
Electronic Transactions on Numerical Analysis.
Volume 40, pp. 1-16, 2013.
Copyright  2013, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 

http://etna.math.kent.edu

COUNTING EIGENVALUES
IN DOMAINS OF THE COMPLEX FIELD ∗

EMMANUEL KAMGNIA † AND BERNARD PHILIPPE‡

Abstract. A procedure for counting the number of eigenvalues of a matrix in a region surrounded by a closed
curve is presented. It is based on the application of the residual theorem. The quadrature is performed by evaluating
the principal argument of the logarithm of a function. A strategy is proposed for selecting a path length that insures
that the same branch of the logarithm is followed during the integration. Numerical tests are reported for matrices
obtained from conventional matrix test sets.
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1. Introduction. The localization of eigenvalues of a given matrixA in a domain of
the complex plane is of interest in scientific applications.When the matrix is real symmetric
or complex Hermitian, a procedure based on computations of Sturm sequences allows to
safely apply bisections on real intervals to localize the eigenvalues [19]. The problem is
much harder for real non-symmetric or complex non-Hermitian matrices and especially for
non-normal ones. This latter case is the main concern of thiswork. Proceeding by trying to
compute the eigenvalues of the matrix may not always be appropriate for two reasons.

First, most of the iterative methods frequently used to calculate eigenvalues of large and
sparse matrices may miss some of them, since only a part of thespectrum is computed, and
as such there is no guarantee to localize all the eigenvaluesin a selected domain. When a
shift-and-invert transformation is used, the eigenvaluesare obtained in an order more or less
dictated by their distance from the shift, and if one eigenvalue is skipped over, there is no
easy strategy that can be used to recover it.

Second, the entries of the matrix may be known with some uncertainty and, consequently
the eigenvalues cannot be exactly known. They can only be localized in some domains ofC.

Many authors have defined regions in the complex plane that include the eigenvalues of
a given matrix; one of the main tool is the Geršgorin theorem. Since a straight application of
the theorem often leads to large disks, some authors have extended the family of inequalities
for obtaining smaller regions with the use of intersectionswhich include eigenvalues (see e.g.,
[9, 10, 16, 23, 24]). Other techniques consist of considering bounds involving the singular
values (see [6]), the eigenvalues of the Hermitian part and the skew-Hermitian part of the
matrix (see [2]), or the field of values of inverses of the shifted matrices (see [15]). When
taking into account possible perturbations of the matrix, Godunov [13] and Trefethen [22]
have independently defined the notion of the ofǫ-spectrum or pseudospectrum of a matrix
to address the problem. The problem can then be reformulatedas that of determining level
curves of the 2-norm of the resolventR(z) = (zI −A)−1 of the matrixA.

The previous approaches determine a priori enclosures of the eigenvalues. A dual ap-
proach can be considered: given some curveΓ in the complex plane, count the number of
eigenvalues of the matrixA that are surrounded byΓ. This problem was considered in [7]
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where several procedures were proposed. The number of surrounded eigenvalues is deter-
mined by evaluating the integral12iπ

∫

Γ
d
dz log det(zI −A)dz. This integral is also consid-

ered in works devoted to the non-linear eigenvalue problems[8, 18].
In this paper, we make some progress with respect to the work in [7]. Our work is mainly

concerned with the control of the integration path so as to stay on the same branch along an
interval when evaluating the principal argument of a logarithm.

In Section2, we present some previous works on the subject. In Section3, we present
the basis of our strategy for following a branch of the logarithm function and conditions for
controlling the path length. Section4 deals with the implementation of our method: we show
how to safely compute the determinant and how to include new points along the boundary. In
Section5 we present numerical results carried out on some test matrices and in Section6, we
conclude with some few remarks and future work.

2. Mathematical tool and previous works. In this section we present the Cauchy’s ar-
gument principle and some previous works on counting eigenvalues in regions of the complex
field.

2.1. Use of the argument principle.The localization of the eigenvalues of matrixA
involves the calculation of determinants. Indeed letΓ be a closed piecewise regular Jordan
curve (piecewiseC1 and of winding number 1) in the complex plane which does not contain
eigenvalues ofA. By application of the Cauchy’s integral formula [21, p. 172], the number
NΓ of eigenvalues surrounded byΓ can be expressed by :

NΓ =
1

2iπ

∫

Γ

f ′(z)

f(z)
dz,(2.1)

wheref(z) = det(zI −A) is the characteristic polynomial of A.

