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COUNTING EIGENVALUES
IN DOMAINS OF THE COMPLEX FIELD *

EMMANUEL KAMGNIA T AND BERNARD PHILIPPE

Abstract. A procedure for counting the number of eigenvalues of a maira region surrounded by a closed
curve is presented. It is based on the application of theluestheorem. The quadrature is performed by evaluating
the principal argument of the logarithm of a function. A &gy is proposed for selecting a path length that insures
that the same branch of the logarithm is followed during titegration. Numerical tests are reported for matrices
obtained from conventional matrix test sets.
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1. Introduction. The localization of eigenvalues of a given matrdxin a domain of
the complex plane is of interest in scientific applicationden the matrix is real symmetric
or complex Hermitian, a procedure based on computationgwfrSsequences allows to
safely apply bisections on real intervals to localize thgeavalues 9. The problem is
much harder for real non-symmetric or complex non-Hermitizatrices and especially for
non-normal ones. This latter case is the main concern ofatbi&. Proceeding by trying to
compute the eigenvalues of the matrix may not always be g@piate for two reasons.

First, most of the iterative methods frequently used toudate eigenvalues of large and
sparse matrices may miss some of them, since only a part epéagtrum is computed, and
as such there is no guarantee to localize all the eigenvalugselected domain. When a
shift-and-invert transformation is used, the eigenvahresobtained in an order more or less
dictated by their distance from the shift, and if one eigémwas skipped over, there is no
easy strategy that can be used to recover it.

Second, the entries of the matrix may be known with some t@iogy and, consequently
the eigenvalues cannot be exactly known. They can only taited in some domains d@t.

Many authors have defined regions in the complex plane tchtde the eigenvalues of
a given matrix; one of the main tool is the Gersgorin thear8imce a straight application of
the theorem often leads to large disks, some authors hageded the family of inequalities
for obtaining smaller regions with the use of intersectiwhich include eigenvalues (see e.qg.,
[9, 10, 16, 23, 24]). Other techniques consist of considering bounds invgthe singular
values (seef]), the eigenvalues of the Hermitian part and the skew-Hgamipart of the
matrix (see P]), or the field of values of inverses of the shifted matricese([L5]). When
taking into account possible perturbations of the matrisd@ov [L3] and TrefethenZ2]
have independently defined the notion of thesedpectrum or pseudospectrum of a matrix
to address the problem. The problem can then be reformudatélaat of determining level
curves of the 2-norm of the resolveR{z) = (21 — A)~! of the matrixA.

The previous approaches determine a priori enclosuresecéitfenvalues. A dual ap-
proach can be considered: given some cuhia the complex plane, count the number of
eigenvalues of the matrid that are surrounded bly. This problem was considered if][
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where several procedures were proposed. The number ofusuled eigenvalues is deter-
mined by evaluating the integraf- | % logdet(zI — A)dz. This integral is also consid-
ered in works devoted to the non-linear eigenvalue prob[&d].

In this paper, we make some progress with respect to the wgrk.iOur work is mainly
concerned with the control of the integration path so asdgp eh the same branch along an
interval when evaluating the principal argument of a |othani.

In Section2, we present some previous works on the subject. In Se8fiare present
the basis of our strategy for following a branch of the lotam function and conditions for
controlling the path length. Secti@gndeals with the implementation of our method: we show
how to safely compute the determinant and how to include r@ntpalong the boundary. In
Section5 we present numerical results carried out on some test raataied in Sectiofi, we
conclude with some few remarks and future work.

2. Mathematical tool and previous works. In this section we present the Cauchy’s ar-
gument principle and some previous works on counting eigleies in regions of the complex
field.

2.1. Use of the argument principle. The localization of the eigenvalues of matrix
involves the calculation of determinants. Indeedlldie a closed piecewise regular Jordan
curve (piecewis€'! and of winding number 1) in the complex plane which does notaia
eigenvalues ofd. By application of the Cauchy’s integral formulal} p. 172], the number
Nr of eigenvalues surrounded bycan be expressed by :

2.1) Np = % : ?8 ,

wheref(z) = det(zI — A) is the characteristic polynomial of A.

