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A COMBINATORIAL APPROACH TO NEARLY UNCOUPLED
MARKOV CHAINS I: REVERSIBLE MARKOV CHAINS ∗

RYAN M. TIFENBACH†

Abstract. A Markov chain is a sequence of random variablesx0, x1, . . . that take values in a state spaceS. A
setE ⊆ S is referred to as an almost invariant aggregate if transitions fromxt toxt+1 wherext ∈ E andxt+1 /∈ E

are exceedingly rare. A Markov chain is referred to as nearlyuncoupled if there are two or more disjoint almost
invariant aggregates contained in its state space. Nearly uncoupled Markov chains are characterised by long periods
of relatively constant behaviour punctuated by sudden, extreme changes. We present an algorithm for producing
almost invariant aggregates of a nearly uncoupled reversible Markov chain. This algorithm utilises the stochastic
complement to iteratively reduce the order of the given state space.
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1. Preliminaries. This article contains material previously presented in [14]. A discrete-
time, time-homogeneousMarkov chainon a finite state spaceS is a sequence of random
variables

X = (x0, x1, x2, . . .)

that take values inS and satisfy theMarkov property.The Markov property is the statement
that for allt ≥ 0 andi, j ∈ S, the probability

P [xt+1 = j |xt = i]

is independent oft and of the values taken on byx0, . . . , xt−1 (if t ≥ 1). That is, for
all i, j ∈ S, the probability ofxt+1 = j given thatxt = i is uniquely determined byi andj.

For the remainder of this work, we will simply use the label Markov chain with the
implicit understanding that we only consider the discrete-time, time-homogeneous case and
a finite state space.

LetX be a Markov chain onS. For eachi, j ∈ S, the value

aij = P [xt+1 = j |xt = i]

is referred to as theijth transition probability ofX. The square matrixA on the index setS
whose entries are the transition probabilities is referredto as the transition matrix ofX. Such
a matrix isstochastic:it is square, entrywise nonnegative, and the sum of the entries in each
row is1. These facts are summarised by the equations

A ≥ 0 andA1 = 1.

The symbol1 is used for the column vector with every entry equal to1. We refer to the index
set of a stochastic matrix as its state space.

Let A be a stochastic matrix on the state spaceS andC1, C2 ⊆ S be nonempty. The
submatrix

A(C1, C2) = [aij ]i∈C1,j∈C2
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is obtained by deleting each of theith rows wherei /∈ C1 and each of thejth columns
wherej /∈ C2. WhenC1 = C2 = C, we refer to the matrixA(C, C) = A(C) as theprincipal
submatrixof A onC.

The subscriptt is referred to as the time parameter ofX. If xt = i andxt+1 = j, we say
that the Markov chain visits the statesi andj at timest andt + 1, respectively, and that the
Markov chain transitions fromi to j at timet+ 1.

We refer to a diagonal matrix where each diagonal entry is positive as a positive diagonal
matrix. We use the notationπi to refer to theith diagonal entry of a diagonal matrixΠ.

LetX be a Markov chain with transition matrixA. If there is a positive diagonal matrixΠ
such thatΠA is symmetric, we refer toX as areversible Markov chainandA as areversible
stochastic matrix.WhenΠA is symmetric, we haveπiaij = πjaji for all i andj. LetA be
an irreducible reversible stochastic matrix, letΠ be a positive diagonal matrix such thatΠA
is symmetric, and letπ = Π1. Then,

πTA = 1
TΠA = 1

TATΠ = 1
TΠ = πT ,

and we see thatπ is a left-eigenvector ofA. It is straightforward to show that whenA is
reversible andπ is a left-eigenvector associated with1 (in particular, whenπ is a stationary
distribution) thatΠA is symmetric, whereΠ is the unique diagonal withΠ1 = π.

Reversible Markov chains are characterised by symmetry in time. If the Markov chainX
is reversible, then

lim
t→∞

P [xt−1 = j |xt = i] = P [xt+1 = j |xt = i] .

That is, whenX is reversible, then ast → ∞, for any i andj, if the Markov chain visits
statei at timet, the probability that the previous state visited isj converges to the probability
that the next state visited isj. If we imagine “rewinding” a recording of such a Markov chain,
the result would be indistinguishable from the original.

EXAMPLE 1.1. The canonical example of a reversible Markov chain is the random walk
on a graph. LetG be a weighted undirected graph with vertex setS and weight functionw.
We impose the restriction thatG does not have any isolated vertices. We label the edges ofG
via their endpoints: the edgeij is an edge joining the verticesi andj. As the graphG is
undirected, the edgeji is identical to the edgeij. The weight functionw assigns a positive
number to every edge inG: for all pairs of verticesi, j ∈ S (not necessarily distinct), we
havewij = wji > 0 if the edgeij is present inG andwij = 0 if the edgeij is not
present inG. The random walk onG is a Markov chain on the state space equal toS, where
transitions occur along the edges ofG. The transition probabilities are determined by the
weight function:

P [xt+1 = j |xt = i] =
wij

∑

k∈S

wik
.

As long asG contains no isolated vertices, the above is a uniquely determined (byG andw)
Markov chain onS. LetA be the transition matrix of the random walkX

aij =
wij

∑

k∈S

wik
.

For eachi ∈ S, let

πi =
∑

k∈S

wik,
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and letΠ be the diagonal matrix with theith diagonal entry equal toπi. Then theijth entry
of ΠA is equal towij —this matrix is symmetric by definition.

The treatment in this work makes extensive use of the assumption of reversibility. In a
future piece, we will present a similar analysis of the nonreversible case.

Let S be a finite collection. A probability distribution vector onS is a column vector
with nonnegative entries indexed byS, the sum of which is1. A probability distribution
vectorv models some random variablex onS: the valuevi is the probability thatx = i.

Let X be a Markov chain with transition matrixA. A stationary vector ofX is a proba-
bility distribution vectorπ such thatπTA = πT .

Two matrices arepermutation similar(denoted by∼=) if one can be obtained from the
other by simultaneously reordering the rows and columns. That is, A ∼= B if there is a
bijectionf such thataf(i),f(j) = bij for all i andj.

A Markov chainX is irreducible if for anyi, j ∈ S (not necessarily distinct) it is possible
for the Markov chain to visiti and then, at some later time, visitj. A square matrixA is
reducible if its indices can be reordered so that

A ∼=

[

B1 0
C B2

]

,

where eachBi is square and has order greater than or equal to1. The matrixA is irreducible
if it is not reducible. A Markov chain is irreducible if and only if its associated transition
matrix is irreducible.

A square matrixB is substochasticif it is square, entrywise nonnegative, and the sum of
the entries in each row is less than or equal to1. We refer toB asproperly substochasticif
it has no principal submatrices that are stochastic. An application of the well-known Perron-
Frobenius theorem implies that a substochastic matrixB is properly substochastic if and only
if every eigenvalueλ of B has|λ| < 1. Moreover, ifA is an irreducible stochastic matrix
andB is a principal submatrix ofA of strictly smaller order, thenB is properly substochastic.
A substochastic matrixB is reversible in precisely the same manner as a stochastic matrix: B
is reversible if there is a positive diagonal matrixΠ such thatΠB is symmetric. Principal
submatrices of reversible stochastic matrices are reversible substochastic matrices.

In the following two sections we define the stochastic complement and the concept of a
nearly uncoupled Markov chain. In Section4 we present a collection of algorithms which use
the stochastic complement to analyse the nearly uncoupled structure of a given Markov chain
and in Section5 we present a number of examples of such an analysis. The appendix contains
the calculation of a specific lower bound concerning reversible stochastic complements of
which we make extensive use—the reader may wish to examine theappendix before reading
Section4.

2. The stochastic complement.We introduce the concept of a stochastic complement.
Expositions of the properties of the stochastic complementappear in [10, 14].

DEFINITION 2.1. LetX be an irreducible Markov chain on the state spaceS. LetC be
a proper nonempty subset ofS and express the transition matrix ofX as

A ∼=

[

B1 B12

B21 B2

]

,

whereB1 is the principal submatrix ofA corresponding toS \ C andB2 is the principal
submatrix corresponding toC. We refer to the matrix

A \ C = B1 +B12 (I −B2)
−1

B21
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as the stochastic complement which removesC or as the stochastic complement onS \ C.
WhenX andA are reducible, the stochastic complementA \ C is defined as above, as long
as the principal submatrixB2 is properly substochastic.

