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A COMBINATORIAL APPROACH TO NEARLY UNCOUPLED
MARKOV CHAINS I: REVERSIBLE MARKOV CHAINS  *

RYAN M. TIFENBACHT

Abstract. A Markov chain is a sequence of random variabtgsz1, . . . that take values in a state spageA
set& C Sisreferred to as an almost invariant aggregate if transitfmmaz; to ;41 wherez; € £ andz41 ¢ €
are exceedingly rare. A Markov chain is referred to as neamiyoupled if there are two or more disjoint almost
invariant aggregates contained in its state space. Neadgupled Markov chains are characterised by long periods
of relatively constant behaviour punctuated by sudderreme changes. We present an algorithm for producing
almost invariant aggregates of a nearly uncoupled reversitairkov chain. This algorithm utilises the stochastic
complement to iteratively reduce the order of the given stadee.
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1. Preliminaries. This article contains material previously presented.if}.[A discrete-
time, time-homogeneouslarkov chainon a finite state spacé is a sequence of random
variables

X = (l’(),!l?l,xg, .. )

that take values i5 and satisfy thévlarkov property.The Markov property is the statement
that for all¢ > 0 andi, 5 € S, the probability

Pl2i11 = j| o = i

is independent of and of the values taken on by, ..., z;_1 (if ¢ > 1). That is, for
alli, 5 € S, the probability ofz; 1 = j given thatz; = 7 is uniquely determined biyandj.

For the remainder of this work, we will simply use the labelrkiay chain with the
implicit understanding that we only consider the disctétee, time-homogeneous case and
a finite state space.

Let X be a Markov chain o&. For each, j € S, the value

aij =Pz = j |z = 1]

is referred to as thé&jth transition probability ofX. The square matrid on the index sef
whose entries are the transition probabilities is refetoeds the transition matrix of. Such
a matrix isstochastic:it is square, entrywise nonnegative, and the sum of theesnitnieach
row is 1. These facts are summarised by the equations

A>0andAl =1.

The symboll is used for the column vector with every entry equal t&We refer to the index
set of a stochastic matrix as its state space.
Let A be a stochastic matrix on the state sp&candC;,C> C S be nonempty. The
submatrix
A(C1,C2) = layy]

i€Cy,j€C2
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is obtained by deleting each of thth rows wherei ¢ C; and each of thgth columns
wherej ¢ Co. WhenC; = Cy = C, we refer to the matrixd(C,C) = A(C) as theprincipal
submatrixof A onC.

The subscript is referred to as the time parameterf If x; = ¢ andz;1 = j, we say
that the Markov chain visits the stateand; at timest andt + 1, respectively, and that the
Markov chain transitions fromto j at timet + 1.

We refer to a diagonal matrix where each diagonal entry igipess a positive diagonal
matrix. We use the notation; to refer to theith diagonal entry of a diagonal matrik.

Let X be a Markov chain with transition matri&. If there is a positive diagonal matrix
such thaf 1A is symmetric, we refer t& as areversible Markov chaimand A as areversible
stochastic matrixWhenILA is symmetric, we have;a;; = m;a;; for all i andj. Let A be
an irreducible reversible stochastic matrix, lebe a positive diagonal matrix such tHau
is symmetric, and let = II1. Then,

alA=1TT1A =1TA"1 = 1711 = =7,

and we see that is a left-eigenvector ofd. It is straightforward to show that whe# is
reversible andr is a left-eigenvector associated with(in particular, whenr is a stationary
distribution) thatlIA is symmetric, wherél is the unique diagonal with 1 = 7.

Reversible Markov chains are characterised by symmetiynia. tif the Markov chainX
is reversible, then

lim ]P[.’l?tfl =j|xt=i]:IP[xt+1 :j‘xtzl]
t—oo

That is, whenX is reversible, then as — oo, for anyi andj, if the Markov chain visits
statei at timet, the probability that the previous state visited isonverges to the probability
that the next state visited js If we imagine “rewinding” a recording of such a Markov chain
the result would be indistinguishable from the original.

ExampPLE 1.1. The canonical example of a reversible Markov chainégémdom walk
on a graph. LetG be a weighted undirected graph with vertex Seind weight functiono.
We impose the restriction thét does not have any isolated vertices. We label the edgé's of
via their endpoints: the edgg is an edge joining the verticesandj. As the graphG is
undirected, the edgg is identical to the edgéj. The weight functionu assigns a positive
number to every edge i&: for all pairs of vertices, j € S (not necessarily distinct), we
havew;; = w;; > 0 if the edgeij is present inG andw;; = 0 if the edgeij is not
present inG. The random walk oid- is a Markov chain on the state space equaf tavhere
transitions occur along the edges@f The transition probabilities are determined by the
weight function:

wij

3wk

kes

Plryy =j|o =i =

As long asGG contains no isolated vertices, the above is a uniquely ohited (byG andw)
Markov chain onS. Let A be the transition matrix of the random walk

g = Wii
* Z Wik ’
kES

For eachi € S, let

T = § Wik,

keS
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and letlI be the diagonal matrix with th#h diagonal entry equal te;. Then theijth entry
of IIA is equal tow;; —this matrix is symmetric by definition.

The treatment in this work makes extensive use of the assomt reversibility. In a
future piece, we will present a similar analysis of the nearsible case.

Let S be a finite collection. A probability distribution vector ¢his a column vector
with nonnegative entries indexed k% the sum of which isl. A probability distribution
vectorv models some random varialteon S: the valuew; is the probability that: = i.

Let X be a Markov chain with transition matrig. A stationary vector ofX is a proba-
bility distribution vectorr such thatr” A = 77

Two matrices argermutation similar(denoted by=) if one can be obtained from the
other by simultaneously reordering the rows and columnsat ) A = B if there is a
bijection f such that ;) ¢(;) = bs; for all i andj.

A Markov chainX isirreducible if for anyi, j € S (not necessarily distinct) it is possible
for the Markov chain to visit and then, at some later time, vigit A square matrixA is
reducible if its indices can be reordered so that

where eaclB; is square and has order greater than or equal Tthe matrixA is irreducible
if it is not reducible. A Markov chain is irreducible if and lgnif its associated transition
matrix is irreducible.

A square matrixB is substochastitf it is square, entrywise nonnegative, and the sum of
the entries in each row is less than or equal.t&We refer toB asproperly substochastiif
it has no principal submatrices that are stochastic. Aniegpbn of the well-known Perron-
Frobenius theorem implies that a substochastic matiis properly substochastic if and only
if every eigenvalue\ of B has|\| < 1. Moreover, if A is an irreducible stochastic matrix
andB is a principal submatrix ofl of strictly smaller order, the® is properly substochastic.
A substochastic matri® is reversible in precisely the same manner as a stochastixma
is reversible if there is a positive diagonal matfixsuch thatlIB is symmetric. Principal
submatrices of reversible stochastic matrices are rélersubstochastic matrices.

In the following two sections we define the stochastic comglist and the concept of a
nearly uncoupled Markov chain. In Sectiémve present a collection of algorithms which use
the stochastic complement to analyse the nearly uncoupigctsre of a given Markov chain
and in Sectiorb we present a number of examples of such an analysis. The digmeamtains
the calculation of a specific lower bound concerning rebégsstochastic complements of
which we make extensive use—the reader may wish to examirepiiendix before reading
Section4.