If γ(t)0≤t≤1 is a parametrization ofΓ, equation (2.1) can be rewritten as

(2.2) NΓ =
1

2iπ

∫ 1

0

f ′(γ(t))

f(γ(t))
γ′(t)dt.

The primitiveϕ defined by

ϕ(u) =

∫ u

0

f ′(γ(t))

f(γ(t))
γ′(t)dt, u ∈ [0, 1],

is a continuous function which is a determination oflog(f ◦ γ) (see [21]):

log f(γ(t)) = log |f(γ(t))|+ i arg(f(γ(t))), t ∈ [0, 1].

It then follows that

NΓ =
1

2π
ϕI(1),

whereϕI(1) is the imaginary part ofϕ(1) since its real part vanishes.

2.2. Counting the eigenvalues in a region surrounded by a closed curve. In [7], two
approaches were proposed for counting the eigenvalues in a domain surrounded by a closed
curve.
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The first method is based on the series expansion oflog(I + hR(z)), whereR(z) =
(zI − A)−1, combined with a path-following technique. The method usesa scheme with an
adaptive step size satisfying the constraint

|ϕI(z +∆z)− ϕI(z)| < π,

for a discrete list of pointsz. The implementation of the algorithm requires the computation
of a few of the smallest singular values of(zI −A).

In the second approach, the domain is surrounded by a parameterized user-defined curve
z = γ(t) and thus

(2.3) NΓ =
1

2iπ

∫ γ(1)

γ(0)

d
dtdet(γ(t)I −A)

det(γ(t)I −A)
dt.

Sinceγ(0) = γ(1), the functionγ(t) defined on[0, 1], can be extended ontoR by

γext(t) = γ(t mod1).

By subdividing the interval[0, 1] into subintervals of equal length, and by assuming that
γext ∈ C∞, a fundamental result from quadrature of periodic functions is used to prove an
exponential convergence of the integral [7]. In that paper, the method is compared to other
integrators with adaptive step sizes.

Each of these methods makes use of the computation of

u(t) =
det(γ(t)I −A)

|det(γ(t)I −A)| ,

which is efficiently computed through a LU factorization of the matrix(γ(t)I − A) with
partial pivoting. In order to avoid underflow or overflow, thequantity is computed by

det(γ(t)I −A)

|det(γ(t)I −A)| =
n
∏

i=1

uii

|uii|

whereuii is the i-th diagonal element of U in the LU factorization. Theproduct is computed
using the procedure that will be described later on in Section 4.

Our work is a follow-up of the second method with an adaptive stepsize introduced in
[7]. The new method given in this paper and implemented in the procedureEIGENCNT (see
Algorithm 4.1), defines a reliable stepsize control strategy whereas the corresponding for-
mer method can sometimes select inappropriate stepsizes which cannot guaranty an accurate
eigenvalue count.

3. Integrating along a curve. In this section, we describe strategies for the integration
of the functiong(z) = f ′(z)

f(z) , wheref(z) = det(zI − A), along the boundary of a domain
limited by a user-defined curveΓ that does not include eigenvalues ofA. Let us assume that
Γ =

⋃N−1
i=0 [zi, zi+1] is a polygonal curve where[zi, zi+1] ⊂ C denotes the line segment

with end pointszi and zi+1. This is a user-defined curve which approximates the initial
Jordan curve within the desired precision.

3.1. Following a branch of log(f(z)) along the curve.LetArg(z) ∈ (−π, π] denote the
principal determination of the argument of a complex numberz, andarg(z) ≡ Arg(z) (2π),
be any determination of the argument ofz. In this section, we are concerned with the problem
of following a branch oflog(f(z)) whenz runs along(Γ). The branch (i.e. a determination
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arg0 of the argument), which is to be followed along the integrating process, is fixed by
selecting an originz0 ∈ Γ and by insuring that

(3.1) arg0(f(z0)) = Arg(f(z0)).