When we are removing a single state via a stochastic complement, we will use the nota-
tionA\ i rather thanA\{i}. We will preserve indices/state labels in stochastic complements
throughout this work. That is, if the state space of the Markov chain associated withA is S,
then the entries ofA \ C are indexed byS \ C. For example, consider the stochastic matrix

A =





0.1 0.2 0.7
0.3 0.4 0.3
0.2 0.8 0.0





with the regular indices ofS = {1, 2, 3}. Then,

A \ 2 =

[

0.1 0.7
0.2 0.0

]

+

[

0.2
0.8

]

(

I −
[

0.4
])−1 [

0.3 0.3
]

=

[

0.2 0.8
0.6 0.6

]

.

We will view this matrix as having the indicesS \ 2 = {1, 3}. The(1, 3)-entry ofA \ 2 is 0.8
andA \ 2 has no(1, 2)-entry, for instance.

The following proposition summarises some results in [10, 14].
PROPOSITION2.2. LetX be a Markov chain on the state spaceS with transition ma-

trix A. Let C ⊆ S, and letÂ = A \ C be a stochastic complement. Then, the matrixÂ is
a stochastic matrix. Moreover, for eachi, j /∈ C, the valuêaij is the probability that after
visiting i, the statej is the very first state not inC that the Markov chain transitions into. That
is, givenxt′ = i,

âij = P [xT = j] ,

where

T = inf {t ≥ t′ + 1 |xt /∈ C} .

Thus, we can view the stochastic complement which removesC as a method of editing out the
collectionC from the Markov chainX. A stochastic complementA \ C models the Markov
chain obtained by “fast-forwarding” through the states inC, ignoring any time spent in that
collection.

In [10], it is noted that the stochastic complement is a specific instance of the more
general Schur complement. The following proposition can bededuced from known properties
of the Schur complement; see [16].

PROPOSITION2.3. LetX be an irreducible Markov chain on the state spaceS with tran-
sition matrixA. LetC1 andC2 be nonempty disjoint subsets ofS such thatC = C1 ∪ C2 6= S.
Then, the stochastic complement onS \ C can be formed via two stochastic complements by
first removingC1 and then removingC2. That is,

A \ (C1 ∪ C2) = (A \ C1) \ C2.

We will make extensive use of this proposition. In particular, we will often form stochas-
tic complements by removing states one at a time. This will allow us to calculate a stochastic
complement without having to calculate a matrix inverse. Let A be a stochastic matrix on the
state spaceS, and suppose thataii < 1. Express

A ∼=

[

B v
wT aii

]

,
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where the second position corresponds to statei and the first to the remainder of the state
space,S \ i. (We further suppose that the ordering ofS \ i has not been altered in this
expression.) Then,

A \ i = B +
1

1− aii
vwT .

PROPOSITION2.4. Let X be a reversible Markov chain with transition matrixA and
state spaceS. LetΠ be a positive diagonal matrix such thatΠA is symmetric. Let̂A = A\C
be a stochastic complement, and letΠ̂ = Π(S \ C) be the principal submatrix ofΠ on the
collectionS \ C. Then, the matrix̂A is reversible via the fact that̂ΠÂ is symmetric.

Proof. Express

A ∼=

[

B1 B12

B21 B2

]

andΠ ∼=

[

Π1 0
0 Π2

]

,

where the first diagonal block corresponds toS\C and the second corresponds toC. SinceΠA
is symmetric, we have

Π1B12 = BT
21Π2 andΠ2B21 = BT

12Π1.

As well, sinceΠ1B1 andΠ2B2 are symmetric, it holds that

Π1B1 = BT
1 Π1 andΠ2(I −B2) = (I −BT

2 )Π2.

The second equality further implies that

(I −BT
2 )

−1Π2 = Π2(I −B2)
−1.

So, we simply calculate the transpose ofΠ1(A \ C):

(Π1(A \ C))T =
(

B1 +B12(I −B2)
−1B21

)T
Π1 = BT

1 Π1 +BT
21(I −BT

2 )
−1BT

12Π1

= Π1B1 +BT
21(I −BT

2 )
−1Π2B21 = Π1B1 +BT

21Π2(I −B2)
−1B21

= Π1B1 +Π1B12(I −B2)
−1B21 = Π1(A \ C).

3. Nearly uncoupled Markov chains.

DEFINITION 3.1. LetX be a Markov chain on the state spaceS. LetE be a nonempty
proper subset ofS, and letǫ be a small (near zero) positive constant. We refer toE as an
almost invariant aggregate with respect toǫ if, givenxt ∈ E , the probability thatxt+1 /∈ E is
less than or equal toǫ.

The definition of an almost invariant aggregate given above is somewhat nebulous—the
probability thatxt ∈ E depends both on the parametert and on the initial distribution of
the Markov chain. Below, we make this more specific by showingtwo different manners in
which a collectionE may be considered to be almost invariant.

We use the symbol1 to refer to the column vector with every entry equal to1. LetB be
a substochastic matrix. We define theerror vector ofB to be the nonnegative vector

γB = 1−B1 = (I −B)1.

The error vector is a measure of how “close”B is to being stochastic. IfγB = 0, thenB is
stochastic; if every entry ofγB is near0, then every row sum ofB is near1 and thusB is
“nearly” stochastic.
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Let X be an irreducible Markov chain with transition matrixA, and letπ be the unique
stationary distribution. LetE be a nonempty proper subset of the associated state space,
let B = A(E) be the associated principal submatrix, and letγ = γB . For eachi ∈ E , theith
entry ofγ is the probability of transitioning fromi to a state not inE :

γ(i) = P [xt+1 /∈ E |xt = i] .

If γ ≤ ǫ1 (if every entry ofγ is less than or equal toǫ), then the probability of transitioning
from a state inE to a state not inE is less than or equal toǫ. Thus, regardless of any other
conditions, if this condition holds, then transitions thatexit E have a probability less than
or equal toǫ of occurring. Such an occurrence clearly implies thatE is an almost invariant
aggregate.

However, there is a weaker condition which still implies that transitions exitingE are a
rare occurrence. Letπ be the unique stationary distribution ofA, and letπ̂ = π(E) be the
subvector corresponding toE . If the Markov chain has an initial distribution equal toπ, then
the value

π̂T (I −B)1

π̂T1
=

π̂T γB
π̂T1

is the probability thatxt+1 /∈ E givenxt ∈ E . Moreover, for any initial distribution, it holds
that

π̂T (I −B)1

π̂T
1

= lim
t→∞

P [xt+1 /∈ E |xt ∈ E ] .

That is, π̂
T γB

π̂T 1
is the expected long-term probability of transitioning from a state inE to a state

not inE . Thus, if

π̂T γB
π̂T1

≤ ǫ,

then transitions fromE to S \ E become rare ast → ∞. In [3, 4], this value is referred to as
theπ-coupling measure of a collectionE , and is denoted bywπ(E):

wπ(E) =
π̂T γB
π̂T1

.

It is easily shown that the first criterion above implies the second. That is, if the principal
submatrixB represents transitions withinE andγB ≤ ǫ1, thenwπ(E) ≤ ǫ.

We are interested in the following problem: given a reversible stochastic matrixA and a
small positive valueǫ, can we produce a partition of the state spaceS into almost invariant
aggregates. We present an algorithm which utilises the stochastic complement to produce a
candidate partition.

This problem is investigated in-depth in [3, 4, 13]. There, the approach utilises the spec-
tral decomposition of the stochastic matrix in question. When a stochastic matrix is nearly
uncoupled, it has multiple eigenvalues very close to the number 1. The eigenvalues of a
stochastic matrix that are near to1 are referred to as aPerron cluster. In [3, 4], the eigen-
vectors associated with the Perron cluster are used to produce a candidate partition through a
process referred to asPerron cluster cluster analysis.