2. The stochastic complementWe introduce the concept of a stochastic complement.
Expositions of the properties of the stochastic complerappear in 10, 14].
DEFINITION 2.1. Let X be an irreducible Markov chain on the state spateLetC be
a proper nonempty subset8&fand express the transition matrix af as
By B
A ,
[ By Bo

where B, is the principal submatrix ofA corresponding taS \ C and Bs is the principal
submatrix corresponding t6. We refer to the matrix

A\C =By + B2 (I — By) ' By



ETNA
Kent State University
http://etna.math.kent.edu

A COMBINATORIAL APPROACH TO NEARLY UNCOUPLED MARKOV CHAINSI 123

as the stochastic complement which remaves as the stochastic complement 8n\ C.
WhenX and A are reducible, the stochastic complement C is defined as above, as long
as the principal submatrixB, is properly substochastic.

When we are removing a single state via a stochastic complemerwill use the nota-
tion A\ i rather thand \ {i}. We will preserve indices/state labels in stochastic cemgints
throughout this work. That is, if the state space of the Maroain associated witH is S,
then the entries ofl \ C are indexed bys \ C. For example, consider the stochastic matrix

0.1 02 0.7
A=103 04 03
0.2 0.8 0.0

with the regular indices of = {1,2,3}. Then,

avz={ 05 on ]+l 0a | a-Toan T Tos 0a)=| 02 0T ]

We will view this matrix as having the indic&s\ 2 = {1, 3}. The(1, 3)-entry of A\ 2is 0.8
andA \ 2 has no(1, 2)-entry, for instance.

The following proposition summarises some resultsliy [L4].

PROPOSITION2.2. Let X be a Markov chain on the state spaSewith transition ma-
trix A. LetC C S,and letd = A \ C be a stochastic complement. Then, the matrirs
a stochastic matrix. Moreover, for eachj ¢ C, the valueq,; is the probability that after
visiting ¢, the statej is the very first state not il that the Markov chain transitions into. That
is, givenzy =1,

aij = Pzr = j],
where
T=if{t>t+1|z ¢C}.

Thus, we can view the stochastic complement which rem@assa method of editing out the
collectionC from the Markov chainX. A stochastic complement \ C models the Markov
chain obtained by “fast-forwarding” through the state€ jrignoring any time spent in that
collection.

In [10], it is noted that the stochastic complement is a specifitaime of the more
general Schur complement. The following proposition caddmuced from known properties
of the Schur complement; setq.

PROPOSITION2.3. Let X be anirreducible Markov chain on the state sp&cwith tran-
sition matrix A. LetC; andC, be nonempty disjoint subsets®tuch thatC = C; UCy # S.
Then, the stochastic complement®R C can be formed via two stochastic complements by
first removingC; and then removing,. That is,

A\ (CLUCe) = (A\C1) \ Ca.

We will make extensive use of this proposition. In particuee will often form stochas-
tic complements by removing states one at a time. This wdlals to calculate a stochastic
complement without having to calculate a matrix inverse. AL&e a stochastic matrix on the
state spacé, and suppose that; < 1. Express

AN|: T
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where the second position corresponds to statad the first to the remainder of the state
space,S \ i. (We further suppose that the ordering ®f\ ¢ has not been altered in this
expression.) Then,

1
A\i:B—i—l_aiiva.

PrROPOSITION2.4. Let X be a reversible Markov chain with transition matrik and
state space. LetII be a positive diagonal matrix such tHat is symmetric. Letl = A \C
be a stochastic complement, and Tet= TI(S \ C) be the principal submatrix dff on the
collectionS \ C. Then, the matrix is reversible via the fact thdl A is symmetric.

Proof. Express

~ | B1 B ~ | I 0
A_{Bm BQ}andH_{O Hz]’

where the first diagonal block correspondsta@C and the second correspond€tdSincell A
is symmetric, we have

1, By, = BI 11, andIl, By = BLIL,.
As well, sincell, B; andIl; B, are symmetric, it holds that
I, B, = BITI, andIly (I — By) = (I — BI)II,.
The second equality further implies that
(I — BI™ I, = TI,(I — By) L.
So, we simply calculate the transposdhf(A \ C):

_ T —
(I (A\C)" = (By + Bio(I = Ba) "' By) Iy = B{ Iy + B3, (I — By )" BLII
=11, B, + BL (I — BT)"'13By, = 1, B, + BL11,(I — By) 'Byy
=10,B; + 1 Bio(I — By) 'Byy =1,(A\C). O

3. Nearly uncoupled Markov chains.

DEFINITION 3.1. Let X be a Markov chain on the state spaSe Let£ be a nonempty
proper subset of, and lete be a small (near zero) positive constant. We refe€ tas an
almost invariant aggregate with respectdd, givenz; € £, the probability thate, 1, ¢ £ is
less than or equal te.

The definition of an almost invariant aggregate given abswsomewhat nebulous—the
probability thatz; € £ depends both on the parameteand on the initial distribution of
the Markov chain. Below, we make this more specific by shoving different manners in
which a collectior€ may be considered to be almost invariant.

We use the symbdl to refer to the column vector with every entry equaltd_et B be
a substochastic matrix. We define #reor vector of B to be the nonnegative vector

vg=1-Bl=(I-B)]1.

The error vector is a measure of how “closg’is to being stochastic. gz = 0, thenB is
stochastic; if every entry of is near0, then every row sum oB is nearl and thusB is
“nearly” stochastic.
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Let X be an irreducible Markov chain with transition matrix and letr be the unique
stationary distribution. Lef be a nonempty proper subset of the associated state space,
let B = A(€) be the associated principal submatrix, andylet 5. For each € &, theith
entry of~ is the probability of transitioning fromto a state not if:

V(i) =Plres ¢ E|ay =1].

If v < el (if every entry ofy is less than or equal t9, then the probability of transitioning
from a state in€ to a state not i€ is less than or equal ta Thus, regardless of any other
conditions, if this condition holds, then transitions tleait £ have a probability less than
or equal toe of occurring. Such an occurrence clearly implies tfias an almost invariant
aggregate.

However, there is a weaker condition which still impliestttransitions exitingg are a
rare occurrence. Let be the unique stationary distribution df and letr = 7(&) be the
subvector corresponding & If the Markov chain has an initial distribution equalitpthen
the value

#T(I-B)1 aTyp

7Tl a7l

is the probability that:;; ¢ £ givena; € £. Moreover, for any initial distribution, it holds
that

#(r-B1
T :tll}glo]P[xt-i—l ¢5‘If 65]

That s, 7135 is the expected long-term probability of transitioningrfra state irt to a state

771

notiné&. Thus, if

~T

B

LSO
then transitions frong to S \ £ become rare as— oo. In [3, 4], this value is referred to as
the-coupling measure of a collectidh and is denoted by (£):

ﬁTVB
ATl

Itis easily shown that the first criterion above implies theand. That is, if the principal
submatrixB represents transitions withthand~z < €1, thenw, (£) < e.

