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ON THE MINIMIZATION OF A TIKHONOV FUNCTIONAL WITH A
NON-CONVEX SPARSITY CONSTRAINT ∗

RONNY RAMLAU† AND CLEMENS A. ZARZER‡

Abstract. In this paper we present a numerical algorithm for the optimization of a Tikhonov functional with
an ℓp-sparsity constraints andp < 1. Recently, it was proven that the minimization of this functional provides
a regularization method. We show that the idea used to obtain these theoretical results can also be utilized in a
numerical approach. In particular, we exploit the techniqueof transforming the Tikhonov functional to a more
viable one. In this regard, we consider a surrogate functional approach and show that this technique can be applied
straightforwardly. It is proven that at least a critical point of the transformed functional is obtained, which directly
translates to the original functional. For a special case, it is shown that a gradient based algorithm can be used to
reconstruct the global minimizer of the transformed and the original functional, respectively. Moreover, we apply
the developed method to a deconvolution problem and a parameter identification problem in the field of physical
chemistry, and we provide numerical evidence for the theoretical results and the desired sparsity promoting features
of this method.
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1. Introduction. In this paper we consider a Tikhonov type regularization method for
solving a (generally nonlinear) ill-posed operator equation

(1.1) F(x) = y

from noisy measurementsyδ with ‖yδ − y‖ ≤ δ. Throughout the paper we assume thatF
maps between sequence spaces, i.e.,

F : D(F) ⊆ ℓp → ℓ2.

Please note that operator equations between suitable separable function spaces such asLp,
Sobolev and Besov spaces, i.e.,

F̃ : D(F̃) ⊂ X → Y,

can be transformed to a sequence space setting by using a suitable basis or frames forD(F̃)
andR(F̃). Assume that we are given some preassigned frames{Φi

λ}λ∈Λi,i=1,2 (Λi are count-
able index sets) forD(F̃) ⊂ X, R(F̃) ⊂ Y with the associated frame operatorsT1 andT2.
Then the operatorF := T2F̃T ∗

1 maps between sequence spaces.
We are particularly interested insparsereconstructions, i.e., the reconstruction of se-

quences with only few nonzero elements. To this end, we want to minimize the Tikhonov
functional

Jα,p : ℓp → R

x 7→
{ ∥

∥F (x) − yδ
∥
∥

2

2
+ α ‖x‖p

p x ∈ D(F),

+∞ else,
(1.2)
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whereα > 0, 0 < p ≤ 1, and

‖x‖p
p =

∑

k

|xk|p

is the (quasi-)norm ofℓp. The main aim of our paper is the development of an iterative
algorithm for the minimization of (1.2), which is a non-trivial task due to the non-convexity
of the quasi-norm and the nonlinearity ofF .

The reconstruction of the sparsest solution of an underdetermined system has already
a long history, in particular in signal processing and more recently in compressive sensing.
Usually the problem is formulated as

(1.3) x̃ := argmin
y=Φx

‖x‖1,

wherey ∈ R
m is given andΦ ∈ R

m,n is a rank deficient matrix (m < n); see [19, 20].
Note that here the minimization of theℓ1-norm is used for the reconstruction of the sparsest
solution of the equationΦx = y. Indeed, under certain assumptions on the matrixΦ, it can be
shown that if there is a sparse solution, (1.3) really recovers it [9, 10, 17, 18]. Moreover, Gri-
bonval and Nielsen [28] showed that for certain special cases, the minimization of(1.3) also
recoversℓp-minimizers with0 < p < 1. In this sense it seems that nothing is gained by con-
sidering anℓp-minimization with0 < p < 1 instead of anℓ1-minimization, or equivalently,
using anℓp-penalty with0 < p < 1 in (1.2). However, we have to keep in mind that we are
considering a different setting than the paper cited above.First of all, we are working in an
infinite-dimensional setting, whereas the above mentionedΦ is a finite-dimensional matrix.
Additionally, properties that guarantee the above cited results such as the so-called Restricted
Isometry Property introduced by Candes and Tao [11, 10] or the Null Space Property [13, 16]
are not likely to hold even for linear infinite-dimensional ill-posed problems, where, e.g., the
eigenvalues of the operator converge to zero, not to speak ofnonlinear operators. Recently,
numerical evidence from a nonlinear parameter identification problem for chemical reaction
systems has indicated that anℓ1-penalty in (1.2) fails to reconstruct a desired sparse parame-
ter there, whereas strongerℓp-penalties with0 < p < 1 achieve sparse reconstructions [30].
In the mentioned paper, the intention of the authors was the reconstruction of reduced chemi-
cal networks (represented by sparse parameter) from chemical measurements. Therefore, we
conclude that the use of the strongerℓp-penalties might be necessary in infinite-dimensional
ill-posed problems if one wants a sparse reconstruction. Inparticular, algorithms for the
minimization of (1.2) are needed.

There has been an increased interest in the investigation ofthe Tikhonov functional with
sparsity constraints. First results on this matter were presented by Daubechies, Defriese, and
De Mol [15]. The authors were in particular interested in solving linear operator equations.
As a constraint in (1.2), they used a Besov semi-norm, which can be equivalently expressed
as a weightedℓp-norm of the wavelet coefficients of the functions withp ≥ 1. In particular,
that paper focuses on the analysis of a surrogate functionalapproach for the minimization
of (1.2) with p ≥ 1. It was shown that the proposed iterative method converges towards
a minimizer of the Tikhonov functional under consideration. Additionally, the authors pro-
posed a rule for the choice of the regularization parameter that guarantees the convergence of
the minimizerxδ

α of the Tikhonov functional to the solution as the data errorδ converges to
zero. Subsequently, many results on the regularization properties of the Tikhonov functional
with sparsity constraints andp ≥ 1 as well as on its minimization were published. In [39, 40],
the surrogate functional approach for the minimization of the Tikhonov functional was gener-
alized to nonlinear operator equations and in [23, 41] to multi-channel data, whereas in [5, 8]
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a conditional gradient method and in [29] a semi-smooth Newton method were proposed for
the minimization. Further results on the topic of minimization and the respective algorithms
can be found in [3, 6, 14]. The regularization properties with respect to differenttopologies
and parameter choice rules were considered in [26, 31, 37, 38, 40, 41]. Please note again
that the above cited results only consider the casep ≥ 1. For the casep < 1, a first regu-
larization result for some types of linear operators was presented in [31]. Recently in [24]
and [45], the authors obtained general results on the regularization properties of the Tikhonov
functional with a nonlinear operator and0 < p < 1. Concerning the minimization of (1.2)
with 0 < p < 1, to our knowledge no results are available in the infinite-dimensional setting.
In the finite-dimensional setting, Daubechies et al. [16] presented an iteratively re-weighted
least squares method for the solution of (1.3) that achieved local superlinear convergence.
However, these results do not carry over to the minimizationof (1.2), as the assumptions made
in [16] (e.g., finite dimension, Null Space Property) do not hold for general inverse problems.
Other closely related results for the finite-dimensional case can be found in [33, 34]. For a
more general overview on sparse recovery, we refer to [42].

In this paper we present two algorithms for the minimizationof (1.2) which are founded
on the surrogate functional algorithm [15, 37, 39, 40] and the TIGRA algorithm [35, 36].
Based on a technique presented in [45] and on methods initially developed in [22], the func-
tional (1.2) is nonlinearly transformed by an operatorNp,q to a new Tikhonov functional,
now with anℓq-norm as penalty and1 < q ≤ 2. Due to the nonlinear transformation, the
new Tikhonov functional involves a nonlinear operator evenif the original problem is linear.
Provided that the operatorF fulfills some properties, it is shown that the surrogate functional
approach at least reconstructs a critical point of the transformed functional. Moreover, the
minimizers of the original and the transformed functional are connected by the transforma-
tionNp,q, and thus we can obtain a minimizer for the original functional. For the special case
of q = 2, we show that the TIGRA algorithm reconstructs a global minimizer if the solution
fulfills a smoothness condition. For the caseF = I, whereI denotes the identity, we show
that the smoothness condition is always fulfilled for sparsesolutions, whereas forF = A
with a linear operatorA, the finite basis injectivity (FBI) property is needed additionally.

The paper is organized as follows: in Section2 we recall some results from [45] and
introduce the transformation operatorNp,q. Section3 is concerned with some analytical
properties ofNp,q, whereas Section4 investigates the operatorF ◦ Np,q. In Section5 we
use the surrogate functional approach for the minimizationof the transformed functional, and
in Section6 we introduce the TIGRA method for the reconstruction of a global minimizer.
Finally in Section7, we present numerical results for the reconstruction of a function from its
convolution data and present an application from physical chemistry with a highly nonlinear
operator. Both examples confirm our analytical findings and support the proposed enhanced
sparsity promoting feature of the considered regularization technique.

Whenever it is appropriate, we omit the subscripts for norms,sequences, dual pairings,
and so on. If not denoted otherwise, we consider the particular notions in terms of the Hilbert
spaceℓ2 and the respective topology‖·‖2. Furthermore, we would like to mention that the
subscriptk shall indicate the individual components of an element of a sequence. The sub-
scriptsl andn are used for sequences of elements in the respective space ortheir components,
e.g.,xn = {xn,k}k∈N. Whenever referring to an entire sequence, we use{·} to denote the
component-wise view. Iterates in terms of the considered algorithms are denoted by super-
scriptl andn.

2. A transformation of the Tikhonov functional. In [45] it was shown that (1.2) pro-
vides a regularization method under classical assumptionson the operator. The key idea was
to transform the Tikhonov type functional by means of a superposition operator into a stan-
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dard formulation. Below we give a brief summary on some results presented in [45] and
consequently show additional properties of the transformation operator.

DEFINITION 2.1. We denote byηp,q the function given by

ηp,q : R → R

r 7→ sign(r) |r| q

p ,

for 0 < p ≤ 1 and1 ≤ q ≤ 2.
DEFINITION 2.2. We denote byNp,q the superposition operator given by

Np,q : x 7→ {ηp,q(xk)}k∈N
,

wherex ∈ ℓq, 0 < p ≤ 1, and1 ≤ q ≤ 2.
PROPOSITION2.3. For all 0 < p ≤ 1, 1 ≤ q ≤ 2, x ∈ ℓq, andNp,q as in Definition2.2,

it holds thatNp,q(x) ∈ ℓp, and the operatorNp,q : ℓq → ℓp is bounded, continuous, and
bijective.

