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ON DOMAIN-ROBUST PRECONDITIONERS FOR THE STOKES EQUATIONS *

MANFRED DOBROWOLSKIf

Abstract. Itis well known that the LBB-constant of the Stokes equatiand its discrete counterpart degenerate
on domains with high aspect ratio. For the solution of theeponding linear system we propose two precondition-
ers that are proven to be independent of the aspect ratieeafritlerlying domain. Both preconditioners are based
on a refined approximation of the Schur complement using a aogrise
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1. Introduction. LetQ c R™, n > 2, be a bounded domain. We are concerned with
linear systems arising from discretizations of the Stokpsé&ons,

(1.1) —Au+Dp=finQ, dvu=ginQ, u=0 ond,

whereD; = 52, D = (Dy,...,D,)T. The vector fieldu = (u!,...,u") and the scalar

variablep can be regarded as the velocity and the pressure of a (veggus flow.
We use the standard Lebesgue and Sobolev sgadé€y), H () with norms

lolf? :/Q|U|2d%’7 oI} = lloll* + [[Do]*.

The inner product in.?(2) is denoted by(-, -). The spacéi () is the closure of’5° ()
in H*(Q2). Moreover, we sek = H}(Q)" with norm|v|; = ||Dv|| and

Y =Li(Q) = {qge L*(Q): / qdx = 0}.

Q

The dual spac&”’ of X is equipped with the norm
|fl-1 = sup 1)
veX |U|1
For f € X' andg € Y’ =Y, the weak solutiorfu, p) € X x Y of (1.1) is defined by

(1.2) (Du, D¢) — (dive,p) = f(¢) V¢ € X,
(1.3) (divu,v) = (g,9) Vi €Y.

The existence proof for the Stokes equations requires thealéed inf-sup- or LBB-
condition. For a large class of domains, it is proved 3 that there exists a constant
L(€) > 0 which is the largest number such that

—(div ¢,
(L.4) L@lal < sup ZEED ~ Dol wgey.
(S

[ft

For a more elaborated proof of this inequality, sE§,[and for an extension to John domains;
see [l]. An elementary proof which avoids the use of the theory nfislar integrals is given

*Received September 1, 2010. Accepted February 6, 2012.sRedblonline on April 3, 2012. Recommended
by T. Manteuffel.
TUniversitit Wurzburg, Institut éir Mathematik, Am Hubland, 97074 tivzburg, Germany
(dobr o@rat hemat i k. uni - wuer zbur g. de).

60



ETNA
Kent State University
http://etna.math.kent.edu

ON DOMAIN-ROBUST PRECONDITIONERS 61

in [5]. In [3]itis also proved that for domains with diametBrthat are star-shaped with
respect to a ball of radius

(15) L©) 2 ()"

In [7] it is shown that for stretched domains with aspect ratiove have the inequality
m/a < L(Q) < M/a with m > 0. In particular, this result is true for plates and channels.
This result explains why most of the iterative methods fdvieg the linear system corre-
sponding to {.2), (1.3) behave poorly on domains with high aspect ratio.

The aim of this paper is to improve the standard preconditiéor problem (.2), (1.3),

(1.6) ChHX'xY' - XxY, C'fg) = {Tgf} ,

where the inverse Laplacidh: X’ — X is defined by

1.7 (DTf,D¢) = f(¢) Vo€ X.

By a simple energy estimate, it is easy to show that this pditioner works in the con-
tinuous case and ia-independent for stable discretizations, but it dependshenLBB-
constant.(2); see Sectio. In order to overcome this difficulty, we define precondigom
that use the LBB-condition only on the elements of a coarseshn Then the method does
not depend on the domain and the constant inl(5) is moderate for non-degenerate ele-
ments. The first preconditioner described in Secfias the minimal modification of.6)
and improves the pressure values by solving a discrete tiaplan a (very) coarse mesh.
An alternative is shown in Sectidnfor the standard stabilized finite element method. On an
arbitrary, not necessarily very coarse mesh, the Stokestiequs solved exactly or approxi-
mately with the aid of the same preconditioner.