We are interested in the following problem: given a revdesgtochastic matrixd and a
small positive value, can we produce a partition of the state sp&dato almost invariant
aggregates. We present an algorithm which utilises thénagtic complement to produce a
candidate partition.

This problem is investigated in-depth i&, (4, 13]. There, the approach utilises the spec-
tral decomposition of the stochastic matrix in question. Whestochastic matrix is nearly
uncoupled, it has multiple eigenvalues very close to thebmmh. The eigenvalues of a
stochastic matrix that are near tcare referred to as Berron cluster In [3, 4], the eigen-
vectors associated with the Perron cluster are used to peclaandidate partition through a
process referred to d&%rron cluster cluster analysis.

In [6], a similar approach that utilises the singular value dguosition rather than the
spectral decomposition is proposed. We present an adalitaiacussion concerning this
approach in15].

wy(€) =
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The imprecision of Definitior8.1 is, in a sense, imposed by the applications of the
concept. The analysis of almost invariant aggregates appegpharmaceutical design;
see §i, 13], for example. A biomolecule often has multiple moleculanfigurations it may
assume; these configurations may have a significant effeitteochemical properties of the
molecule. In practise, the transitions from configuratiorconfiguration have been mod-
elled well as Markov chains. Moreover, these Markov chaimgyeneral, exhibit a nearly
uncoupled structure. Identification of the almost invarggregates of these configurations
is useful in the pharmaceutical drug design.

In this context, almost invariant aggregates do not occuartfacts of the model or
its assumptions, but rather arise naturally in the procefsamselves. The states spaces of
configurations of biomolecules seem to possess partititiosaiggregates such that when a
molecule assumes a configuration in one aggregate, it wiliiwoe to be observed to do so
for a relatively long period of time.

A natural explanation why this occurs has to do with energuirements of certain
molecular states. Transitions from one such aggregatedthenare those which require
an influx of energy to occur. For example, the molecule mayede heated or charged
in order for a certain transformation of its configurationtae place. On the other hand,
transitions within an aggregate are those which requirdsgively low amount of energy to
occur or, possibly, involve a release of energy.

These concrete observations, however, do not impose amyfispequirements on a
definition of the phenomena. Thecoupling measure defined above seems to be robust
enough that it can be used to evaluate potential uncouplingwsariety of applications. The
first criterion that€ is an almost invariant aggregateyif < €1 for some smalk is of more
theoretical interest and we use it primarily in our discossiof the algorithms themselves
rather than in the analysis of their performance.

3.1. Clustered graphs. Nearly uncoupled Markov chains are very much related to a
graph theoretic concept known as clustering. Roughly spgala clusterin a graph is a
collection of verticesX such that

1. edges that join two vertices iX are relatively common, and

2. edges that join a vertex il to a vertex not inX are relatively uncommon.
This concept is typically only of interest when the graph irestion contains a large number
of vertices. Graphs where a relatively high number of vediare contained in clusters are
referred to asighly clustered.

Somewhat intuitively, if a graph is highly clustered, the@sated random walk is nearly
uncoupled angice versa—methods for constructing almost invariant aggregates afidam
walk on a graph often correspond to methods for construciungters in that graph.

For example, the PCCA and SVD-based meth&lg,[6] are derived from the method
of partitioning a graph’s vertices usingréedler vector. The Fiedler vector of a graph is an
eigenvector associated with the second smallest eigenwdlthe correspondingaplacian
matrix; see P, 5]. Partitioning the vertex set of a graph into two satsandY so that the
members ofX have positive entries in the Fiedler vector and the memideystave negative
entries generally has the property that edges joining twbces both in one ofX or Y are
much more common than edges with one endpoint in each andY".

In [11], a method of producing clusters that utilises the conuergeof the random walk
is introduced—the stochastic consensus clustering atgoiiSCCA) looks for collections of
states that, roughly speaking, tend to be visited in quicksssion.

Clusters in large graphs or networks are of great intereghia-mining §] and analysis
of social networks1, 12].
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4. Error-reducing algorithms. Let A be a reversible stochastic matrix on the state
spaceS, and let€ C S. We refer to the number

va(€) = 1"y =1"(T - AENL =D ) ay

i€E j¢E
as thetotal error of £. If we express the matriXd as

A(E) Aio } 7

A= 40 as\e

then the total error of is simply the sum of the entries in the off-diagonal blatl,, that
is, v4(£) = 1T A1, If the total error of€ is small, ther€ is, evidently, an almost invari-
ant aggregate. However, the converse does not seem to ahgtiold. If £ is an almost
invariant aggregate and| is relatively large, then we may hawvg (£) correspondingly large.

Let A = A\ C be a stochastic complement derived from We refer toA aserror-
reducingif for every almost invariant aggregafeC S, we have ¢ C and

vi(E\C) <va(é).

A stochastic complement \ C is error-reducing as long a5 does not contain an entire
almost invariant aggregate and the removal dbes not increase the total error of any almost
invariant aggregates.

Let B be a reversible substochastic matrix on the state sfacket f be a bijection
from {1,2,...,n} to the state spacg (wheren = |S|). We refer tof as alower-weighted
reorderingof S if for all i < j, it holds that ¢ ;) ri) < bre)f(j)-

LEMMA 4.1.Let A be a reversible stochastic matrix on the state spsead letll be a
positive diagonal such thal A is symmetric. Lef be an ordering ofS such that

) 2 Tp@) = 2 Tf(n),

wheren = |S|. Then,f is a lower-weighted reordering &f.

Proof. Let A, 11, and f be as above. SindgéA is symmetric, we have;a;; = m;a;; for
all i andj. Suppose that< j.
_ agay) = 0, then the factsryyar ) = miasgysa, Tra) > 0 andmsgy > 0
imply thatay(; ¢;y = 0. So in this case, it holds that ;) sy > ayj)(i)-

It apip) > 0. thenmyayass) = mias;)sa) implies that

GG _ TG S
ariyrGy  TrG)

So in either case we obtain the inequality;) s ;) > a s f(i)- 0

LEMMA 4.2. Let A be a reversible stochastic matrix on the state spicéet C S,
and leti ¢ £. Then,

vavi(€) <val(€),

as long asA \ 7 exists.
Proof. Express
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where the first position corresponds&pthe second t@, and the third to the remainder of
the state space; we have only labelled those entries thiaapyikar in our calculations. We
calculate

1 T
A\i= [ B et ]

*

So,

— Q44

va(€) =17 (I—B— va>]l<]lT (I-B)1 =v4(&). a

LEMMA 4.3. Let A be a reversible stochastic matrix on the state spScé.et f be a
lower-weighted reordering ofl, let€ C S contain at least two states, and let

i =max{k <n|f(k) €&},
wheren = |S|. Then,
vavs) (E\P) Sva(€).
Proof. Leti; < --- < i,, be the indices mapped &by f:
E={flir),-., flim)}-
By assumptionyn > 2 and
max{k <n|f(k) €E} =ip.

ExpressA so that the firstn states aref(i1), ..., f(i,,) (in that order). We partition this
expression ofd into blocks

. B u C
Ax | 0T a W7
*

* *

where the first position corresponds to

E={f(ir),- flim-1)}

the second corresponds fdi,,) (u, v, andw are column vectors), and the third to the re-
mainder of the indices. We note that sinté a lower-weighted reordering, we have< v
(entrywise).