Using the concatenation operator

G : ℓq → ℓ2

x 7→ F ◦ Np,q(x),

one obtains the following two equivalent minimization problems.
PROBLEM 2.4. Let yδ be an approximation of the right-hand side of(1.1) with noise-

levelδ,
∥
∥y − yδ

∥
∥ ≤ δ, and letα > 0. Minimize

(2.1) Jα,p =

{∥
∥F(xs) − yδ

∥
∥

2

2
+ α ‖xs‖p

p xs ∈ D(F),

+∞ else,

subject toxs ∈ ℓp for 0 < p ≤ 1.
PROBLEM 2.5. Let yδ be an approximation of the right-hand side of(1.1) with noise-

levelδ,
∥
∥y − yδ

∥
∥ ≤ δ, and letα > 0. Determinexs = Np,q(x), wherex minimizes

(2.2) J̃α,q =

{∥
∥G(x) − yδ

∥
∥

2

2
+ α ‖x‖q

q xs ∈ D(G),

+∞ else,

subject tox ∈ ℓq and0 < p ≤ 1, 1 ≤ q ≤ 2.
PROPOSITION2.6. Problem2.4and Problem2.5are equivalent.
The paper [45] provides classical results on the existence of minimizers, stability, and

convergence for the particular approach considered here using Tikhonov regularization. These
results are obtained via the weak (sequential) continuity of the transformation operator.

3. Properties of the operatorNp,q. Let us start with an analysis of the operatorNp,q.
The following proposition was given in [45]. We restate the proof as it is used afterward.

PROPOSITION3.1. The operatorNp,q : ℓq → ℓq is weakly (sequentially) continuous
for 0 < p ≤ 1 and1 < q ≤ 2, i.e.,

xn
ℓq

⇀ x =⇒ Np,q(xn)
ℓq

⇀ Np,q(x).

Here
X
⇀ denotes the weak convergence with respect to the spaceX.

Proof. We setr = q/p+1 and observe thatr ≥ 2. A sequence inℓq is weakly convergent
if and only if the coefficients converge and the sequence is bounded in the norm. Thus we
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conclude from the weak convergence ofxn that‖xn‖q ≤ C andxn,k → xk. As r ≥ q, we
have a continuous embedding ofℓr into ℓq, i.e.,

‖xn‖r ≤ ‖xn‖q ≤ C,

which shows that also

xn
ℓr⇀ x

holds. The operator(Np,q(x))k = sgn(xk)|xk|r−1 is the derivative of the function

f(x) = r−1 · ‖x‖r
r,

or, in other words,Np,q(x) is theduality mappingon ℓr with respect to the weight function

ϕ(t) = tr−1;

for more details on duality mappings we refer to [12]. Now it is a well known result that every
duality mapping onℓr is weakly (sequentially) continuous; see, e.g., [12, Proposition 4.14].
Thus we obtain

xn
ℓr⇀ x =⇒ Np,q(xn)

ℓr⇀ Np,q(x).

Again, asNp,q(xn) is weakly convergent, we have{Np,q(xn)}k → {Np,q(x)}k. Forp ≤ 1
andq ≥ 1, it holds thatq ≤ q2/p, and thus we have‖x‖q2/p ≤ ‖x‖q. It follows that

‖Np,q(xn)‖q
q =

∑

k

|xn,k|q
2/p = ‖xn‖q2/p

q2/p ≤ ‖xn‖q2/p
q ≤ Cq2/p,

i.e., Np,q(xn) is also uniformly bounded with respect to theℓq-norm and thus also weakly
convergent.

In the following proposition we show that the same result holds with respect to the
weakℓ2-convergence.

PROPOSITION3.2. The operatorNp,q : ℓ2 → ℓ2 is weakly (sequentially) continuous
with respect toℓ2 for 0 < p ≤ 1 and1 < q ≤ 2, i.e.,

xn
ℓ2⇀ x =⇒ Np,q(xn)

ℓ2⇀ Np,q(x).

Proof. First of all, we have forx ∈ ℓ2 with 2q/p ≥ 2

‖Np,q(x)‖2
2 =

∑

k

|xk|2q/p = ‖x‖2q/p
2q/p ≤ ‖x‖2q/p

2 < ∞,

i.e.,Np,q(x) ∈ ℓ2 for x ∈ ℓ2. Setting againr = q/p + 1, the remainder of the proof follows
along the lines of the previous one with‖ · ‖q replaced by‖ · ‖2.

Next we want to investigate the Fréchet derivative ofNp,q. We need the following lemma
in advance.

LEMMA 3.3. The mapx 7→ sgn(x) |x|α , x ∈ R, is Hölder continuous with exponentα
for α ∈ (0, 1]. Moreover, we have locally forα > 1 and globally forα ∈ (0, 1]:

(3.1) |sgn(x) |x|α − sgn(y) |y|α| ≤ κ |x − y|β ,

whereβ = min(α, 1).



ETNA
Kent State University 

http://etna.math.kent.edu

TIKHONOV FUNCTIONAL WITH A NON-CONVEX SPARSITY CONSTRAINT 481

Proof. As the problem is symmetric with respect tox andy, we may assume without loss
of generality that|x| ≥ |y| and|y| > 0 as (3.1) immediately holds fory = 0. Let γ ∈ R

+
0

such thatγ|y| = |x|. Forγ ∈ [1,∞) andα ∈ (0, 1], we have

(3.2) (γα − 1) ≤ (γ − 1)α,

which can be obtained by comparing the derivatives of(γα − 1) and(γ − 1)α for γ > 1 and
by the fact that we have equality forγ = 1. Moreover, we have forγ ∈ [0,∞) andα ∈ (0, 1]

(3.3) (γα + 1) ≤ 2(γ + 1)α.

Since it is crucial that the constant in the Inequality (3.3) is independent ofγ, we now give a
proof of the factor 2 there. The ratio

(γα + 1)

(γ + 1)α

is monotonously increasing forγ ∈ (0, 1] and monotonously decreasing forγ ∈ (1,∞),
which can be easily seen from its derivative. Hence, the maximum is attained atγ = 1 and
given by21−α, which yields

(γα + 1)

(γ + 1)α
≤ 21−α ≤ 2.

Consequently, we can conclude in the case ofx · y > 0 (i.e.,sgn(x) = sgn(y)) that

|sgn(x)|x|α − sgn(y)|y|α| = |γα|y|α − |y|α| = |(γα − 1)|y|α|
(3.2)
≤ |(γ − 1)α|y|α| = |x − y|α ,

and forx · y < 0 we have

|sgn(x)|x|α − sgn(y)|y|α| = |γα|y|α + |y|α| = |(γα + 1)|y|α|
(3.3)
≤ 2 |(γ + 1)α|y|α| = 2 |x − y|α .

In the case ofα > 1, (3.1) holds withβ = 1, which can be proven by the mean value theorem.
For α > 1, the functionf : x 7→ sgn(x)|x|α is differentiable and its derivative is bounded
on any intervalI. Hence, (3.1) holds for |f ′(ξ)| ≤ κ, ξ ∈ I, proving the local Lipschitz
continuity.

REMARK 3.4. In the following, Lemma3.3 is used to uniformly estimate the remainder
of a Taylor series. As shown in the proof, this immediately holds forα ∈ (0, 1]. In the case of
the Lipschitz estimate, this is valid only locally. Howeveras all sequences in Proposition3.5
are bounded and we are only interested in a local estimate, Lemma3.3can be applied directly.

PROPOSITION3.5. The Fŕechet derivative ofNp,q : ℓq → ℓq, 0 < p ≤ 1, 1 < q ≤ 2 is
given by the sequence

N ′
p,q(x)h =

{
q

p
|xk|(q−p)/p · hk

}

k∈N

.
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Proof. Let w := min
(

q
p − 1, 1

)

> 0. The derivative ofηp,q(t) = |t|q/p sgn(t) is given

by η′
p,q(t) = q

p |t|(q−p)/p and we define

ηp,q(t + τ) − ηp,q(t) − η′
p,q(t)τ := r(t, τ),

where the remainderr(t, τ) can be expressed as

r(t, τ) =

∫ t+τ

t

q

p

q − p

p
(t + τ − s) sgn(s)|s| q

p
−2 ds.

In the considered ranges ofp andq, the functionηp,q is not twice differentiable. On this
account, we derive the following estimate using the mean value theorem

∣
∣
∣
∣
∣

∫ t+τ

t

q

p

q − p

p
(t + τ−s) sgn(s)|s| q

p
−2 ds

∣
∣
∣
∣
∣
=

=

∣
∣
∣
∣
∣

[
q

p
(t + τ − s)|s|q/p−1

]t+τ

t

+

∫ t+τ

t

q

p
|t|q/p−1 ds

∣
∣
∣
∣
∣

=

∣
∣
∣
∣

q

p
τ

(

|ξ|q/p−1 − |t|q/p−1
)
∣
∣
∣
∣

(3.1)
≤ κ

q

p
|τ |w+1,

with ξ ∈ (t, t + τ) and by Lemma3.3 with α = q/p − 1, whereκ is independent ofτ ; see
Remark3.4. Hence, we may write for‖h‖ = ‖{hk}‖ sufficiently small

∥
∥Np,q(x + h) −Np,q(x) −N ′

p,q(x)h
∥
∥

q

q
= ‖{r(xk, hk)}‖q

q =
∑

k

|r(xk, hk)|q

≤
∑

k

(
κq

p

)q

|hk|q(w+1)

≤
(

κq

p

)q

max ({|hk|qw})
∑

k

|hk|q.

Hence, we conclude that‖{r(xk, hk)}‖q / ‖h‖q → 0 for ‖h‖q → 0 and obtain the formula
for the derivativeN ′

p,q(x)h =
{
η′

p,q(xk)hk

}

k∈N
.

REMARK 3.6. Note that the result of Proposition3.5also holds in the case of the opera-
tor Np,q : ℓ2 → ℓ2, as one can immediately see from the proof.