Some modifications of the classical preconditiode)and the improved preconditioner
of Section5 are described and tested numerically in Secfion

As we have mentioned above, we believe that most of the knawmerical methods
depend on the LBB-constah{ (), but it is difficult to prove this assertion since the methods
are usually tested only on the unit square or unit cube. Therasn is true for all methods
that are based on the Schur complement (see Segiohthe Stokes operator. This is also
numerically verified for the CG-method for the Schur compeirin [8]. For other methods
of this type, we refer to, 10, 16, 18] and the literature cited there.

The situation is unclear for multigrid methods. Clearlye 8tandard convergence proof
is based on the LBB-constant. But iid] it is explicitly stated that a multigrid method using
smoothed aggregation and the smootheripfd domain-robust. Since this method does not
fit into the framework of the present paper, further investimns of domain-robust multigrid
methods would be desirable.

In the context of domain decomposition methods, domainsbimethods are well known;
see [L4] for the Stokes equations ang] ffor almost incompressible elasticity.

2. The negative norm of Dq. Using integration by parts, it is easy to show fpe X
that||div ¢||? + |[rot||? = |¢|? and hence from1(.4) that

div
- Dal_s < sup laldvo]

< lqll-
vex ok

From a simple variational analysis, we can conclude thatilpein (1.4) is attained at
w = T(Dq), whereT is the inverse Laplacian froni (7), and

—(divw,
2.2) Dgl_y = ZWVwid)
|wly
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LEMMA 2.1.If ©Q;,i=1,...,1, are disjoint open subsets Of then

I
> IDg|? 10, < IIDql? 1.0 Vg €Y.
=1
Proof. Letw; € X (€;) andw € X be the solutions of the problems

(Dwi, D)o, = —(dvVe,q)o, V¢ € X(), (Dw,D¢)=—(divp,q) Vo€ X.

Using ©.2) and extending the functions; by 0, we obtain

I I I I
Z ‘Dq‘gl;gi = Z |wl|§Q = - Z/ qdivw; do = Z/ DwDw; dx
i=1 i=1 i=1 7 i=1

1 1< 1 1<
< §|w|f+52|wvi|im = §|DQ|2—1+§Z|DQ|2—1;Qi' o
=1 =1

3. A model preconditioner. In this section, we construct a domain-robust precondi-
tioner for the continuous Stokes equations. In view of thot tlaat only energy estimates are
used, the preconditioner can easily be extended to configrfimite element approximations;
see [L2]. This will be explained in detail at the end of this sectiarRemark3.6.

The preconditioner is described for dimension= 3. Let 2 be a bounded polyhedral
domain and lefil; be a subdivision of? into closed polyhedral elementsy of diame-
ter H ~ 1. In the following, the generic constants allowed to depend of. It is assumed
that the intersection of two elements is void or containsraroon point, edge or face. Let
Yy C Y be the space of piecewise constant functions on the sulmivi$y;. The L?-
projectionQ%, : Y — Yy is defined by

Qfra(z) = u(AH)‘l/A g(y)dy, w€intAp.
Let F'y = {T'n} be the set of interior faces. To each fdcg we fix a normal direction
v = v(T'y) and denote the neighboring elements/by A,. We define the bilinear form
(~,~)17H Yy x Yy — Rby

(g, ¥)ve = Y, w(Cw)lgnlr, [Yalr,,

I'meFu
where

lgrlr, = qila, — qula,

denotes the “jump” of;y from A; to A5. Moreover, let us define the corresponding norm
|- |1, 7 on Xy and the operator Ay : Y — Yy by

g l} g = (g qm)rm,  (—Awqm,¥r) = (qu.Ya)va You € Yo,

The inverse of- Ay is denoted byl .

Note that on a subdivision d® into unit cubes, the stencil ak g coincides with the
standardr-point finite difference stencil of the discrete Laplacian.

Define the operataf’ : X x Y — X' x Y’ by

—Av

C =
wa) =1, Qg — AnQlq
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with inverseC~1 : X' xY’' - X xY

rf

S = 9— Qg+ TuQky,

which will be the desired domain-robust preconditioner tlee Stokes equations. In the
discrete case, the computational effort of evaluatingghesonditioner is only slightly larger
than the evaluation ofl(6) sinceT is determined on a coarse grid.