In [6], a similar approach that utilises the singular value decomposition rather than the
spectral decomposition is proposed. We present an additional discussion concerning this
approach in [15].
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The imprecision of Definition3.1 is, in a sense, imposed by the applications of the
concept. The analysis of almost invariant aggregates appears in pharmaceutical design;
see [4, 13], for example. A biomolecule often has multiple molecular configurations it may
assume; these configurations may have a significant effect onthe chemical properties of the
molecule. In practise, the transitions from configuration to configuration have been mod-
elled well as Markov chains. Moreover, these Markov chains,in general, exhibit a nearly
uncoupled structure. Identification of the almost invariant aggregates of these configurations
is useful in the pharmaceutical drug design.

In this context, almost invariant aggregates do not occur asartifacts of the model or
its assumptions, but rather arise naturally in the processes themselves. The states spaces of
configurations of biomolecules seem to possess partitions into aggregates such that when a
molecule assumes a configuration in one aggregate, it will continue to be observed to do so
for a relatively long period of time.

A natural explanation why this occurs has to do with energy requirements of certain
molecular states. Transitions from one such aggregate to another are those which require
an influx of energy to occur. For example, the molecule may need to be heated or charged
in order for a certain transformation of its configuration totake place. On the other hand,
transitions within an aggregate are those which require a relatively low amount of energy to
occur or, possibly, involve a release of energy.

These concrete observations, however, do not impose any specific requirements on a
definition of the phenomena. Theπ-coupling measure defined above seems to be robust
enough that it can be used to evaluate potential uncouplingsin a variety of applications. The
first criterion thatE is an almost invariant aggregate ifγE ≤ ǫ1 for some smallǫ is of more
theoretical interest and we use it primarily in our discussions of the algorithms themselves
rather than in the analysis of their performance.

3.1. Clustered graphs. Nearly uncoupled Markov chains are very much related to a
graph theoretic concept known as clustering. Roughly speaking, a cluster in a graph is a
collection of verticesX such that

1. edges that join two vertices inX are relatively common, and
2. edges that join a vertex inX to a vertex not inX are relatively uncommon.

This concept is typically only of interest when the graph in question contains a large number
of vertices. Graphs where a relatively high number of vertices are contained in clusters are
referred to ashighly clustered.

Somewhat intuitively, if a graph is highly clustered, the associated random walk is nearly
uncoupled andvice versa—methods for constructing almost invariant aggregates of a random
walk on a graph often correspond to methods for constructingclusters in that graph.

For example, the PCCA and SVD-based methods [3, 4, 6] are derived from the method
of partitioning a graph’s vertices using aFiedler vector. The Fiedler vector of a graph is an
eigenvector associated with the second smallest eigenvalue of the correspondingLaplacian
matrix; see [2, 5]. Partitioning the vertex set of a graph into two setsX andY so that the
members ofX have positive entries in the Fiedler vector and the members of Y have negative
entries generally has the property that edges joining two vertices both in one ofX or Y are
much more common than edges with one endpoint in each ofX andY .

In [11], a method of producing clusters that utilises the convergence of the random walk
is introduced—the stochastic consensus clustering algorithm (SCCA) looks for collections of
states that, roughly speaking, tend to be visited in quick succession.

Clusters in large graphs or networks are of great interest indata-mining [9] and analysis
of social networks [1, 12].
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4. Error-reducing algorithms. Let A be a reversible stochastic matrix on the state
spaceS, and letE ⊆ S. We refer to the number

νA(E) = 1
T γA(E) = 1

T (I −A(E))1 =
∑

i∈E

∑

j /∈E

aij

as thetotal error of E . If we express the matrixA as

A ∼=

[

A(E) A12

A21 A(S \ E)

]

,

then the total error ofE is simply the sum of the entries in the off-diagonal blockA12, that
is, νA(E) = 1

TA121. If the total error ofE is small, thenE is, evidently, an almost invari-
ant aggregate. However, the converse does not seem to reasonably hold. If E is an almost
invariant aggregate and|E| is relatively large, then we may haveνA(E) correspondingly large.

Let Ã = A \ C be a stochastic complement derived fromA. We refer toÃ aserror-
reducingif for every almost invariant aggregateE ⊆ S, we haveE * C and

νÃ(E \ C) ≤ νA(E).

A stochastic complementA \ C is error-reducing as long asC does not contain an entire
almost invariant aggregate and the removal ofC does not increase the total error of any almost
invariant aggregates.

Let B be a reversible substochastic matrix on the state spaceS. Let f be a bijection
from {1, 2, . . . , n} to the state spaceS (wheren = |S|). We refer tof as alower-weighted
reorderingof S if for all i < j, it holds thatbf(j)f(i) ≤ bf(i)f(j).

LEMMA 4.1. LetA be a reversible stochastic matrix on the state spaceS and letΠ be a
positive diagonal such thatΠA is symmetric. Letf be an ordering ofS such that

πf(1) ≥ πf(2) ≥ · · · ≥ πf(n),

wheren = |S|. Then,f is a lower-weighted reordering ofE .
Proof. LetA, Π, andf be as above. SinceΠA is symmetric, we haveπiaij = πjaji for

all i andj. Suppose thati < j.
If af(i)f(j) = 0, then the factsπf(i)af(i)f(j) = πjaf(j)f(i), πf(i) > 0 andπf(j) > 0

imply thataf(j)f(i) = 0. So in this case, it holds thataf(i)f(j) ≥ af(j)f(i).
If af(i)f(j) > 0, thenπf(i)af(i)f(j) = πjaf(j)f(i) implies that

af(j)f(i)

af(i)f(j)
=

πf(i)

πf(j)
≥ 1.

So in either case we obtain the inequalityaf(i)f(j) ≥ af(j)f(i).

LEMMA 4.2. LetA be a reversible stochastic matrix on the state spaceS. LetE ⊆ S,
and leti /∈ E . Then,

νA\i(E) ≤ νA(E),

as long asA \ i exists.
Proof. Express

A ∼=





B v ∗
wT aii ∗
∗ ∗ ∗



 ,
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where the first position corresponds toE , the second toi, and the third to the remainder of
the state space; we have only labelled those entries that will appear in our calculations. We
calculate

A \ i ∼=

[

B + 1
1−aii

vwT ∗

∗ ∗

]

.

So,

νA\i(E) = 1
T

(

I −B −
1

1− aii
vwT

)

1 ≤ 1
T (I −B)1 = νA(E).

LEMMA 4.3. LetA be a reversible stochastic matrix on the state spaceS. Let f be a
lower-weighted reordering ofA, let E ⊆ S contain at least two states, and let

i = max {k ≤ n | f(k) ∈ E} ,

wheren = |S|. Then,

νA\f(i)(E \ i) ≤ νA(E).

Proof. Let i1 < · · · < im be the indices mapped toE by f :

E = {f(i1), . . . , f(im)}.

By assumption,m ≥ 2 and

max {k ≤ n | f(k) ∈ E} = im.

ExpressÃ so that the firstm states aref(i1), . . . , f(im) (in that order). We partition this
expression of̃A into blocks

Ã ∼=





B u C
vT a wT

∗ ∗ ∗



 ,

where the first position corresponds to

Ẽ = {f(i1), . . . , f(im−1)}

the second corresponds tof(im) (u, v, andw are column vectors), and the third to the re-
mainder of the indices. We note that sincef is a lower-weighted reordering, we haveu ≤ v
(entrywise).

We calculate

Ã = A \ f(im) ∼=

[

B + 1
1−auv

T C + 1
1−auw

T

∗ ∗

]

.

Now we have

νA(E) = 1
TC1+ wT

1.
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Then, the total error of̃E (with respect toÃ) satisfies

νÃ(Ẽ) = 1
TC1+

1

1− a
1
TuwT

1 ≤ 1
TC1+

1

1− a
1
T vwT

1

≤ 1
TC1+

1

1− a
(1− a)wT

1 = 1
TC1+ wT

1 = νA(E).

The first inequality is due to the fact thatu ≤ v (entrywise) and the second is due to the
stochastic property: sincevT1 + a + wT

1 = 1, we havevT1 = 1 − a − wT
1 ≤ 1 − a.

We will utilise Algorithm 1 in our stochastic complement based algorithms. The inputs
of the Choose-algorithm are a reversible stochastic matrixA and an indexi; the output is
either an indexj 6= i such that

1. 0 < aji ≤ aij and
2. aik ≤ aij , for all k 6= i,

or the value0 if no suchj exists. LetA be reversible with stationary distributionπ, and
let Choose(A, i) = j 6= 0, then the fact thatπiaij = πjaji implies thatπi ≤ πj .

