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TOWARD AN OPTIMIZED GLOBAL-IN-TIME SCHWARZ ALGORITHM
FOR DIFFUSION EQUATIONS WITH DISCONTINUOUS AND
SPATIALLY VARIABLE COEFFICIENTS.
PART 1: THE CONSTANT COEFFICIENTS CASE *

FLORIAN LEMARIE', LAURENT DEBREU', AND ERIC BLAYO?

Abstract. In this paper we present a global-in-time non-overlappingw&ez method applied to the one-
dimensional unsteady diffusion equation. We address spaitjfithe problem with discontinuous diffusion coef-
ficients, our approach is therefore especially designedgdibdomains with heterogeneous properties. We derive
efficient interface conditions by solving analytically thenmax problem associated with the search for optimized
conditions in &Robin-Neumannase and in &wo-sided Robin-Robicase. The performance of the proposed schemes
are illustrated by numerical experiments.
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1. Introduction. Numerous geophysical phenomena with a strong societaldimpa
volve the coupled ocean-atmosphere system; e.g., thoskrf@te change, tropical cyclones,
or sea-level rise predictions. To get a good depiction ofcttraplex air-sea dynamics, it is
often necessary to couple atmospheric and oceanic simulatodels. However, connecting
the two model solutions at the air-sea interface is a diffigprdblem, which is presently often
addressed in a simplified way from a mathematical point ofvvilndeed, with thead-hoc
coupling methods currently in use, the fluxes exchanged éwitb models are generally not
in exact balancel[7]. This may be one factor explaining the generally obsertezhg sen-
sitivity of coupled solutions to the initial conditions ocafameter value2B]. This kind of
coupling raises a number of challenges in terms of numesicalilation since we are con-
sidering two highly turbulent fluids with widely differentales in time and space. It is thus
natural to use some specific numerical treatment to matgbhysics of the two fluids at their
interface. It is known that, even if numerical models are momre complicated, a simple
one-dimensional diffusion equation is relevant to locadigresent the turbulent mixing in the
boundary layers encompassing the air-sea interface. Thesponding diffusion coefficients
are spatially variable and their values are given by a slea¢addy-viscosityclosure P1].
To perform this coupling in a more consistent way tlaghhocmethods, we propose here to
adapt a global-in-time domain decomposition based on am@@d Schwarz method. This
type of method is thoroughly described ] and designed thanks to the pioneering work
in [12, 14]. Schwarz-like domain decomposition methods provide filexand efficient tools
for coupling models with non-conforming time and space rizations B, 10]. Transmis-
sion conditions of Robin type have been proposedLBj fo circumvent the inability of the
classical Schwarz method (i.e., with the exchange of Digictlata) to solve coupling prob-
lems in the case of non-overlapping subdomains. Then, thamthe free parameters in the
Robin conditions, an optimization of the convergence sgeesibeen proposed %, 15]:
this is the basis of the so callegtimized Schwarz methof@3SM). This kind of method, orig-
inally introduced for stationary problems, has been extertd the unsteady cases by adapt-
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ing the waveform relaxation algorithms to providglabal-in-time Schwarz methdd4, 16]
(sometimes referred to &hwarz waveform relaxatipnThis notion of optimization of the
convergence speed is critical in the context of ocean-gthvere coupling as the numerical
codes involved are very expensive from a computationalttmdiview. In the present series of
two papers, we derive interface conditions leading to aniefit Schwarz coupling algorithm
between two unsteady diffusion equations defined on nornlapging subdomains. The con-
vergence properties of this kind of problem have already leéensively studied in the case
of a constant diffusion coefficient having the same valuellisibdomains §]. There are
some asymptotic results in the case of coefficients witledkffit constant values in the differ-
ent subdomainslf] (in the more general case of advection-diffusion-reacgéquations). In
the present papers, we extend these studies to the gensgaifagiffusion coefficients which
vary in each subdomain and whose values are different on $idéds of the interface. In
this first part, we consider the case of diffusion coeffigahtt do not vary spatially in each
medium. We study a zeroth-ordavo-sidedoptimized method by considering two different
Robin conditions on both sides of the interface. In the séqmaper 8], the emphasis is on
the impact of the spatial variability of the coefficients bie tonvergence speed.