The spaceX x Y is equipped with the norm

(v, D)% xy = [vlT + [ Dgl?,.

The Stokes equations in weak forrh.%), (1.3) define a continuous and bijective operator
L:X xY — X' x Y whichimpliesthaC 'L : X x Y — X x Y is also continuous and
bijective.

THEOREM 3.1. There are positive constants, co such that

c1 <O L xxy—xxy < ca,

where the constants, ¢, depend on the local shape of the subdividibp and on Poincag’s
inequality

lv|| < eplv)y Yo e X.

We remark that the constant depends on the domain, but on stretched domains we
can take a “small” directiore in ||v|| < cp|/D.v|. For example, ifQ is contained in
Q = (0,a1) x (0,a2) x (0,a3) with a; < ay < az we have thafjv|| < a;||Dyv|. Thus,cp
does not depend on the aspect ratio of the domain.

The dependence of the constantscs on the subdivisiol g will be explained after the
proof in Remark3.5. For the proof of the theorem, the following three technieaimas are
required.

LEMMA 3.2.There is a constant with

|Dgr|-1 < clqu|iu

forall gy € Yy.
Proof. From integration by parts, we obtain for arbitrarng X

—(divu, qg) Z/ divvgg dz = — Z / v-v[qH|r, do
i

I'ueFy

<c Z ”vHFHH[qH]FHHFHv

I'ueFy

where||-||r,, denotes thé2-norm onl' . By the trace theorem, we haje||r,, < ¢|[v|1,2:a,
and hence, by Poinogls inequality

—(divo, gr) < c|v|i|gw|i.m-

The result follows from the definition of the negative norm. 0O
LEMMA 3.3. The following estimate holds for ajle Y :

|Q%ql1,u < c|Dgl 1.
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Proof. LetI'y € Fy with neighboring element&;, A, with measureg, p». Denoting
by g the mean value aof overA; U A, we have

§:q1+qz, qi:/qu i=1,2.
M1+ 2 A

7

From an elementary calculation it follows that

la— 3,0, = / {lal® - 207 + @} da
A1 UA-

Ag

2
:/ |q\2dx+/ ‘q|2dm_|Q1+Q2|
A1 A2

1+ 2
2 2 2

Sl el late

5} M2 p1+ ph2

H2 2 H1 2

=——al"+ ———lel
pa (ke + p2)

_ M2 142 q1

ot pelpe

Writing Q(T'yy) = int(A; U As) and denoting the LBB-constant 60Ty ) by L(T'f), we
obtain that

+ q2
pa(p + p2) M1+ p

2
= mu(Cn) Qhal?,

q192
2

1
n(T)[Q%qlt, < W|DQ|%1;52(FH)~

We sum this estimate ovdiy. On the right-hand side, the domaifi¥I'; ) overlap in a
locally finite way. Hence we can writ@(T'y;) = Q;; fori =1,...,1;,j =1,...,J, such
that the domaing;;}i—1,... 7, are disjoint for everyl < j < J. We apply Lemma2.1to
eachu;();; and end up with the estimate

J
|QdHQ|?,H < W|DQ|317

whereL is the minimum of the constanfsT'y). d
LEMMA 3.4.The norms

1/2
(Il — Q%all* + 1Q%al?) ~ and |Dg|-

are equivalent inY” with constants that do only depend on local properties ofsiiiedivi-
sionIly.
Proof. From the LBB-condition o\ y and Lemma&2.1, we obtain

lg — Qhall* < e [Dql? 1.4, < elDq”,
Ag

and|Q§Iq|iH < c|Dg|*, by Lemma3.3. The other direction is simply proved by the triangle
inequality, €.1), and Lemm&B.2,

|Dq| -1 < |D(q — Q%q)| 1 + |DQ%ql -1 < llg — Qhall + 1Q%qh. O
Proof of Theoren3.1: For (u,p) € X x Y, letv € X andqy € Yy be the solutions of

(3.1) —Av=—Au+Dp, —Apqg = Q%divu.
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Then

3.2) C7'L(u,p) = { qL. =divu — Q?{diVu.

v
qL +qm,|’

In view of the fact thaty%,q, = 0, the norms||q. || + |gx |1,z and|D(q1 + qu)|-1 are
equivalent by Lemma&.4.
For the estimate from above in Theoré&ni, we have to show that

3.3) [olf + a1 + lam i g < ca(luli + |Dpl2,y).
From the definition ob andg, in (3.1), (3.2), we immediately obtain that
v[1 < |ul1 + [Dp|-1

and
lqull = [I(Zd — QFp)divul| < ||divaul < |u];.