We now present our first stochastic complement based algorithm, the Perron-ordered
algorithm. The inputs of Algorithm2 are a reversible stochastic matrixA that has been
reordered via its stationary distribution and a small positive valueǫ. That is, the algorithm
implicitly assumes that if̃A = A \ C is a stochastic complement formed fromA and if i < j
are not contained inC, thenãji ≤ ãij .

We note that reorderingA via some output of Algorithm3 is not sufficient to ensure the
above property. The state space ofA needs to be ordered via its stationary distribution—if a
stationary distribution is not known or calculable, Algorithm 4 should be used instead.

The output of the Perron-ordered algorithm, Algorithm2, is a partition of the state
spaceS into candidate aggregates. We claim that when the valueǫ is well-chosen, the output
aggregates are very good candidates for almost invariant aggregates.

LetA be a reversible stochastic matrix on the state spaceS, letn = |S|, and let0 < ǫ < 1.
For eachs ≥ 1,

1. let is be the state removed during thesth iteration of the while loop,
2. let

Cs = {i1, i2, . . . , is}

be the collection of states removed afters iterations,
3. and letjs /∈ Cs be the state identified by the Choose algorithm, i.e.,

js = Choose(A \ Cs−1, is),

One can show, inductively, that afters iterations
1. the current stored list of aggregates,

{Ei | i /∈ Cs} ,

is a partition ofS,
2. the stored value ofmi is the number of states contained inEi, and
3. for any stationary distributionπ of A and anyi /∈ Cs,

πi = max
k∈Ei

{πk}.
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Algorithm 1 Choose(A, i).
Select an indexj 6= i such thataij is maximal among the off-diagonal entries in theith row
of A; if this maximal value is attained more than once, choose such aj that has minimalaji.
if aij < aji or aij = 0 then

return 0
else

return j
end if

Algorithm 2 The Perron-ordered algorithm.
B := A
for all i ∈ S do

Ei := {i}
mi := 1

end for
K := {i | bii < 1− ǫ}
while K is nonemptydo

Let i ∈ K be the member ofK closest to|S| that has Choose(B, i) 6= 0:

i := max {k ∈ K |Choose(B, k) 6= 0} .

if No suchi ∈ K existsthen
Exit thewhile loop.

else
j := Choose(B, i)
Ej := Ej ∪ Ei
mj := mj +mi

DeleteEi from storage.
B := B \ i
K := K \ i
for all k ∈ K do

if bkk ≥ (1−ǫ)2

1+(mk−2)ǫ then
K := K \ k

end if
end for

end if
end while
return {Ek}

Now, lets ≥ 1 and suppose that

1. there is a partition of the state spaceS into almost invariant aggregates,
2. the stochastic complementA \ Cs is error-reducing, and
3. for t = 1, . . . , s, each pair of statesit andjt is contained in a single member of the

partition into almost invariant aggregates.

Suppose that the algorithm does not terminate after thesth iteration and consider the pair
of statesi = is+1 andj = js+1. Let E be the almost invariant aggregate containingi.

First, suppose that every member ofE aside fromi is contained inCs. Since every
pair (it, jt) is contained in a single almost invariant aggregate, every member of the stored
partition{Ei | i /∈ Cs} contains states from exactly one almost invariant aggregate, hence it
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Algorithm 3 Reorder(B).
Let n be the order ofB.
f := (1, 2, . . . , n)
r := 1
s := 2
while s ≤ n do

if bf(r)f(t) ≤ bf(t)f(r) for t = s, . . . , n then
r := r + 1
if r = s then

s := s+ 1
end if

else
Let t be such thats ≤ t ≤ n andbf(r)f(t) > bf(t)f(r).
(f(r), f(r + 1), . . . , f(t)) := (f(t), f(r), f(r + 1), . . . , f(t− 1))
s := s+ 1

end if
end while
return f

holds thatE = Ei andmi = |E|. However, PropositionA.10 then implies that

bii ≥
(1− ǫ)2

1 + (mi − 2)ǫ
,

whereB = A\Cs. (This is the result of an extensive calculation found in theappendix.) This
is a contradiction because when the statei is removed, we have

bii <
(1− ǫ)2

1 + (mi − 2)ǫ
.

So, we suspect that the statei is contained in some almost invariant aggregateE such
thatE \ Cs+1 is nonempty. The stochastic complementB = A \ Cs is error-reducing and the
entry bij is larger than any otherbik—this suggests thatj is contained in this same almost
invariant aggregate. Then, when we form the stochastic complementA\Cs+1, the fact thatπi

is minimal (among all states satisfying the above) togetherwith Lemmas4.1, 4.2, and4.3,
suggests that this new stochastic complement is error-reducing as well.

Thus, inductively, every correct association made (every unionEj ∪ Ei wherei andj are
members of the same almost invariant aggregate) seems to make further correct associations
more likely. The algorithm terminates when it cannot locateany further statesi that seem to
be “safe” to remove.

Next, we present the lower-weighted algorithm (Algorithm4), intended for use on re-
versible matricesA for which the stationary distributionπ is unknown. We recommend
using this process rather than simply calculating a stationary distribution for the following
reason. When the stochastic matrixA is nearly uncoupled, there is a potentially large num-
ber of eigenvalues near to the eigenvalue1. Thus, the eigenvector problemxT = xTA is
badly conditioned—computed solutions to this problem are very sensitive to perturbation and
roundoff error making them unreliable as actual eigenvectors. The lower-weighted algorithm
bypasses this problem by proceeding without any knowledge of the eigenvectors ofA.

The lower-weighted algorithm utilises the reorder algorithm, Algorithm3, to construct
lower-weighted reorderings of the state space; the input ofAlgorithm 3 is a reversible stochas-
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Algorithm 4 The lower-weighted algorithm.
B := A
for all i ∈ S do

Ei := {i}
mi := 1

end for
f := Reorder(B)
K := {i | bii < 1− ǫ}
while K is nonemptydo

if Choose(B, i) = 0 for all i ∈ K then
Exit thewhile loop.

else
Let k be the largest index such thatf(k) ∈ K and Choose(B, f(k)) 6= 0
i := f(k)
j := Choose(B, i)
Ej = Ej ∪ Ei
mj := mj +mi

DeleteEi from storage.
B := B \ i
f := Reorder(B)

end if
end while
return {Ek}
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FIG. 5.1.The50 eigenvalues of the collaboration network nearest to1.

tic matrix and the output is a lower-weighted reorderingf . The reorder algorithm is a mod-
ified version of a depth-first search. Within Algorithm3, the functionf is expressed as
its range ordered by its domain, i.e., the functionf = (2, 3, 1) hasf(1) = 2, f(2) = 3,
andf(3) = 1.

The lower-weighted algorithm proceeds in much the same manner as the Perron-ordered
algorithm; it simply recalculates a lower-weighted reordering at every step in order to ensure
that the complements formed are error-reducing. (The reordering needs to be recalculated
after every stochastic complement—if the matrixA is lower-weighted, it is not necessarily
true thatA \ i is lower-weighted.)

5. Examples. First, we apply our Perron-ordered algorithm to a collaboration network,
previously presented in [12]. The network represents published collaborations between a
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(b) ǫ = 0.01

FIG. 5.2.Algorithm2 applied to a collaboration network.

group of researchers. Each node in the network is a given researcher; the edges and their
weights are determined by papers published. If a paper hask authors, it contributes a weight
of 1/

(

k
2

)

to every edge joining pairs of thesek authors. (Each published work contributes
a total weight of1 to the edges of the network.) The full data set includes1589 authors.
However, the full network is not connected. We will analyse only the largest connected
component (as in [12]). The remainder of this section refers only to this largestconnected
component, which consists of379 researchers.

This collaboration network is interesting because it highly clustered. This is reflected in
its spectrum—the transition matrix of the random walk on thisnetwork has a large number
of eigenvalues near1 and no clear gap separating the eigenvalues near1 from the remainder.
We present the50 eigenvalues of the transition matrix nearest to1 in Figure5.1.