LEMMA 3.7. The operatorN ′
p,q(x) is self-adjoint with respect toℓ2.

Proof. We have〈N ′
p,q(x)h, z〉 = q

p

∑ |xk|(q−p)/phkzk = 〈h,N ′
p,q(x)z〉.

Please note that the Fréchet derivative of the operatorNp,q and its adjoint can be under-
stood as (infinite-dimensional) diagonal matrices, that is,

N ′
p,q(x) = diag

({
q

p
|xk|(q−p)/p

}

k∈N

)

,

andN ′
p,q(x)h is then a matrix-vector multiplication.

4. Properties of the concatenation operatorG. The convergence of the surrogate func-
tional approach, which will be applied to the transformed Tikhonov functional (2.2), relies
mainly on some mapping properties of the operatorG = F ◦ Np,q. In the following, we as-
sume that the operatorF is Fŕechet differentiable andF ,F ′ fulfill the following conditions.
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Let 0 < p ≤ 1, y ∈ ℓ2 and letxn, x ∈ ℓp andxn ⇀ x with respect to the weak topology
onℓ2. Moreover, for any bounded setΩ ⊆ D(F) there exists aL > 0 such that the following
conditions hold:

F (xn) → F (x) for n → ∞,(4.1)

F ′(xn)∗y → F ′(x)∗y for n → ∞,(4.2)

‖F ′(x) − F ′(x′)‖2 ≤ L ‖x − x′‖2 for x, x′ ∈ Ω.(4.3)

Convergence and weak convergence in (4.1), (4.2) have to be understood with respect
to ℓ2. The main goal of this section is to show that the concatenation operatorG is Fŕechet
differentiable and that this operator also fulfills the conditions given above. At first we obtain
the following proposition.

PROPOSITION4.1. LetF : ℓq → ℓ2 be strongly continuous with respect toℓq, i.e.,

xn
ℓq

⇀ x =⇒ F(xn)
ℓq→ F(x).

ThenF ◦ Np,q is also strongly continuous with respect toℓq. If F : ℓ2 → ℓ2 is strongly
continuous with respect toℓ2, thenF ◦ Np,q is also strongly continuous with respect toℓ2.

Proof. If xn
ℓq

⇀ x, then by Proposition3.1 alsoNp,q(xn)
ℓq

⇀ Np,q(x), and due to the
strong continuity ofF it follows thatF(Np,q(xn)) → F(Np,q(x)). The second part of the
proposition follows in the same way by Proposition3.2.

By the chain rule we immediately obtain the following result.
LEMMA 4.2. LetF : ℓq → ℓ2 be Fŕechet differentiable. Then

(4.4) (F ◦ Np,q)
′(x) = F ′(Np,q(x)) · N ′

p,q(x),

where the multiplication has to be understood as a matrix product. The adjoint (with respect
to ℓ2) of the Fŕechet derivative is given by

(4.5) ((F ◦ Np,q)
′(x))

∗
= N ′

p,q(x) · F ′(Np,q(x))∗.

Proof. Equation (4.4) is simply the chain rule. For the adjoint of the Fréchet derivative
we obtain

〈((F ◦ Np,q)
′(x))u, z〉 = 〈F ′(Np,q(x)) · N ′

p,q(x) · u, z〉
= 〈N ′

p,q(x) · u,F ′(Np,q(x))∗ · z〉
= 〈u,N ′

p,q(x) · F ′(Np,q(x))∗z〉,

asN ′
p,q(x) is self-adjoint.
We further need the following result.
LEMMA 4.3. Let B : ℓq → ℓq be a diagonal linear operator (an infinite-dimensional

diagonal matrix) with diagonal elementsb := {bk}k∈N. Then

‖B‖ℓq→ℓq
≤ ‖b‖q.

Proof. The assertion follows from

‖B‖q
ℓq→ℓq

= sup
‖x‖q

q≤1

‖Bx‖q
q = sup

‖x‖q
q≤1

∑

k

|bk · xk|q ≤
∑

k

|bk|q.
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Hence, we may identify the operatorN ′
p,q(xn) with the sequence of its diagonal elements

and vice versa. Now we can verify the first required property.
PROPOSITION4.4. Let xn ⇀ x with respect toℓ2, z ∈ ℓ2, and letq and p be such

that q ≥ 2p. Assume that

(4.6) (F ′(xn))∗z → (F ′(x))∗z

holds with respect toℓ2 for any weakly convergent sequencexn → x. Then we have as well

((F ◦ Np,q)
′(xn))

∗
z → ((F ◦ Np,q)

′(x))
∗
z,

with respect toℓ2.

Proof. Asxn
ℓ2⇀ x, we have in particularxn,k → xk for a fixedk. The sequenceN ′

p,q(xn)
is given element-wise by

q

p
|xn,k|(q−p)/p → q

p
|xk|(q−p)/p,

and thus the coefficients ofN ′
p,q(xn) converge to the coefficients ofN ′

p,q(x). In order to show
weak convergence of the sequences, it remains to show that{ q

p |xn,k|(q−p)/p} stays uniformly
bounded: we have

‖N ′
p,q(xn)‖2

2 =

(
q

p

)2 ∑

k

(

|xn,k|(q−p)/p
)2

.

As q ≥ 2p and‖x‖r ≤ ‖x‖s for s ≤ r, we conclude withr = 2(q − p)/p ≥ 2

(4.7) ‖N ′
p,q(xn)‖2

2 =

(
q

p

)2

‖xn‖r
r ≤

(
q

p

)2

‖xn‖r
2 ≤ C,

because weakly convergent sequences are uniformly bounded. Thus we obtain

N ′
p,q(xn) ⇀ N ′

p,q(x).

With the same arguments, we find for a fixedz

N ′
p,q(xn)z ⇀ N ′

p,q(x)z.

The convergence of this sequence holds also in the strong sense. For this, it is sufficient to
show thatlimn→∞ ‖N ′

p,q(xn)z‖ = ‖N ′
p,q(x)z‖ holds. Asxn is weakly convergent, it is also

uniformly bounded, i.e.,‖xn‖ℓ2 ≤ C̃. Thus the components of this sequence are uniformly
bounded,|xn,k| ≤ C̃, yielding |xn,k|2(q−p)/p · z2

k ≤ C̃2(q−p)/pz2
k. We observe that

(
q

p

)2 ∑

k

|xn,k|
2(q−p)

p · z2
k ≤

(
q

p

)2

C̃
2(q−p)

p

∑

k

z2
k =

(
q

p

)2

C̃
2(q−p)

p ‖z‖2
2 < ∞.

Therefore, by the dominated convergence theorem, we can interchange limit and summation,
i.e.,

lim
n→∞

‖N ′
p,q(xn)z‖2

2 = lim
n→∞

(
q

p

)2 ∑

k

|xn,k|2(q−p)/p · z2
k

=

(
q

p

)2 ∑

k

lim
n→∞

|xn,k|2(q−p)/p · z2
k

=

(
q

p

)2 ∑

k

|xk|2(q−p)/p · z2
k =

(
q

p

)2

‖N ′
p,q(x)z‖2

2,
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and thus

(4.8) N ′
p,q(xn)z

ℓ2−→ N ′
p,q(x)z.

We further conclude that

‖ ((F ◦ Np,q)
′(xn))

∗
z − ((F ◦ Np,q)

′(x))
∗
z‖2

= ‖N ′
p,q(xn)F ′(Np,q(xn))∗z −N ′

p,q(x)F ′(Np,q(x))∗z‖2

≤ ‖N ′
p,q(xn)F ′(Np,q(xn))∗z −N ′

p,q(xn)F ′(Np,q(x))∗z‖2
︸ ︷︷ ︸

D1

+ ‖N ′
p,q(xn)F ′(Np,q(x))∗z −N ′

p,q(x)F ′(Np,q(x))∗z‖2
︸ ︷︷ ︸

D2

,

and by Proposition3.2we obtain

(4.9) Np,q(xn)
ℓ2⇀ Np,q(x).

Hence, the two terms can be estimated as follows:

D1 ≤ ‖N ′
p,q(xn)‖2

︸ ︷︷ ︸

(4.7)
≤ C

‖F ′(Np,q(xn))∗z −F ′(Np,q(x))∗z‖2
︸ ︷︷ ︸

(4.6),(4.9)
−→ 0

and thereforeD1 → 0. ForD2 we obtain withz̃ := F ′(Np,q(x))∗z

D2 = ‖N ′
p,q(xn)z̃ −N ′

p,q(x)z̃‖2
(4.8)−→ 0,

which concludes the proof.
In the final step of this section we show the Lipschitz continuity of the derivative.
PROPOSITION4.5. Assume thatF ′(x) is (locally) Lipschitz continuous with constantL.

Then(F ◦ Np,q)
′(x) is locally Lipschitz forp < 1 and1 ≤ q ≤ 2 such that2p < q.

Proof. The functionf(t) = |t|s with s > 1 is locally Lipschitz continuous, i.e., we have
on a bounded interval[a, b]:

(4.10) |f(t) − f(t̃)| ≤ s max
τ∈[a,b]

|τ |s−1|t − t̃|.

Assumex ∈ Bρ(x0), then‖x‖2 ≤ ‖x − x0‖2 + ‖x0‖2 ≤ ρ + ‖x0‖2 and therefore

sup
x∈Bρ(0)

‖x‖2 ≤ ρ + ‖x0‖2 =: ρ̃.

We have thats := (q − p)/p ≥ 1, and|t|s is locally Lipschitz according to (4.10). N ′
p,q(x)

is a diagonal matrix, thus we obtain with Lemma4.3for x, x̃ ∈ Bρ(x0)

‖N ′
p,q(x) −N ′

p,q(x̃)‖2 =

(
q

p

)2 ∑

k

(

|xk|(q−p)/p − |x̃k|(q−p)/p
)2

(4.10)
≤

(
q

p

)2 (
q − p

p
ρ̃(q−2p)/p

)2 ∑

k

|xk − x̃k|2

≤
(

q

p

)2 (
q − p

p
ρ̃(q−2p)/p

)2

‖x − x̃‖2
2.
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With the same arguments, we show thatNp,q is Lipschitz,

‖Np,q(x) −Np,q(x̃)‖2 ≤ q

p
ρ̃(q−p)/p‖x − x̃‖2.