For the other term, we have b$.(Q)
lqult iy = (divu, qu).

Treating the right-hand side exactly as in the proof of Len¥2awe obtain
lqu|¥ n < clulilgml m@,

which completes the proof of estimate §).
For proving the estimate from below in Theor@&, we have to show that

(3.4) |ul? + [Dp? ) < er([vlf + llgl® + g3 a)-

From 3.2) and @.1), we obtain

(3.5) (divau,p) = (divu, p — Q%4 p) + (divu, Q%p)
= (q1.p) + (q1, Q4p)1,1-

For the first term on the right-hand side, we yse | Yy and obtain from the local LBB-
condition on the domains ity and Lemmé2.1

(q1.p) = (91,9 — Q%p) < llgill I — Q%]
1/2
laull (3 lp = QIR ) < ellacl (D2 1081210 )
Ag

Am

1/2

C1 2, € 2
<t Z|ID
< 26||tu|| +2\ P21,

where we have used Young's inequality < e~'a?/2 + eb? /2. For the second term ir8(5),
we use Hblder’s inequality and Lemma.3

Co €
(gm. Q4p)1m < lamlm |QEPa < c2lqu|im | Dpl-1 < ?6|qH‘%,H + §\DP|%1~
Inserting the last two estimates int®.9) gives

(divu,p) < c(e)(llaLll® + |gu|? 1) + e[ Dpf2,;.
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From 3.1), it follows that
|ulf — (divau,p) < |ohluh
and hence, by the previous estimate,
(3.6) ult < o} +e(e)(lacl® + lgult 1) + 2¢[Dpl2,;.
Again from (3.1), we have forw = T'(Dp) (see R.2))
3.7)  |Dp2; = (Dp,w) = (Dv, Dw) — (Du, Dw) < |Dp|—_1(Juls + [v]1).

Now (3.4) follows from (3.6) and @.7) by choosing: sufficiently small. |
REMARK 3.5. The constants , ¢, depend on the LBB-constant dny andA; U A, for
neighboring elements, on the trace constantr,, < c|lull1;a,, and onu(Ag) /(T g) for
'y € Ag. All these constants are moderate for nondegendragtevith diameterd ~ 1.
REMARK 3.6. The preconditioner of this section can also be useddiofocming finite
element approximations in the spacg€s C X andY),, C Y. In this case, it is not required
thatY;, contains the spacgy. The discrete negative norm 6fg;, is

—(div
|Dgp|-1,, = sup w7
PrhEX |¢h|1

and it is assumed that the spakXg is rich enough so that a discrete LBB-condition holds on
eachAy € Iy,

B diV¢hth
Lu(Am)lgnlay < sup AV Ondn)
PrhEXRNX (Axr) |énl1

for all ¢;, € Y}, with fAH qn dx = 0.

4. Finite elements. Let Q@ c R3 be a bounded polyhedral domain and I&t be a
subdivision ofQ2 into simplicesA  satisfying the usual regularity condition: each simplex
contains a ball of radius;,' H and is contained in a ball of radiug H. The intersection of
any two simplices is void or coincides with a common node gealtface.

The subdivisionlly is divided further to a subdivisiohl;, of 2 satisfying the above
regularity condition withH replaced byh. Using continuous and piecewise linear shape
functions on the subdivisionid;,, Iz with or without zero boundary conditions, we obtain
finite dimensional spacesy C X;, C X andYy C Y, C Y. If the subdivisionly is very
coarse it may happen thaty; = {0}.

The finite element functions defined above satisfy the wedlvkn inverse estimates

lpnls < ch Hdull, |omh < cH '|dul.

By Ry, : X — X, we denote the local approximation operator frdiid] [which satisfies
forve X

(4.1) [v—Rpv| < chlvlr, [Rapv]i < cfvli.