This first paper is organized as follows. In Sectiyrwe recall the basics of optimized
Schwarz methods in the framework of time evolution proble®sctions3 and4 are ded-
icated to the study of a diffusion problem with discontinadaut piecewise constant coef-
ficients. In Sectior8, we analytically determine the solution of an optimizatfpoblem to
improve the convergence speed of a simplified algorithm wiilly one Robin condition com-
bined with a Neumann condition. In Sectiénwe address the more general casenai-sided
optimized Robin-Robin transmission conditions determitieough a thorough study of the
behavior of the convergence factor. Finally in Sectiprome numerical results are shown to
prove the efficacy of the optimized algorithms derived inphevious sections.

2. Model problem and optimized Schwarz methods.Our guiding example is the one-
dimensional diffusion equation of a scatar

(2.1) Lu = Oyu — 0y(D(x)0pu) = f in Q x [0,T],

where( is a bounded domain defined @s=] — Ly, Ly, (L1, Ly € RT) andD(z) > 0,
for z € Q. In practical applicationd,; denotes the bottom of the ocean (of the orde¥ kin
in the open ocean), whilé, is typically the top of the troposphere (of the orderl6fkm).
This problem is supplemented by an initial condition

U(L,O) = UO(iL'), z € (),
and boundary conditions
Biu(—L1,t) = g1, Bau(La,t) = g, t €[0,7],

where53; and B, are two partial differential operators. In this paper, weals assume
thatuy € H'(Q2), f € L*(0,T; L*(Q2)) and thatD(z) is bounded in the.>°-norm. Note
that in actual applications such assumptions are gendudfilfed. Existence and uniqueness
results for this problem can be proved followirid)] and are not discussed here.

2.1. Formulation of the global-in-time Schwarz method. In the present study, we
consider a case where the diffusion coefficiéntr) has one discontinuity if2. This dis-
continuity represents the transition between two medi& Wwéterogeneous physical prop-
erties. In this case we define two subdomains, each subddmaaing its own diffusion
profile D;(z), (j = 1,2). This amounts to splitting? into two non-overlapping domair{3;
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FIG. 2.1.Decomposition of the spatial domaihinto two non-overlapping subdomains.

and Qs; see Figure2.1. These subdomains communicate through their common auerf
atl’ = {z = 0}. (Note that there can be various reasons for such a splitiiffgrent physics,
parallelization and/or different numerical treatmentuiegments.) We propose to use a non-
overlapping global-in-time Schwarz algorithm to solve toeresponding coupling problem.
This method consists in iteratively solving subproblem&inx [0, 7] and2, x [0, T] using
the values computed at the previous iteration in the othad@unain as an interface condition
atz = 0. The operatoL introduced in 2.1) is split into two operatort ; = 9, — 0, (D; ()0,
restricted td?; (j = 1, 2). Introducing the operatol,, 7, Gi, andg, to define the interface
conditions, the algorithm reads

Lk = f, inQy x [0,7),

u’f(x,()) = u,(x), x € N,

Biuf(—Li,t) = g1, t € 0,77,
Fruk(0,t) = Foub=1(0,t), inT x[0,T].

(2.2)

Louk = f, inQy x [0,7),

ulg(x,()) - UO(:L'), erZa

Bou§(Layt) = go, t€[0,7],
Gouk(0,t) = Guk(0,1), inT x [0,77,

wherek = 1,2, ... is the iteration number, and where the initial gue$§), ¢) is given. Al-
gorithm @.2) corresponds to the so-called “multiplicative” form of tSehwarz method. If
we replace the interface conditighu} = Giu} on Qy by Goub = Giu¥ !, we obtain the
“parallel” version of the algorithm. The multiplicativerim converges more rapidly than the
parallel one but prevents us from solving subproblems ialf&i(this problem can, however,
be circumvented when we consider more than two subdomaihg)interested readers may
refer to [7] for further details regarding the different variants oét8chwarz method. Al-
though the present study uses the multiplicative form ofalgerithm, the theoretical results
regarding the determination of optimized transmissiorditmns are also valid for the paral-
lel form. Note that the usual algorithmic approach used eeoeatmosphere climate models
as described in4] generally corresponds to one (and only one) iteration efdtgorithm
in (22) (Wlth ‘Fi = gj = Dj(O)aw, 7 =1, 2).