The assertion now follows from

‖F ′(Np,q(x))N ′
p,q(x) −F ′(Np,q(x̃))N ′

p,q(x̃)‖
≤ ‖ (F ′(Np,q(x)) −F ′(Np,q(x̃)))N ′

p,q(x)‖
+ ‖F ′(Np,q(x̃))

(
N ′

p,q(x) −N ′
p,q(x̃)

)
‖

≤ L‖Np,q(x) −Np,q(x̃)‖‖N ′
p,q(x)‖

+ ‖F ′(N ′
p,q(x̃))‖‖N ′

p,q(x) −N ′
p,q(x̃)‖

≤ L̃‖x − x̃‖,

with

L̃ = L max
x∈Bρ

‖N ′
p,q(x)‖ q

p
ρ̃(q−p)/p + max

x∈Bρ

‖F ′(Np,q(x))‖
(

q

p

)2
q − p

p
ρ̃(q−2p)/p.

Combining the results of Lemma4.2and Propositions4.1, 4.4, and4.5, we obtain
PROPOSITION4.6. Let0 < p < 1 and choose1 < q ≤ 2 such that2p < q. Letxn ⇀ x

with respect to the topology onℓ2 and y ∈ ℓ2. Assume that the operatorF : ℓ2 → ℓ2 is
Fréchet differentiable and fulfills conditions(4.1)–(4.3). ThenG = F ◦ Np,q is also Fŕechet
differentiable and we have that for any bounded setΩ ⊆ D(F), there exists anL > 0 such
that

G(xn) → G(x) for n → ∞,(4.11)

G′(xn)∗y → G′(x)∗y for n → ∞,(4.12)

‖G′(x) − G′(x′)‖2 ≤ L ‖x − x′‖2 for x, x′ ∈ Ω.(4.13)

Proof. Proposition4.1 yields (4.11). According to Lemma4.2, G is differentiable. By
the hypothesisq > 2p, the conditions of Proposition4.4 and Proposition4.5 hold and thus
also (4.12) and (4.13), respectively.

5. Minimization by surrogate functionals. In order to compute a minimizer of the
Tikhonov functional (1.2), we can either use algorithms that minimize (1.2) directly, or al-
ternatively, we can try to minimize (2.1). It turns out that the transformed functional with
anℓq-norm andq > 1 as penalty can be minimized more effectively by the proposedor other
standard algorithms. The main drawback of the transformed functional is that, due to the
transformation, we have to deal with a nonlinear operator even if the original operatorF is
linear.

A well investigated algorithm for the minimization of the Tikhonov functional with anℓq-
penalty that works for all1 ≤ q ≤ 2 is the minimization via surrogate functionals. The
method was introduced by Daubechies, Defrise, and De Mol [15] for penalties withq ≥ 1
and linear operatorsF . Later on, the method was generalized in [37, 39, 40] to nonlinear
operatorsG = F ◦ Np,q. The method works as follows: for a given iteratexn, we consider
the surrogate functional

(5.1) J̃s
α(x, xn) =







‖yδ − G(x)‖2 + α‖x‖q
q

+C‖x − xn‖2
2 − ‖G(x) − G(xn)‖2

2

x ∈ D(G),

+∞ else,
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and determine the new iterate as

(5.2) xn+1 = argmin
x

J̃s
α(x, xn).

The constantC in the definition of the surrogate functional has to be chosenlarge enough;
for more details see [37, 39]. Now it turns out that the functional̃Js

α(x, xn) can be easily
minimized by means of a fixed point iteration. For fixedxn, the functional is minimized by
the limit of the fixed point iteration

(5.3) xn,l+1 = Φ−1
q

(
1

C
G′(xn,l)∗

(
yδ − G(xn)

)
+ xn

)

,

wherexn,0 = xn andxn+1 = liml→∞ xn,l. For q > 1, the mapΦq is defined component-
wise for an element in a sequence space as

Φq(x) = Φq({x}k) = {Φq(xk)}k ,

Φq(xk) = xk +
α · q
C

|xk|q−1 sgn(xk).

Thus, in order to compute the new iteratexn,l+1, we have to solve the equation

(5.4) Φq

({
xn,l+1

}

k

)
=

{
1

C
G′(xn,l)∗

(
yδ − G(xn)

)
+ xn

}

k∈N

for eachk ∈ N. It has been shown that the fixed point iteration converges tothe unique
minimizer of the surrogate functional̃Js

α(x, xn) provided the constantC is chosen large
enough and the operator fulfills the requirements (4.1)–(4.3); for full details we refer the
reader to [37, 39]. Moreover, it has also been shown that the outer iteration (5.2) converges
at least to a critical point of the Tikhonov functional

J̃α,q(x) =

{

‖yδ − G(x)‖2
2 + α‖x‖q

q x ∈ D(G),

+∞ else,

provided that the operatorG fulfills the conditions (4.11)–(4.13).
Based on the results of Section2, we can now formulate our main result.
THEOREM 5.1. Let F : ℓ2 → ℓ2 be a weakly (sequentially) closed operator fulfilling

the conditions(4.1)–(4.3), and chooseq > 1 such that2p < q, with 0 < p < 1. Then the
operatorG(x) = F ◦ Np,q is Fréchet differentiable and fulfills the conditions(4.11)–(4.13).

The iteratesxn computed by the surrogate functional algorithm(5.2) converge at least
to a critical point of the functional

(5.5) J̃α,q(x) =

{

‖yδ − G(x)‖2
2 + α‖x‖q

q x ∈ D(G),

+∞ else.

If the limit of the iterationxδ
α := limn→∞ xn is a global (local) minimizer of(5.5),

thenxδ
s,α := Np,q(x

δ
α) is a global (local) minimizer of

(5.6) Jα,p(xs) =

{

‖yδ −F(xs)‖2
2 + α‖xs‖p

p xs ∈ D(F),

+∞ else.
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Proof. According to Proposition4.6, the operatorG fulfills the properties that are suffi-
cient for the convergence of the iterates to a critical pointof the Tikhonov functional (5.5);
see [37, Proposition 4.7]. Ifxδ

α is a global minimizer of (5.5), then, according to Propo-
sition 2.6, xδ

s,α is a minimizer of (1.2). Let xδ
α be local minimizer. Then there exists a

neighborhoodUǫ

(
xδ

α

)
such that

∀x ∈ Uǫ

(
xδ

α

)
:

∥
∥yδ − G(x)

∥
∥

2

ℓ2
+ α ‖x‖q

q ≥
∥
∥yδ − G

(
xδ

α

)∥
∥

2

ℓ2
+ α

∥
∥xδ

α

∥
∥

q

q
.

Let M := {xs : N−1
p,q (xs) ∈ Uǫ

(
xδ

α

)
} andxδ

s,α := Np,q

(
xδ

α

)
, then we can derive that

∀xs ∈ M :
∥
∥yδ −F(xs)

∥
∥

2

ℓ2
+ α ‖xs‖p

p ≥
∥
∥yδ −F

(
xδ

s,α

)∥
∥

2

ℓ2
+ α

∥
∥xδ

s,α

∥
∥

p

p
.

SinceNp,q andN−1
p,q are continuous, there exists a neighborhoodUǫs

around the solution of
the original functionalxδ

s,α such thatUǫs
(xδ

s,α) ⊆ M .
Theorem5.1 is based on the transformed functional. Whenever a global or local min-

imizer is reconstructed, the result can be directly interpreted in terms of the original func-
tional (5.6). As it can be seen from the proof, this can be generalized to stationary points.
Assuming that the limit of the iteration is no saddle point, any stationary point of the trans-
formed functional is also a stationary point of (5.6).

Concerning the iterative scheme (5.3), the question arises which impact the introduced
transformation operator has. Below we discuss these effects in the light of the shrinkage
operatorΦ−1

q . Let x denote the current inner iteratex(n,l) and s the fixed current outer
iteratex(n), then one iteration step of the above scheme is given by

Φ−1
q

(
1

C
G′ (x)

∗ (
yδ − G (s)

)
+ s

)

= Φ−1
q

(
1

C
N ′

p,q(x)F ′ (Np,q(x))
∗ (

yδ −F (Np,q(s))
)

+ s

)

= Φ−1
q

(

N ′
p,q(x)

(
1

C
F ′ (Np,q(x))

∗ (
yδ −F (Np,q(s))

)
+ N ′

p,q(x)−1s

))

.(5.7)

In (5.7), the transformation operator occurs several times. One instance isF(Np,q(s)). Bear-
ing in mind that we apply the iterative scheme on the transformed functional (5.5) and that
consequentlys ∈ ℓq, the role ofNp,q is to maps to the domain ofF , which is defined with
respect toℓp. The same observation applies to the termF ′ (Np,q(x))

∗.
The next term which is influenced by the transformation operator in the iteration (5.7)

is N ′
p,q(x)−1s. The additive term can be interpreted as an offset for the shrinkage operation

and restricts large changes in each iteration. Note that this term arises due to the stabilizing
term in the surrogate functional having exactly the purposeof penalizing large steps. How-
ever, in our approach we apply the surrogate technique on thetransformed problem (5.5) and
thus penalize the step size with respect to the transformed quantities. Hence, the respective
term in the update formula (5.3) is independent of the transformation operator, which leads
to the termN ′

p,q(x)−1s in the above formulation (5.7), where we singled out the linear oper-
atorN ′

p,q(x). Accordingly, we have that the entire argument of the shrinkage operatorΦ−1
q is

scaled byN ′
p,q(x) leading to the mapt 7→ Φ−1

q

(
N ′

p,q(x)t
)
. This can be regarded as the main

impact of the transformation strategy on the iterative thresholding algorithm. In that regard,
we are interested in fixed points with respect tox, i.e.,

(5.8) t 7→ x∗ where x∗ = Φ−1
q

(
N ′

p,q(x
∗)t

)
,
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which corresponds to the fixed point iteration in (5.3).