Let z andz + h be two points ofΓ. Since

(z + h)I −A = (zI −A) + hI

= (zI −A)(I + hR(z)),

whereR(z) = (zI −A)−1, it then follows that

(3.2) f(z + h) = f(z) det(I + hR(z)).

LetΦz(h) = det(I + hR(z)), then

∫ z+h

z

f ′(z)

f(z)
dz = log(f(z + h))− log(f(z))

= log

(

f(z + h)

f(z)

)

= log(Φz(h))

= log |Φz(h)|+ i arg(Φz(h)).

In the previous approach [7], givenz, the steph is chosen such that the condition

(3.3) |arg(Φz(h))| < π,

is satisfied. In [7], the condition expressed in(3.3) is only checked at pointz+h but we want
the condition to be satisfied at all the pointss ∈ [z, z + h], so as to guarantee that we stay on
the same branch along the interval[z, z + h]. We therefore need a more restrictive condition
which is mathematically expressed by the following lemma:

LEMMA 3.1 (Condition A). Letz andh be such that[z, z + h] ⊂ Γ.
If

(3.4) |Arg(Φz(s))| < π, ∀s ∈ [0, h],

then,

(3.5) arg0(f(z + h)) = arg0(f(z)) + Arg(Φz(h)),

wherearg0 is the determination of the argument determined as in (3.1) by an a priori given
z0 ∈ Γ.

Proof. We prove it by contradiction. Let us assume that there exists k ∈ Z \ {0} such
that

arg0(f(z + h)) = arg0(f(z)) + Arg(Φz(h)) + 2kπ.

By continuity of the branch, there existss ∈ [0, h] such that|Arg(Φz(s))| = π, which
contradicts(3.4).

Condition(3.4) will be calledCondition A.
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3.2. Step size control.In our approach, givenz, the steph is chosen such that the
conditions of Lemma3.1 are satisfied.Condition Ais equivalent to

Φz(s) /∈ (−∞, 0], ∀s ∈ [0, h].

In order to find a practical criterion that will insure it, we look for a more severe condition
by requiring thatΦz(s) ∈ Ω, whereΩ is an open convex set neighborhood of1, andΩ ⊂
C \ (−∞, 0]. A possible choice forΩ is the positive real half-plane, or any disk included in
it and centered in1.

SinceΦz(0) = 1, let

Φz(s) = 1 + δ, with δ = ρeiθ.

A sufficient condition for(3.4) to be satisfied isρ < 1, i.e.

(3.6) |Φz(s)− 1| < 1, ∀s ∈ [0, h].

This condition will be referred to asCondition Band, when only verified atz + h, i.e.

(3.7) |Φz(h)− 1| < 1,

it will be referred to asCondition B’. This last condition is the one used in [7]. It is clear that
Condition BimpliesCondition AwhereasCondition B’does not.

Since it is very difficult to check (3.6), we approximateΦz(s) in the neighborhood of 0
by its tangentΨz(s) = 1 + sΦ′

z(0), and, substituting it in (3.6), we obtain

(3.8) |Ψz(s)− 1| < 1, ∀s ∈ [0, h],

which is equivalent to the following condition, referred toasCondition C:

(3.9) |h| < 1

|Φ′
z(0)|

.

In the following, we give three examples to illustrate the possible behaviors of the three
conditions. Example3.1 illustrates the most common situation whereCondition Bis well
covered byCondition C.

EXAMPLE 3.1. LetA =

[

0 0
0 1

]

. It then follows that

f(z) = z(z − 1),

Φz(h) =

(

1 +
h

z

)(

1 +
h

z − 1

)

,

Φ′
z(0) =

1

z
+

1

z − 1
.

Let us assume that we are integrating along the segment ranging fromz = 2 to z = 1 + i.
In order to see if intermediate points are needed to insure that the branch of the logarithm
is correctly followed, we consider the previously introduced conditions withh = t(−1 + i)
wheret ∈ [0, 1].
Condition A: Φ2(h) = 1 + 3h

2 + h2

2 is a non-positive real number if and only ifh ∈
[−2,−1]

⋃

(− 3
2 + iR). From that, it can easily be seen that the segment[0,−1 + i]

does not intersect the forbidden region. Therefore no intermediate points are needed.
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Condition B: this condition is equivalent to|h||3 + h| < 2. By studying the functionφ(t) =
|h||3 + h| =

√
2t|3− t+ it|, the parametert must remain smaller thanα ≈ 0.566.

