. The triangularity assumption. Considering scientific publications, it is quite natural
to assume that nodes and edges are added to the citation graph on a chronological basis, and
that newer nodes can link only to older nodes. A consequence of this assumption is that
citation graphs do not contain cycles. This remark can be found also in [18], where it is
quoted as a feature that differentiates citation networks from other network topologies. By
the way, to the best of our knowledge, acyclicity has not been considered as a fundamental
assumption in the analysis of citation graphs and, with the exception of some experimental
arguments on aging effects [9, 10, 20, 22], its consequences have not been duly analyzed in
the scientific literature. Hence, in what follows we assume that the resulting graph is acyclic.
In particular, we assume that the nodes are numbered in reverse order with respect to their
inclusion in the collection, so that the incidence matrix A is strictly upper triangular; that
is, we assign index 1 to the most recent paper in the collection, and increasing numbers are
assigned according to paper age. Hence, the linear system (2.4) is upper triangular and that
structure can be exploited in order to express x as a function of the «;.

Certainly, this numbering style may seem counterintuitive as it does not reflect the way
the citation network grows with time. Nevertheless, we adopt this convention since it greatly
simplifies various expressions occurring in subsequent results, to be shown in the next two
sections, which are derived from the formula (2.4).

As the first consequence of the triangularity assumption, the largest entries of matrix Z
in (2.5) are the diagonal ones, as shown in the following simple lemma.

LEMMA 3.1. Let U > 0 be a strictly upper triangular matrix of order n such that
lUlloo < 1. Let V.= (I =U)~ . ThenVy; = 1fori =1,...,nand 0 < V;; < 1 for
1<i<ji<gn

Proof. The claim is obvious if n = 1. Otherwise partition

0 uf 1 o7 1 —uT]!
I B e
Then V = (I — U)~!. Hence for2 < i < j < n we obtain the claim by an inductive
argument. Moreover, from (I — U)V = I we getv? = TV, whence

n—1 n—1
Ui:ZujVj,-gmjaij,- ZU]'<1.
Jj=1 Jj=1
The last inequality following from Z;‘;ll u; < ||U]|leo < 1. O

By virtue of Lemma 3.1, if p — e; then the ith paper gets the highest ranking as expected.
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3.1. A test case: the linear chain. As an interesting test problem, we consider the
case of a linear chain of n papers, where every publication cites the next one. The resulting
adjacency matrix is

01
3.1 A= 0
1
| 0
Clearly,
_]. —Q
1
I-D,AA= ,
’ —Qp-1
i 1
so that the solution of (2.4) is
T1 = p1, Ti =P+ 0i—1Ti—1-

This recurrence is solved by the explicit formula

k3

i—1
(3.2) zi=Y pi [ ox-
=1 k=

Note that in this specific example, the dummy paper model prescribes the valuesa; = ... =
ap—1 = 1/2. More generally, if p = %e anda; =a>0fori=1,...,n — 1, then

1 1-aof
;= — k = 7_
(3.3) T; - E «a ni—a)
k=0

sothat 1/n = 21 < 23 < ... < 2, < 1/(n(1 — @)). Altough bounded, this increasing
behavior is considered undesirable, since it assigns the highest rank to the oldest paper, while
that paper does not receive citations from newer papers.

Actually, aging is a very relevant issue in citation networks since older papers tend to
dominate over younger papers by drawing a considerable part of the overall score by way
of long citation paths. To mitigate this outcome, one can introduce various obsolescence
mechanisms which, while keeping track of all past citations, assign a larger relevance to
papers that get cited by recently added papers; see, e.g., [10, 18, 20, 22]. In [22] the authors
propose to tackle aging effects by setting ai; = 6%, where 0 < 6 < 1 is a parameter called
DecayRate. (A similar device is exploited also in [10].) Under that hypothesis, in the case
where p = Le, from (3.2) we obtain