We calculate
| B+ ﬁuvT C+ ﬁuwT

* *
Now we have

va(&) =17C1 4+ w'1.
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Then, the total error of (with respect tod) satisfies

= 1 1
vi(&)=17c1 + —1Tuww™1 <17C1 + — 1T vw’™1
A 1—-a 1—-a

1
<17c1 + (- a)wTl =17C1 + w1l = va(E).

The first inequality is due to the fact that < v (entrywise) and the second is due to the
stochastic property: sinc€’ 1 + a + w’1 = 1, we havev’1 =1 —a — w”1 < 1 — a.
O

We will utilise Algorithm 1 in our stochastic complement based algorithms. The inputs
of the Choose-algorithm are a reversible stochastic matrand an index; the output is
either an index # i such that

1. 0 <aj; <a;5and

2. a;, < Qij, forall k& 7é 1,
or the value0 if no suchj exists. LetA be reversible with stationary distribution and
let ChooseA, i) = j # 0, then the fact that;a;; = 7;a;; implies thatr; < ;.

We now present our first stochastic complement based digorithe Perron-ordered
algorithm. The inputs of Algorithn® are a reversible stochastic mattik that has been
reordered via its stationary distribution and a small pesivaluee. That is, the algorithm
implicitly assumes that ift = A \ C is a stochastic complement formed frotrand ifi < j
are not contained i@, thena;; < a;;.

We note that reordering via some output of Algorithn3 is not sufficient to ensure the
above property. The state spacedheeds to be ordered via its stationary distribution—if a
stationary distribution is not known or calculable, Alghm 4 should be used instead.

The output of the Perron-ordered algorithm, Algorittinis a partition of the state
spaceS into candidate aggregates. We claim that when the vaisi@vell-chosen, the output
aggregates are very good candidates for almost invarigmeggtes.

Let A be areversible stochastic matrix on the state spatetn = |S|, andlet) < ¢ < 1.
For eachs > 1,

1. leti, be the state removed during thid iteration of the while loop,
2. let

Cs = {i1,12,...,1s}

be the collection of states removed aftaterations,
3. and letj, ¢ C, be the state identified by the Choose algorithm, i.e.,

js = ChoosgA \ Cs_1,1s),

One can show, inductively, that afteiterations
1. the current stored list of aggregates,

{&ili ¢ Cat,

is a partition ofS,
2. the stored value ofi; is the number of states containeddn and
3. for any stationary distribution of A and anyi ¢ C,,

T = gle%x{m}
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Algorithm 1 ChooséA, i).
Select an index # 4 such that;; is maximal among the off-diagonal entries in thi@row
of A; if this maximal value is attained more than once, choosh ati¢hat has minimad ;.
if ai; < aji Ora;; = 0 then
return 0
else
return j
end if

Algorithm 2 The Perron-ordered algorithm.
B:=A
forall i € S do
m; = 1
end for
K :={i|b; <1—¢}
while K is nonemptydo
Leti € K be the member oK closest tdS| that has Choogé, i) # 0:

i :=max {k € K |Choos¢B, k) # 0} .

if No suchi € K existsthen
Exit thewhile loop.

else
j := ChooséB, i)
5]' = gj U 52

mj i=m; +my
Delete&; from storage.
B:=B\i
K:=K\i
forall k € K do i
if bk > 5Ly, then
K:=K\k
end if
end for
end if
end while
return {&;}

Now, lets > 1 and suppose that

1. there is a partition of the state spat@to almost invariant aggregates,

2. the stochastic complement\ C; is error-reducing, and

3. fort =1,...,s, each pair of states andj; is contained in a single member of the
partition into almost invariant aggregates.

Suppose that the algorithm does not terminate aftestthieration and consider the pair
of stateg = i, ; andj = j.11. Let& be the almost invariant aggregate containing

First, suppose that every member &faside from: is contained inC,. Since every
pair (i;, j;) is contained in a single almost invariant aggregate, evexmnber of the stored
partition {&; | i ¢ C,} contains states from exactly one almost invariant aggegdeence it
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Algorithm 3 Reorde(B).
Letn be the order oB.

f=(1,2,....,n)
r:=1
§:=2

while s < n do
if bf(r)f(t) < bf(t)f(r) fort = Sy, N then
r:=r-4+1
if r = sthen
s =s54+1
end if
else
Lett be such that <t <nandbsru) > bruyser)-
(F), O+ 1), f(8) = (@) f(r), fr+ 1), f(E = 1))
s=s54+1
end if
end while
return f

holds that€ = &, andm; = |£|. However, Propositio.10 then implies that

2
by > L7
1+ (m; —2)e
whereB = A\ C;. (This is the result of an extensive calculation found ingdppendix.) This
is a contradiction because when the stdteremoved, we have

(1—¢?
< 1+ (ml — 2)6

So, we suspect that the statés contained in some almost invariant aggregatsuch
that€ \ C,41 is nonempty. The stochastic compleméht= A \ Cy is error-reducing and the
entry b;; is larger than any other;,—this suggests that is contained in this same almost
invariant aggregate. Then, when we form the stochastic temgntA\ C; 1, the fact thatr;
is minimal (among all states satisfying the above) togethidr Lemmas4.1, 4.2, and4.3,
suggests that this new stochastic complement is erroicieglas well.

Thus, inductively, every correct association made (evergng; U £; where: and; are
members of the same almost invariant aggregate) seems ®fomdker correct associations
more likely. The algorithm terminates when it cannot locatg further statesthat seem to
be “safe” to remove.

Next, we present the lower-weighted algorithm (Algoritdin intended for use on re-
versible matricesA for which the stationary distribution is unknown. We recommend
using this process rather than simply calculating a statipuistribution for the following
reason. When the stochastic matrixis nearly uncoupled, there is a potentially large num-
ber of eigenvalues near to the eigenvalueThus, the eigenvector problea? = 27 A is
badly conditioned—computed solutions to this problem arg sensitive to perturbation and
roundoff error making them unreliable as actual eigenvsctbhe lower-weighted algorithm
bypasses this problem by proceeding without any knowledi¢feeceigenvectors ofl.

The lower-weighted algorithm utilises the reorder aldoni Algorithm 3, to construct
lower-weighted reorderings of the state space; the inp@tgdrithm 3 is a reversible stochas-
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Algorithm 4 The lower-weighted algorithm.
B:=A
forall i € S do
m; ‘= 1
end for
f := Reorde(B)
K = {Z|b” < 1—6}
while K is nonemptydo
if ChooséB, i) =0 foralli € K then
Exit thewhile loop.

else
Let k be the largest index such thatk) € K and ChooseB, f(k)) # 0
i:=f(k)
j := ChooséB, i)
E =& U¢E

mj = my +m;
Delete&; from storage.

B:=B\i
f := Reorde(B)
end if
end while

return {&;}

1fog "
0,
Op,
0.95 oooo
0
(o}
09 S0
oo
0.85 OOOO

.“: 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50
FIG. 5.1. The50 eigenvalues of the collaboration network nearest to

tic matrix and the output is a lower-weighted reorderjhgrhe reorder algorithm is a mod-
ified version of a depth-first search. Within Algorith®) the functionf is expressed as
its range ordered by its domain, i.e., the functipn= (2,3,1) hasf(1) = 2, f(2) = 3,
andf(3) = 1.

