Electronic Transactions on Numerical Analysis. ETNA

Volume 4, pp. 46-63, June 1996. Kent State University
Copyright 0 1996, Kent State University. etna@mcs.kent.edu
ISSN 1068-9613.

MATRIX CONTINUED FRACTIONS RELATED TO FIRST-ORDER
LINEAR RECURRENCE SYSTEMS*

P. LEVRIETf AND A. BULTHEEL'

Abstract. We introduce a matrix continued fraction associated with the first-order linear
recurrence system Yy = 0,Y;_1. A Pincherle type convergence theorem is proved. We show that
the n-th order linear recurrence relation and previous generalizations of ordinary continued fractions
form a special case. We give an application for the numerical computation of a non-dominant solution
and discuss special cases where 0}, is constant for all k and the limiting case where limy_, 4 o 0 is
constant. Finally the notion of adjoint fraction is introduced which generalizes the notion of the
adjoint of a recurrence relation of order n.
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1. Introduction. Continued fractions are closely related to linear recurrence
relations (see [11], [14]) and can be defined using the composition of linear fractional
transformations. In this paper we look at linear first-order recurrence systems, and
we associate matrix continued fractions with them. These matrix continued fractions
(MCF'’s) are generalisations of ordinary continued fractions, of generalized continued
fractions (or n-fractions, see [3]), and of the general n-fractions introduced in [13].

In section 2 we given the definition of an (r, s)-matrix continued fraction associ-
ated with a first-order recurrence system of the form

Vi =0.Yi1, k=0,1,...,

with 6, € C™*" and Y; € C"*! . We prove a Pincherle type convergence theorem
for these MCF’s and we show that they can be generated using linear fractional
transformations with matrix elements.

In section 3 and 4 we show that these MCF’s are generalizations of the generalized
continued fractions that are associated with linear recurrence relations.

In section 5 we give some references to the case r = s.

In section 6 an application is given: we show how MCF’s can be used to calculate
non-dominant solutions of the recurrence system in a stable manner. Other algorithms
to solve this problem can be found in [4], [10], [16], [17] and [26].

In the next two sections we consider some special cases: the case that the matrix
of the recurrence system does not depend on k, i.e.,

0, =0 forall k
and the case that the recurrence system is of Poincaré-type, i.e.,

* Received March 15, 1996. Accepted for publication May 31, 1996. Communicated by C.
Brezinski.

T Department of Computing Science, K.U.Leuven, Celestijnenlaan 200A, B-3001 Heverlee,
Belgium.

f Departement IWT, Karel de Grote-Hogeschool, Campus KIHA, Salesianenlaan 30, B-2660
Hoboken, Belgium (paul@kiha.be).

46



ETNA

Kent State University
etna@mcs.kent.edu

P. Levrie and A. Bultheel 47

In each of these cases we prove that if the eigenvalues of 8 are all different in modulus,
then the associated MCF’s converge. Furthermore we look at the convergence of some
sequences associated with these MCF’s.

In the final section we look at the adjoint recurrence system and discuss duality.

2. Matrix Continued Fractions: Definitions. We consider the first-order
recurrence system

(2.1) Yy =0:Ye1 , k=0,1,...,

with Y, € C™! and 6, € C™*", where we assume that all 8}, are nonsingular. The
matrices 0, are divided into four blocks

_ Ck dk
with ¢, € C™*", d € C™*%, ap € C**", b, € C**® and with r + s =n.
This leads to a splitting up of the vectors Yj into two parts:

1
(%)
with ¥, € C™1 and V,?) € C**1.
A solution Zj, of this system is completely determined by the initial value Z_1:
Zy=0rZ_1 , k=0,1,...,
with
O = 0x0k—1...0160.