If v(t)o<t<1 IS @ parametrization df, equation 2.1) can be rewritten as

g e

The primitivep defined by

o) = [ LT e ol

is a continuous function which is a determinatiod@f(f o ) (see R1]):

log f(7(t)) = log [f(7(1))| + i arg(f(7(1))), t € [0,1].

It then follows that

Nr = _991(1))
2w

whereyp; (1) is the imaginary part ap(1) since its real part vanishes.

2.2. Counting the eigenvalues in a region surrounded by a céed curve. In [7], two
approaches were proposed for counting the eigenvaluesamaid surrounded by a closed
curve.
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The first method is based on the series expansidiogtf + hR(z)), whereR(z) =
(2I — A)~1, combined with a path-following technique. The method wsssheme with an
adaptive step size satisfying the constraint

lor(z +Az) —pr(2)| < m,

for a discrete list of points. The implementation of the algorithm requires the compatat
of a few of the smallest singular values(afl — A).

In the second approach, the domain is surrounded by a parareet user-defined curve
z = v(t) and thus

1 W %det(’y(t)] —A)

(2.3) r=5r S0 det(y(t)I — A)

dt.

Sincey(0) = (1), the functiony(¢) defined o0, 1], can be extended onid by

Yext (t) = y(t mod1).

By subdividing the interval0, 1] into subintervals of equal length, and by assuming that
Yext € C°, a fundamental result from quadrature of periodic fundi@nused to prove an
exponential convergence of the integrd.[In that paper, the method is compared to other
integrators with adaptive step sizes.

Each of these methods makes use of the computation of

u(t) = det(v(t)I — A)
|det(y(t) — A)|’

which is efficiently computed through a LU factorization detmatrix (v(¢)I — A) with
partial pivoting. In order to avoid underflow or overflow, theantity is computed by

det(vy(t)I — A) 7 Ui
|det(y()I — A)| g |wiil

whereu,; is the i-th diagonal element of U in the LU factorization. Tgreduct is computed
using the procedure that will be described later on in Saetio

Our work is a follow-up of the second method with an adaptiepsize introduced in
[7]. The new method given in this paper and implemented in tbeguureEl GENCNT (see
Algorithm 4.1), defines a reliable stepsize control strategy whereasdahesponding for-
mer method can sometimes select inappropriate stepsidel ednnot guaranty an accurate
eigenvalue count.

3. Integrating along a curve. In this section, we describe strategies for the integration

of the functiong(z) = J;/((j)), wheref(z) = det(zI — A), along the boundary of a domain
limited by a user-defined cuniéthat does not include eigenvalues4f Let us assume that
I = U,L.:gl [2:, zi+1] Is @& polygonal curve wherk;, z;11] € C denotes the line segment
with end pointsz; and z; ;. This is a user-defined curve which approximates the initial

Jordan curve within the desired precision.

3.1. Following a branch of log(f(z)) along the curve.Let Arg(z) € (—m, 7] denote the
principal determination of the argument of a complex numbandarg(z) = Arg(z) (27),
be any determination of the argumentofn this section, we are concerned with the problem
of following a branch ofog(f(z)) whenz runs alongT"). The branch (i.e. a determination
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arg, of the argument), which is to be followed along the integrgtprocess, is fixed by
selecting an origing € I' and by insuring that

(3.1) argy(f(20)) = Arg(f(20))-
Letz andz + h be two points of". Since

(z+h)—A= (2 —A) +hl
= (21 — A)(I + hR(2)),

whereR(z) = (21 — A)~}, it then follows that
(3.2) f(z+h) = f(z)det(I + hR(z)).