Condition B’: in this example, this condition is equivalent to the previous one, since the
functionφ(t) is increasing witht.

Condition C: sinceΦ′
2(h) =

3
2 + h, this condition limits the extent of the interval to|h| < 2

3

or equivalentlyt <
√
2
3 ≈ 0.471 .

In the second example, we illustrate the lack of reliabilityof Condition B’.
EXAMPLE 3.2. LetA = λIn, whereλ ∈ R andIn is the identity matrix of ordern. It

then follows that

f(z) = (z − λ)n,

Φz(h) =

(

1 +
h

z − λ

)n

,

Φ′
z(0) =

n

z − λ
.

Let us assume that we are willing to integrate fromz = λ+1 to z+h = λ+eiθ. We consider
the previously introduced conditions onh.
Condition A: |θ| < π

n .
Condition B: |θ| < π

3n .
Condition B’: cosnθ > 1

2 which is satisfied for values that violateCondition B.
Condition C: | θ2 | < arcsin 1

2n , which is guaranteed by|θ| < 1
n .

In this example, ifΓ is the circle with centerλ and radius1, the step size must be reduced
in such a way that more than2n intervals are needed to satisfyCondition A, and even6n and
2πn intervals forCondition BandCondition Crespectively.

Practically, we consider thatCondition CimpliesCondition A, as long as the linear ap-
proximation is valid. Problems may occur whenΦ′

z vanishes. The following example illus-
trates such a situation.

EXAMPLE 3.3 (Critical situation). Let us consider the matrix of Example 3.1. For
z = 1/2, Φ1/2(h) = 1− 4h2, andΦ′

1/2(0) = 0, and the conditions become
Condition A: h /∈ R or |h| < 1/2,
Condition B: |h| < 1/2,
Condition B’: |h| < 1/2,
Condition C: is satisfied for allh ∈ C.

This pathological example exhibits an undesired situation, since it may lead to adopt a
stepsize that is too large . However, in Section4.3, we explain how to overcome this flaw by
using the second bound of the interval.

4. Implementation. In this section, we describe the numerical implementation of our
method. Strategies for including new points and a procedurefor safely computing the deter-
minants are given.

4.1. Avoiding overflows and underflows.The implementation of our method requires
the computation of

Φz(h) =
det((z + h)−A)

det(zI − A)
.

In order to avoid underflow or overflow, we proceed as follows.
For any non-singular matrixM ∈ Cn×n, let PM = LU be its LU factorization where

P is a permutation matrix of signatureσ. Thendet(M) = σ
∏n

i=1(uii) whereuii ∈ C are
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the diagonal entries ofU . If the matrixM is not correctly scaled, the product
∏n

i=1(uii) may
generate an overflow or an underflow. To avoid this, the determinant is represented by the
triplet (ρ,K, n) so that

(4.1) det(A) = ρKn

where:

ρ = σ
n
∏

i=1

uii

|uii|
, (ρ ∈ C with |ρ| = 1), and

K = n

√

√

√

√

n
∏

i=1

|uii| (K > 0).

The quantityK is computed through its logarithm:

log(K) =
1

n

n
∑

i=1

log(|uii|).

In this way, the value of the determinant is not computed, when the matrix is not properly
scaled.

In Section3, it was indicated that our algorithm will heavily be based onthe computation
of Φz(h) = det(I + hR(z)). For anh with a moderate modulus, the determinant does not
overflow. This can be verified since

Φz(h) =
det((z + h)I −A)

det(zI −A)
=

Kn
2 ρ2

Kn
1 ρ1

,

wheredet(zI − A) and det((z + h)I − A) are respectively represented by the triplets
(ρ1,K1, n) and (ρ2,K2, n). To protect from under- or overflow, before raising to power
n, the ratioK2/K1 must be in the interval[ 1

n
√

Mfl

, n
√

Mfl] whereMfl is the largest floating

point number. When this condition is violated, intermediate points must be inserted between
z andz + h.