We apply our Perron-ordered algorithm to the transition matrix of the random walk on
this network in order to detect “clusters”—groups of nodes that are well-connected to each
other and poorly connected to the remainder of the nodes. We apply it twice, once each with
the inputsǫ = 0.05 andǫ = 0.01. As the random walk is derived from a known network, the
stationary distribution of the random walk is known—it is a scalar multiple of the vector of
the degrees of the nodes. Thus, we evaluate our output using theπ-coupling measure,

wπ(E) =
π(E)T (I −A(E))1

π(E)T1
=

π(E)T γA(E)

π(E)T1
.

(As well, knowledge of the stationary distribution is required to apply the Perron-ordered
algorithm.) We find that applying Algorithm2 with inputsǫ = 0.05 andǫ = 0.01 results in
partitions of the state space into25 and8 aggregates, respectively. Theπ-coupling measures
of these aggregates together with the meanπ-coupling measures (drawn as a red line) are
displayed in Figure5.2.

We present the network in Figure5.3. The partition obtained withǫ = 0.01 is repre-
sented by the colouring of the vertices. The layout of the vertices has not been influenced
by the partition. We graphed this network with the software package PAJEK∗—the software
attempts (as much as possible) to arrange the vertices so that the edges are drawn with short
lengths and so that few edges cross. The partition produced by the Perron-ordered algorithm
coincides well with this layout.

This collaboration network is analysed in [12]. There, it is used to illustrate a concept
known as modularity. The modularity of a vertex is a measure of how “central” that vertex is
within the network. It was found that ten vertices have relatively high modularity.

∗http://vlado.fmf.uni-lj.si/pub/networks/pajek/

http://vlado.fmf.uni-lj.si/pub/networks/pajek/
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Pajek

FIG. 5.3.The largest connected component of the collaboration network with a partition into almost invariant
aggregates.

Next, we briefly summarise some of our results concerning a simulation of the molecu-
lar transitionsn-pentane. We provide this example in order to compare the performance of
our algorithms with that of competing methods. The stochastic matrix in question was ob-
tained from a Markov chain Monte Carlo simulation of the molecular states of then-pentane
molecule; see [3, 13, 14] for details.

The matrix in question is a255× 255 reversible stochastic matrix with known stationary
distribution. It is previously analysed in [3, 6].

The Perron cluster analysis technique decides in advance how many aggregates will be
formed. The number is chosen by selecting a cluster of eigenvalues of the matrix near to1 (the
Perron cluster)—the number of such eigenvalues is the numberof aggregates the algorithm
will produce. In [3], it is noted that the eight eigenvalues of then-pentane transition matrix
nearest to1 are (approximately)1, 0.986, 0.984, 0.982, 0.975, 0.941, 0.938, and0.599.
In addition to the eigenvalue1, there are four eigenvalues approximately equal to0.98 and
a further two approximately equal to0.94 with the remainder being not close to1. This
suggests either5 or 7 aggregates. The PCCA algorithm is applied twice to produce partitions
into 5 and7 aggregates.

In [6], a similar approach that uses singular vectors rather thaneigenvectors is applied to
the same matrix. The SVD-based approach is applied only onceto produce a partition into7
aggregates.

We find that applications of the lower-weighted and Perron-ordered algorithms with in-
puts ofǫ = 0.01 and0.005 produce partitions into7 and5 aggregates, respectively. We report
theminimumπ-coupling measures of the output partitions in Table5.1. That is, every mem-
ber of each partition produced has aπ-coupling measure greater than or equal to the given
value. The minimumπ-coupling measures of the outputs of our stochastic complement-based
algorithms in each case exceed those of the competing Perroncluster and SVD-based meth-
ods, at least slightly. The transition matrix is displayed in Figure5.4—the results obtained
here compare very favourably with those in [3, 6].

6. Conclusion. The algorithms presented here are an efficient manner to construct al-
most invariant aggregates of a given stochastic matrix. Each of the iterative steps applied
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(a)The lower-weighted algorithm withǫ = 0.01.
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(b) The Perron-ordered algorithm withǫ = 0.005.

FIG. 5.4.Decouplings of then-pentane transition matrix obtained via the stochastic complement based algo-
rithms.

TABLE 5.1
Stochastic complement based and other algorithms applied to then-pentane transition matrix.

Algorithm ǫ Aggregates Min.π-coupling measure

Lower-weighted
0.01 7 0.921
0.005 5 0.979

Perron-ordered
0.01 7 0.920
0.005 5 0.979

PCCA
n/a 7 0.918
n/a 5 0.976

SVD-based n/a 7 0.876

to a matrix of ordern require of the order ofn2 floating point operations. Thus, the algo-
rithms operate in polynomial time of ordern3 with respect to the order of the input matrices.
The storage requirements are minimal—the amount of additional storage necessary (assum-
ing the input matrix is already in storage) is simply the amount required to store a second
copy of the input matrix. This is in contrast to the eigenvector and singular vector based
approaches [3, 4, 6, 13], which are actually convergent algorithms rather than deterministic
ones.

This efficiency allows the stochastic complement based algorithms to be run many times
at little cost with varying values for the inputǫ. In addition to allowing the selection of an
optimal output, such a process may be of utility in analysingthe decoupled properties of the
Markov chain more thoroughly. These multiple output partitions can be combined to form
hierarchical decompositions of the state space. For example, the25 aggregates formed by
applying the Perron-ordered algorithm to the collaboration network withǫ = 0.05 form a
refinement of the aggregates obtained withǫ = 0.01.

An advantage of this approach is its independence of spectral methods. When a stochas-
tic matrixA is nearly uncoupled, it possesses multiple eigenvalues near to 1 (its Perron clus-
ter). If this Perron cluster is sufficiently large, the calculation of the eigenvectors associ-
ated with these eigenvalues is somewhat unreliable—these calculations are very sensitive to
floating point round-off errors, for example. Moreover, spectral methods tend to rely upon
heuristic or convergent methods, especially in their calculation of eigenvectors and singular
vectors. The algorithms presented here terminate after a finite and well-bounded number of
steps, producing an output partition uniquely determined by the input matrix.
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Appendix A. A lower bound concerning stochastic complements of reversible sub-
stochastic matrices.

We construct a lower bound on a specific term relating to stochastic complements of re-
versible substochastic matrices. This lower bound is used in Algorithms2 and4 to determine
whether or not a given state is “safe” to be removed via a stochastic complement.

A.1. Definitions and problem statement.

DEFINITION A.1. LetB be a properly substochastic matrix, and letC be the associated
state space. If the order ofB is 1, that is, ifC = {i} andB = [bii], we defineαB(i) = bii.
If C contains two or more states, then for eachi ∈ C, we express

B ∼=

[

bii vT

w C

]

,

and define

αB(i) = bii + vT (I − C)−1w.

We note that givenB andC as above,

[αB(i)] = B \ {j ∈ C | j 6= i} ,

if we defineB \ ∅ = B.
LetX be a Markov chain on the state spaceS. ForC ⊆ S, we define

EC = inf
t≥1

{t : xt /∈ C} .

If x0 ∈ C, we refer tot = EC as thefirst exit timeout ofC, and we say that the Markov chain
exitsC at timet. As well, for eachi ∈ S,

Ti = inf
t≥1

{t : xt = i}

is thefirst passage timeinto i.
Let A be a reversible stochastic matrix on the state spaceS, let C ⊆ S, B = A(C), and

suppose further thatB is irreducible. Via Proposition2.2, it can be shown that for anyi ∈ C,
the numberαB(i) is the probability of transitioning fromi to i (in one or more steps) without
first exitingC. That is,

αB(i) = P [Ti < EC |x0 = i] .

Let B be an irreducible reversible substochastic matrix and suppose thatΠ andΠ′ are
positive diagonal matrices such thatΠB andΠB′ are symmetric. For anyi 6= j with bij 6= 0,
we have

πibij = πjbji andπ′
ibij = π′

jbji,

further implying that

bji
bij

=
πi

πj
=

π′
i

π′
j

.

So whenbij 6= 0, the ratiosπi/πj = π′
i/π

′
j are uniquely determined byB. SinceB is

irreducible, this implies that every ratioπi/πj = π′
i/π

′
j is uniquely determined byB.
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The above reasoning implies that for any such matrixB, the matricesΠ that sym-
metriseB via a left-multiplication are uniquely determined up to a multiplication by a positive
scalar. In light of this, we will define a canonical positive diagonal for each suchB. LetB be
an irreducible reversible substochastic matrix. We defineΠ = ΠB to be the unique positive
diagonal such thatΠB is symmetric and such that the largest entry inΠ is 1. That is,Π = ΠB

satisfies

πibij = πjbji andmax
i∈C

{πi} = 1,

whereC is the state space ofB.
DEFINITION A.2. Letn ≥ 1 be a positive integer andǫ < 1 be a positive real number.