Let®,(h) = det(I + hR(z)), then

z+h g1
/ '), _ log(f(z + h)) — log(f(z))

f(2)

— log | (1)| + i arg(®. (1)),

In the previous approacfi]] given z, the steph is chosen such that the condition
(3.3) jarg(®. (h))| <,

is satisfied. InT], the condition expressed {i3.3) is only checked at point+ /1 but we want
the condition to be satisfied at all the points [z, z + h], SO as to guarantee that we stay on
the same branch along the inter{alz + h]. We therefore need a more restrictive condition
which is mathematically expressed by the following lemma:

LEMMA 3.1 (Condition A. Letz andh be such thafz, 2 + h] C T.
If

(3.4) |[Arg(®.(s))| <, Vse€[0,h],
then,
(3.5) argo(f(z + h)) = argo(f(2)) + Arg(®.(h)),

wherearg,, is the determination of the argument determined as3id) (by an a priori given
zo €I

Proof. We prove it by contradiction. Let us assume that there kist Z \ {0} such
that

argo(f(z + h)) = argo(f(2)) + Arg(®.(h)) + 2k

By continuity of the branch, there existse [0, k] such that|/Arg(®.(s))| = =, which
contradictg3.4). O
Condition(3.4) will be calledCondition A
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3.2. Step size control.In our approach, given, the steph is chosen such that the
conditions of Lemma&.1 are satisfiedCondition Ais equivalent to

D.(s) ¢ (—00,0],Vs € [0, h].

In order to find a practical criterion that will insure it, weok for a more severe condition
by requiring that®, (s) € Q, where( is an open convex set neighborhoodlofand2 C
C\ (—o0,0]. A possible choice fofl is the positive real half-plane, or any disk included in
it and centered in.

Since®,(0) = 1, let

®.(s) =146, with § = pe'.
A sufficient condition for(3.4) to be satisfied ip < 1, i.e.
(3.6) |P.(s) — 1] <1, Vs € [0,h].
This condition will be referred to aSondition Band, when only verified at + A, i.e.
(3.7) @ (h) — 1] <1,

it will be referred to asCondition B'. This last condition is the one used if{[It is clear that
Condition Bimplies Condition AwhereasCondition B’does not.

Since it is very difficult to check3.6), we approximate, (s) in the neighborhood of 0
by its tangent . (s) = 1 + s®/,(0), and, substituting it in3.6), we obtain

(3.8) [P.(s) — 1| <1, Vse[0,h],
which is equivalent to the following condition, referredatsCondition C

1
@2 (0)]

(3.9) |h| <

In the following, we give three examples to illustrate thegible behaviors of the three
conditions. Exampl&.1 illustrates the most common situation whe&endition Bis well
covered byCondition C

EXAMPLE 3.1. LetA = { 00

01 ] . It then follows that

g Bk

z—l'

f(z2) =

o(0) =

Let us assume that we are integrating along the segmenti@frgimz = 2toz = 1 + 4.

In order to see if intermediate points are needed to inswaetkie branch of the logarithm

is correctly followed, we consider the previously introddaconditions withh = ¢(—1 + i)

wheret € [0, 1].

Condition A: ®5(h) = 1+ 3 + %2 is a non-positive real number if and only if
[—2,-1]U(-2 + iR). From that, it can easily be seen that the segrftent1 + |
does not intersect the forbidden region. Therefore nonméeliate points are needed.
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Condition B: this condition is equivalent t@:||3 + k| < 2. By studying the functio(t) =
|h||3 + h| = V/2t|3 — t + it|, the parameter must remain smaller tham ~ 0.566.

Condition B’: in this example, this condition is equivalent to the pregiamne, since the
function¢(t) is increasing witht.

Condition C: since®4(h) = 2 + h, this condition limits the extent of the interval to| < 2

or equivalentlyt < ¥2 ~ 0.471 .
In the second example, we illustrate the lack of reliabiityCondition B’
ExAmMPLE 3.2. LetA = M\, wherel € R and [, is the identity matrix of orden. It
then follows that

f(z)=(z=N",
3(0) = fo

Let us assume that we are willing to integrate from A+ 1to z+h = A +¢*’. We consider
the previously introduced conditions én

Condition A: || < 7.