We use the following notation for the blocks of O:

0, = Co De \_ (& de\ ([ 1 de1 ) ([ co do
A, By ar by ap—1 bp_1 o ag by )
If X, € C"*™ gatisfies

X =0 Xe1 , k=0,1,...,

with X_; regular, then the columns of X} constitute n linearly independent solutions
of (2.1). Such a sequence X}, is called a fundamental system of solutions of (2.1).
We define the (r,s)-matrix continued fraction (MCF) associated with the first-

order recurrence system (2.1) by its sequence of approximants

Ay

B—k, k:0,1,2,...,
where the division of matrices should be interpreted as a multiplication from the left
with the inverse

P -1
— = P.
0 Q
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The matrix continued fraction is said to converge if
Ag
lim = e C**".
k—+4o00 By
The tail of the MCF for the m-th approximant is defined as the MCF associated with
the system

Yi = 6k+7nYk—1 , k=0,1,...

)

We have the following generalization of a result by Pincherle - Van der Cruyssen [23]:
THEOREM 2.1. The MCF associated with the system (2.1) converges if and only
if the recurrence system (2.1) has a fundamental system of solutions Xy € C"*™:

Xe=0p,X_1 , k=0,1,..., with X_1 regular,
satisfying
() X, is regular;
Xa
lim =k =
3 lm S5 =0
where

Xe Xxd
o (5. xpee

Proof. Let us first assume that («) and (3) are satisfied. We set ©_; = I,,. Since

_ X Xg _ _ Cr Dy
(33 o= (G )

we get, by setting

Fe Fd _
F:<F(L Fb>7:(X—1)1

that
(22)  ©p=XiF, e, (iﬁ g: ) - ( ))?,’é ))?g ) . ( ’ ?Z )
Multiplying we get
A = XpF° + X F°
and
By = X{F? 4+ XPF".
Hence

Ay XpFe4 Xppe  XEOPOHTT
By X{Fi+XpFb — Xp . pd g o]
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and we get immediately from (3) that

A, F°
im — =—
k~>+ooBk }71)7

if F® is regular. To prove that F? is regular, we observe that
X F=1,,
hence
0=X¢F+Xx F°

If F? is singular, we can find a vector V € C**! for which F®V = 0. From the
previous equation we then get

0=X°¢ Fv,
or, since X¢, is assumed to be regular:
FV =0.

Together with F®V = 0 this would imply that F is singular, a contradiction.
Let us now assume that the matrix continued fraction associated with (2.1) con-
verges and that

The sequence of matrices
(2.3) Cv—Dr-To Dy \ _( Cr Dy I. 0
' Ay —=By-Ty By ) \ Ax B Ty I

is a fundamental system of solutions of (2.1) satisfying (3) and («) since the rightmost
matrix is obviously regular and

. Ay =BTy . A
lim 2ETORTI0 gy Bk
k—1>I—Poo By k—1>r-&r-loo By 0 0-

0 A similar result for the case r = s was proved in [2].
For of a second-order linear homogeneous recurrence relation

(24) Yka+1 = bryr +aryr—1 , k=0,1,...

with ag, br € C (corresponding to

0 1
"= (a bk)

in our notation) the previous theorem is given in [6]: the ordinary continued fraction

R
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converges if and only if the recurrence relation (2.4) has a solution fj, with f_; # 0
satisfying

Jr

Iim — =0
k—+oco gk

with g a solution of (2.4) linearly independent of fi. The solution fj is called a
non-dominant (or minimal) solution of (2.4). The solution gy is called dominant. It is
well-known that the computation of non-dominant solutions using forward recurrence
is numerically unstable.

The condition (8) of the theorem expresses that the solutions spanned by the
first  columns of X are dominated by the solutions spanned by the last s =n —r
columns.

Let the MCEF related to the system (2.1) converge to Tp. It follows from the proof
of the previous theorem that a non-dominant solution Zj of (2.1) is in the subspace
spanned by the columns of the matrix

(2.5) ( i’;:gz:% )
Thus its initial conditions Z_; satisfy
A N AL
Furthermore we have
7 = (co —do - Tp) - 21.
If we assume that the m-th tail converges, i.e., the MCF associated with the system
Vi = OpemYeo1 » k=0,1,...

converges for all m to the matrix T}, then the solution Zj, of the system (2.1) which
is in the column space of (2.5) satisfies:

(2.7) ZM = (e —dp - Tx) - 2,
and it is easy to prove that

ap + Tht1 - c
2.8 T, = ————.
(28) T b+ Tiq1 - dy

We note that the subspace spanned by the columns of (2.5) is equal to the subspace
spanned by the columns of