Analogous estimates hold for the operafty; : X — Xp. In the case thaky = {0} the
first estimate coincides with Poiné&ss inequality.
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Let Qp, Qy be theL?-projections into the corresponding spaces of continueesep
wise linear functions. In our notation, we do not distinguietween); : X — X and
Qn:Y =Y,

Qnv e Xn: (Quv,én) = (v,0n) Yo € Xy,
Qnq € Yn: (Qng,¥n) = (q,%n) Y € Y.

We havel|vy, — Quonll < [[val], |Qavnl < [lva and
(4.2) [vn — Quvn| < cHlvpl1,  |Quonlt < clonli Yon € Xp.
The first estimate is proved by.() for h := H, for the second we use the inverse estimate,

HUR1 < |Qgvp — Rgvn|a HUp1 < cH™ HVUL — Rpgvp clup|1
|Quvnlr <1Q Rpvnl + [Ruvnls < cHH|Q Ryvpl| + clvn]
< cH M {|Quvn — vall + [lvn — Revnll} + clvaly < clon s

LEMMA 4.1.For eachq, €Y, there existsv, € X}, |wp|1 = 1, such that
|Dgn|-1 < chlgn|i + c(divwp, gp).

Proof. Letw = T'(Dgqy,) € X (see R.2)). From @.1), we obtain

—(divw,qn) _ —(div(w — Rpw),qn) | —(div Rpw,qn)
lwli |w|1
|(diVRhw,qh)‘

|[Rpwlt

S Ch|qh‘1 +c

The lemma is proved by setting, = +R,w/|Ryw|. 0

5. A preconditioner for a stabilized finite element method. We adopt the finite di-
mensional space¥y C X;, C X andYy C Y, C Y from the previous section.

We consider a stabilized finite element approximation ofStekes equations with bilin-
ear forma(-,-) : (X5, x Y3,)? — R defined by

a((unspn), (Pn,¥n)) = (Dup, Do) — (div ¢y, pr) + (divauy, ¢r,) +wh?®(Dpy, D),

where the coefficienb > 0 is a stabilization parameter; se@.[ Then the corresponding
operatorly, : Xy x Y, — Xy x Yy, Ly, = (Lh,X7 Lh7y) is

a((un,pn)s (On,¥n)) = (Ln(un, pr), (On, ¥n))
= (Ln,x(un,pn), &n) + (Lny (un,pn), ¥n) You € X, Vih, € Yy,

For (up,pr) € X x Yy, we define(vy, ¢n) € X, x Yy, by

(5.1)  (Dvn, Dop) =(Dup, D(¢n, — Qudn)) — (div(dn — Qudn),pn) Vou € X,
(5.2) (qn, ¥n) =(divun, v, — Quibn)
+ wh?(Dpp, DYy, — Quibn)) Yy, € Ya,

or
vp =Th(Id — Qu)Ln x (un,pr), qn= Id—Qm)Lny (un,pr),
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whereT), : X; — Xj denotes the inverse of the discrete Laplacian. Furtherntféne
(ve,qu) € Xu x Yy by

(5.3) (Dvg, Do) — (divom, qr) =(Dupn, Do) — (AiVéu,pn) You € Xu,
(5.4) (divuog,vn) +wH?(Dqg, Dy) =(divuy,, ¥u)
+ wh*(Dpp, DY) Vu € Y,

or
(ver,qm) = Ly QuLn(un, pp).

Then the preconditioner for the stabilized finite elementhoé is defined by

_ , +VH
C~ Ly (up, = |
n(Un, pn) |:Qh+QH

_ |:Th(Id - QH)Lh,X(Uhaph)] ! |:QHLh,X(Uh>p) }
(Id — Qu)Ln,y (un, pr) HAQuLpy (un,pn)|’

Clearly it holds thaC— 'L, : X}, x Y}, — X} x Y.
In the following, the constants ¢y, co, . . . may depend on the constafg from Sectiont
and on the constant, in the inequality

(5.5) lan — Quanll < cr|Danl-1 Yan € Yi.