4.2. Estimating the derivative. It can be shown that the derivativeΦ′
z(0) can be ex-

pressed as :

(4.2) Φ′
z(0) = trace(R(z)).

The computation of this simple expression however involvesmany operations, as shown in
the following. By using the LU factorizationP (zI − A) = LU which is available atz, and
by using (4.2), we may computeΦ′

z(0) =
∑n

i=1 u
∗
i li, whereli = L−1ei andui = (U∗)−1ei,

with ei being thei-th column of the identity matrix. WhenA is a sparse matrix, the factors
L andU are sparse but not the vectorsui andli. Therefore, the whole computation involves
solving2n triangular systems. However the number of operations can bereduced as shown
by Duff et al. in [12, pp. 273–275] since the diagonal entries ofR(z) can be computed by
recursion which only involves the entries ofR(z) corresponding to the patterns ofL orU .

Approximations of the trace of the inverse of a matrix have been investigated. They
involve less operations than using the LU factorization butthey are mostly valid for symmetric
or Hermitian matrices [5, 14]. However Bai et al. also considered the non-symmetric case
in [4]. Since a precise estimation of|Φ′

z(0)| is not needed but only its order of magnitude,
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such approaches might be of interest. The same approach is considered by Maeda et al. in
[18] in a close but more general context (estimation of the eigenvalue density of a non-linear
eigenvalue problem). The authors consider the quadrature of a function but without stepsize
control. A review of methods is also presented by Saad [20].

If the derivative is approximated by its first order approximation, sparsity helps. More
specifically, givenz andz + h, the derivative ofΦz at0 is estimated by

Φ′
z(0) ≈

Φz(s)− 1

s
,

wheres = αh with α = min(10−6µ/|h|, 1), andµ = maxz∈Γ |z|. Therefore, the compu-
tation imposes an additional LU factorization for evaluating the quantityΦz(s). It is known
that, for a sparse matrix, the sparse LU factorization involves much less operations that its
dense counterpart. We make use of this approximation in the sequel.

4.3. Test for including new points. In this subsection, we describe a procedure for
including new points in the interval[z, z+h]. In Section3, we introducedCondition Bwhich
is more severe thanCondition Abut might be easier to verify, and we proposed to test its linear
approximation calledCondition C. Unfortunately Example3.3 has exhibited thatCondition
C may be satisfied whileCondition B’and thereforeCondition Bare violated. To accept the
interval[z, z + h], we simultaneously checkCondition CandCondition B’.

In addition, we insist thatCondition Cbe satisfied at each bound of the segment[z, z+h].
Therefore, on exit, the condition|h| < 1

|Φ′

z+h
(0)| must also be guaranteed. Proceeding in this

way, Condition Cbecomes highly reliable because it is practically impossible to have the
situation where both derivativesΦ′

z(0) andΦ′
z+h(0) vanish since each of the two events is

very rare (Φ′
z andΦ′

z+h are polynomials and, as such, have finite numbers of zeros). In all
our experiments, we never encountered an example in which the condition failed.

WhenCondition Cis violated, we insertM uniformly spaced points betweenz andz+h
where

(4.3) M = min (⌈|h| |Φ′
z(0)|⌉ ,Mmax) ,

with Mmax being some user defined parameter. WhenCondition B’is violated andCondition
C is satisfied, we insert the pointz + h/2 in the list. The following example illustrates the
effect of this step size control.

EXAMPLE 4.1. LetA be the random matrix :

A =













−0.63 0.80 0.68 0.71 −0.31
−0.81 0.44 −0.94 0.16 0.93
0.75 −0.09 −0.91 −0.83 −0.70

−0.83 −0.92 0.03 −0.58 −0.87
−0.26 −0.93 −0.60 −0.92 −0.36













.

The polygonal lineΓ is determined by 10 points regularly spaced on the circle of center 0 and
radius 1.3. In Figure4.1, are displayed the eigenvalues ofA, the lineΓ and the points that are
automatically inserted by the procedure. The figure illustrates that, when the line gets closer
to some eigenvalue, the segment length becomes smaller.