Figure5.1 shows the value of the fixed point equationx∗ = Φ−1
q

(
N ′

p,q(x
∗)t

)
in de-

pendence oft. The solid line refers to the case ofp = 0.9 and the dashed one to the case
of p = 0.8. In both case,q is chosen to be1.2. We observe a behavior of the map (5.8) close

α

x
∗ = Φα,q

(

N
′

p,q
(x∗) t

)

α

2α

1

2
α−α −

1

2
α

−2α

−

3

2
α

−α

3

2
α

t

FIGURE 5.1.One-dimensional outline of the relation between the fixed point of the mapx 7→ Φ−1
q

`

N ′
p,q

(x)t
´

and the value oft for p = 0.9 (solid line),p = 0.8 (dashed line), andq = 1.2. A smaller value ofp leads to a
pronounced hard thresholding and an increased range of thresholding. Moreover the slope outside the range of
thresholding is increased.

to that of the so-called hard- or firm thresholding. Moreover, the plot in Figure5.1shows that
for an increasing value ofp, the map (5.8) approaches the standard thresholding function; see
also Figure5.2. On the other hand, decreasing values ofp lead to a more pronounced thresh-
olding and particularly to a discontinuous separation between values oft which are clipped
and which are increased by trend, i.e., are subject to hard thresholding.

2α

α

α

x
∗ = Φα,q

(

N
′

p,q
(x∗) t

)

−2α

−2α

−3α

−3α
−α

−α 2α
t

FIGURE 5.2. One-dimensional outline of the map(5.8) for p = 0.95 (q = 1.2) and a larger scale oft-values
(compared to the previous plots). The map exhibits a behavior similar to the thresholding function.

Note that the thresholding as represented by our map (5.8) crucially depends on the
respective value of the current iterate. In particular, theimplication of the superposition
operator allows for an increased or decreased (i.e., adaptive) range of thresholding depending
on the magnitude of the current iteratex (denoted byx(n,l) in (5.3)). Figure5.3 displays
this scenario for the case ofp = 0.8 andq = 1.2. Let x∗

0 denote the initial guess for the
fixed point map, which is the current iterate of the outer loop, i.e.,x(n) in (5.3). The dotted
line in Figure5.3 shows the case ofx∗

0 = 10, the dashed line the case ofx∗
0 = 0.1, and the

solid line the choice ofx∗
0 = 0.05. Note that for all previous plots on that matter we always

chosex∗
0 = 1 to ensure comparable results. The increase of the range of thresholding for

decreasing values ofx(n) leads to a strong promotion of zero values and thus to presumably
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2α

2α

3α

4α

α

α

x
∗ = Φα,q

(

N
′

p,q
(x∗) t

)

3

2
α

t

FIGURE 5.3. One-dimensional outline of the map(5.8) for p = 0.8 andq = 1.2 for different initial valuesx∗
0

for the fixed point iteration (dotted line:x∗
0

= 10, dashed line:x∗
0

= 0.1, solid line: x∗
0

= 0.05). For decreasing
values of the initial values the range of thresholding is increased.

sparse solutions.
We conclude that the transformation operator acts as an adaptive scaling of the shrinkage

operator depending on the respective values of the current inner iterates. The basic effect of
this scaling is that the fixed point map (5.8) exhibits a behavior similar to hard thresholding,
where smaller values ofp enhance this effect. Moreover, the values of the current iterates are
crucial for the range of thresholding and lead to an adaptivebehavior. In particular, thresh-
olding is enhanced for smallx and reduced for largex. This matches the idea of promoting
sparse solutions by penalizing small components increasingly and hardly penalizing large
components.

6. A global minimization strategy for the transformed Tikhonov functional: the
caseq = 2. The minimization by surrogate functionals presented in Section 5 guarantees
the reconstruction of a critical point of the transformed functional only. If we have not found
the global minimizer of the transformed functional, then this also implies that we have not
reconstructed the global minimizer for the original functional. In this section we would like
to recall an algorithm that, under some restrictions, guarantees the reconstruction of a global
minimizer. In contrast to the surrogate functional approach, this algorithm works in the case
of q = 2 only, i.e., we are looking for a global minimizer of the standard Tikhonov functional

(6.1) J̃α,2(x) =

{

‖yδ − G(x)‖2 + α‖x‖2
2 xs ∈ D(G),

+∞ else

with G(x) = F(Np,2(x)). For the minimization of the functional, we want to use the TIGRA
method [35, 36]. The main ingredient of the algorithm is a standard gradient method for the
minimization of (6.1), i.e., the iteration is given by

(6.2) xn+1 = xn + βn

(
G′(xn)∗(yδ − G(xn)) − αxn

)
.

The following arguments are taken out of [36], where the reader finds all the proofs and
further details. If the operatorG is twice Fŕechet differentiable, its first derivative is Lipschitz
continuous, and a solutionx† of G(x) = y fulfills the smoothness condition

(6.3) x† = G′(x†)∗ω,

then it has been shown that (6.1) is locally convex around a global minimizerxδ
α. If an initial

guessx0 within the area of convexity is known, then the scaling parameterβn can be chosen
such that all iterates stay within the area of convexity andxn → xδ

α asn → ∞. However,
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the area of convexity shrinks to zero ifα → 0, i.e., a very good initial guess for smallerα
is needed. For an arbitrary initial guessx0, this problem can be overcome by choosing a
monotonically decreasing sequenceα0 > α1 > · · · > αn = α with sufficiently largeα0 and
a small step sizeαi+1/αi, and then iterate as follows:

Input: x0, α0, · · · , αn

Iterate: For i = 1, · · · , n
• If i > 1, setx0 = xδ

αi−1
.

• Minimize J̃αi,2(x) by the gradient method (6.2) and initial valuex0.
End

We wish to remark that the iteratively regularized Landweber iteration, introduced by
Scherzer [43], is closely related to TIGRA. Its iteration is similar to (6.2) but requires the
use of a summable sequenceαk (instead of a fixedα). In contrast to TIGRA, the iteratively
regularized Landweber iteration aims at the solution of a nonlinear equation and not on the
minimization of a Tikhonov functional. Additionally, the iteratively regularized Landweber
iteration requires more restrictive conditions on the nonlinear operator.

In a numerical realization, the iteration (6.2) has to be stopped after finitely many steps.
Therefore the final iterate is taken as starting value for theminimization of the Tikhonov
functional with the next regularization parameter. As mentioned above, this procedure recon-
structs a global minimizer ofJα,p if the operatorG is twice Fŕechet differentiable, its first
derivative is Lipschitz continuous, and (6.3) holds [36]. We will verify these conditions for
two important cases, namely whenF is the identity (i.e., the problem of data denoising) and
whenF is a linear operator,F = A.

PROPOSITION6.1. The operatorNp,2(x), with 0 < p < 1, is twice continuously differ-
entiable and therefore also the operatorANp,2(x) with a continuous and linearA.

Proof. The proof is completely analogous to the one of Proposition3.5 considering the
fact that2p ≥ 2. Using the Taylor expansion of the functionηp,2(t) = |t|2/p sgn(t)

ηp,2(t + τ) − ηp,2(t) − η′
p,2(t)τ − 1

2
η′′

p,2(t)τ
2 := r(t, τ),

with

η′′
p,2(t) =

2(2 − p)

p2
sgn(t)|t|2(1−p)/p,

one obtains the following representation of the remainder

r(t, τ) =

∫ t+τ

t

1

2

2

p

2 − p

p

2 − 2p

p
(t + τ − s)2|s| 2p−3 ds.

Again by the mean value theorem and using Lemma3.3with α = 2
p − 2, we obtain

∣
∣
∣
∣
∣

∫ t+τ

t

1

2

2

p

2 − p

p

2 − 2p

p
(t + τ − s)2|s| 2p−3 ds

∣
∣
∣
∣
∣
=

=

∣
∣
∣
∣
∣

[
1

2

2

p

2 − p

p
(t + τ − s)2|s| 2p−2

]t+τ

t

+

∫ t+τ

t

2

p

2 − p

p
(t + τ − s)|s| 2p−2 ds

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
τ

2

p

2 − p

p

(

(t + τ − ξ) sgn(ξ)|ξ|2/p−2 − 1

2
τ sgn(t)|t|2/p−2

)∣
∣
∣
∣

(3.1)
≤ κ̃

2

p

2 − p

p
|τ |w+2,



ETNA
Kent State University 

http://etna.math.kent.edu

492 R. RAMLAU AND C. A. ZARZER

whereξ ∈ (t, t + τ), w := min
(

2
p − 2, 1

)

> 0. One may notice that the scaling factor1/2

requires a redefinition ofκ in Lemma3.3 leading toκ̃. Eventually, we conclude that
∥
∥N ′

p,2(x + h)h̄ −N ′
p,2(x)h̄ −N ′′

p,2(x)(h̄, h)
∥
∥

2
/ ‖h‖2 → 0 for ‖h‖2 → 0

analogously to the proof of Proposition3.5. Thus we have

N ′′
p,2(x)(h̄, h) =

{
η′′

p,q(xk)h̄khk

}

k∈N
.

The twice differentiability ofANp,2(x) follows from the linearity ofA.
Now let us turn to the source condition (6.3).
PROPOSITION6.2. LetF = I. Thenx† ∈ ℓ2 fulfills the source condition(6.3) if and

only if it is sparse, i.e., it has only finitely many nonzero coefficients.
Proof. As I = I∗ in ℓ2, we haveF ′(Np,2(x

†))∗ = I, and it follows from (4.5) that

(F(Np,2(x))′)
∗

= N ′
p,2(x).

Therefore, the source condition (6.3) reads coefficient-wise as

2

p
|x†

k|(2−p)/pωk = x†
k

or

ωk =
2

p
sgn(x†

k)|x†
k|(2p−2)/p,

for xk 6= 0. Forxk = 0, we can setwk = 0, too. Asωk, x† ∈ ℓ2, and2p − 2 < 0, this can
only hold if x† has only a finite number of nonzero elements.

The case ofF = A is a little bit more complicated. In particular, we require the oper-
atorA to fulfill the finite basis injectivity (FBI) property which was introduced by Bredies
and Lorenz [7]. Let T be a finite index set, and let#T be the number of elements inT . We
say thatu ∈ ℓ2(T ) if and only if uk = 0 for all k ∈ N \ T . The FBI property states that
wheneveru, v ∈ ℓ2(T ) with Au = Av, it follows thatu = v. This is equivalent to

A|ℓ2(T )u = 0 =⇒ u = 0,

whereA|ℓ2(T ) is the restriction ofA to ℓ2(T ). For simplicity we setA|ℓ2(T ) = AT .