The constants do not depend lon and the LBB-constant(£2).
The spaceX;, x Y}, is equipped with the norm

1oy an) %, xvi, = lonl? + [ Danl2,
THEOREM5.1. There exist positive constants, ¢, such that
c1 < CT Ll x, xvi— X0 xv;, < Ca.

We use the following technical lemmas.
LeEmMMA 5.2. The following estimates hold

(5.6) lgnll < c|Dgn|-1 Van € Y, qn L Yu,
(5.7) |IDQrqn|-1 < c|Dgn| -1 Vg € Y,
(5.8) |Quagnly < cH '[Dgy|-1 Vg € Ya,
(5.9) lgnli < ch Y Dqn|-1  Van € Yi.

Proof. The inequality $.6) is simply proved by using;, | Yy and 6.5),

lanll® = (an,an — Quan) < llanl llan — Quanll < llanl| cL|Dan|-1-

The second estimate follows from the triangle inequaliti)|—1 < [|¢|| (see R.1),

and 6.5 -

IDQman|—1 < |D(Qman — qn)|-1 + |Danl-1
<|Quan — qnll + |Dgn|-1 < (cr + 1)|Dgn|-1.
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For the proof of the estimaté& @), we use the operatap$, from Section3 and obtain
from the inverse estimate

Quanlt =Y 1Quan — Qhanlin, < cH > |Quan — Qfanlli,,

An An

<cH Y (1Quan — anlld, + llan — Qhanl},,)-
Apg

The first term can be bounded hYy.%), the second by the local LBB-condition dry and
Lemma2.1

> llan = QEanlz, <> 1Dgnl* 1, < clDanl*,.
Ay Ag

For the last estimate we use thé-projection@¢ into the piecewise constant functions
onIl, and Lemma2.1

lanlt = lan — Qfanlia, < b ?lan — Qlanl® < ch™?|Dgnl?,. O
Ah

LEMMA 5.3.The norms

1/2
(lgn — Quanll? + |DQuanl21)"* and [Dgn|

are equivalent oty;,.
Proof. This is a consequence d&.), (5.7) and

|Dan|-1 < |D(gn — Quan)|-1 + |1DQuanl-1 < |lan — Quanll + |1 DQran|-1- a

Proof of Theorenb.1: From (.1) and 6.2), it follows that (Dvy, Dvy) = 0 and
Quqn = 0. From Lemma5.3, we obtain that| (v, + v, qn + qu)| x, v, iS equivalent
to

1/2
(Jonl3 + [or2 + llanl® + [ Dazr 1) 2.
For the estimate from above in Theoréni, it is sufficient to prove that
(5.10)  |valf + [vml? + llanl® + [Dan|2y + wH?|an[i < c2(|unli + |Dpul2y).

The proof of this estimate is very similar to the proof of tlreresponding estimate in Theo-
rem3.L1 Inserting¢;, = vy, in (5.1) and using 4.2) yield

lor|? < (lunlt + [Dpn|=1)|vh — Quvnlt < c(|unli + [Dpr|-1)|vn1-
From inserting), = ¢, in (5.2) and using the inverse estimate, it follows that
lanl? <lldivull llgn — Qeanll + wh®|prlilan — Qeanly
<lunlillgn|l + chlpnlillgnl|-

Now (5.9) applied top;, completes the estimate e, ||.
For estimatindvz |7 and|q |3, we setpy = vy in (5.9, ¥g = qx in (5.4) and add the
resulting equalities

log |3 +wH?|qu|? = (Duy, Dug) — (divog, pp) + (divaug, ) + wh?(Dpy, D)

1 w
< c(€)|unli + c|Dpnl2y + ch®[pnli + el Daul?, + glvHI? + gHQIQHI%
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Using 6.9 for p;,, we conclude that

(5.11) a3+ wH2|aul? < c(e)unl? + | Dpnl* | +2¢|Daz? .
For estimating Dqy|—1, we use Lemmd.1for h := H

(5.12) |Dgr|-1 < cHlqr|i + c(dVwgy, qr)

forwy € Xy with lwg|; = 1. By (5.9 for ¢y = wy,

(divwy, q) = —(Dup, Dwy) + (divwg, pr) + (Dvg, Dwr)
<l|un|i + |Dpn|-1 + |ve|

and hence, byH.12
|Dqrr|-1 < cH|qu|1 + clvg|i + clun|i + ¢[Dpp|-1.