4.4. Global algorithm. The algorithm is sketched in Algorithm4.11. From a first list
Z of points, it extends the listZ in order to determine a safe split of the integral (2.1).

1A Maltab code is available from the authors at
http://www.irisa.fr/sage/bernard/EIGENTOOL/EIGENCNT/

http://www.irisa.fr/sage/bernard/EIGENTOOL/EIGENCNT/
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−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

FIG. 4.1. Example4.1. The eigenvalues are indicated by the stars. The polygonal line is defined by the 10
points with circles; the other points of the line are automatically introduced to insure the conditions as specified in
Section4.3(Mmax = 1 in (4.3)).

ALGORITHM 4.1 (EIGENCNT).

Require:
Z={edges ofΓ} ;
Mpts = maximum number of allowed points;
Mmax = maximum number of points to insert simultaneously ;

Ensure:
neg = number of eigenvalues surrounded byΓ ;

1: Status(Z)=-1 ;
2: while Status(Z) 6= 0 & length(Z) < Mpts, do
3: for z ∈ Z such that Status(z)== −1, do
4: Computedet(zI −A) andΦ′

z(0) ;
5: Status(z) = 1 ;
6: end for
7: for z ∈ Z such that Status(z)=1, do
8: if Condition Cnot satisfied atz, then
9: GenerateM pointsZ̃ as in (4.3);

10: Z=Z ∪ Z̃; Status(̃Z)=−1;
11: else ifCondition B’not satisfied atz + h ; then
12: Z=Z ∪ {z + h/2}; Status(z + h/2)=−1;
13: else
14: Status(z)=0 ;
15: end if
16: end for
17: if no new points were inserted inZ, then
18: for z ∈ Z, do
19: if Condition Cis backwardly violated,then
20: Z=Z ∪ {z − h/2}; Status(z − h/2)=−1;
21: end if
22: end for
23: end if
24: end while
25: Integral =

∑
z∈Z

Arg(Φ′
z(0)) ; neg = round(Integral/2π) ;
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The complexity of the algorithm is based on the number of computed determinants. For
eachz ∈ Z, the complex numbersdet(zI − A) andΦ′

z(0) are computed; they involve two
evaluations of the determinant. Therefore, forN final points inZ, the complexity can be
expressed by:

C = 2LLUN,

whereLLU is the number of operations involved in the complex LU factorization ofzI −A.
When the matrixA is real and, assuming that the polygonal lineΓ is symmetric with

respect to the real axis and intersects it only in two points,half of the computation can be
saved since

NΓ =
1

π
I
(

∫

Γ+

f ′(z)

f(z)
dz

)

,

where(Γ+) is the upper part ofΓ when split by the real axis, andI(Z) denotes the imaginary
part ofZ.

5. Numerical tests. The tests are run on a desktop, equipped with two processors,each
with 6 cores Intel(R) Xeon(R) ; clock : 3.47GHz; RAM: 48GB. The programEIGENCNT is
coded inC and usesLAPACK [3] andUMFPACK [11] to perform the LU factorizations.

5.1. First experiments. In the following tests, we describe the performance of the algo-
rithm using three real matrices chosen from the set Matrix Market [1]. The maximum inserted
points in an interval isMmax = 10. WhenΓ is symmetric with respect to the real axis, only
half of the integration is performed. The storage of the matrices is kept sparse (except when
computing the spectra of the matrices of the two first examples).

EXAMPLE 5.1 (Matrix ODEP400A). This matrix is a model eigenvalue problem of small
order coming from an ODE with the following characteristics: order: n = 400; 1-norm:
‖A‖1 = 7; spectral radius: r = 4.00; spectrum included in the rectangle:
[−4, 4.38× 10−4]× [−0.01i, 0.01i]. Its spectrum is displayed in Figure5.1.

The first experiment consists of focusing on the right part ofthe spectrum by defining a
regular polygon of 10 vertices; the polygon is centered at the origin, symmetric with respect
to the real axis as shown in Figure5.2(only its upper part is drawn), with radiusR = 10−3.
Five eigenvalues were correctly found as surrounded by the polygon. Some statistics are
displayed in the first line of Table5.1.

TABLE 5.1
Statistics for Example5.1.