PROPOSITION6.3. Assume thatx† is sparse,T = {k : x†
k 6= 0}, and thatA : ℓ2 → ℓ2

is bounded. IfA has the FBI property, thenx† fulfills the source condition(6.3).
Proof. As x† is sparse,T is finite. ByxT we denote the (finite) vector that contains only

those elements ofx with indices inT . BecauseA is considered being an operator betweenℓ2,
we haveA∗ = AT andA∗

T = AT
T . Due to the sparse structure ofx†, we observe

N ′
p,2(x

†) : ℓ2 → ℓ2(T )

and therefore also

AN ′
p,2(x

†) = AT N ′
p,2(x

†)
(
AN ′

p,2(x
†)

)∗
= N ′

p,2(x
†)A∗

T = N ′
p,2(x

†)AT
T ,

where we use the fact thatN ′
p,2(x

†) is self-adjoint.
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With F = A, (6.3) reads as

x† = N ′
p,2(x

†)AT
T ω.

The operatorN ′
p,2(x

†)−1 is well defined onℓ2(T ), and sinceℓ2(T ) = D(AT ) = R(AT
T ),

we obtain

AT
T ω = N ′

p,2(x
†)−1x†.

Now we have by the FBI propertyN (AT ) = {0} and therefore

ℓ2(T ) = N (AT )⊥ = R(A∗
T ) = R(AT

T ).

As dim(ℓ2(T )) = #T < ∞, R(AT
T ) = ℓ2(T ) and therefore the generalized inverse ofAT

T

exists and is bounded. We finally obtain

ω =
(
AT

T

)† N ′
p,2(x

†)−1x†

and

‖ω‖2 ≤ ‖
(
AT

T

)† ‖2‖N ′
p,2(x

†)−1‖2‖x†‖2.

Please note that a similar result can be obtained for twice continuously differentiable
nonlinear operatorsF if we additionally assume thatF ′(Np,2(x

†)) admits the FBI condition.
Propositions6.1–6.3show that the TIGRA algorithm can in principle be applied to the mini-
mization of the transformed Tikhonov functional for the caseq = 2 and reconstructs a global
minimizer. The surrogate functional approach can also be applied to the caseq < 2. This is
in particular important for the numerical realization, as we show in the following section.

7. Numerical results. In this section we present some numerical experiments for a de-
convolution problem and a parameter identification problemin a mathematical model from
physical chemistry. Considering the proposed non-standard approach, we are particularly in-
terested in the impacts of the transformation operator on the numerical realization and the
sparsity promoting features of the proposed algorithm.

Beforehand, we address some key points regarding the numerical implementation of the
proposed iterative thresholding algorithm. As this approach is based on a Tikhonov-type reg-
ularization method, the first crucial issue is the choice of the regularization parameter. To
our knowledge there are currently no particular parameter choice rules available explicitly
addressing Tikhonov-type methods with non-convexℓp-quasi-norms. However, for the sub-
sequent examples, we design the problems such that we know the solution in advance in order
to be able to assess the quality of the reconstruction as wellas its sparsity compared to the true
solution. Hence, this also allows to accurately determine the regularization parameter. Taking
advantage of that fact which we observe for all subsequent numerical examples that the dis-
crepancy principle (cf. [1]) provides rather good estimates of the regularization parameterα,
we determineα such that

α(δ, yδ) := sup
{

α > 0 :
∥
∥G(xδ

α) − yδ
∥
∥

ℓ2
≤ τδ

}

,

wherexδ
α is the regularized solution andτ > 1.

The next subject we address is the choice of the surrogate constantC in (5.1). As dis-
cussed in [37], the value ofC is crucial for the convergence of the algorithm and has to be
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chosen sufficiently large. However, a large value ofC increases the weight on the stabiliza-
tion term‖x − s‖2

2 in (5.1) and hence decreases the speed of convergence. We propose to
use a simple heuristic in order to determine the value ofC. We take advantage of the fact
that if C is chosen too small, the iteration rapidly diverges, which can be easily detected. In
particular, we propose to test the monotone decrease of the surrogate functional and chooseC
large enough such that the iteration still exhibits the monotonicity. Moreover, we emphasize
thatC does depend on the norm of the linearized operatorG′ evaluated at the current iterate.
Thus, particularly in the first phase of the iteration, the norm of G′ may change significantly.
This suggests to adapt the value ofC after a few steps in order to increase the speed of
convergence.

Another crucial point for the realization of the iterative thresholding scheme (5.3) is the
solution of the nonlinear problem (5.4) in the inner iteration, i.e., for each component of the
given right-hand sidez ∈ R (see (5.3)), we seek the corresponding elementx ∈ R such that

(7.1) z = Φq (x) = x +
αq

C
|x|q−1 sgn (x) .

For q < 2 the nonlinear problem (7.1) is not differentiable and it can be shown that the
Newton method fails to converge; cf. [37]. Since (7.1) has to be solved numerous times
(in each iteration for every component) throughout the iteration, we propose to use a safe-
guarded Newton method; cf. [44]. The standard Newton method would fail forxk close to
zero. However, the sign of the solutionxk and the right-hand sidezk coincide andzk = 0
impliesxk = 0. Hence, without loss of generality, we can assumezk > 0. This allows to
effectively control the step length of the Newton update, inparticular we prevent any steps
leading to negative values.

7.1. Deconvolution in sequence spaces.Subsequently, we present some numerical
results on the reconstruction of a function from convolution data. The example is taken
from [38], which we refer to for more details on the problem. We define the convolution
operatorA by

y(τ) = (Ax)(τ) =

π∫

−π

r(τ − t)x(t)dt =: (r ∗ x)(τ),

wherex, r andAu are2π-periodic functions belonging toL2(Ω), with Ω = (−π, π). In
order to obtain a numerical realization in accordance with the present notation, we identify the
occurring quantities with the respective Fourier coefficients. A periodic function on[−π, π]
can be either expressed via the orthonormal bases formed by

{
1√
2π

eikt

}

k∈Z

or

{
1√
2π

,
1√
π

cos(kt),
1√
π

sin(kt)

}

k∈N

.

Using the Fourier convolution theorem for the exponential basis and transformation formulas
between the exponential and trigonometrical bases, we obtain an equivalent linear problem
in terms of the considered real sequence spaces. Note that due to the nonlinear superposi-
tion operator, we still have a nonlinear problem. Consequently, the linear problem serves
two purposes. Firstly, a large part of the currently available sparsity promoting algorithms
concerns only the case of a linear operator. In particular, also the classical iterative thresh-
olding algorithm has been developed for linear problems. Inthat regard, a comparison of the
performance is interesting. Due to the nonlinear transformation, the question arises whether
the problem is artificially complicated or whether the simple structure of the transformation
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operator nevertheless allows for a compatible performance. We address this issue by com-
paring ourℓp-penalization for0 < p < 1 with the classical iterative thresholding technique
based on theℓ1-norm. Another benefit of the linear problem is that the only nonlinearity in
the operator arises due to the superposition operator and thus allows us to study the effects
of the nonlinearity due to the transformation technique. Note that concerning the gradient
computation, the nonlinear superposition operator poses no disadvantage as its derivative can
be computed analytically and implemented efficiently.

For the numerical implementation, we divide the interval[−π, π] into 212 equidistant
intervals leading to a discretization of the convolution operator as a212 × 212 matrix. We
define the convolution kernelr by its Fourier coefficients with

ar
0 = 0, ar

k = (−1)k · k−2, br
k = (−1)k+1 · k−2,

where

(7.2) r(t) = ar
0 +

∑

k∈N

ar
k cos(kt) + br

k sin(kt).

The data for the numerical experiments were generated basedon a sparse representation
of the solutionx† with 14 nonzero components; see Table7.1. In accordance with (7.2), we
may refer to the decomposition ofx† as

x†(t) = a†
0 +

∑

k∈N

a†
k cos(kt) + b†k sin(kt),

wherea† =
(

x†
1, . . . , x

†
2048

)

, a†
0 = x†

2049, andb† =
(

x†
2050, . . . , x

†
4097

)

.

TABLE 7.1
The coefficients of the true solutionx† with the 14 nonzero components are shown, where

ax
†

=
“

x
†
1
, . . . , x

†
2048

”

, ax
†

0
= x

†
2049

, andbx
†

=
“

x
†
2050

, . . . , x
†
4097

”

in accordance with(7.2).

index
(

x†
1, . . . , x

†
2041

)

x†
2042 x†

2043 x†
2044 x†

2045 x†
2046 x†

2047 x†
2048 x†

2049

value (0, . . . , 0) 1
70

1
60

1
50

1
40

1
30

1
20

1
10 0

index x†
2050 x†

2051 x†
2052 x†

2053 x†
2054 x†

2055 x†
2056

(

x†
2057, . . . , x

†
4097

)

value − 1
10 − 1

20 − 1
30 − 1

40 − 1
50 − 1

60 − 1
70 (0, . . . , 0)

We perturbed the exact data by a normally distributed noise which was norm-wise (using
theL2-norm) scaled with respect to the data and the noise level, respectively. If not stated
otherwise, we use an approximate noise level of five percent relative Gaussian noise.

The first numerical experiment concerns the convergence rate with respect to the noise
level. In [45] it was shown that (1.2) provides a regularization method, and a result on rates of
convergence was given. The authors prove that under standard assumptions, the convergence
of the accuracy error is at least of the order of

√
δ,

∥
∥x∗ − xδ

α

∥
∥

2
= O(

√
δ).

As displayed in Figure7.1, this rate is even exceeded in our numerical examples, wherewe
observe a linear rate. This is in accordance with recent results on enhanced convergence rates
based on the assumption of a sparse solution; cf. [25, 27]. We refer to [46] for a more detailed
discussion on this subject.
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FIGURE 7.1. The plot shows the numerically observed rate of convergencefor the valuesp = 0.9, q = 2 and
for p = 0.7, q = 1.6 compared to the reference rateδ.