Condition B: [0] < -
Condition B": cosnf > % which is satisfied for values that viola@ondition B

Condition C: || < arcsin 5, which is guaranteed by| < L.

In this example, if" is the circle with centek and radiud, the step size must be reduced
in such a way that more tham intervals are needed to satisBpndition A and everén and
2mn intervals forCondition BandCondition Crespectively.

Practically, we consider th&ondition Cimplies Condition A as long as the linear ap-
proximation is valid. Problems may occur whef) vanishes. The following example illus-
trates such a situation.

ExampLE 3.3 (Critical situation). Let us consider the matrix of Exaen3.1 For
z=1/2,®5(h) =1—4h?, and® ,(0) = 0, and the conditions become
Condition A: h ¢ Ror |h| < 1/2,

Condition B: || < 1/2,
Condition B: |h| < 1/2,
Condition C: is satisfied for all € C.

This pathological example exhibits an undesired situatiimce it may lead to adopt a
stepsize that is too large . However, in Sect#o8 we explain how to overcome this flaw by
using the second bound of the interval.

4. Implementation. In this section, we describe the numerical implementatiooun
method. Strategies for including new points and a procefiturgafely computing the deter-
minants are given.

4.1. Avoiding overflows and underflows.The implementation of our method requires
the computation of
det((z +h) — A)
(b =
=(h) det(zI — A)

In order to avoid underflow or overflow, we proceed as follows.
For any non-singular matrix/ € C**", let PM = LU be its LU factorization where
P is a permutation matrix of signatuse Thendet(M) = o [];-, (ui;) whereu,;; € C are
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the diagonal entries df . If the matrix/ is not correctly scaled, the produdt;_, (u;;) may
generate an overflow or an underflow. To avoid this, the detemt is represented by the
triplet (p, K, n) so that

4.1 det(A) = pK"

where:

The quantityK is computed through its logarithm:
log() = = 3 log(Ju)
== Wiil)-

g n L g

In this way, the value of the determinant is not computed,wifie matrix is not properly
scaled.

In Section3, it was indicated that our algorithm will heavily be basedfo&computation
of ®.(h) = det(I + hR(z)). For anh with a moderate modulus, the determinant does not
overflow. This can be verified since

det((z + W) — A)  KZps
b = =
+(h) det(z — A) Klpy’

wheredet(zI — A) anddet((z + h)I — A) are respectively represented by the triplets
(p1, K1,n) and (p2, K2,n). To protect from under- or overflow, before raising to power
n, the ratioK» /K1 must be in the mterva{vlTﬂ, /My whereM , is the largest floating

point number. When this condition is violated, intermeeljpbints must be inserted between
zandz + h.

4.2. Estimating the derivative. It can be shown that the derivati&, (0) can be ex-
pressed as :

(4.2) ®’(0) = trace(R(2)).

The computation of this simple expression however involwasiy operations, as shown in
the following. By using the LU factorizatio®? (21 — A) = LU which is available at, and
by using @.2), we may comput@’,(0) = >"""_ | u;l;, wherel; = L™ 'e; andu; = (U*)'e;,
with e; being thei-th column of the identity matrix. Whed is a sparse matrix, the factors
L andU are sparse but not the vectarsandl;. Therefore, the whole computation involves
solving 2n triangular systems. However the number of operations caedigced as shown
by Duff et al. in [L2, pp. 273-275] since the diagonal entriesitifz) can be computed by
recursion which only involves the entries Bfz) corresponding to the patterns bfor U.
Approximations of the trace of the inverse of a matrix haverbavestigated. They
involve less operations than using the LU factorizatiortbay are mostly valid for symmetric
or Hermitian matricesq, 14]. However Bai et al. also considered the non-symmetric case
in [4]. Since a precise estimation gb’,(0)| is not needed but only its order of magnitude,
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such approaches might be of interest. The same approachsgeoed by Maeda et al. in
[18] in a close but more general context (estimation of the eiglere density of a non-linear
eigenvalue problem). The authors consider the quadrafiadéumction but without stepsize
control. A review of methods is also presented by S&ail [