We defineB(n, ǫ) = {B} to be the collection ofn× n substochastic matricesB such that
1. B is irreducible and reversible and
2. γB = (I −B)1 ≤ ǫ1.

We note that for allB ∈ B(n, ǫ), it holds thatB1 ≥ (1− ǫ)1.
DEFINITION A.3. Letn ≥ 1, and letǫ < 1 be a positive real number. LetB ∈ B(n, ǫ),

and letΠ = ΠB . We defineα(B) to be the minimum value ofαB(i) subject toπi = 1,

α(B) = min
i∋πi=1

{αB(i)}.

We note that ifB ∈ B(n, ǫ) andΠ = ΠB , then for every indexi of B, eitherπi < 1
or αB(i) ≥ α(B).

The problem we solve is the following. Given a positive integer n ≥ 2 and a positive
real numberǫ < 1, we calculate the number

α(B) = inf
B∈B

{α(B)}

and characterise those reversible substochastic matricesB ∈ B that haveα(B) = α(B).

A.2. Preliminaries.

LEMMA A.4. LetB ∈ B(n, ǫ) wheren ≥ 2. Then we can express

B ∼=

[

a vT

w C

]

,

where, in addition to the fact thatB is irreducible and substochastic, it holds that
1. a+ vT1 ≥ 1− ǫ,
2. C1+ w ≥ (1− ǫ)1,
3. α(B) = a+ vT (I − C)−1w, and
4. there is a positive diagonal matrixQ, such thatQ ≤ I, QC = CTQ, andQw = v.

Proof. LetΠ = ΠB . Since

α(B) = min
i∋πi=1

{αB(i)},

there is an indexi such thatπi = 1 andα(B) = αB(i). Express

B ∼=

[

bii vT

w C

]

,
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where the first row and column corresponds to such a statei and the principal submatrixC
corresponds to the remainder of the state space. The first twoclaims are direct consequences
of the fact that

γB = (I −B)1 ≤ ǫ1.

The third claim is simply a restatement of the fact thatαB(i) = α(B).
Finally, sinceπi = 1 andπj ≤ 1 for all j ∈ C, we have

ΠB
∼=

[

1 0
0 Q

]

,

whereQ ≤ I via the same correspondence asB. The fourth claim is a consequence of the
fact thatΠBB = BTΠB .

The following lemma combines a few well-known results from the theory ofM -matrices;
see [8, Section2.5].

LEMMA A.5. LetX, Y, andZ be nonnegative square matrices of orderm ≥ 1 such that
1. Z is irreducible,
2. X andY are positive diagonal matrices,
3. X ≤ Y with a strict inequality in at least one diagonal entry, and
4. Z1 ≤ X1 with a strict inequality in at least one position.

Then, the matrices(X − Z)−1 and(Y − Z)−1 are defined and satisfy (entrywise)

0 < (Y − Z)−1 < (X − Z)−1.

A real matrixX is positive definiteif it is symmetric and every eigenvalue ofX is posi-
tive. We note that real positive definite matrices are nonsingular.

LEMMA A.6. LetX be a real positive definite matrix, and letv be a nonzero real vector.
Then,

(

vTXv
) (

vTX−1v
)

≥
(

vT v
)2

= ‖v‖4 ,

with equality if and only ifv is an eigenvector ofX.
Proof. We make use of some well-known facts from linear algebra.
First, the Cauchy-Schwarz inequality (as it applies to realspaces of column vectors) is

the following proposition: letv andw be nonzero real column vectors, then

vTw ≤ ‖v‖ ‖w‖ = (vT v)1/2(wTw)1/2,

with equality if and only ifv = βw for some nonzero real numberβ.
Second, we make use of the following propositions taken from[7, Chapter7]: let X be

a real positive definite matrix, then
1. there is a unique real positive definite matrix labelledX1/2 and referred to as the

square root ofX such that

(X1/2)2 = X,

2. the matrixX−1 is itself real and positive definite, and
3. the square root ofX−1 is the inverse ofX1/2,

(X−1)1/2 = (X1/2)−1,

and we label this matrixX−1/2.
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(We have modified the results in [7] slightly as we are only interested in the real case).
Now, letX be a real positive definite matrix andv be a nonzero real vector. Then,

vT v = vTX1/2X−1/2v = (X1/2v)T (X−1/2v).

So, via the Cauchy-Schwarz inequality,

vT v ≤
∥

∥

∥
X1/2v

∥

∥

∥

∥

∥

∥
X−1/2v

∥

∥

∥
= (vTXv)1/2(vTX−1v)1/2.

Squaring every term in this expression yields the expression in the statement above. Further-
more, we note that equality holds if and only if

X1/2v = βX−1/2v,

for some real numberβ. When this occurs, a left-multiplication byX1/2 leads toXv = βv.

Let B ∈ B(n, ǫ), and letΠ = ΠB . We note thatΠB = I if and only if B is symmetric.
If B is symmetric, then

α(B) = min
i∋πi=1

{αB(i)} = min{αB(i)},

and we haveαB(i) ≥ α(B) for all i. As well, if B is symmetric, the expression ofB found
in LemmaA.4 is

B ∼=

[

a vT

v C

]

,

whereC is symmetric andα(B) = a+ vT (I − C)−1v.

LEMMA A.7. Let B ∈ B(n, ǫ). If B is not symmetric, then there is a symmetric sub-
stochastic matrixB̂ ∈ B(n, ǫ) such thatα(B̂) < α(B).

Proof. Suppose thatB ∈ B(n, ǫ) is not symmetric. Express

B ∼=

[

a vT

w C

]

andΠ = ΠB
∼=

[

1 0
0 Q

]

as in LemmaA.4. Thus,Q ≤ I, Qw = v, andQC is symmetric. The assumption thatB is
not symmetric implies thatQ 6= I. We note that sinceB ∈ B(n, ǫ), we have

1. B is irreducible,
2. 1− ǫ ≤ a+ vT1 ≤ 1, and
3. (1− ǫ)1 ≤ C1+ w ≤ 1.

Let

B̂ =

[

a vT

v Ĉ

]

,

where

Ĉ = QC + (1− ǫ)(I −Q).

We claim thatB̂ is a symmetric member ofB(n, ǫ) andα(B̂) < α(B). Since0 ≤ Q ≤ I, B̂
is nonnegative. For everyi 6= j, we havêbij = πibij , so the fact thatB is irreducible implies
thatB̂ is irreducible. As well, the fact thatQC is symmetric implies that̂B is symmetric. So
we next need to show that̂B is substochastic andγB̂ ≤ ǫ1.
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By assumption, we have1− ǫ ≤ a+ vT1 ≤ 1. Next, the inequalityC1+w ≥ (1− ǫ)1
implies that

Ĉ1+ v = (QC + (1− ǫ)(I −Q))1+Qw = Q(C1+ w) + (1− ǫ)(I −Q)1

≥ Q ((1− ǫ)1) + (1− ǫ)(I −Q)1 = (1− ǫ)1.

As well, the inequalitiesC1+ w ≤ 1 and0 ≤ Q ≤ I imply that

Ĉ1+ v = Q(C1+ w) + (1− ǫ)(I −Q)1 ≤ Q1+ (1− ǫ)(I −Q)1

= (1− ǫ)1+ ǫQ1 ≤ (1− ǫ)1+ ǫ1 = 1.

Hence, we obtain that(1− ǫ)1 ≤ B̂1 ≤ 1. Thus,B̂ is a symmetric member ofB(n, ǫ). We
now show thatα(B̂) < α(B).

SinceB̂ is symmetric, we haveΠB̂ = I, which impliesαB̂(1) ≥ α(B̂). We note
thatQw = v, thus we obtainw = Q−1v. We calculate

α(B) = a+ vT (I − C)
−1

w = a+ vT (I − C)
−1

Q−1v = a+ vT (Q−QC)
−1

v

and

αB̂(1) = a+ vT
(

I − Ĉ
)−1

v = a+ vT (I − (QC + (1− ǫ)(I −Q)))
−1

v

= a+ vT (Q+ ǫ(I −Q)−QC)
−1

v.