1
= =—(1+86
z1 3 T2 TL( + )7

1
n
so that £; < xo. Moreover, for¢ > 2,

i %

1 o k 1 o k 1 i—1
xz:EZHo >~ > I]e =~(1+67),

=1 k=3 j=i—1k=j
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Since
L i < = >_ 1
Tit1 = — z; <z T > ——,
i+1 n i Ly z_n(l_ez)
we notice that
1 i—1
+0 > 1 _

n ~ n(l1-6%
or equivalently,

o(1+6"1) <1,
is a sufficient condition in order to have z; > ;41 > Z;4+2 > ... . The latter inequality
for i = 2 gives the condition § < (v/5 — 1)/2 ~ 0.62 which is sufficient (actually, also
necessary) in order to have zo > x3 > x4 > ... . This fact provides a theoretical justification

for the empirical choice # = 1/2 made by the authors of [22] in their experiments: it is one of
the largest and simplest values that assigns the highest rank to the second most recent paper
in a linear chain; and indeed, one can argue that the paper acquiring the newest citation is the
one that motivated the most recent publication.

In [18, 20] the authors propose to avoid aging effects by an approach which is equivalent
to setting p; proportional to e~ 1/7 where Tj is the age of the ith paper and 7 is a time unit.
Following that approach and considering a sequence of papers equispaced in time, we set
pi = 70%, where v = (1 —6) /(0 — 1) is the normalization factor that makes p a stochastic
vector. From equation (3.2), assuming that oy = afork =1,...,n — 1, we find

Lo ia if0 = a
T; 2729%&—1 = { i
j=1

at—g* :
v0%—5 otherwise.

We see that, for any values 0 < «, 8 < 1 and for any n, one has 2; — 0 as s — o0, so that
this strategy is useful in order to introduce an obsolescence effect on older papers.

4. Node update. In this section we study how the rankings vary if a new paper is added
to the database. The same problem is considered in [6, 17]; our approach can be much more
direct in the view of the triangularity structure of the adjacency matrix. In this section, to
better compare our result with the cited references, we assume that the personalization vector
has uniform entries.

Let us start from a collection of n papers, with scores 7 = (z1,...,z,) given by (2.4).
Let A be the adjacency matrix of the associated citation graph. To this collection, we add a
new paper citing m > 1 papers in the collection (the case m = 0 is trivial). If we give the
index 1 to the new paper and shift the others accordingly, the new adjacency matrix takes the
form

~ 0 T
B
The vector b describes the newly added citations. Denoting
- fa o0 < 1 x_[6 0
(41) Da_ |:0 Da:| ) 5_E5 A= [0 A:| ’
the updated transition matrix is
~ ~ o 1 -
=D,AA+ (I — Dg)eeT
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Due to Theorem 2.1, the normalized Perron vector of T is a multiple of the score vector
3T = (&1,...,%p41) givenby 37 = €T Z, where

Z=(I-D,AA)" = [1 —adb” ]_1 - [1 ady”

T _ 3T
- =b"Z.
0 I—D,AA 0 Z ] oY
Obviously 1 = #; < Z; for¢ = 2,...,n + 1, as the added paper receives no citations. If
we let 7 = (1,27) then the vector 7 = (21,...,%,) contains the updated scores of the
preexisting papers, and we have the updating formula

4.2) 27 =27 + ady”.

In the componentwise sense we have £ — x = dgy > 0, that is, the updated scores are
not smaller than the older ones. If b = e, that is, the new paper cites all the preceding papers,
then y© = 27 so that # = (1 + 075)3; and the earlier ordering of the papers in the collection
(before the addition of the new paper) is not altered. In what follows, we analyze the effect of
the new citations in the general case. Before our main results, we need a preliminary lemma.

LEMMA 4.1. The matrix Z = (z;;) given by (2.5) is unit upper triangular, with 0 <
25 < 1forl < i< j < n. Moreover, ifeT = eT'Z andi # j, then we have zij < T/ %;.

Proof. The first part of the claim follows from Lemma 3.1. To prove the second part, let
1 <% < j < n and consider the partitioning

Z11 Z12 I— Pll _P12
7= I—D,AA= ,
[ Zzz] ’ [ I- Pzz]

where the upper leftmost blocks have order i X 4. From (I — P11)Z19 — P12 Z2 = O we have
Z1_11 Z19 = P1aZs > O. Now, since Z11 is unit upper triangular, we have that

T [I VARAD
‘ Z22

g

1
:|ej <|[z1,..4,7:,0,...,0] [I Zyy le]

T;Z;; = X;€
J Z22
Moreover, (z1,...,2;) = el Z1;. Hence we have

1 —1
ri < [eTZu,OT] [I 21%2512] ej = [eT,OT] {Zu [] [I Z1%2512] €;

= [eT,07] Ze; < " Ze; = ;.