If the derivative is approximated by its first order approatian, sparsity helps. More
specifically, giverz andz + h, the derivative ofp, at0 is estimated by

q)'z(o) ~ M’
S

wheres = ah with = min(107%x/|h|,1), andu = max,cr |z|. Therefore, the compu-
tation imposes an additional LU factorization for evalogtthe quantityd.. (s). It is known
that, for a sparse matrix, the sparse LU factorization meslmuch less operations that its
dense counterpart. We make use of this approximation indhee.

4.3. Test for including new points. In this subsection, we describe a procedure for
including new points in the intervéd, z + h]. In Section3, we introducedondition Bwhich
is more severe tha@ondition Abut might be easier to verify, and we proposed to test italine
approximation callecCondition C Unfortunately Exampl&.3 has exhibited thaCondition
C may be satisfied whil€ondition B’and therefore&Condition Bare violated. To accept the
interval |z, z + h], we simultaneously chedRondition CandCondition B

In addition, we insist thaCondition Cbe satisfied at each bound of the segnent+ A].
Therefore, on exit, the conditigh| < m must also be guaranteed. Proceeding in this
way, Condition Cbecomes highly reliable because it is practically impdssib have the
situation where both derivativel, (0) and®’, , , (0) vanish since each of the two events is
very rare @, and®’, , are polynomials and, as such, have finite numbers of zerogll |
our experiments, we never encountered an example in whécbahdition failed.

WhenCondition Cis violated, we inserd/ uniformly spaced points betweerandz + h
where

(4.3) M = min ([[h] |22 (0)[], Mumax)

with M.« being some user defined parameter. W8endition B’is violated andCondition
C is satisfied, we insert the point+ //2 in the list. The following example illustrates the
effect of this step size control.

EXAMPLE 4.1. LetA be the random matrix :

-0.63 080 0.68 0.71 -0.31
—0.81 0.44 -094 0.16 0.93
A= 0.7 -0.09 -091 -0.83 —-0.70
-0.83 —-0.92 0.03 -0.58 —0.87
—-0.26 —0.93 -0.60 —-0.92 —0.36

The polygonal lind" is determined by 10 points regularly spaced on the circlenfer 0 and
radius 1.3. In Figurd. 1, are displayed the eigenvalues4fthe linel" and the points that are
automatically inserted by the procedure. The figure ilatst that, when the line gets closer
to some eigenvalue, the segment length becomes smaller.

4.4. Global algorithm. The algorithm is sketched in Algorithd1'. From a first list
Z of points, it extends the lis¢ in order to determine a safe split of the integrallj.

1A Maltab code is available from the authors at
http://ww. irisa.fr/sagel/ bernard/ El GENTOOL/ EI GENCNT/
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FiG. 4.1. Example4.1 The eigenvalues are indicated by the stars. The polygamali$ defined by the 10
points with circles; the other points of the line are autoiwalty introduced to insure the conditions as specified in
Sectiord.3 (Mmax = 1in (4.9).

ALGORITHM 4.1 (El GENCNT).
Require:
Z={edges of’'} ;
Mpes = maximum number of allowed points
Mmax = maximum number of points to insert simultaneously ;
Ensure:
neg = number of eigenvalues surroundedIby
1. Statusg)=-1;
2: while Statusg)+# 0 & length(Z) < Mpts, do