Xj

Xp )’

since it is a consequence of (2.2) and (2.3) that

Ch—Dp-To Dp\_ ([ X¢ X1\ (Fe F¢ I, 0
A,—By- T, B )\ x2 xt Fo b T, I, )’
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and hence
Co—Di-To \ _ [ X§ c_ nd
with (F¢ — FTp) regular (F* — F*Ty = 0 from the proof of theorem 1).
This construction will be used in section 4 to find a numerically stable method
to compute an non-dominant solution of the recurrence (2.1).
Note that the approximants of the matrix continued fraction associated with the

system (2.1) may be calculated from the composition of linear fractional transforma-
tions

ar + Weyg
s(W) = % (k=0,1,...)
(2.9) b, + Wd,

So(W) = so(W) and Sp(W) = Sk_1(sx(W)) (k=1,2,...)

with W e C**".
We have the following theorem :

THEOREM 2.2.

A +WCy
St(W) = —————.
k(W) Bi + WDy,

Proof. By induction on k, using simple algebra. O

Hence

Ak

Sk(0) = =
k(0) By

the k-th approximant of the MCF.

3. Example 1: Linear recurrence relations. We show that a classical recur-
rence relation of order n fits in the framework of (r, s)-MCF’s.

Let
0 1 0 0
0 0 1 0
(3'1) ek = . . . c. :
0 0 0 1

aén) agz—l) aén—Q) aél)

with a,(cn) # 0 for all k. If we put

Zk+1

242
Y, = . , k=-1,0,1,....

Zk+n

in (2.1), then this first—order system is equivalent with the n-th-order linear recurrence
relation

(3.2) Zhdn = Oé](;)zk+n71 + Oz,(f)szrn,g + -+ agl)zk , k=0,1,2,...
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If we denote by z,(cl),z,(f), ... ,z,(cn), (k=0,1,2,...), the solutions of (3.2) with initial
values given by

Z(()l) Z(()z) o Z(()n)
1 2 n
ZE) ZE) Z;) .
27(21 251221 T Zr(:i) 1
then it is easy to see that
Z]il) Z,(f) . Z}(;L)
(1) (2) (n)
0, — k.+1 k.+1 k.+1 7
() (@) (n)
Zk—i—n—l Zk—i—n—l T ij—n—l

and the k-th approximant of the (r, s)-matrix continued fraction associated with (2.1,
3.1) is given by

(r+1) (n) -1 1 (r)
Zk-‘rT e Zk‘-i—T‘ Zk‘-i—T‘ P Zk-‘rT
(3.3)  Sk(0) = : : : :
r+1 n 1 r
I(c+n21 T Zl(c+)n71 Zl(c+)n71 T Zl(chnfl

Let us assume that the matrix continued fraction associated with the system Y =
Ok +m Yr—1 converges for m = 0,1,... to T},. In this case (2.7) reduces to

010 --- 0 0 - 0
00 1 --- 0 0 --- 0
1 o ) ) . 1
ZIS): oo AP - : : T 'Zlgjl
0 0 O 1 0 0
0 0 O 0 1 0
or, with T}, = (t,(f’j)),
0 1 0 0
0 0 1 0
1 . . . . . 1
zY = : : : P -z,
0 0 0 1
t}(€1,1) t}(€1,2) t}(€1,3) o t}(j,r)

This equation is of the same form as (3.1). Hence the recurrence relation (3.2) reduces
to

Zk+r — tél,T)ZkJrrfl + tél,r_l)ZkJrer + -+ t](;’l)Zk 5 k= 07 ]-a 27 ey

a linear recurrence relation of order . We note that only the first row of T}, is needed,
and that the calculation of this first row of T}, from (2.8) can be done without the
use of the other rows (see [12]).

With (3.3) we can prove that this method is equivalent to using the generalized
continued fractions (n-fractions) of de Bruin [3]- Van der Cruyssen [23] in the case
r = n — 1, the generalized continued fraction of Zahar [24] in the case n = 1, or the
generalized n-fractions in [13] for the general case.
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4. Example 2: Vector recurrence relations. Let n = m - p and

0 Iy 0 0
0 0 I, 0
Ok = : : : SR
0 0 0 - I,

Oé](cp) Oé](cp—l) al(cp—2) a}(cl)
with aff) € C™*™ and azp) regular for all k.
If we put

Zk+1

Zk+-2

Y, = ) ., k=-1,0,1,..., with z, e C™*!

