LMS-NEWTON ADAPTIVE FILTERING USING FFT–BASED CONJUGATE GRADIENT ITERATIONS *

MICHAEL K. NG^{\dagger} AND ROBERT J. PLEMMONS[‡]

Abstract. In this paper, we propose a new fast Fourier transform (FFT) based LMS-Newton (LMSN) adaptive filter algorithm. At each adaptive time step t, the *n*th-order filter coefficients are updated by using the inverse of an *n*-by-*n* Hermitian, positive definite, Toeplitz operator T(t). By applying the cyclic displacement formula for the inverse of a Toeplitz operator, $T(t)^{-1}$ can be constructed using the solution vector of the Toeplitz system $T(t)\mathbf{u}(t) = \mathbf{e}_n$, where \mathbf{e}_n is the last unit vector. We apply the FFT-based preconditioned conjugate gradient (PCG) method with the Toeplitz matrix T(t-1) as preconditioner to solve such systems at the step t. As both matrix vector products $T(t)\mathbf{v}$ and $T(t-1)^{-1}\mathbf{v}$ can be computed by circular convolutions, FFTs are used throughout the computations. Under certain practical assumptions in signal processing applications, we prove that with probability 1 that the condition number of the preconditioned matrix $T(t-1)^{-1}T(t)$ is near to 1. The method converges very quickly, and the filter coefficients can be updated in $O(n \log n)$ operations per adaptive filter input. Preliminary numerical results are reported in order to illustrate the effectiveness of the method.

Key words. LMS-Newton adaptive filter algorithm, finite impulse response filter, Toeplitz matrix, circulant matrix, preconditioned conjugate gradient method, fast Fourier transform.

AMS subject classification. 65F10.

*Received November 17, 1995. Accepted for publications March 16, 1996. Communicated by L. Reichel.

[†] Computer Sciences Laboratory, Research School of Information Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia. mmg@cslab.anu.edu.au. This research was supported by the Cooperative Research Centre for Advanced Computational Systems.

[‡]Department of Mathematics and Computer Science, Wake Forest University, Box 7388, Winston-Salem, NC 27109. This research was supported by the NSF under grant no. CCR-92-01105 and the U.S. Air Force Office of Scientific Research under grant no. F49620-94-1-0261.

14