Nr. of eigenvalues inΓ Nr. of intervals Elapsed time
Experiment 1 5 25 0.02 s
Experiment 2 89 1519 1.5 s

The second experiment focuses on the bifurcation between real and complex eigenvalues
in the neighborhood of−3.5. In the box[−4,−3.4] × [−10−3i, 10−3i], 89 eigenvalues are
counted (see the statistics in the second line of Table5.1). The aspect ratio of the box is large.
The refining process proceeds in 16 steps to produce 1519 intervals from the initial four. If the
integral is computed by the relation (3.5) at each step (hence even if the necessary conditions
for correctness are not satisfied), it would only have been correct at the fifth step and after;
this corresponds to 825 intervals. This illustrates the loss in efficiency which is imposed by
the constraint for a safe computation.
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FIG. 5.1.Spectrum of the matrix of Example5.1.
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FIG. 5.2.Example5.1: First experiment on the right end of the spectrum.

EXAMPLE 5.2 (Matrix TOLS2000). This matrix comes from a stability analysis of a
model of an airplane in flight with the following characteristics: order:n = 2000; 1-norm:
‖A‖1 = 5.96 × 106; spectral radius:r = 2.44 × 103; spectrum included in the rectangle:
[−750, 0]× [−r i,+r i]. In Figure5.3, the spectrum and two zooms on it are displayed.

Two experiments consider the right part of the spectrum. A first box[−20, 0]×[75i, 125i]
is not symmetric with respect to the real axis. Therefore, the integration is not reduced. Eight
eigenvalues are found. The second box[−20, 0]× [−500i, 500i] is symmetric with respect to
the real axis but it includes 542 eigenvalues. The statistics are reported in Table5.2.
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FIG. 5.3.Example5.2: Spectrum of the matrix (up) and zooms on the two regions of experiments.

TABLE 5.2
Statistics for Example5.2.

Nr. of eigenvalues inΓ Nr. of intervals Elapsed time
Experiment 1 8 2611 8.45 s
Experiment 2 542 15669 50.6 s

EXAMPLE 5.3 (Matrix E40R5000). This sparse matrix comes from modeling 2D fluid
flow in a driven cavity, discretized on a40 × 40 grid and with a Reynolds number isRe =
5000, with the following characteristics: order:n = 17, 281; 1-norm:‖A‖1 = 1.21 × 102;
spectral radius:r = 65.5 (estimated by the Matlab procedureeigs); spectrum included in
the rectangle:[−750, 0]× [−r i,+r i].
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This example shows the reliability of the proposed procedure. Computing the 6 eigen-
values with the largest real part using the Matlab procedureeigs (which implements the
ARPACK code) returns six eigenvalues:{8.371± 64.65i, 8.803± 64.88i, 16.20, 20.17}. By
increasing the numberp of requested eigenvalues, only a few of them are found: for example
whenp = 20, only the two rightmost were found. Increasing even furtherup say,p = 100,
only 14 eigenvalues were returned, among which the already computed two rightmost and 12
additional ones with real parts belonging to the interval [12.2,12.9]. In such a case, the user
would like to have the exact count in this region. Defining therectangleΓ = Γ+ ∩ Γ− where
Γ+ = (14, 14+2i, 12+2i, 12)and whereΓ− is the symmetric ofΓ+ with respect to the real
axis, the procedureEIGENCNT returns

TABLE 5.3
Statistics for Example5.3.

Number of eigenvalues inΓ Number of intervals Elapsed time
116 7986 4241 s

Actually, the right number of eigenvalues was already givenbefore the last refining step
with 3994 intervals. Taking into account the result of the experiment, after several tries of
shifts with the MATLAB procedureeigs, all the 116 eigenvalues surrounded byΓ were
obtained by requestingp = 200 eigenvalues in the neighborhood of the shiftλ = 13.5
(elapsed time: 10.2s).

5.2. Additional experiments. In this section, additional tests illustrate the behavior of
the codeEIGENCNT on the matrices which are listed in increasing order of size in Table5.4.
The first matrix is complex symmetric, all other are real non-symmetric. The matrices belong
to the Matrix Market set of tests matrices [1] except the last two which are obtained as itera-
tion matrices when solving a BDF step in two discretizationsof a transport diffusion process.
The real part of the eigenvalues of these two last matrices are included in the interval(0, 1)
with a spectral radius smaller than1.