Zk+p

in (2.1), then this first-order system is equivalent with

1 2
Zk+p = Oé]i )Zk+p71 + Oé]i )Zk+p72 o+ a]ip)zk ’ k= 07 ]-a 27 s

A set of equations of this form is called a vector recurrence relation (see e.g. [21]).
As the previous example is a special case of this one (m = 1), the results from the
previous section can easily be adapted to this type of recurrence relation.

5. Example 3: (r,r)-matrix continued fractions. The general case of an
MCF with r = s was studied e.g. in [20] and [22] (see also [5], [2]).

In all these references the division of matrices is interpreted as a multiplication
from the right with the inverse (see also section 9).

6. Application: Numerical calculation of non-dominant solutions of
a recurrence system. We use theorem 1 to calculate solutions of the recurrence
system (2.1) which in a certain sense are non-dominant (condition (/) of the theorem),
and cannot be calculated numerically from (2.1) using forward recurrence. We take
an example from [10]. Let

2kE5 9k — 4422 V2 —4V2 —L\/J;’+2k+4+2\/§

V2
9’“:% W5 9k —6-2v2 VZ+4v2 —2E 42k 16-2/2
&f;—zk—&%\/ﬁ V2 — 42 —Lj;’+2k+8+2\/§

A fundamental system X} of solutions is given by

(VM k2 (VB
Xip=| /V2)F*' k+3 —(V8)Ft! , k=-1,0,1,....
UV kit a (VB

Hence the conditions of theorem 1 are satisfied for r = 1, s = 2, and the (1, 2)-matrix
continued fraction associated with the recurrence system

Y =0ymYe1 , k=0,1,...
converges for all m to T,,, say. It is easy to see that we cannot calculate the solution

(2/(V2)",2/(V2)*,2/(V2)*)T, k=0.1,...,
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TABLE 6.1
Absolute errors in the calculation of a non-dominant solution Zj, of the recurrence system of
section 6 using forward recurrence and a (1,2)-MCF with N = 39 .

k forward MCF
-1 0 8.9E-8

9 | 3.1E-13 | 5.8E-07
19 9.9E-09 1.0E-06
29 3.2E-04 1.5E-06
39 | 1.0E+01 | 1.9E-06

TABLE 6.2
Absolute errors in the calculation of a non-dominant solution Zj, of the recurrence system of
section 6 using forward recurrence and a (2,1)-MCF with N =49 .

k forward MCF
-1 0 0

9 4.7E-13 1.4E-13
19 1.4E-08 2.7E-12
29 4.5E-04 4.9E-08
39 | 1.5E401 1.6E-03
49 | 4.9E405 | 5.3E+01

in a stable manner using forward recurrence. The conditions of theorem 1 are satisfied
with 7 = 1 and s = 2. We use (2.6) and (2.7) to calculate approximations to Z5: with
(2.8) we calculate for some index N

T
Ty =0, Tk_w

= , k=N—-1,N—-2,...,1,0,
by + Tht1 - di

and then we use (2.6) and (2.7) to get approximations to the solution we want, with
Z(jl) = 2. For N = 39 the results are given in the tables 6.1 and 6.2. We have also
calculated the solution Zj, using forward recurrence. In table 6.1 the maximum of
the absolute errors in the three components of Zj, is given for some values of k.

The solution

(k+1,k+2,k+3)7, k=0,1,...,

is also non-dominant. The conditions of theorem 1 are satisfied with r = 2 and s = 1.
In table 6.2 we use the same methods as before, with N = 49.

This method is related to the method described in [26] in the same way as
Gautschi’s method [6] to calculate minimal solutions of linear second-order recurrence
relations is related to Olver’s method [18].

We note that the theoretical method behind this algorithm is known in the liter-
ature as method of embedding (see [1]).