3.  for z € Z such that Statusf== —1, do
4 Computedet(z1 — A) and®’,(0) ;
5: Statusg) =1 ;
6: end for
7. for z € Z such that Statusf=1, do
8: if Condition Cnot satisfied at, then
o: Generatel/ pointsZ as in @.3);
10: Z=7Z U Z; Statusg)=—1;
11: else ifCondition B'not satisfied at + i ; then
12: Z=7J{z + h/2}; Statusf + h/2)=—1;
13: else
14: Statusg)=0 ;
15: end if
16:  end for
17:  if no new points were inserted &, then
18: for z € Z,do
19: if Condition Cis backwardly violatedthen
20: Z=7Z U{z — h/2}; Statusg — h/2)=—1;
21: end if
22: end for
23:  endif
24: end while

25: Integral =5 __,, Arg(®%(0)) ; neg = round(Integral2r) ;

z2€Z
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The complexity of the algorithm is based on the number of aategpdeterminants. For
eachz € Z, the complex numberget(z7 — A) and®’,(0) are computed; they involve two
evaluations of the determinant. Therefore, férfinal points inZ, the complexity can be
expressed by:

C=2LruN,

whereLy is the number of operations involved in the complex LU faiettion ofz1 — A.
When the matrixA is real and, assuming that the polygonal lings symmetric with
respect to the real axis and intersects it only in two poinddf of the computation can be

saved since
1 f'(2)
Nr=-1 d
P < Iy f(z) Z)7

where(T' ) is the upper part of when split by the real axis, arf Z) denotes the imaginary
part of Z.

5. Numerical tests. The tests are run on a desktop, equipped with two processamh,
with 6 cores Intel(R) Xeon(R) ; clock : 3.47GHz; RAM: 48GB. & progranEl GENCNT is
coded inC and use$ APACK [3] and UMFPACK [11] to perform the LU factorizations.

5.1. First experiments. In the following tests, we describe the performance of tge-al
rithm using three real matrices chosen from the set Matrirdgig1]. The maximum inserted
points in an interval isV/,,.x = 10. WhenI" is symmetric with respect to the real axis, only
half of the integration is performed. The storage of the oasris kept sparse (except when
computing the spectra of the matrices of the two first exas)ple

ExAamMPLE 5.1 (Matrix ODEP400A). This matrix is a model eigenvaluetpeon of small
order coming from an ODE with the following characteristiesder: n = 400; 1-norm:
|[All; = 7; spectral radius: » = 4.00; spectrum included in the rectangle:
[—4,4.38 x 1074] x [-0.017,0.013]. Its spectrum is displayed in Figugel

The first experiment consists of focusing on the right pathefspectrum by defining a
regular polygon of 10 vertices; the polygon is centered atitigin, symmetric with respect
to the real axis as shown in Figuse2 (only its upper part is drawn), with radiug = 103,
Five eigenvalues were correctly found as surrounded by @hggpn. Some statistics are
displayed in the first line of Table. 1

TABLE 5.1
Statistics for Exampl8.1

| Nr. of eigenvaluesifi® | Nr. of intervals | Elapsed time
Experiment 1 5 25 0.02s
Experiment 2 89 1519 15s

The second experiment focuses on the bifurcation betwedamne complex eigenvalues
in the neighborhood of-3.5. In the box[—4, —3.4] x [-1073i,1073], 89 eigenvalues are
counted (see the statistics in the second line of Taldle The aspect ratio of the box is large.
The refining process proceeds in 16 steps to produce 15Y9atgérom the initial four. If the
integral is computed by the relatioB.f) at each step (hence even if the necessary conditions
for correctness are not satisfied), it would only have beegrecbat the fifth step and after;
this corresponds to 825 intervals. This illustrates the losefficiency which is imposed by
the constraint for a safe computation.
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x 10
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ir ® .. ®
.*
® ®
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-0.5F
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-15 -1 -0.5 0 0.5 1

x107°

FIG. 5.2.Example5.1: First experiment on the right end of the spectrum.