The case where j < 4 is straightforward. |
The next theorem establishes a quantitative result comparing the increase in score of
papers that receive a citation from the most recent paper, with respect to that of the not cited
ones, both in relative and in absolute sense; the set 7 contains the indices of the newly cited
papers.
THEOREM 4.2. Let T = {i1,...,im} C {1,...,n}, b= 3", e andj ¢ T. Inthe
previously introduced notation we have:
1. &5 —x; < &< Y ;eq(® — x3), with equality whenm = 1;
2. Let & be the harmonic mean of z;,, . .., %;,,

m

Ziel 1z

Then, (2; — x;)/z; < Yiez(&i — i) /&

&=
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Proof. Let yT = b Z. Firstly, observe that forany 1 < i < n

—y e; = ZekZe, szi.

ke kel

From the updating formula (4.2) and Lemma 4.1, we obtain

Sa-n=nY Y >ty =

i€T zEI kel zEI

For j ¢ 7, using again Lemma 4.1, we have Eiez zij < m. Hence

m-—mj_ E z,]<a

zeI

and the proof of the first part of the claim is complete. Furthermore, from z;; < x;/;,

T;—x; @ zij G !
T R SRR E D DTS
T; m— x; m = I; £ E
i€ i€l i€
and the proof is complete. d
Thus, the overall increase in score of the newly cited papers is greater than the increase

in score of every single paper that does not receive a new citation. We observe that, when
m = 1and Z = {3}, the results in Theorem 4.2 take the simple form

N - “ T;—T; a?i—:ci
T; —T; < Q=XT; — T4, J ] < R
Zj Z;

for all j # i, that is, the ith paper gets the largest score increment, both absolute and relative.
In particular, in the overall ranking of the collection, the position of the ith paper cannot
decrease. The rightmost inequality, in the equivalent form Z; /z; < &;/x;, can also be traced
in [6] for the dummy paper model.

5. An average case analysis. In this section we perform an average case analysis of a
special family of acyclic random graphs. Our goal is to obtain asymptotic estimates on the be-
haviour of the solution of (2.4) on large citation graphs. In the random jump model, analogous
results can be found in [2, 13], where asymptotic or average properties of PageRank scores
are obtained for families of large, direct graphs, under additional simplifying assumptions on
the network topology and with constant node out-degrees.

In a probabilistic setting, we suppose that for any two papers 1 < ¢ < j < n, the edge
1 — j may exist or not, according to a certain probability that we denote by P(i — j),
to be better specified later. More precisely, we consider each entry in the upper triangular
part of the adjacency matrix A as a random variable A;; whose distribution is binomial with
parameter P(¢ — j); the edge ¢ — j exists if and only if A;; = 1. We compute the mean
value (U) of U = D,AA and we consider the properties of the solution of the linear system
zT(I — (U)) = €T, corresponding to (2.4). Although this vector cannot be interpreted as a
mean Perron vector of the family, it gives some insight on what can be expected on average.
In fact, a similar approach was followed in [11, 12] for the average case analysis of the HITS
algorithm and some of its variants, in order to prove that various ranking methods for nodes
of oriented networks lead to scores which are highy correlated with node in- and out-degrees.

In what follows, we analyze the case where we are given the integer numbers 0 < a; <
n — ¢ denoting the out-degree of node ¢ for i = 1,...,n, that is, the numbers of papers cited
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by paper i. The a; citations of paper ¢ are distributed uniformly among the papersi¢+1,...,n.
Hence, we have

P(i%j):{% 1<i<ji<n

0 else.

This construction can be considered as an acyclic version of the fixed degree sequence random
graph class by Aiello, Chung, and Lu [1], in which node degrees are first given and edges are
randomly distributed between nodes subject to constraints of node degrees. For this reason,
we call fixed degree sequence random citation graph the family of random graphs defined by
the aforementioned construction.

The next theorem relies on the following simple facts from real analysis: (1) Let 0 <
2z < 1. Then, zlog2 < log(1+ ) < z. (2) Letwvy,...,v, and wy, ..., w, be arbitrary, with
v; > 0. Then there exists a number w such that min; w; < w < max; w; and Zle ViW; =
@ Y, v;. This result is a discrete version of the mean value theorem.