TABLE 5.4
Characteristics of the test matrices(Name: Matrix Market name ;n : order of the matrix ;Origin: physical

or mathematical origin.)

Name n Origin Type 2-norm
YOUNG1 841 Acoustic scattering Complex Symmetric 7× 102

UTM3060 3,060 Tokamac Real non-symmetric 3× 100

CRY10000 10,000 Crystal growth Real non-symmetric 4× 104

AF23560 23,560 Navier Stokes Real non-symmetric 6× 102

ITER1 48,000 Iteration matrix Real non-symmetric 2× 102

ITER2 300,000 Iteration matrix Real non-symmetric 3× 102

Several polygonal lines are considered for each matrix. Forall the tests on real matrices,
symmetry of the spectrum with respect to the real axis is usedto halve the computation. The
results are given in Table5.5.

6. Conclusion. In this paper, we have developed a reliable method for counting the
eigenvalues in a region surrounded by a user-defined polygonal line. The main difficulty to
tackle lies in the step control which must be used during the complex integration along the
line. The method is reliable and robust but computationallyexpensive. Some questions may
be raised about the benefit of such a procedure; our answer is that one has to pay the price for
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TABLE 5.5
Tests (Name: matrix name as given in Table5.4; n : order of the matrix;Γ : definition of the polygonal line

(vertices are regularly distributed on a circle C[center,radius], or on an ellipse E[center,horizontal semi-axis,vertical
semi-axis], or defined by a rectangle);Neig : number of surrounded eigenvalues;Time: elapsed time (s);Nintv:
number of intervals.)

Name n Γ Neig Time Nintv
YOUNG1 841 C[(0,0),10−2], 100 vertices 269 23.2 3649
UTM3060 3,060 [-1.8;-1.2]×[-0.4i;0.4i] 410 506 6566
CRY10000 10,000 C[(0,0),10−6], 10 vertices 1 2.3 20
CRY10000 - C[(0,0),10−3], 100 vertices 169 78 741
CRY10000 - C[(0,0),1], 100 vertices 1749 655 6246
AF23560 23,560 C[(-0.1,0),0.1], 10 vertices 0 1243 252
AF23560 - E[(-1/3,0),1/3,1], 10 vertices 14 5412 2248
AF23560 - [-6;-4]×[-0.5i;0.5i] 67 7933 2105
ITER1 48,000 E[(1,0),10−3,10−2], 10 vertices 7 4335 1398
ITER2 300,000 E[(1,0),10−4,5×10−4], 10 vertices 14 6734 126

reliability and robustness. If for dense matrices, the whole spectrum can be computed with a
high precision by the QR algorithm, it is not the same for sparse matrices. We have illustrated
in Example5.3 that the classical algorithmARPACK used with a shift-and-invert technique
may easily miss some eigenvalues in an a priori given neighborhood. Therefore, the procedure
EIGENCNT should be seen as a robust and reliable tool for eigenvalue localization. It can
be combined with the pseudospectrum determination; since the latter needs the computation
of the smallest singular value of the matrix(zI − A), this value and the determinant can
be obtained simultaneously from the LU factorization of this matrix. In most of the cases,
the determination of the number of eigenvalues inclosed in the pseudospectrum can be freely
determined once the pseudospectrum is obtained.

The codeEIGENCNT involves a high potential for parallelism since most of the deter-
minant computations are independent. In forthcoming work,a parallel version of the method
will be developed and implemented. The first results which were obtained with a straight par-
allelization are encouraging: see Figure6.1, where speedups for Example5.2(Experiment 2)
and Example5.3 are reported. A second level of parallelism is also investigated within the
computation of a determinant for matrices arising in domaindecompositions [17].

7. Acknowledgement.The authors are indebted to Louis Bernard Nguenang for having
programmed in C the code they first developed in MATLAB, and for running the first parallel
versions. They also thank Andreas Stathopoulos for having suggested the reference [12] for
computing the diagonal of the inverse of a sparse matrix and the reviewers for their remarks
which help to improve the quality of the paper.
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