Figure7.1shows the rates of convergence for decreasing noise levelsδ. One may notice
that the convergence slows down for very small values ofδ. This behavior is well known
and can be caused by local minima or too coarse accuracy goals. Another difficulty could
be a numerical inaccuracy of the inner iterations (5.3), which might cause a stagnation of the
iteration. In fact, the observed loss of accuracy is very pronounced if the error criteria in the
inner iteration are not chosen appropriately. This observation seems comprehensible when
considering the transformation operator and the fact that all unknowns are raised to a power
of q/p. This is also in accordance with our findings of an increased computational effort
(a higher iteration number) and the necessity of a sufficiently high numerical precision for
decreasingly smaller values ofp. These requirements are met by an efficient implementation
with stringent error criteria in all internal routines or iterations, respectively. For the inner
iteration, we control the absolute error per coefficient

max
k

|{xn,l+1 − xn,l}k| = O(10−14),

whereas the outer iteration is stopped after a sufficient convergence with respect to the data
error and pointwise changes of the parameters is obtained

∥
∥yδ − G(xn+1)

∥
∥

2

2
= O(10−8) and max

k

∣
∣{xn+1 − xn}k

∣
∣ = O(10−6).

Despite the stringent error criterion, the inner loop usually converges within 2 to 10 itera-
tions. The number of outer iterations strongly depends on the respective settings and chosen
parameters.

Figure7.2 shows the exact data curve (without noise) and the obtained reconstructions
of the data for various values ofp andq = 2 and approximately5% Gaussian noise. The
right-hand axis refers to the difference of these curves, which is plotted below. For increasing
values ofp, the data fit improves. Correspondingly, the number of nonzero coefficients in the
reconstructed Fourier coefficients increases as well. Forp = 0.4, we reconstruct7 nonzero
coefficients, forp = 0.5 the obtain solution consists of7 nonzero components, forp = 0.7



ETNA
Kent State University 

http://etna.math.kent.edu

TIKHONOV FUNCTIONAL WITH A NON-CONVEX SPARSITY CONSTRAINT 497

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
si

m
ul

at
ed

 v
s.

 o
rig

in
al

 d
at

a

−π −π/2 0 π/2 π
−π ≤ t ≤ π

p = 0.4 / q = 2  (7 coefficients)

−0.2

0

0.2

0.4

0.6

0.8

1

di
ffe

re
nc

e 
(d

at
a 

er
ro

r)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

si
m

ul
at

ed
 v

s.
 o

rig
in

al
 d

at
a

−π −π/2 0 π/2 π
−π ≤ t ≤ π

p = 0.5 / q = 2  (7 coefficients)

−0.2

0

0.2

0.4

0.6

0.8

1

di
ffe

re
nc

e 
(d

at
a 

er
ro

r)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

si
m

ul
at

ed
 v

s.
 o

rig
in

al
 d

at
a

−π −π/2 0 π/2 π
−π ≤ t ≤ π

p = 0.7 / q = 2  (10 coefficients)

−0.2

0

0.2

0.4

0.6

0.8

1

di
ffe

re
nc

e 
(d

at
a 

er
ro

r)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

si
m

ul
at

ed
 v

s.
 o

rig
in

al
 d

at
a

−π −π/2 0 π/2 π
−π ≤ t ≤ π

p = 0.9 / q = 2  (12 coefficients)

 

 

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

di
ffe

re
nc

e 
(d

at
a 

er
ro

r)

original data reconstruction difference (error)

FIGURE 7.2. The exact data of the deconvolution problem and the obtainedsimulated data from the recon-
structions forp = {0.4, 0.5, 0.7, 0.9} are plotted. Below, the difference between the (noise free)data curve and the
simulated data from the reconstruction is given (see right y-axis).

we find 10 nonzero coefficients, and forp = 0.9 the solution has12 nonzero coefficients,
compared to14 nonzero entries in the true solutionx†. The decreasing number of nonzero
coefficients indicates an increased promotion of sparse coefficient vectors for smaller values
of p. This is especially worth mentioning since already forp = 0.9, the number of nonzero
coefficients is underestimated. Furthermore, one may note that the zero components of these
solutions are really zero with respect to the machine precision (about10−16). Only in the so-
lution for p = 0.9, q = 2, several “outliers” in the order of10−5–10−10 are found. Increasing
the error criteria further would provide a remedy.

Additionally, we find that the proposed regularization method is sensitive with respect to
the choice of the regularization parameterα, which we account for by using fine grids of val-
ues forα (0.5{0,1,2,...,}). Moreover, we would like to emphasize that all the obtainednonzero
coefficients are within the support of the true solutionx†. Only for p = 0.9 andq = 2, some
of the very small outliers addressed above lie outside the support of the original solution.
Eventually, we obtain good data fits for all values ofp andq, even in those cases where the
reconstructed solution consists only of4 nonzero components compared to14 coefficients in
the true solution.

Figure7.3shows the progress of the iteration routine in the case ofp = 0.7 andq = 2.
Due to the high number of unknown coefficients (4097), we consider the progress of the
iterates for a sub sample of the coefficients only. After1500 iterations, all coefficients greater
than10−6 lie within the indices2032 to 2068. The coefficients depicted in the first row are
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FIGURE 7.3. The six charts show the progress of the support for the iterations1500, 15000, 73500, 75000,
78000, and84000 in the above test example forp = 0.4 andq = 2. Only normalized values of coefficients greater
than10−6 are plotted. Moreover the coefficients of the original coefficientsx† are highlighted. Bars of the current
iterate are additionally scaled with respect to the intermediate iterate after1500 for the first row (iteration1500
and 15000) and with respect to the intermediate iterate after30000 iterations for the remaining plots for better
visualization.

normalized with respect to the iterate after1500 iterations, i.e., the iteratex1500 is taken as a
reference and the subsequent iterates are scaled with respect to x1500. As some coefficients
become very small, we “re-normalize” the values of the coefficients of the iterate after3000
iterations for the remaining four plots. We observe that thesupport of the final iterate is
contained in the support of the true solution. Moreover, theindividual coefficients outside the
support decrease monotonously.

We now address the choice ofq, as it directly affects the algorithm. In [39] it was
shown that the solution to (5.4) can be calculated analytically forq = 2. Consequently, the
computational effort is reduced significantly at the expense of numerical artifacts in the case
of q = 2. Figure7.4 shows the number of (nonzero) entries above a certain threshold in
the cases ofq = 1.1, 1.4, andq = 2. As one expects from the theory (cf. Sections2–5), the
choice ofq ∈ (1, 2) has no effect on the solution. In particular, no small nonzero entries occur.
Forq = 2, structurally the same solution is obtained, however, due tonumerical artifacts there
is an increasing number of small coefficients with respect tothe thresholds of10−1, 10−2,
10−7, 10−9, and10−11. These effects can be controlled by stringent error criteria, which
were relaxed by a factor of10−3 for the results in Figure7.4. Eventually, one can conclude
that the choice ofq = 2 reduces the computational effort but requires more stringent error
criteria if small artifacts should be prevented.
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FIGURE 7.4. The bar charts show the number of (nonzero) entries above thethresh-
olds10−2, 10−4, 10−7, 10−9 and10−11, for q = 1.1, 1.4, 2 andp = 0.7.

FIGURE 7.5. In the upper left corner the data fit obtained by theℓ1-surrogate approach is shown, similarly to
Figure 7.2. On the upper right plot theℓ1-reconstruction is plotted against the obtained reconstruction forp = 0.9
and q = 2. Below, the reconstructed coefficients are compared to the true solution for the two cases ofp = 1
andp = 0.9.

Finally we compare the classical surrogate algorithm forp = 1 with the approach pro-
posed here. In particular, we compare the results obtained for p = 0.9 andq = 2 with the case
of p = 1, as they are presumably most similar. In Figure7.5 we show the data fit obtained
by theℓ1-approach and compare this with the result presented above for the choicep = 0.9
andq = 2. We observe that the quality of the obtained data fit is more orless identical and
even slightly improved forp = 0.9. However, one may notice that the reconstructed coef-
ficient vector is sparser forp = 0.9 than forp = 1. We observe12 nonzero elements for
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the case ofp = 0.9 and13 nonzero elements forp = 1. Moreover, although all identified
coefficients lie within the support of the true solution in the case ofp = 1, we observe that
the reconstructed coefficient with index2042 (most left coefficient in the lower left bar chart)
has the wrong sign compared to the true solution. Eventually, the shown comparison and
the results presented for the cases ofp = 0.4, 0.5, andp = 0.7 (see Figure7.2) indicate an
approximation of the classicalℓ1-surrogate approach for increasingp, which we would also
expect from the theory.

In summary, the numerical deconvolution example confirms our analytical findings on
the utilization of the transformation operator, the stableconvergence, and convergence rates.
Additionally, the fact that the reconstructed solutions are always close to the true solution sug-
gests that the algorithm reconstructs the global minimizerfitting the constructed data and thus
provides a reconstruction of good quality. Moreover, the strong sparsity promoting feature
of the considered regularization functionals and the principle idea of exploiting the transfor-
mation operator in numerical algorithms is confirmed. Furthermore, the comparison with the
classicalℓ1-surrogate approach suggests that the proposed approach can be seen as an ex-
tension of theℓ1-surrogate algorithm with even increased sparsity promoting features. This
allows a first rough assessment of the proposed algorithm within the framework of other
sparsity promoting algorithms; cf. [2, 4, 32]. However, we would like to emphasize that these
algorithms exclusively work forp ≥ 1 and hence are not directly comparable.