Permute the indices (if necessary) so that

C ∼=







C1 0
. ..

0 Cl






, Q ∼=







Q1 0
. ..

0 Ql






, and v ∼=







v1
...
vl






,

where eachCk is irreducible. We expand our formulae above forα(B) andαB̂(1):

α(B) = a+

l
∑

k=1

vTk (Qk −QkCk)
−1vk

and

αB̂(1) = a+

l
∑

k=1

vTk (Qk + ǫ(I −Qk)−QkCk)
−1

vk.

If Qk = I, thekth terms from the two sums are equal. IfQk 6= I, we apply LemmaA.5
with X = Qk, Y = Qk + ǫ(I −Qk), andZ = QkCk to see that entrywise

0 < (Qk + ǫ(I −Qk)−QkCk)
−1

< (Qk −QkCk)
−1.

SinceB is irreducible, everyvk has at least one positive term. Thus, ifQk 6= I, it holds that

vTk (Qk + ǫ(I −Qk)−QkCk)
−1

vk < vTk (Qk −QkCk)
−1vk.

SinceQ 6= I, there is at least oneQk 6= I, and so we arrive at

α(B̂) ≤ αB̂(1) < α(B).

LEMMA A.8. Let B ∈ B(n, ǫ) be symmetric. Suppose that there is an indexi such
that αB(i) = α(B) and γB(i) < ǫ. Then, there is also a symmetric substochastic ma-
trix B̂ ∈ B(n, ǫ) such that
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1. α(B) > α(B̂),
2. γB̂(i) = ǫ, and
3. for all j 6= i, γB̂(j) = γB(j).

Proof. Let the statei be such thatαB(i) = α(B) andγB(i) < ǫ. Without loss of
generality, we assume thati = 1. By assumption,B is symmetric. Via LemmaA.4, we
express

B =

[

a vT

v C

]

,

whereC is symmetric andα(B) = αB(1) = a+ vT (I − C)−1v. Now, we have

γB(1) = 1− a− vT1,

hence,γB(1) < ǫ implies thata+ vT1 > 1− ǫ.
First, suppose thatvT1 ≤ 1− ǫ, then we havea > 1− ǫ− vT1 ≥ 0. Let

B̂ =

[

1− ǫ− vT1 vT

v C

]

.

We have

α(B̂) ≤ αB̂(1) = 1− ǫ− vT1+ vT (I − C)−1v < a+ vT (I − C)−1v = α(B).

So, we next assume thatvT1 > 1 − ǫ. Let R be the diagonal matrix withri = v(i),
thusR1 = v. For real numbersz with 0 ≤ z < 1, letv(z) = (1−z)v, and letC(z) = C+zR.
As long asz < 1, the matrixC(z) is properly substochastic, so(1−C(z))−1 is nonnegative.
We will first show that the function

f(z) = v(z)T (I − C(z))−1v(z) = (1− z)2vT (I − C(z))−1v

is strictly decreasing inz over the intervalz ∈ [0, 1). We note that

d

dz
C(z) = R.

We will use the fact that whenz 7→ Y is an entrywise differentiable functionR 7→ Rn×n, the
derivative ofY −1 is given by

d

dz
Y −1 = −Y −1

(

d

dz
Y

)

Y −1.

We calculate

df

dz
= (1− z)2vT

(

d

dz
(I − C(z))−1

)

v +

(

d

dz
(1− z)2

)

vT (I − C(z))−1v

= (1− z)2vT (I − C(z))−1

(

−
d

dz
(I − C(z))

)

(I − C(z))−1v

+

(

d

dz
(1− z)2

)

vT (I − C(z))−1v

= (1− z)2vT (I − C(z))−1R(I − C(z))−1v − 2(1− z)vT (I − C(z))−1v

= v(z)T (I − C(z))−1R(I − C(z))−1v(z)− 2v(z)T (I − C(z))−1v

= v(z)T (I − C(z))−1R(I − C(z))−1v(z)− 2v(z)T (I − C(z))−1R1

= v(z)T (I − C(z))−1R
(

(I − C(z))−1v(z))− 21
)

.
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An application of LemmaA.5, together with the fact thatB is irreducible shows that the
vectorv(z)T (I−C(z))−1R is entrywise nonnegative with at least one positive entry (as long
as0 ≤ z < 1). We will show that the vector(I−C(z))−1v(z)−21 has every entry negative.
We note that

C(z)1+ v(z) = C1+ zR1+ (1− z)v = C1+ zv + (1− z)v = C1+ v ≤ 1;

thus,v(z) ≤ 1− C(z)1 = (I − C(z))1. This implies that

(I − C(z))−1v(z) ≤ (I − C(z))−1(I − C(z))1 = 1 < 21,

and so

(I − C(z))−1v(z)− 21 < 0.

Hence, we have shown thatf(z) < f(0) as long as0 < z < 1. Let z0 be such that

v(z0)
T
1 = (1− z0)v

T
1 = 1− ǫ.

Since1− ǫ < vT1 ≤ 1, we have0 < z0 ≤ ǫ < 1. Let

B̂ =

[

0 v(z0)
T

v(z0) C(z0)

]

.

Sincev(z0) is a positive scalar multiple ofv andC(z0) is equal to the sum ofC and a
nonnegative diagonal matrix,̂B is an irreducible nonnegative matrix. The sum of the entries
in the first row ofB̂ is 1− ǫ and the sum of the entries in any other row is equal to the sum of
the entries in the corresponding row ofB. Thus, we obtain

(1− ǫ)1 ≤ B̂1 ≤ 1.

Finally,C(z0) is symmetric sinceC is symmetric. Thus,̂B is a symmetric member ofB(n, ǫ)
andQB̂ = I. Then, we note that

α(B̂) ≤ αB̂(1) = f(z0)

and

f(z0) < a+ f(0) = a+ bvT (I − C)−1v = α(B).

LetB = B(n, ǫ). In calculating the value

α(B) = inf
B∈B

{α(B)} ,

it is sufficient to find a lower bound forα(B) whereB is a symmetric member ofB (via
LemmaA.7), andα(B) = αB(i) whereγB(i) = ǫ (via LemmaA.8).

A.3. A lower bound concerning stochastic complements of reversible substochastic
matrices. We now calculate the value of

α(B) = inf
B∈B

{α(B)} ,

whereB = B(n, ǫ). Forn = 1, the problem is trivial. In this case,B = {[b] : 1− ǫ ≤ b ≤ 1}.
ForB = [b] ∈ B, we haveα(B) = b, so in this case,

α(B) = inf
B∈B

{α(B)} = 1− ǫ.
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PROPOSITIONA.9. Let n be a positive integer greater than or equal to2 and ǫ be a
positive real number strictly less than1, and letB = B(n, ǫ). Then,

α(B) =
(1− ǫ)2

1 + (n− 2)ǫ
.

Moreover, a matrixB ∈ B satisfiesα(B) = α(B) if and only if

B ∼=

[

0 1−ǫ
n−11

T

1−ǫ
n−11 C

]

,

whereC is an(n− 1)× (n− 1) symmetric nonnegative matrix such that

C1 = (1− ǫ)1−
1− ǫ

n− 1
1 =

(1− ǫ)(n− 2)

n− 1
1.

Proof. By LemmasA.4, A.7, and A.8, we simply have to calculate a lower bound
for a+ vT (I − C)−1v, where

1. the matrixC is symmetric, nonnegative, and has ordern− 1,
2. the vectorv is nonnegative, has ordern− 1, and satisfiesvT1 ≤ 1− ǫ,
3. the matrix

B =

[

a vT

v C

]

is substochastic and irreducible,
4. a+ vT1 = 1− ǫ, and
5. C1+ v ≥ (1− ǫ)1.

Let C, v, anda satisfy the above conditions, and letm = n − 1 ≥ 1 be the order ofC
andv. Let

r = C1+ v − (1− ǫ)1.

We note thatr ≥ 0. Let R be the diagonal matrix of orderm with ith diagonal entry equal
to ri. As in the proof of LemmaA.7, express

C ∼=







C1 0
. ..