THEOREM 5.1. Consider the family of fixed degree sequence random citation graphs
defined by the degree sequence ai,...,an. For any choiche of the coefficients o, ..., oy,
such that a; = 0 if a; = 0, let T be the solution of the linear system z* (I — (U)) = el.
Then, there exists a number 2 < n < e, where e is Euler’s number, such that

n—1

a;
l=21 <22 < - <2 =077, 0n=§ e
=1

Proof. In the case where a; # 0, for 1 < 4 < j < n, the entry Uj; is a random variable
that assumes the value «;/a; with probability P(¢ — j) and 0 otherwise. Hence, the mean
value of the (i, j)-entry in the strictly upper triangular part of U is

Qs . Qg
)y = SR~ ) = 2

Due to the assumption that a; = 0 if a; = 0 this formula holds also in the case where a; = 0.
Therefore,

1 /31 51 51
1 B - B
I-(U)= e
' /anl
1

By direct substitution one can show that the solution of the linear system 27 (I — (U)) = T

1S

i—1 i—1
(5.1 $=($17"'7mn)T7 -1'1:17 ml:H(l_ﬂJ):H<1+na_J])

=1 =1

Wehavethatl = 21 < 22 < - < o, with equality in the ¢th place if and only if &; = 0. By
using the aforementioned facts, we obtain that there exist numberseq, ..., &y, &, all belonging
to the interval [log 2, 1], such that

n—1

n—1 n—1
— aj _ e M- @;
logmn_jz;zlog (1+n—j) —;Ejn_j _Ezn—j'

j=1
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The claim follows by taking exponentials and setting 7 = e°. O

As shown in the previous theorem, the vector z assigns a paper score which depends
essentially on age. In particular, using @; < 1 in the rightmost equation of (5.1), we obtain
the following bounds for the entries of the ranking vector, that depend neither on the degree
sequence {a; } nor on the parameters a;:

i—1
1 n
1< 2 (1 _): ' i=2...n
\$z<j1;[1 +n_] n—it1 2 n

Note that the upper bound on the last component diverges linearly. On the other hand, the
expected number of citations received by paper n can be bounded as follows:

n—1 n—1
. a;
P = <(A+1
E (i = n) E — <+ Ogn)lgrggg_lak,
i=1 =1
so that it grows only logarithmically, whenever the degree sequence aq, az, ... is bounded.

This discrepancy illustrates that the score of older papers may be overwhelmed by the propa-
gation of the importance score from newer papers by way of longer paths in the citation net-
work. This observation prompts the introduction of some obsolescence technique to dampen
the relevance of older papers.

Actually, the magnitude of z, indicates the departure from uniform ranking in the av-
erage scenario. In particular, it is the number o, = Z?:_ll a;/(n — i) that establishes its
boundedness, or the lack thereof, when new papers are added to the collection. For example,
if there exists a number a* > 0 such that a;; > «*, then we have o, > a* log(n — 1), and
we can conclude that z,, diverges at least as n® , with the same number log2 < & < 1
occurring in the preceding proof. On the other hand, if the coefficients a; form a sequence
that decays to zero sufficiently fast, as in the models introduced in [10, 22] which assign to
a; a value which decreases exponentially with the age of paper 4, then the numbers o,,, and
thus also the numbers z,,, are bounded independently on n.

6. Conclusions. We discussed, from a theoretical perspective, a generalized model for
the ranking of scientific publications that comprehends both the PageRank-type model (2.2)
and the dummy paper model (2.3). By assuming the triangularity of the adjacency matrix that
represents the mutual citations we proved certain common features of this kind of hyperlinked
environment, for example, that the insertion of a new citation can only increase the rank of
the newly cited paper. In our generalized model each paper has its own parameter ruling the
possibility to follow one of its references or to perform a random jump. We suggested a pos-
sible strategy for choosing these parameters together with the entries of the personalization
vector in order to contrast aging effects. We also proposed an average case analysis consider-
ing a special class of acyclic random graphs which, in a simplified framework, quantifies the
growth of the importance score of older papers due to indirect citations and provides theoret-
ical foundation to the effectiveness of certain heuristic techniques to introduce obsolescence.
We plan to extend this analysis to other families of random graphs.
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