7. Special cases I - Periodic MCF. Let us assume that the matrix of the
recurrence system is constant:
c d
o= (¢ 0),

Then we have ) = 6*t1. Let us also assume that @ has eigenvalues which are all
different in modulus:

Al < |Ae| <. < |Anl
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Let A € C™*™ be defined by A = diag(A1, A2, ..., An) (diag(a, . ..,7) is a diagonal ma-
trix with the given arguments as diagonal elements in the given order), and P € C"*"

is the matrix whose columns are the corresponding eigenvectors p™), p® ... p("):
0P = PA.
Set
pe pd
P= ( pa  pb ) with P¢e C™*".
Thus if
(7.1) Ye=0Yr1 , k=0,1,...

then Y% is in the column space of
P, = 0*t1p = pPAFFL

Assume P¢€ is regular. Then it follows from theorem 1 that the MCF associated with
(7.1) converges to some Tj say, which is given by

_ @
o

_(Q QY _ o
Q_(Qa Qb>_P

Note that if P are the right eigenvectors of 8, § P = P A, then Q = P~ are the left
eigenvectors of 6, Q6 = A Q. Moreover because

To

where

QP = Iy,
we have
QP° + QP =0 or (QY)"1Q = —P(P°)~L.
In terms of the recurrence (2.8) we have the following result: the sequence Uy, generated
by

a+Ug-c

U_1=0, Ug41=+—+—
1 ’ k+1 b+de

is the sequence of approximants Uy = T},; hence it converges to
Ty = _pe. (Pc)—l _ (Qb)—l . Qa.

Note that T is constructed from the eigenvectors associated with the smallest

eigenvalues of @, thus it is associated with non-dominant solutions of the recurrence
(7.1).
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If we use the matrix continued fraction (2.8) in the forward direction, i.e., if we
set

a+Ugy1-c -1

Upy=—77"— Upgr1=—(a—b-Ug)-(c—d-U) .
E S T Uy d k1 =—(a k) - (c k)

then, defining Vi, = —(Uy)™, we find that it satisfies

a”+ Vi - b

Vigr = ————.
k+1 CT+Vk.dT

To apply the previous results to the recurrence system with matrix

bToodr e A
/‘l’_(aT CT)_JGJ, J_<IT O)v

we need the eigenvalue decomposition of p. We use Q6 = A Q to get
JOTJTJQT =JQTA” or puQ=QA, Q=JQ".

Subdividing @ as follows

0= ( ga gz ) with Q% € C¥<*

we get

o= (197 @Y,

and hence, if Q% is regular, the sequence Vj, will converge to —(QC/)T(Qd/)T.
Subdividing P as

! d’ ,
p- ( ]1;, ];b, ) with P? e Crxr,

we obtain from @ P = I,, that
o’ P 4+ Q7 P = 0.
Thus we have that the sequence Uy = —V|] = —Ag C’,;l generated by
U 1=0, Upp1=—(a—b-Up)-(c—d-Ug)™!
converges to
(Qd')fl 'Qc’ — _pb. (Pd’)flv
if QY s regular. Note that this MCF is associated with the eigenvectors for the

largest eigenvalues of 6. It is associated with dominant solutions of the recurrence
(7.1).
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8. Special cases II - Limit periodic MCF. Let us assume that the matrix
of the recurrence system satisfies:

. c d
oo (2)

In [19] Perron proved the following theorem:
THEOREM 8.1. If the recurrence system (2.1) has the property (8.1) with for all
k det 0, # 0, and if the eigenvalues of 0 are all different in modulus :

Ar] <[] <0 <Al
then for each j € {1,2,...,n} the recurrence system (2.1) has a solution

X9 Z (@) . g

)

where
(4,4)
Tkl oy
k—oo l‘](ci’j) J
or all 1 € {1,2,...,n} for which the eigenvector p(j), e ,p%j) T corresponding to
1

the eigenvalue \; has i-th component different from zero, i.e., pz(j) # 0. Furthermore,
ifpgj) # 0, then
lim —x’(“m’]) = ]ﬁ
k—+4o00 x](;v]) pgj)

for all m # i. We combine this theorem with a result by M&té and Nevai [15]:

THEOREM 8.2. If the recurrence system (2.1) has the property (8.1), and if the
eigenvalues of 6 are all different in modulus, then for every solution Zy, of (2.1) either
Zr = 0 for all large enough k, or Zi # 0 for all large enough k, and in this case
there is a j with 1 < j <mn and a sequence of complexe numbers vy, such that

This leads to
THEOREM 8.3. If the recurrence system (2.1) has the property (8.1) with det ), #
0 for all k and if

OP=PA, A=diag(Ai,..., \n),
where
M| <[Aef < <Al

is the eigenvalue decomposition of 6 with all eigenvalues different in modulus, then
there exists a fundamental system of solutions Xy, for the recurrence (2.1) and complex

diagonal matrices I'y, = diag(w,gl), ce vlg")) such that

. -1 _ . -1 _
kEIJPOOXkI‘k =P and kETka+1Fk = A.
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Moreover,

W(i)
(8.2) lim 2. =0 foral j>i.
Let us assume that the conditions of theorem 5 are satisfied, and let X be the matrix
which has the solutions X 151)7 o X ,i") of the system (2.1) as columns in the given
order, with

X6 = () gy
as in theorem 3. Then we can write
X =(P+®,) T
with &, € C™"*™ and

Set

c d
® = ( SO ) with @ € Cr<",

If P® and P°¢ are regular, then the conditions of theorem 1 are satisfied from some
k = ko on, i.e.,
X is regular

(this follows from the regularity of P¢) and

=0.

a
lim —’Z
k—-+o0 Xk

To prove this we note that

Xp  (PY+®F) diag(v,gl), e ,q/,(:))

X (PY 4 @b) diag(y ..M

or

“1va . 1 1 “1,pa ar 1. 1
(X2) X7 = diag (WW) (PP + &%) (P* + ®f) diag(+\", ..., 2.
k k

The element in the i-th row and j-th column of the matrix on the right is of the form

'71(cj)

fy,(CTH) u, with kgrfoo uy € C.

It now follows immediately from (8.2) that all elements of (X?)™'1X¢ tend to zero if
k — +o00.
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Hence the tail, i.e., the MCF associated with the system
Yie = Okym Y1 , k=0,1,...

converges for all m > ky. Let us assume from now on, for the sake of simplicity, that
ko = 0. Using (2.6) we then get

Tk = _X]?_l(Xlg—l)717
and taking the limit for kK — +o00 using theorem 5, we find

lim Tp = — lim (P*+®¢ )(P°+®¢ )~ ' = —PYP°) !,

k—-4o00 k—+4o00

Hence the tails of the continued fraction (2.8) converge to a matriz built from the
eigenvectors of 0 corresponding to the r smallest eigenvalues. If we use the matrix
continued fraction (2.8) in the forward direction, we get

ar + Ugq1 - c
Uy = T kil
b + Uk41 - di

= Upy1=—(ax — by Us) - (e —di - Up) 7",
and using induction it is easy to prove that
U1 = —(Ag — By, - Up)(Cr — D - Up) 1.
Taking Uy = 0 we find
Ups1 = —Ap(Cr) L.

We set

X< x& /
X, = k, k, ith X (Csxs
¢ (Xz by ) A e

and

e’ a4 .,
F = ( ?CL” ?b// ) with Fa E(CTXT,

and then we get from ©p = X F that
Ay = X{F + XV F and G, = X{ F¢ + X F.
Using the notation
I‘ff) = diag(v,gl), e ,7,(:)) and I‘ff) = diag(’y,(:ﬂ), e ,Wlin)),
as a consequence of theorem 5 we now have

X' = (P + o) Iy and X = (P + )T},

XY = (P" + o)1y and X = (P* + o) T{”,

where the division of P and ®;, into blocks is the same as that for Xj.