EXAMPLE 5.2 (Matrix TOLS2000). This matrix comes from a stabilitya#yrsis of a
model of an airplane in flight with the following characté¢igs: order:n = 2000; 1-norm:
| All1 = 5.96 x 10; spectral radiusr = 2.44 x 10?; spectrum included in the rectangle:
[—750,0] x [—r i, +r 4. In Figure5.3, the spectrum and two zooms on it are displayed.
Two experiments consider the right part of the spectrum. shfiox[—20, 0] x [757, 1254
is not symmetric with respect to the real axis. Thereforejtitegration is not reduced. Eight
eigenvalues are found. The second heg0, 0] x [—5004, 5007] is symmetric with respect to
the real axis but it includes 542 eigenvalues. The stagistie reported in Table 2
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2500
2000
1500
1000
500
ok
=500
-1000
-1500
-2000
_2500 1 1 1 1 1 1 1
-800 =700 -600 -500 -400 -300 -200 -100 0
Entire spectrum of the matrix TOLS2000
250 F T T T T ol 500F, I
.‘ wl |
200 T R P
. 300
150} 200
100
1001 IR ol -
=100+
50+
=200+
o . . T
wol |
-50 ) ) ) ) ] T O S
-50 -40 -30 -20 -10 0 -20 -15 -10 -5 0
Experiment 1: BoxF-20, 0] x [757, 1257] Experiment 2: BoxF-20, 0] x [—500i, 5004]

FiG. 5.3.Example5.2 Spectrum of the matrix (up) and zooms on the two regionsp#Erérents.

TABLE 5.2
Statistics for Exampl8.2.

| Nr. of eigenvaluesifi® | Nr. of intervals | Elapsed time
Experiment 1 8 2611 8.45s
Experiment 2 542 15669 50.6s

ExamMPLE 5.3 (Matrix E40R5000). This sparse matrix comes from maodeiD fluid
flow in a driven cavity, discretized on4) x 40 grid and with a Reynolds number ige =
5000, with the following characteristics: orden: = 17,281; 1-norm: || A|; = 1.21 x 10%
spectral radiusr = 65.5 (estimated by the Matlab procedwegs); spectrum included in
the rectanglef—750, 0] x [—r i, +7 i].
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This example shows the reliability of the proposed proced@omputing the 6 eigen-
values with the largest real part using the Matlab proceeurgs (which implements the
ARPACK code) returns six eigenvalugs®.371 + 64.657, 8.803 4 64.884, 16.20, 20.17}. By
increasing the numberof requested eigenvalues, only a few of them are found: fangpte
whenp = 20, only the two rightmost were found. Increasing even furtiygsay,p = 100,
only 14 eigenvalues were returned, among which the alreahpated two rightmost and 12
additional ones with real parts belonging to the interval2112.9]. In such a case, the user
would like to have the exact count in this region. Definingtbetangld” = I'y NT"_ where
Iy = (14,144 24,12+ 2¢,12) and wherd"_ is the symmetric of ;. with respect to the real
axis, the procedurgél GENCNT returns

TABLE 5.3
Statistics for Examplé.3.

Number of eigenvalues il | Number of intervals| Elapsed time
116 | 7986 | 4241s

Actually, the right number of eigenvalues was already givefore the last refining step
with 3994 intervals. Taking into account the result of the experimafter several tries of
shifts with the MATLAB proceduresi gs, all the 116 eigenvalues surrounded Bywere
obtained by requesting = 200 eigenvalues in the neighborhood of the shift= 13.5
(elapsed time: 10.2s).

5.2. Additional experiments. In this section, additional tests illustrate the behavior o
the codeEl GENCNT on the matrices which are listed in increasing order of siZEable5.4.
The first matrix is complex symmetric, all other are real symmetric. The matrices belong
to the Matrix Market set of tests matrice pxcept the last two which are obtained as itera-
tion matrices when solving a BDF step in two discretizatioha transport diffusion process.
The real part of the eigenvalues of these two last matricegnatuded in the intervalo, 1)
with a spectral radius smaller than

TABLE 5.4
Characteristics of the test matricélane: Matrix Market name n. : order of the matrix Ori gi n: physical
or mathematical origin.)

