

## AN ANALYSIS OF THE POLE PLACEMENT PROBLEM. I. THE SINGLE-INPUT CASE \*

VOLKER MEHRMANN $^{\dagger}$  and Hongguo  $\mathrm{XU}^{\ddagger}$ 

**Abstract.** For the solution of the single-input pole placement problem we derive explicit expressions for the feedback gain matrix as well as the eigenvector matrix of the closed-loop system. Based on these formulas we study the conditioning of the pole-placement problem in terms of perturbations in the data and show how the conditioning depends on the condition number of the closed loop eigenvector matrix, which is a similar to a generalized Cauchy matrix, the norm of the feedback vector and the distance to uncontrollability.

**Key words.** pole placement, condition number, perturbation theory, Jordan form, explicit formulas, Cauchy matrix, stabilization, feedback gain, distance to uncontrollability.

AMS subject classifications. 65F15, 65F35, 65G05, 93B05, 93B55.

\*Received February 8, 1996. Accepted for publication August 9, 1996. Communicated by P. M. VanDooren

<sup>†</sup>Fakultät für Mathematik, TU Chemnitz-Zwickau, D-09107 Chemnitz, FRG This research was support by DFG project: Singuläre Steuerungsprobleme, Me 790/7-1

<sup>‡</sup> Department of Mathematics, Fudan University, Shanghai 200433, P. R. China Current address: Fakultät für Mathematik, TU Chemnitz-Zwickau, D-09107 Chemnitz, FRG, This research was upported by Alexander von Humboldt Foundation and Chinese National Natural Foundation.

89