We square this estimate and multiply it with a sufficientlyadinsonstant; > 0,

w 1
n|Dgy|?, < §HQIQH|3 + §IvHI? + clun|? + c[Dpu* ;.

The proof of 6.10 is completed by adding this estimate 01(1) and choosing sufficiently
small.
For the proof of the estimate from below in Theorért, we show that

(5.13) lunl§ + [Dpnl2y +wh?[pnl? < i ([oalf + [val} + lgnl® + [Darl2,),
From 6.1) and 6.3), we obtain by choosing;, = u, and¢y = Qzu and using4.2)

(5.14) |unli = (divun, pn) =(Dun, D(up — Quup)) — (diV (up — Qrrun), pp)
+ (Dup, Qrup) — (divQ g up, pp)
=(Dup, Dup) + (Dvg, DQpu) — (divQpun, qur)

1
<5 lunlt + clonly + clon [t + el Dgp| 1.
Similarly, by (6.2) and 6.4)

(5.15)  (divun, pp) + wh?|ppl =(divus, pr, — Qupn) + wh?(Dpn, D(pr, — Qupn))
+ (divun, Qupn) + wh?®(Dpp, DQupr)

=(qn,pn) + (divog, Qupn) + wH?*(Dgm, DQupr)
=A+ B+ C.

Fromg;, L Yy and 6.5), we obtain
A= (qn,pn — Qupn) < llanll lpn — Qupnll < crllgnll [Dpn|-1-
For the second term, we use )
B < |vg||DQupn|-1 < clvu|1|Dpp|-1.
The last term is bounded b$.Q),

wH*(Dqw, DQupn) < wH?|qu|1|Qupnlr < cw|Dgpr|—1|Dpn|-1.
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Collecting these estimates, adding.15 and 6.14), and using Young's inequality
ab < ea?/2 + e 1b? /2, yield for everye > 0

(5.16)  [unl? +wh®[palf <c(e)([vnlt + |vmli + llanll® + [Dgu|21) + e[ Dpnl2;.
For estimatind Dpy,| -1, we use Lemmd.1

(5.17) |Dpn|-1 < chlpn|i + c(divwp, pr)

for wy, € X, with Jwy,|; = 1. From (6.1) and 6.3), we conclude

(divwy, pr) =(div (w, — Qrwn, pr)) + (divQuws, pr)
=(Dup, D(wp — Quwy)) — (Dvp, Dwp) + (Dup, DQgws)
— (Dvg, DQruwy) + (qm, divQgwy)
<c(lun|t + |vnl1 + vl + [Dgu|-1)-

Combining this estimate witlb(17) gives
|Dpp|-1 < c(hlpnly + lun|y + |vn|1 + [ve| + [Dgw|-1).

(5.13 follows from this estimate and(16). 0

6. Modifications of the preconditioners and numerical resuls. We start with a slight
modification of the standard preconditionérd). The analysis is carried out for the continu-
ous problem, but remains true for all conforming discreiiwes of the Stokes equations.

The eigenvalue problem for the Schur complemgnrt —divT D, whereT : X/ — X
is the inverse Laplacian fromi.(7), is defined by

(6.1) Sg=pqg qev.

From [15] we know that in the case of a domain with smooth boundarypatial values of
S are eigenvalues with € R andin = L(Q)?, tmaz = 1.
For a parameter > 0 we set

¢= [OA 1(/)a]

such that the preconditioned problem is

[T ol[-A D] [1 TD
¢ L‘[o aHdiv 0}_[adiv o]

There is a one-to-one corresponding between the eigengaildem for the Schur comple-
ment in @.1) and the eigenvalue problem for the preconditioned operato

(6.2) C7'L(v,q) = AMv, q).
We take the negative divergence of the first equatio®ig) (
—dive + Sq = —Adivv

and use the second equation for expressing div

Sq= (- Ndive = (1-X) g,
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which gives the relation
(6.3) (I =X\ =ap.