Nane n|Oigin Type 2-norm
YOUNG1 841 | Acoustic scattering Complex Symmetrig 7 x 102
uTM3060 3,060 | Tokamac Real non-symmetrig 3 x 10°
CRY10000| 10,000| Crystal growth Real non-symmetrig 4 x 104
AF23560 23,560| Navier Stokes Real non-symmetrig 6 x 102
ITER1 48,000| Iteration matrix Real non-symmetrig 2 x 102
ITER2 300,000| Iteration matrix Real non-symmetrig 3 x 102

Several polygonal lines are considered for each matrixaltd¢ine tests on real matrices,
symmetry of the spectrum with respect to the real axis is tsédlve the computation. The
results are given in Table 5.

6. Conclusion. In this paper, we have developed a reliable method for cogrttie
eigenvalues in a region surrounded by a user-defined poffdioe. The main difficulty to
tackle lies in the step control which must be used during tirapdex integration along the
line. The method is reliable and robust but computatioreliyensive. Some questions may
be raised about the benefit of such a procedure; our answeatisrie has to pay the price for
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TABLE 5.5
Tests Nane: matrix name as given in Table4; n : order of the matrix][" : definition of the polygonal line
(vertices are regularly distributed on a circle C[cengelius], or on an ellipse E[center,horizontal semi-axigical
semi-axis], or defined by a rectangl&gi g : number of surrounded eigenvaluds;me: elapsed time (s\i nt v:
number of intervals.)

Nane n| T Neig | Time | N ntv
YOUNG1 841 | C[(0,0),10~?], 100 vertices 269 | 23.2 3649
uTM3060 3,060 | [-1.8;-1.2]x[-0.4i;0.4i] 410 506 6566
CRY10000| 10,000| C[(0,0),1075], 10 vertices 1 2.3 20
CRY10000 - | CJ[(0,0),10~3], 100 vertices 169 78 741
CRY10000 - | C[(0,0),1], 100 vertices 1749 655 6246
AF23560 23,560| C[(-0.1,0),0.1], 10 vertices 0| 1243 252
AF23560 - | E[(-1/3,0),1/3,1], 10 vertices 14 | 5412 2248
AF23560 - | [-6;-4]x[-0.5i;0.5i] 67 | 7933| 2105
ITERL 48,000| E[(1,0),1073,1072], 10 vertices 7| 4335 1398
ITER2 300,000| E[(1,0),10~45%x107%], 10 vertices 14| 6734 126

reliability and robustness. If for dense matrices, the wtspectrum can be computed with a
high precision by the QR algorithm, it is not the same for spanatrices. We have illustrated
in Example5.3 that the classical algorithitARPACK used with a shift-and-invert technique
may easily miss some eigenvalues in an a priori given neidtduoa. Therefore, the procedure
El GENCNT should be seen as a robust and reliable tool for eigenvatadization. It can
be combined with the pseudospectrum determination; shmeéatter needs the computation
of the smallest singular value of the mat(ix/ — A), this value and the determinant can
be obtained simultaneously from the LU factorization obthiatrix. In most of the cases,
the determination of the number of eigenvalues incloseldémseudospectrum can be freely
determined once the pseudospectrum is obtained.

The codeEl GENCNT involves a high potential for parallelism since most of theted-
minant computations are independent. In forthcoming wanarallel version of the method
will be developed and implemented. The first results whichevebtained with a straight par-
allelization are encouraging: see Fig6ré, where speedups for Exampe2 (Experiment 2)
and Examples.3 are reported. A second level of parallelism is also inveséd within the
computation of a determinant for matrices arising in dont&goompositionsl[7].

7. Acknowledgement. The authors are indebted to Louis Bernard Nguenang for gavin
programmed in C the code they first developed in MATLAB, andémning the first parallel
versions. They also thank Andreas Stathopoulos for hauviggested the referenc&d] for
computing the diagonal of the inverse of a sparse matrix hadeviewers for their remarks
which help to improve the quality of the paper.
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