The lower-weighted algorithm proceeds in much the same eraamthe Perron-ordered
algorithm; it simply recalculates a lower-weighted reahdg at every step in order to ensure
that the complements formed are error-reducing. (The ezorg needs to be recalculated
after every stochastic complement—if the matdxs lower-weighted, it is not necessarily
true thatA \ 7 is lower-weighted.)

5. Examples. First, we apply our Perron-ordered algorithm to a collaborenetwork,
previously presented inlP]. The network represents published collaborations betwee
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FiG. 5.2. Algorithm 2 applied to a collaboration network.

group of researchers. Each node in the network is a giverameser; the edges and their
weights are determined by papers published. If a papek lashors, it contributes a weight
of 1/(’2‘“) to every edge joining pairs of thegeauthors. (Each published work contributes
a total weight ofl to the edges of the network.) The full data set inclutle®9 authors.
However, the full network is not connected. We will analysdyathe largest connected
component (as inl2]). The remainder of this section refers only to this largemtnected
component, which consists 879 researchers.

This collaboration network is interesting because it highustered. This is reflected in
its spectrum—the transition matrix of the random walk on tiéswork has a large number
of eigenvalues nedrand no clear gap separating the eigenvalues h&am the remainder.
We present th&60 eigenvalues of the transition matrix nearest fo Figure5.1

We apply our Perron-ordered algorithm to the transitionrixatf the random walk on
this network in order to detect “clusters”™—groups of nodeat tire well-connected to each
other and poorly connected to the remainder of the nodes.pg & twice, once each with
the inputse = 0.05 ande = 0.01. As the random walk is derived from a known network, the
stationary distribution of the random walk is known—it is alsc multiple of the vector of
the degrees of the nodes. Thus, we evaluate our output Usagdoupling measure,

T(&)" (I - AENT _ m(E) A
m(€E)T1 - w671

(As well, knowledge of the stationary distribution is rema to apply the Perron-ordered
algorithm.) We find that applying Algorithr with inputse = 0.05 ande = 0.01 results in
partitions of the state space ind and8 aggregates, respectively. Thecoupling measures
of these aggregates together with the meacoupling measures (drawn as a red line) are
displayed in Figuré.2.

We present the network in Figute3. The partition obtained witlh = 0.01 is repre-
sented by the colouring of the vertices. The layout of theiees has not been influenced
by the partition. We graphed this network with the softwaaekage PAJEK—the software
attempts (as much as possible) to arrange the vertices sthéhadges are drawn with short
lengths and so that few edges cross. The partition produgéitetiPerron-ordered algorithm
coincides well with this layout.

This collaboration network is analysed ih7]. There, it is used to illustrate a concept
known as modularity. The modularity of a vertex is a meast@ir@w “central” that vertex is
within the network. It was found that ten vertices have reddy high modularity.

we(€) =

*http://vlado.fnf.uni-1j.si/publ/networks/pajek/
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FIG. 5.3.The largest connected component of the collaboration mtwih a partition into almost invariant
aggregates.

Next, we briefly summarise some of our results concerningnalsition of the molecu-
lar transitionsn-pentane. We provide this example in order to compare thi@peance of
our algorithms with that of competing methods. The stogbamsatrix in question was ob-
tained from a Markov chain Monte Carlo simulation of the neolar states of tha-pentane
molecule; seed, 13, 14] for details.

The matrix in question is 255 x 255 reversible stochastic matrix with known stationary
distribution. It is previously analysed iB,[6].

The Perron cluster analysis technique decides in advangertamy aggregates will be

formed. The number is chosen by selecting a cluster of eajeas of the matrix near to(the
Perron cluster)—the number of such eigenvalues is the nupfteggregates the algorithm
will produce. In [3], it is noted that the eight eigenvalues of thgentane transition matrix
nearest tol are (approximately), 0.986, 0.984, 0.982, 0.975, 0.941, 0.938, and 0.599.
In addition to the eigenvalug, there are four eigenvalues approximately equdl.88 and
a further two approximately equal 94 with the remainder being not close to This
suggests either or 7 aggregates. The PCCA algorithm is applied twice to prodactipns
into 5 and7 aggregates.

In [6], a similar approach that uses singular vectors ratheréiganvectors is applied to
the same matrix. The SVD-based approach is applied only tngeduce a partition int@
aggregates.

We find that applications of the lower-weighted and Perratered algorithms with in-
puts ofe = 0.01 and0.005 produce partitions int@ and5 aggregates, respectively. We report
the minimumm-coupling measures of the output partitions in Tahle That is, every mem-
ber of each partition produced hasracoupling measure greater than or equal to the given
value. The minimumr-coupling measures of the outputs of our stochastic comgierased
algorithms in each case exceed those of the competing Pduster and SVD-based meth-
ods, at least slightly. The transition matrix is displayedrigure5.4—the results obtained
here compare very favourably with those & §].

6. Conclusion. The algorithms presented here are an efficient manner tdroohsl-
most invariant aggregates of a given stochastic matrix.hEdche iterative steps applied
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(a) The lower-weighted algorithm with= 0.01. (b) The Perron-ordered algorithm with= 0.005.

FIG. 5.4. Decouplings of the:-pentane transition matrix obtained via the stochastic pament based algo-
rithms.

TABLE 5.1
Stochastic complement based and other algorithms appi¢iiet»-pentane transition matrix.

Algorithm € Aggregates  Minz-coupling measure
Lower-weighted 8835 Z_) gg?é
Perron-ordered 8835 g gg?g
en |1 o
SVD-based n/a 7 0.876

to a matrix of ordem require of the order ofi? floating point operations. Thus, the algo-
rithms operate in polynomial time of orde? with respect to the order of the input matrices.
The storage requirements are minimal—the amount of additistorage necessary (assum-
ing the input matrix is already in storage) is simply the antaequired to store a second
copy of the input matrix. This is in contrast to the eigenee@nd singular vector based
approachesd, 4, 6, 13], which are actually convergent algorithms rather thareheinistic
ones.

This efficiency allows the stochastic complement basedritgos to be run many times
at little cost with varying values for the input In addition to allowing the selection of an
optimal output, such a process may be of utility in analysigdecoupled properties of the
Markov chain more thoroughly. These multiple output pintis can be combined to form
hierarchical decompositions of the state space. For exanip25 aggregates formed by
applying the Perron-ordered algorithm to the collaboratietwork withe = 0.05 form a
refinement of the aggregates obtained with 0.01.

An advantage of this approach is its independence of spectthods. When a stochas-
tic matrix A is nearly uncoupled, it possesses multiple eigenvaluestaégits Perron clus-
ter). If this Perron cluster is sufficiently large, the caétion of the eigenvectors associ-
ated with these eigenvalues is somewhat unreliable—thésealations are very sensitive to
floating point round-off errors, for example. Moreover, cjpal methods tend to rely upon
heuristic or convergent methods, especially in their dat@mn of eigenvectors and singular
vectors. The algorithms presented here terminate afteita eind well-bounded number of
steps, producing an output partition uniquely determingethbk input matrix.
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Appendix A. A lower bound concerning stochastic complemerst of reversible sub-
stochastic matrices.