0 Cl






, R ∼=







R1 0
. . .

0 Rl






, andv ∼=







v1
...
vl






,

where eachCk is irreducible. AsB is irreducible, eachvk has at least one positive entry. An
application of LemmaA.5 with Y = I + Rk, X = I, andZ = Ck shows that ifRk 6= 0,
then the matrix(I +Rk − Ck)

−1 exists and entrywise it holds that

0 < (I +Rk − Ck)
−1

< (I − Ck)
−1

.

Thus, the matrix(I +R− C)−1 is entrywise nonnegative. Let

α′ = a+ vT (I +R− C)−1v.

Then,

α′ = a+ vT (I +R− C)−1v = a+

k
∑

i=1

vTi (I +Ri − Ci)
−1vi

≤ a+

k
∑

i=1

vTi (I − Ci)
−1vi = α(B),
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with equality if and only ifR = 0. We note thatR = 0 holds if and only ifB1 = (1− ǫ)1.
Now, letC ′ = C −R, so that

α′ = a+ vT (I − C ′)−1v.

Although the matrixC ′ may have negative entries, the matrix(I −C ′)−1 = (I +R−C)−1

is entrywise nonnegative (as noted above). SinceR1 = C1 + v − (1 − ǫ)1, we have the
relationC ′

1+ v = (1− ǫ)1 implying that

v = (1− ǫ)1− C ′
1 = (I − C ′)1− ǫ1.

Thus, we obtain

vT (I − C ′)−1v =
(

1
T (I − C ′)− ǫ1T

)

(I − C ′)−1 ((I − C ′)1− ǫ1)

= 1
T (I − C ′)1− 2ǫ1T

1+ ǫ21T (I − C ′)−1
1,

as well as

a = 1− ǫ− vT1 = 1− ǫ−
(

1
T (I − C ′)− ǫ1T

)

1 = 1− ǫ− 1
T (I − C ′)1+ ǫ1T

1.

Hence,

α′ = a+ vT (I − C ′)−1v

= 1− ǫ− 1
T (I − C ′)1+ ǫ1T

1+ 1
T (I − C ′)1− 2ǫ1T

1+ ǫ21T (I − C ′)−1
1

= 1− ǫ− ǫ1T
1+ ǫ21T (I − C ′)−1

1 = 1− (m+ 1)ǫ+ ǫ21T (I − C ′)−1
1.

(The vector1 in the above expression has orderm and so1T
1 = m). Thus, in order to

calculate a lower bound forα′ we simply need to calculate a lower bound for1
T (I−C ′)−1

1.
Now, C andC ′ are symmetric andC − C ′ = R, whereR is a positive semidefinite

matrix (R is a nonnegative diagonal matrix). The largest positive eigenvalue ofC ′ is less than
or equal to the largest positive eigenvalue ofC (see [7, Corollary7.7.4], for example). The
matrixC is properly substochastic as it is a principal submatrix of an irreducible substochastic
matrix. The largest positive eigenvalue ofC is thus strictly less than1. Altogether,C ′ is a
symmetric real matrix whose eigenvalues are strictly less than1, further implying thatI −C ′

is a positive definite real matrix.
By LemmaA.6, we have

(

1
T (I − C ′)−1

1
) (

1
T (I − C ′)1

)

≥
(

1
T
1
)2

,

with equality if and only if1 is an eigenvector ofC ′. Note thatC ′
1+ v = (1− ǫ)1 implies

that1 is an eigenvector ofC ′ if and only if v is a scalar multiple of1. Hence, we find

1
T (I − C ′)−1

1 ≥
(1T

1)2

1T (I − C ′)1
=

m2

1T (I − C ′)1
,

with equality if and only ifv is a scalar multiple of1. As well, we have the identities1T
1 = m

and

1
T (I − C ′)1 = 1

T
1− 1

TC ′
1 = 1

T
1− 1

T ((1− ǫ)1− v)

= ǫ1T
1+ vT1 = mǫ+ vT1 ≤ mǫ+ (1− ǫ) = 1 + (m− 1)ǫ.
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(Recall thatvT1 ≤ 1− ǫ.) Thus,

1
T (I − C ′)−1

1 ≥
m2

1 + (m− 1)ǫ
,

with equality if and only ifv is a scalar multiple of1 andvT1 = 1− ǫ. These two conditions
uniquely identifyv: when they both hold, we have

v =
1− ǫ

m
1.

So in total we arrive at

α(B) ≥ α′ = 1− (m+ 1)ǫ+ ǫ21T (I − C ′)−1
1 ≥ 1− (m+ 1)ǫ+ ǫ2

m2

1 + (m− 1)ǫ

=
(1− (m+ 1)ǫ) (1 + (m− 1)ǫ) +m2ǫ2

1 + (m− 1)ǫ
=

(1− ǫ)2

1 + (m− 1)ǫ
,

with equality if and only if the matrix

B =

[

a vT

v C

]

satisfies
1. a+ vT1 = 1− ǫ,
2. v = 1−ǫ

m 1, and
3. C1+ v = (1− ǫ)1.

These three conditions together imply thata = 0 andC1 = (1−ǫ)(m−1)
m 1. Substitut-

ingm = n− 1, we obtain the formulae in the statement of the proposition.
Let n ≥ 1, ǫ < 1, and letB = B(n, ǫ). We note that the above formula forα(B) agrees

with that in the casen = 1. As noted, whenn = 1,

α(B) = 1− ǫ =
(1− ǫ)2

1− ǫ
=

(1− ǫ)2

1 + (n− 2)ǫ
.

Forn = 1 or 2, the matricesB ∈ B that have

α(B) = α(B) =
(1− ǫ)2

1 + (n− 2)ǫ
= (1− ǫ)2

are unique; they are

B = [1− ǫ] orB =

[

0 1− ǫ
1− ǫ 0

]

,

respectively.
However, this minimum forα(B) is not uniquely attained forn ≥ 3. For example, the

matrices

B1 =





0 1−ǫ
2

1−ǫ
2

1−ǫ
2

1−ǫ
2 0

1−ǫ
2 0 1−ǫ

2




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and

B2 =





0 1−ǫ
2

1−ǫ
2

1−ǫ
2 0 1−ǫ

2
1−ǫ
2

1−ǫ
2 0





satisfy

α(B1) = α(B2) = α(B) =
(1− ǫ)2

1 + ǫ
.

PROPOSITION A.10. Let A be a reversible stochastic matrix on the state spaceS.
Let E ⊆ S be such thatB = A(E) satisfiesB1 ≥ (1 − ǫ)1 where0 < ǫ < 1. Suppose
further that no proper subsets ofE satisfy this condition. LetΠ be a positive diagonal matrix
with ΠA being symmetric, and letC ⊆ S be such thatE \ C = {i} where

πi = max
j∈E

{πj}.

Letm = |E| andÃ = A \ C. Then,

ãii ≥
(1− ǫ)2

1 + (m− 2)ǫ
.

Proof. If m = 1, the claim is trivial as we haveaii ≥ 1− ǫ implying that

ãii ≥ aii ≥ 1− ǫ =
(1− ǫ)2

1 + (m− 2)ǫ
.

As well, if E ∪ C = S, thenÃ = [1], and the claim holds.
Let C1 = C \ E , and letA′ = A \ C. Then,B′ = A′(E) satisfiesB′ ≥ B and

thusB′ ∈ B(m, ǫ). Then, sinceÃ = A′ \ C2 andE = {i} ∪ C2, we have

ãii = αB′(i) ≥
(1− ǫ)2

1 + (m− 2)ǫ
,

via PropositionA.9.

REFERENCES

[1] V. B LONDEL, C. DE KERCHOVE, E. HUENS, AND P. VAN DOOREN, Social leaders in graphs, in Positive
Systems, Proceedings of the Second Multidisciplinary International Symposium on Positive Systems:
Theory and Applications (POSTA 06), C. Commault and N. Marchand, eds., Lecture Notes in Control
and Information Sciences, 341, Springer, Berlin, 2006, pp. 231–237.

[2] F. R. CHUNG, Spectral Graph Theory, AMS, Providence, 1997.
[3] P. DEUFLHARD, W. HUISINGA, A. FISCHER, AND C. SCHÜTTE, Identification of almost invariant aggre-
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