ETNA

Kent State University
etna@mcs.kent.edu

60 Matrix continued fractions

If the matrix F¢" is regular, we can write
" " —1
Uk = =Ar(Ci) ™ = = AP (T) 7 [Cu(F) 7 (@))
with

AF) )T = (P ST F () D) T PY o ] and

Cr(F*) )™ = (P 4+ ) F ()T ) T+ Pk
Since

lim F}(j)Fc” (Fa”)fl(rl(:))fl =0,
k—+o00

we obtain

lim Uppq = —PY(P¥)71,

k—-o00
if the matrix P? is regular. Hence the sequence Uy, generated by
Up=0, Upt1=—(ar—br-Us) - (ck —di-Ux)™",

and obtained by using (2.8) in the forward direction, converges to

—1

s+1 1
R A R U
pgls'—‘rl) ps;n) p7(~8.+1) o p&n)

a matriz built from the eigenvectors of 8 corresponding to the r largest eigenvalues.
We now apply these results to the first-order recurrence system

Vi = 0, ' Yio1,

and we write

_ be d
A 1 _ Ck Ak )
k ( ar by

Then the sequence Uy generated by
(8.3) Uy = 0, Uk+1 = —(dk — Bk . Uk) . (ék — Jk . Uk)il

will converge to

-1
T 1 T 1
pf«ﬁl cee pf«-ﬁl pg ) cee pg )

KD AW
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since p(), ... p() are the eigenvectors of 9,;1 corresponding to the r largest eigen-
values. The matrix above is equal to —P, - (P.)~!. Now the recurrence (8.3) can be
rewritten as

U= O + Uk - c
M b+ Uy - di
since

(bk + Uy, -dk)71 . (ak + Uy, - Ck) = —(&k — I;k . Uk) . (ék — dk . Uk)fl

which follows easily from the identity

ck dp \ [ Gk {zk 7
ar by ar by m

Hence we reach the following conclusion the sequence Uy, generated by

ap + Uy -k

Uy=0, Upp1 = ———
0 k+1 b + Ur - di

converges to

—P*- (P97t = lim Ty.

k——+o0

If r=s5=1, ¢ = 0 and dr = 1 for all k, this sequence is called the reverse
continued fraction associated with (2.8) and it was studied by J. Gill in the papers
[7], [8], and [9]. The sequence Uj may be used to accelerate the convergence of the
given MCF : with (2.8) and theorem 2 it is easy to prove that

T() = Sk (Tk+1).

Hence it follows from the previous result that instead of using Sj(0) as an approxi-
mation to Ty for some large value of k, it is better to use

Sk(Uk+1)

with Uy defined and calculated as above.

9. Duality. In section 2 we defined the division of matrices as a left division:

P -1
— = P.
0 Q

Using the right division instead would give a completely dual development. As we
saw in the previous sections, such right divisions appear if we invert a linear fractional
transformation such as (2.9): if Z = ¢(W) is defined by

Z=tW)=0b+W-d) Ha+W-c),
then we have that

W=t1'2)=(-a+b-Z)(c—d-Z)"".
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Note that the coefficients b and d appear on the left of Z, while d and ¢ are on the
right of W in the definition of ¢. Therefore it is obvious that the #-multiplication will
shift to the other side. Thus if Z = Z; ' Z, and W = WoW, !, then

(Zy 1) = (W 1)) = (%):(f) with é:(_s _i)

Note that even though ¢ and ¢! are each others inverse, § and 6 are not inverses.
Only in the real scalar case (r = s = 1) we have #0™ = (detf)I, . So if we replace 8
by 6 = 0/detf in the scalar case, we would have § = 6~7.

The recurrence system

(9.1) Yie =0, Yi1

is called the adjoint system of (2.1) (see [1]). If X} is a fundamental system of solutions
of (2.1), then X, 7 is a fundamental system of solutions of the adjoint system (9.1).
If we use the following notation for the blocks of ©,7 :

. (B - e

then it is easy to prove that the k-th approximant of the MCF associated with (2.1)
can be recovered from the blocks of ©, 7 in the following way:

A _ (ﬂ)
By, B;,
We note that for the n-th-order linear recurrence relation (3.2) the adjoint equa-
tion is given by

(9.2) T a,(;jr)lzkH + oz,(ﬁr;l)zk_s_g 4.+ az(clJZnZk+n-

This is related to our definition of adjoint because it can be shown [25] that if
(x,(cl),x,(f), .. ,:E,(C"))T is a solution of (9.1) with 0 as in (3.1), then z;, = x,(en)/a,(cl)
satisfies (9.2).
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