We construct a lower bound on a specific term relating to ststtcomplements of re-
versible substochastic matrices. This lower bound is usédgorithms2 and4 to determine
whether or not a given state is “safe” to be removed via a sistadhcomplement.

A.1. Definitions and problem statement.

DEFINITION A.1. Let B be a properly substochastic matrix, and (ebe the associated
state space. If the order @ is 1, that is, ifC = {i} and B = [b;;], we definexg (i) = bj;.
If C contains two or more states, then for each C, we express

. T
o[ 7]
and define
ap(i) = by + 07 (I — C) .
We note that giverB andC as above,
()] = B\{j eClj#i},

if we defineB \ § = B.
Let X be a Markov chain on the state spateForC C S, we define

Ec:;gg{t:azt¢(,’}.
If z¢g € C, we refer tot = E¢ as thefirst exit timeout of C, and we say that the Markov chain
exitsC at timet. As well, for eachi € S,
TZ-:tlrzlg{t:xt:z}
is thefirst passage timato i.
Let A be a reversible stochastic matrix on the state sgadetC C S, B = A(C), and
suppose further tha® is irreducible. Via Propositiog.2, it can be shown that for anye C,

the numbery(7) is the probability of transitioning fromto i (in one or more steps) without
first exitingC. That is,

ap(i) = P[T; < Ee|zo =1

Let B be an irreducible reversible substochastic matrix and esgphafll andIl’ are
positive diagonal matrices such ti&B andIIB’ are symmetric. For any+ j with b;; # 0,
we have

/! !/
'/Tibij = ijji andﬂ'l-bij = ijjiv

further implying that

So whenb;; # 0, the ratiosm;/7; = 7;/n; are uniquely determined big. SinceB is
irreducible, this implies that every ratin /7; = 7}/ is uniquely determined bys.
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The above reasoning implies that for any such mafixthe matricedlI that sym-
metriseB via a left-multiplication are uniquely determined up to altiplication by a positive
scalar. In light of this, we will define a canonical positiiegbnal for each sucB. Let B be
an irreducible reversible substochastic matrix. We define I1z to be the unique positive
diagonal such thdi B is symmetric and such that the largest entrifiis 1. Thatis,IT = IIp
satisfies

7T7;bij = ijji and I?EHEZX {’/Tz} =1,

whereC is the state space d@.
DEFINITION A.2. Letn > 1 be a positive integer and < 1 be a positive real number.
We definé3(n, ¢) = { B} to be the collection of. x n substochastic matriceB such that
1. Bisirreducible and reversible and
2. vp = (I — B)1 < el.
We note that for alB € B(n, ¢), it holds thatB1 > (1 — ¢)1.
DEFINITION A.3. Letn > 1, and lete < 1 be a positive real number. L& € B(n,¢),
and letII = I15. We definex(B) to be the minimum value ofs (¢) subject tor; = 1,
a(B) = min {ap(i)}.
We note that ifB € B(n,e) andIl = IIp, then for every index of B, eitherm; < 1
orag(i) > a(B).
The problem we solve is the following. Given a positive ieg > 2 and a positive
real numbek < 1, we calculate the number

a(B) = inf {a(B))

and characterise those reversible substochastic maffiee® that havex(B) = «(B).

A.2. Preliminaries.
LEMMA A.4. Let B € B(n, ) wheren > 2. Then we can express

[ a o7
v=[i e ]

where, in addition to the fact thd? is irreducible and substochastic, it holds that
1 a+0vT1>1—¢,
2. C14+w>(1—-eT,
3. a(B)=a+v"(I-C)"'w, and
4. there is a positive diagonal matr@, such thaiQ < I, QC = C7Q, andQu = v.

Proof. LetIl = IIg. Since

a(B) = min {ap(i)},

there is an index such thatr; = 1 anda(B) = ap(i). Express
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where the first row and column corresponds to such a statel the principal submatric’
corresponds to the remainder of the state space. The firstlaivos are direct consequences
of the fact that

YB = (I*B)]l Se]l.

The third claim is simply a restatement of the fact that(i) = «(B).
Finally, sincer; = 1 andn; < 1forall j € C, we have

(1 8]

where@ < I via the same correspondencefas The fourth claim is a consequence of the
fact thatllz B = BT11. a0
The following lemma combines a few well-known results frdgra theory ofd/ -matrices;
see B, Section2.5].
LEMMA A.5. Let X, Y, and Z be nonnegative square matrices of order> 1 such that
1. Zisirreducible,
2. X andY are positive diagonal matrices,
3. X <Y with a strict inequality in at least one diagonal entry, and
4. Z1 < X1 with a strict inequality in at least one position.
Then, the matrice6X — Z)~! and (Y — Z)~! are defined and satisfy (entrywise)

0<(Y-2)'<(X-2)"".

tive. We note that real positive definite matrices are nandar.
LEMMA A.6. Let X be a real positive definite matrix, and lebe a nonzero real vector.
Then,

(b7 Xv) (T X10) 2 (v70)” = |lul|*,

with equality if and only ifv is an eigenvector oK.

Proof. We make use of some well-known facts from linear algebra.

First, the Cauchy-Schwarz inequality (as it applies to spalces of column vectors) is
the following proposition: leb andw be nonzero real column vectors, then

viw < ol [lwl| = (7o) 2 (wTw) '/,

with equality if and only ifv = Sw for some nonzero real numbgr
Second, we make use of the following propositions taken fionChapter7]: let X be
a real positive definite matrix, then
1. there is a unique real positive definite matrix labelléd/? and referred to as the
square root ofX such that

(X127 = X,

2. the matrixX —! is itself real and positive definite, and
3. the square root ok —! is the inverse ofX /2,

(X—1)1/2 _ ()(1/2)—17

and we label this matrix —1/2.
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(We have modified the results ifd][slightly as we are only interested in the real case).
Now, let X be a real positive definite matrix amdbe a nonzero real vector. Then,

vy =0T XY2X 12 = (Xl/Qv)T(X*I/QU).
So, via the Cauchy-Schwarz inequality,
vl < HXl/sz HX71/2UH = (UTX’U)I/z(UTXilv)l/z.
Squaring every term in this expression yields the exprassithe statement above. Further-
more, we note that equality holds if and only if
X2y = BX 2y,

for some real numbes. When this occurs, a left-multiplication by'/2 leads toXv = fwv.
]
Let B € B(n,¢), and letll = I1z. We note thallz = I if and only if B is symmetric.
If B is symmetric, then
a(B) = min {ap(i)} = min{ap(i)},
and we havevg (i) > «(B) for all i. As well, if B is symmetric, the expression &f found
in LemmaA.4 is
a UT
v C |’

whereC is symmetric andv(B) = a + vT (I — C)~tw.

LEMMA A.7. Let B € B(n,¢). If B is not symmetric, then there is a symmetric sub-
stochastic matrix3 € B(n, €) such that(B) < a(B).