7.2. Parameter Identification for a chemical reaction system — the chlorite-iodide
reaction. The second test example was taken from an application in physical chemistry. We
demonstrate the advantages and capabilities of the suggested algorithm for a real world prob-
lem. In [30], Kügler et al. use sparsity promoting regularization for a parameter identification
problem in a chemical reaction system, the so-called chlorite-iodide reaction. This very well
described chemical reaction network provides an attractive test example for the approach con-
sidered here. There are several motivations to enforce sparsity when identifying parameters
in biological or chemical reaction systems; cf. [21, 30]. First of all, one may address the
issue of manageable interpretations of the typically largenetworks. By identifying the most
crucial parameters still explaining the observed dynamics, one can obtain a reduced reaction
network in the sense of model reduction. Secondly, the occurring species in these networks
typically are not accessible to experimental measurements. Hence, one inevitably lacks infor-
mation and may encounter unidentifiable parameters. The sparsity promoting regularization
is of particular interest as it eliminates those unidentifiable parameters. They become zero,
typically leading to zero rates or binding kinetics and hence eliminate the respective reaction
terms or species from the network. This is also in accordancewith Ockham‘s razor stating
that the minimal solution is typically the most likely one. Especially when considering model
based approaches, this provides an attractive alternativeto quantify these models by means of
experimental data and reducing the probable model errors atthe same time. Another applica-
tion for sparsity promoting regularization arises for biological or chemical reaction systems if
we consider an already quantified model and want to incorporate additional data or different
experimentally observed dynamics. By using the given parameter set as a prior in the regu-
larization term, we promote those solutions with a minimal number of changed parameters.
In this way, previously identified parameters are not likelyto change and moreover one might
identify those mechanisms relevant for the newly observed data or dynamics.

The full chemical reaction system for the chlorite-iodide reaction consists of a system
of 7 nonlinear ODEs with 22 parameters as shown below.
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d[ClO2]

dt
= −k1 ClO2 I− + k0 INClO2 − k0 ClO2

d[HOCl]

dt
= k3 HClO2 I− + k4 HClO2 HOI + k5 HClO2 HIO2 − k6 HOCl I−

− k7 HOCl HIO2 − k0 HOCl

d[HIO2]

dt
= k4 HClO2 HOI − k5 HClO2 HIO2 − k7 HOCl HIO2 − k8f HIO2 I− H

+ k8r HOI2 − 2 k9 HIO2
2 − k10 HIO2 H2OI+ − k0 HIO2

d[TClO−
2 ]

dt
= k1 ClO2 I− − k3 HClO2 I− − k4 HClO2 HOI − k5 HClO2 HIO2

− k0 TClO−
2

d[THOI]

dt
= k2af I2/H − k2ar HOI I− + k2bf I2 − k2br H2OI+ I− + k3 HClO2 I−

− k4 HClO2 HOI + k6 HOCl I− + 2
(
k8f HIO2 I− H − k8r HOI2

)

+ k9 HIO2
2 − k10 HIO2 H2OI+ − k0 THOI

d[TI−]

dt
= −k1 ClO2 I− + k2af I2/H − k2ar HOI I− + k2bf I2 − k2br H2OI+ I−

− k3 HClO2 I− − k6 HOCl I− − k8f HIO2 I− H + k8r HOI2

+ k10 HIO2 H2OI+ + k0 INI− − k0 TI−

d[TI2]

dt
= 0.5 k1 ClO2 I− − k2af I2/H + k2ar HOI I− − k2bf I2 + k2br H2OI+ I−

− k0 TI2,

where

I− = TI− − (K16 + TI− + TI2)/2 −
√

(K16 + TI− + TI2)2/4 − TI− TI2

I2 = TI2 − (K16 + TI− + TI2)/2 −
√

(K16 + TI− + TI2)2/4 − TI− TI2

HClO2 = TClO−
2

H

(K14 + H)

H2OI+ = THOI
H

(K15 + H)

HOI = THOI
K15

(K15 + H)
.

Table7.2provides a list of the occurring species. The parameters mostly denote reaction
rates or binding constants, which are assumed to be constantfor the experiment. For an exact
derivation and explanation of the species and parameters, we refer to [30]. Eventually, the
experimental setup can be formulated by means of the shown ODE system and the algebraic
equations below.

The chlorite-iodide reaction is a so-called “chemical clock” and therefore exhibits sud-
den rapid changes in the compound concentration. This causes the mathematical ODE model
to be highly nonlinear and stiff and consequently increasesthe computational load. We use
the adjoint state technique for an efficient calculation of the gradient of the objective. Further-
more, we consider only a single data set, i.e., we assume the pH-value to be constant; cf. [30].
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TABLE 7.2
The table shows the molecular formulas and names of the species occurring in the considered model of the

chlorite-iodide reaction system.

molecular formula name

ClO2 chlorine dioxide

HOCl hypochlorous acid

HIO2 iodous acid

ClO
−
2 chlorite ion

HOI hypoiodous acid

I
− iodide ion

I2 iodine

HClO2 chlorous acid

H2OI
+ protonated hypoiodous acid

Naturally, this is likely to reduce the number of identifiable parameters. In accordance with
the findings in [30], we subsequently present even sparser solutions for the single data set.
The data were generated based on the results presented in [30]. In this way, we obtain a rea-
sonable size of the problem (i.e., identifying all parameters by means of the time course of
the ODE species from a single experiment) with realistic parameters and known true solution
and an added relative noise level of about five percent. In order to reduce the computational
load, we first identify a parameter set by means of a standardℓ2-regularization. The obtained
solution is then used as an initial guess. Furthermore, the solution can be used for an efficient
weighting of the regularization term for all nonzero coefficients of theℓ2-solution. This is
essential, as the parameters of the chemical model vary on a scale of more than1020. With
the exception of the second coefficient, all parameters obtained by theℓ2-fit are nonzero and
have been used for weighting.

In the first experiment we chose the algorithmic parametersp = 0.7 andq = 1.2. Fig-
ure 7.6 displays the obtained reconstruction in this case, which provides a rather good fit
particularly with regard to the occurring rapid changes.

The next Figure7.7 depicts the identified parameters, where8 out of 17 parameters are
different from zero. Note that some parameters are rather large, which is to be expected
as large values are decreasingly penalized for our regularization method. Consequently, this
solution significantly differs from the true solution concerning the magnitude of the individual
parameters. However, note that all nonzero coefficients in the computed solution are part of
the support of the true solution. In particular, except for the parameterK16, which is zero in
our identified parameter set, the support of the computed andthe true solution are identical.

In order to assess this result concerning the sparsity promoting features, we compare it
with the reconstruction obtained for the casep = 1 andq = 1. Figure7.8shows the data fit,
which exhibits a similar quality as obtained in the casep = 0.7 andq = 1.2. Nevertheless,
the identified parameters essentially differ from the ones shown in Figure7.7.

Figure7.9 displays the computed solution using theℓ1-penalization term. We observe
that the nonzero parameters only lie within the support of the true solution. In fact, for the
depicted solution, the support is identical with the one of the true solution because the param-
eterK16 is nonzero in this case. Hence, we observe again an enhanced sparsity promoting
effect by means of the non-convex regularization method. Note that for the solution shown
in Figure7.9, the size of the parameters varies less and is closer to one, i.e., to the initial
guess/weights.
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FIGURE 7.6. Concentration of the ODE species obtained by sparsity promoting regularization withp = 0.7
andq = 1.2.
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FIGURE 7.7. Parameters identified for the chlorite-iodide reaction system withp = 0.7 and q = 1.2 and
weighted with respect to the initial guess.

As it is also observed for the deconvolution problem, our algorithm shows a stable con-
vergence for the nonlinear problem. However, we have observed an increased computational
effort due to the highly nonlinear operator. In particular,local minima increase the overall



ETNA
Kent State University 

http://etna.math.kent.edu

504 R. RAMLAU AND C. A. ZARZER

 

 

reconstructed solution

data curves

TI2

[m
ol

/L
]

time [s]

TI−

[m
ol

/L
]

time [s]

THOI

[m
ol

/L
]

time [s]

TClO
−

2

[m
ol

/L
]

time [s]

HIO2

[m
ol

/L
]

time [s]

HOCl

[m
ol

/L
]

time [s]

ClO2

[m
ol

/L
]

time [s]

0 50 100 150 200 250 300 350 400 450 500

0 100 200 300 400 5000 100 200 300 400 500

0 100 200 300 400 5000 100 200 300 400 500

0 100 200 300 400 5000 100 200 300 400 500

×10
−3

×10
−3

×10
−4

×10
−3

×10
−5

×10
−3

×10
−5

0

0.5

1

0

2

4

0

1

2

−5

0

5

0

1

2

0

2

4

0

0.5

1

FIGURE 7.8. Concentration of the ODE species obtained by sparsity promoting regularization withp = 1
andq = 1.
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FIGURE 7.9. Parameters identified for the chlorite-iodide reaction system withp = 1 andq = 1.

computation time and we have found an even increased sensitivity with respect to the choice
of the regularization parameter. Therefore we use a very finegrid for the different values
of α (0.9{0,1,2,...,}). The fine grid forα and the addressed stiff and nonlinear character of the
considered ODE system required an efficient ODE solver. The evaluation time of the forward
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operator and the computation time of the gradient strongly depended on the respective param-
eter set and the current iterate. To reduce the computation time, we used the CVODES ODE
solver library from SUNDIALS. Usually the evaluation of theforward operator takes a few
milliseconds up to some seconds, whereas the computation time for the gradient is typically
slightly increased and lies between some milliseconds and up to several seconds. The use of
the SUNDIALS package decreases the computation time about thirty percent. Moreover, one
may note that only non-negative values for the concentration of the species and the parameter
values are realistic and acceptable. However due to numerical artifacts, negative values might
occur during the ODE integration. We control this by stringent absolute error tolerances for
the solver as suggest by the developers of the solver library.

In summary, we can conclude that the proposed algorithm provides a reasonable ex-
tension of the surrogate approach for non-convex sparsity promoting regularization terms in
sequence spaces. It was successfully applied to the deconvolution problem leading to a linear
operator equation, as well as to the parameter identification problem with a highly nonlin-
ear operator. In both cases, a strong sparsity promoting feature was observed. Moreover,
we showed that the technique of the transformation operatorpotentially allows to transform
theℓp-regularization problem forp < 1 to a generalℓq-problem withq ≥ 1. This is especially
of interest as numerous techniques forℓq-regularization withq ≥ 1 exist, which can then be
utilized. In particular, methods which have already been shown to have sparsity promoting
features (e.g.,ℓ1-regularization) provide attractive iterative schemes. The transformation op-
erator technique then would act as a sparsity enhancing map.For our future work, we plan to
investigate those possibilities and analyze the impact of the transformation operator.
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