On the other hand, assume that we have a solutiohthe eigenvalue problen® (1) with
eigenvalueu. For every\ € C satisfying 6.3), we setv = —T'Dq/(1 — A\) and

1 TD} H _ [—ll/\TDq—&-TDq} B [—IAATDq
— — N

C_lLv,q:{ . @ }:)\v,q.

syl

The best choice in6(3) seems to ber =
experiments. In this case, allare real with

1. which is also confirmed by numerical

such that for small,y,;,,

lffmin )\max 4
Amin ~ ’ Amaz ~ 1; ~
4

)\min Hmin

Thus, the condition number of this preconditioned methdargger than the condition number
of the Schur complement, whichjis} . Nevertheless, the preconditioned method should be
preferred in view of the fact that in the CG-method for the 8atomplement the systeff
must be solved exactly.

For our numerical experiments we use the stabilized fingeneht method described in
Section5 using piecewise linear elements on plane dom&irs R2,

(6.4) (Dup, Dép) — (div on, pr) = (fr, 0n)n  Vou € Xy,
(6.5) (div up, 1n) + wh®(Dpp, D) = (gn, ¥n)n  Yibn € Y,

for (fn,gn) € Xy x Y3, The inner product:, )., is formed by the standard cubature formula
using the nodes of each element (= lumped mass matrix){&gt}, {¢n,;} be the nodal
bases of the space§, andY},, respectively. Define the matrices

A= (aij)a Q5 = (D¢h,j7D¢h.i)7
(

B = (bkj), brj = (diVonj,¥nr),

C = (crt), cr = wh*(DYn1, Dn i),
D = (dij), dij = (Pnj,Pni)ns
D' = (dy), diy = (i, ¥nr)n-

By the lumped mass matrix technique, the matriéesand D’ are diagonal with entries
d;; = O(h?). Now the system@q.4), (6.5) is equivalent to the linear system

6 5 e - 1p

where the coefficient vectors are underlined.
Method | is the standard preconditionér®), which is now

o [AT 0
C 1 B [ B :| '
I 0 iD/ 1
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where A~! is an approximation off~! consisting of one step of a multigrid-cycle with
three smoothing steps with the standard lexicographic &8e&del method for solving the
systemAu = f.

Method Il is the preconditioner described in Secti@n According to Sectiort, we
assume that the triangulatidh, is constructed by refining a coarse triangulafibsn s times.
Moreover, assume that; = {0}. Let N, = dimY},, Ny = dim Y. Each nodal basis
functionvyz , of Yy can be represented in the form

Np

Ve = Z TriPh,i-

=1

The matrixRkR € RN#*Ne with R = (1) satisfies foiy € Y,

4, VHk) = Zrkl ng) = g4, =Rq

and, apart from a factor, coincides with the restrictionrapm of the underlying finite dif-
ference method. In order to avoid the solution of a lineatesysfor the computation of the
L2-projection, we replac@ y by the operatof) s : Y5, — Yy defined by

(i)
L Yur)

SinceQy; reproduces locally linear functions, it is a consistentragimation of Q. The
matrix representation afz; is 4~*RTR (n = 2!). Denoting the matrix corresponding to
wH?(Dy 1, Din i) by C, the preconditioner can be represented in the d3se= {0} as

Qua(Pu ) =

C_l o 12171 0
i 0 D'y, —47*R"R)+ LRTCy'R]’
where the second factdy 10 was determined by experiment.

In the stabilized method we use= 0.1. The domains ar€y = (0, N) x (0,1) and
the mesh parameters dre= 1/64 andH = 1 implying Xy = {0}. We start with a random
vector (u,, p,) and determine the initial residuaj of the system@.6) (not the residual of
the precondoltloned system!). Then 20 steps of the predonéii GMRES-algorithm are
performed with residualyy. The number

20
p= 20
To

can be regarded as the convergence factor of the methodg thenmethods | and Il the
following convergence factorsare obtained on the domaifisy:

N| 1 4 16 64
| [ 0.646 0.808 0.962 0.989
Il | 0.633 0702 0.737 0.730

These convergence factors are stable with respect to the sizes which is demonstrated by
the results forh = 1/128 and againd = 1:

N| 1 4 16 64
| [0.650 0.807 0.958 0.988
Il | 0.641 0716 0.724 0.730
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