Proof. Suppose thaB € B(n, €) is not symmetric. Express

T
Bg[a v }andH:HBg[l O]
w

B

1%

C 0 @

as in LemmaA.4. Thus,Q < I, Qw = v, and@QC' is symmetric. The assumption th&tis
not symmetric implies thap # I. We note that sinc® € B(n, €), we have

1. Bisirreducible,

2.1-e<a+0v71<1,and

31—l <Cl+w<l.
Let

. a v’
B[’U CA’}’

where
C=QC+(1-eI-Q).

We claim thatB is a symmetric member d#(n, ¢) anda(B) < «(B). Since0 < Q < I, B
is nonnegative. For eveny*~ j, we havefpij = m;b;;, S0 the fact thaB is irreducible implies
that 33 is irreducible. As well, the fact th&C' is symmetric implies thaB is symmetric. So
we next need to show thét is substochastic ang; < el.
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By assumption, we have— e < a +v71 < 1. Next, the inequality>l +w > (1 — €)1
implies that
Cl+v=(QC+(1-e)I-Q)1+Quw=Q(CLl+w)+(1—¢€)(I-Q)1
>Q((1-a1)+(1-a( - Q)1 =(1-eL
As well, the inequalitie€'l + w < 1 and0 < @ < I imply that
Cl+v=QCl+w)+(1-e)I-QL<QL+(1—e)(I—-Q)1
=(1-el+eQl <(1—e)l +€l =1.

Hence, we obtain thatl — €)1 < B1 < 1. Thus,B is a symmetric member d#(n, ¢). We
now show thatv(B) < «(B).

Since B is symmetric, we havél, = I, which impliesa (1) > o(B). We note
thatQw = v, thus we obtainv = Q~'v. We calculate

aB)=a+0"(I-C) " "w=a+v"(I-0)"'Q lv=a+"T(Q—-QC) v

and

ag(l)=a+v" (I— C’)_lv —a+0T (I - (QC+(1—-e)(I-Q)) v
—a+0" (Q+e(I-Q)—QC) v,
Permute the indices (if necessary) so that

Cl 0 Ql O U1
" ; Q = - s and v = ,
0 C 0 Q U

where eaclC), is irreducible. We expand our formulae above d@i3) ando ;(1):

C

1

l

a(B)=a+ Y v} (Qr — QxCi) i
and =

l
aB(l) =a -+ Z’UE (Qk + E(I — Qk) — chk)_l V-

k=1
If Qr = I, thekth terms from the two sums are equalJf # I, we apply LemmaA.5
with X = Q, Y = Qr + €(I — Q), andZ = QC}, to see that entrywise
0 < (Qr+e(I — Q) = QCr) ™" < (Qr — QuCi) ™",

SinceB is irreducible, every, has at least one positive term. Thusif # I, it holds that

v (Qr + eI — Qi) — QrCr) ™ vk, < v} (Qr — QrCl) ™ uy..

SinceQ # I, there is at least on@;, # I, and so we arrive at

a(B) <ap(l)<a(B). O
LEMMA A.8. Let B € B(n,¢) be symmetric. Suppose that there is an inflexch
that ap(i) = a(B) andvp(i) < e. Then, there is also a symmetric substochastic ma-
trix B € B(n, €) such that
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1. a(B) > a(B),
2. v5(i) = ¢, and
3. forallj #i,v5(j) = v5(j)-
Proof. Let the statei be such thatvg(i) = a(B) and~yg(i) < e. Without loss of
generality, we assume that= 1. By assumptionB is symmetric. Via Lemma\.4, we
express

whereC' is symmetric andv(B) = ap(1) = a +vT (I — C)~1v. Now, we have
yp(1) =1—a—v"1,

hence;yz(1) < eimplies thata + v7'1 > 1 —e.
First, suppose that’ 1 < 1 — ¢, then we haves > 1 — e — 0”1 > 0. Let

S 1—e—ovT1 T
b= v C

We have
aB)<ap(l)=1—e—0"1+07T - 0)w<a+"(I-C)"'w=a(B).

So, we next assume that'1 > 1 — ¢. Let R be the diagonal matrix with; = v(i),
thusR1 = v. Forrealnumberswith0 < z < 1, letv(z) = (1—z)v, and letC(z) = C+zR.
As long as < 1, the matrixC(z) is properly substochastic, $o — C(z))~! is nonnegative.
We will first show that the function

fz2) =v(2)"(I = C(2)o(2) = (1 = 2)*0" (I = C(2))"Mv

is strictly decreasing in over the intervak € [0, 1). We note that
d
—C(z) =R.
5,C()

We will use the fact that when— Y is an entrywise differentiable functidh — R"*™, the

derivative ofY ~! is given by
Ay _y- (dY) YL

dz dz
We calculate
L — o (-t )t (L0-27) - ol

=(1—-2)%TI -C()'R(I - C(2)) v —2(1 — 20T (I - C(2)) v

=v(2)T(I = C(2)'R(I - C(2)) () — 20(2)T (I — C(2)) v
=v(2)T(I - C(2)'R(I — C(2)) tw(z) — 2v(2)T (I — C(2))"'R1
=v()T(I-C(2)" 'R ((I —C(2) tu(2)) - 2]1) )
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An application of Lemma.5, together with the fact tha® is irreducible shows that the
vectorv(z)T (I — C(z))~! R is entrywise nonnegative with at least one positive entsyidag
as0 < z < 1). We will show that the vectoil — C(z))~!v(z) — 21 has every entry negative.
We note that

Ce)l+v(z)=Cl+zR1+(1—2)v=Cl+4+zv+(l—2)v=Cl+v <1,
thus,v(z) <1 — C(2)1 = (I — C(z))1. This implies that
(I-C(2)o(z) < (I - C(2)) 1T~ C(2)L = 1 < 21,
and so
(I —C(2)) tw(z) —21 < 0.
Hence, we have shown th#tz) < f(0) as long a$) < z < 1. Let z, be such that
v(20)T1 = (1 - 20Tl =1-¢
Sincel — e < v71 < 1, we haved < zy < e < 1. Let
T
Bty C |

Sincewv(zg) is a positive scalar multiple of and C'(zy) is equal to the sum of and a
nonnegative diagonal matrifg is an irreducible nonnegative matrix. The sum of the entries
in the first row of B is 1 — e and the sum of the entries in any other row is equal to the sum of
the entries in the corresponding rowBf Thus, we obtain

(1-e)l<BL<T1.

Finally, C(z) is symmetric sinc€ is symmetric. ThusB is a symmetric member df(n, ¢)
and@ z = I. Then, we note that

and
f(z0) <a+ f(0)=a+ " (I—-C)"'v=a(B). d
Let B = B(n,¢). In calculating the value

a(B) = inf {a(B)},

it is sufficient to find a lower bound fawr(B) where B is a symmetric member df (via
LemmaA.7), anda(B) = apg(i) whereyg (i) = € (via LemmaA.8).

A.3. Alower bound concerning stochastic complements of r@rsible substochastic
matrices. We now calculate the value of

a(B) = int {a(B)},

whereB = B(n, €). Forn = 1, the problem is trivial. In this cas®, = {[b] : 1—e < b < 1}.
For B = [b] € B, we haven(B) = b, so in this case,

a(B) = éréfg {a(B)} =1-¢.
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PROPOSITIONA.9. Letn be a positive integer greater than or equalZand e be a
positive real number strictly less thanand let3 = B(n, €). Then,
(- €)?
1+ (n—2)
Moreover, a matrixB € B satisfiesy(B) = «(B) if and only if

l—eqT
B~ 1 0 n—l]l
ol ¢

a(B)

whereC'is an(n — 1) x (n — 1) symmetric nonnegative matrix such that

B Il—e (I—-¢€)(n—-2)
Cl=(1-gt-——1=-——7=

1.

Proof. By LemmasA.4, A.7, and A.8, we simply have to calculate a lower bound
for a +v7(I — C)~'v, where
1. the matrixC' is symmetric, nonnegative, and has order 1,
2. the vectow is nonnegative, has order— 1, and satisfies” 1 < 1 — ¢,
3. the matrix

is substochastic and irreducible,
4. a+vT1=1—¢ and
5. Cl+v>(1-¢)l.
Let C, v, anda satisfy the above conditions, and tet=n — 1 > 1 be the order of”
andv. Let

r=Cl+4+v—(1-e¢el.
We note that- > 0. Let R be the diagonal matrix of orden with ith diagonal entry equal
tor;. As in the proof of Lemma\.7, express
Cy 0 Ry 0 vy
. , R , andv = I
0 o 0 Ry Uy

where eaclt’}, is irreducible. AsB is irreducible, eacly; has at least one positive entry. An
application of Lemma\.5with Y = I + R, X = I, andZ = C}, shows that ifR; # 0,
then the matriXI + Rj, — C},)~! exists and entrywise it holds that

0<(I+R,—Cp) " <(I-Cp) "
Thus, the matriXI + R — C)~! is entrywise nonnegative. Let
o =a+ v (I+R—-C)" 1.

C

1%
1%

Then,



ETNA
Kent State University
http://etna.math.kent.edu

144 R. M. TIFENBACH

with equality if and only ifR = 0. We note that? = 0 holds if and only ifB1 = (1 — ¢)1.
Now, letC’ = C — R, so that

o =a+oT(I -0 .

Although the matrixC’ may have negative entries, the matfix— C’)~! = (I + R— C)~!
is entrywise nonnegative (as noted above). SiRdée= C1 + v — (1 — €)1, we have the
relationC’1 + v = (1 — €)1 implying that

v=_1-el-C1=(I-C")1—el.
Thus, we obtain

oI -0 lo=2TI-C)—el") (I - C") 1 (I - C)1 —€l)
=171 -1 - 2071 + 17(1 - '),

as well as
a=l-€e—v"1=1-e— (1T(I-C)—el")1=1-€e—17(I - C")L +€1"1.
Hence,

o =a+oT(I-C)t
=l-e—1TT-C"+el™1 +17(1 - )1 — 2171 + E17(1 - )11
=l-e—elT1+E17(T -0 M =1—(m+1e+17(1T -0

(The vectorl in the above expression has orderand sol”1 = m). Thus, in order to
calculate a lower bound fer’ we simply need to calculate a lower bound fdr(7 — C")~'1.
Now, C' andC’ are symmetric and’ — C' = R, whereR is a positive semidefinite
matrix (R is a nonnegative diagonal matrix). The largest positivemiglue ofC’ is less than
or equal to the largest positive eigenvalueCt{see [, Corollary7.7.4], for example). The
matrixC' is properly substochastic as it is a principal submatrixafieeducible substochastic
matrix. The largest positive eigenvalue @fis thus strictly less tham. Altogether,C’ is a
symmetric real matrix whose eigenvalues are strictly leant, further implying that/ — C’
is a positive definite real matrix.
By LemmaA.6, we have

(17(1 —¢')~'1) (17(1 - 1) > (171),

with equality if and only ifl is an eigenvector af”. Note thatC’1 + v = (1 — €)1 implies
that1 is an eigenvector of” if and only if v is a scalar multiple of.. Hence, we find
(]lT]l)Q m2

Tr_ o117 > _
V=) = or =6 ~ 70— o1

with equality if and only ifv is a scalar multiple of . As well, we have the identities’ 1 = m
and

171 -1 =1"1-17¢"1 =171 - 17 (1 - &)1 —v)
=1+ 0"l =me+ 0Tl <me+(1—€) =1+ (m—1)e
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(Recall thaty™1 < 1 —¢.) Thus,

T n—1 m?
r7i-c)y 1> ———
( ) “ 1+ (m—1)’

with equality if and only ifv is a scalar multiple of andv”1 = 1 — ¢. These two conditions
uniquely identifyv: when they both hold, we have

_1—6

v 1.

m

So in total we arrive at

2

aB)>ad =1—(m+ e+ 17T -C) M1 >1—(m+1)e+ 621

+ (m—1)e
(1—(m+1)e) (1+ (m —1)e) + m?e2 _ (1—¢)?
14+ (m—1)e 14+ (m—1)e

3

with equality if and only if the matrix
a UT
p=[0 %]

satisfies

L.a+vT1=1—¢,

2. v=1-1, and

3. C1+v=(1-¢el.

These three conditions together imply that= 0 andC1 = M%‘”]l. Substitut-

ingm = n — 1, we obtain the formulae in the statement of the proposition. O

Letn > 1,e < 1, and letB = B(n, €). We note that the above formula fof3) agrees
with that in the case = 1. As noted, whem = 1,

(-9? (-9
1—e¢ 14+ (n—2) °

aB)=1-€e=

Forn = 1 or 2, the matrices3 € B that have

a(B) = a(B) = m = (1—¢)?

are unique; they are
0 1—e¢
B_[l—e]orB_[l_6 0 }7

respectively.
However, this minimum fory(B) is not uniquely attained for > 3. For example, the
matrices

—
| ©
—

| 8] |
o o
—
[«
o

™
Ju

B =

—
| ™o
a

oW
|

a

[
=
no
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and
0 156 1;5
32: 156 O 1;6
1—e¢ 1—e
2 2 0
satisfy
(1-¢)?
B:) =a(Bs) =a(B) = — 2
a(B1) = a(By) = a(B) = -

PrROPOSITIONA.10. Let A be a reversible stochastic matrix on the state spé&ce
LetE C S be such thatB = A(E) satisfiesB1 > (1 — €)1 where0 < ¢ < 1. Suppose
further that no proper subsets &fsatisfy this condition. Ldil be a positive diagonal matrix
with ITA being symmetric, and l€t C S be such that \ C = {i} where

i err_léig({ﬂj}.
Letmn = |£|andA = A\ C. Then,
2
Gy > 19
T 14+ (m—2)

Proof. If m = 1, the claim is trivial as we have;; > 1 — e implying that

)2
&iiZaii21—€=& .
1+ (m—2)e
Aswell, if EUC = S, thenA = [1], and the claim holds.

LetC; = C\ &, and letA” = A\ C. Then, B’ = A'(f) satisfiesB’ > B and
thusB’ € B(m,¢). Then, sinced = A"\ C2 and€ = {i} U Co, we have

. . (1—¢)?
P — / > _—
Qi; aB(Z)_1+( P
via PropositionA.9. 0
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