The primary role of the operatot8; andg; (j = 1,2) in (2.2 is to ensure a given
consistency of the solution on the interfaCe In our context we require the equality of
the subproblems solutions and of their fluxes. The most abhtihoice to obtain such a
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connection consists in choosing

%, Fo = D2(0)%7
However, as proposed ii§], the same consistency can be obtained using mixed boundary
conditions of Robin type, leading to

2.3 ]-'*DOaA d DOaA =1,2

(2.3) i =Dz +A1,  andg;=D;(0)5-+4:  (1=1,2)

The advantage of2(3) is that if the operatora; and A, are correctly chosen, then we can
greatly improve the convergence speed of the corresporadgayithm [L2]. Note thatA;

must also be carefully chosen to ensure the well-posedrfetse @roblem. In this paper

we focus on Robin-type transmission conditions sibigchlet-Neumanrtype algorithms
generally converge quite slowly except for large discaritias between the coefficieni3,

and D;. (It can easily be shown that the convergence rate is givethdgquare root of the
ratio betweenD, andDs.)

At this point, we have formulated the coupling problem we wtanaddress. The con-
vergence properties of this kind of problem have been eitelysstudied in the case of
constant and continuous diffusion coefficients [There are also some results in the case
of constant and discontinuous coefficienig)][in the more general case of an advection-
diffusion-reaction problem. This latter study providesuks for specific asymptotic cases
that are discussed later in Sectidnl. In this paper, we propose to investigate the prob-
lem with diffusion coefficients being constant in each suhdm and discontinuous at the
interface, i.e.D;(z) = D;, with D; > 0 andD; # D,. We prove convergence of the algo-
rithm (2.2) and we determine optimal choices for the operaforsinder some constraints on
the parameters of the problem.

F1 = D1(0) and G; = Gy = Id.

2.2. Convergence of the algorithm.A classical approach to demonstrate the conver-
gence of algorithmd.2) consists of introducing the errej? between the exact solutiarf and
the iteratem;‘?, j =1,2. By linearity, those errors satisfy homogeneous diffugquoations
with homogeneous initial conditions. We denote the Fouramrsform in time byg = F(g)
for anyg € L*(R). Assuming thafl’ — oo and that all the functions are equal to zero for
negative times, it can easily be shown that the er@(;)ia Fourier space satisfy a second-order
ordinary differential equation im '

9%k
wet — D29 — 0 forweQweR”
wej i or x Gy W )
with characteristic rootSrj.E =+ % (1 + ‘Zj—‘z) Note that the particular case = 0
J

would correspond to the existence of a stationary part irether. However, since the error
is initially zero, such a stationary part is also necesgagro. To study the convergence of
algorithm @.2), it is usually assumed thdt,, Lo — oo, thus leading to

+

(2.4) (z,w) = af(w)er?, forz < 0,w € R¥,
. Srw) = [Fw)e2?, for x > 0,w € R*.

The validity of this assumption is discussed 7] The functionsa(w) ands(w) are deter-
mined using the Robin interface conditionsrat 0

( Diof +M)a"(w) = ( D20y + A1) (w),

«
(2.5) (=Dyoy 4+ Xo)fF(w) = (=Diof + Xo)a¥(w),
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where)\; is defined as theymbolof the operator\; (j = 1,2). A convergence factgs of
the Schwarz algorithn2(2) can be defined as

| ) || #ow
P) = aﬁlw‘ a§1<o7w>"

Given @2.4), this amounts tp(w) = |a*/a*~!| = |8¥/*~1|. Using @.5) we obtain

(M (w) + D20y ) (A2(w) — Do) .
(M (w) + Dyo7) (A2(w) — Daoy)

(2.6) ple) =

A more general derivation of the convergence factor for tseof an advection-diffusion-
reaction problem with discontinuous coefficients can beébin [10]. At this point, we are
not able to infer the convergence (or the divergence) of tineesponding algorithm because
the operators\; have not been explicitly determined. It is often a difficalsk to choose
them in an appropriate way. The main difficulty comes from féet that the convergence
factor is formulated in the Fourier space, meaning that weady act on symbols; and
not directly on pseudo-differential operatats in the physical space.

2.3. The optimized Schwarz method.lt is possible to find values; and )\, canceling
the convergence factoR ©) and therefore ensuring a convergence in exactly two imrat
Their expressions are

D D
(2.7) A= —Dyo; = \/MTQ(I + |:—|i) and \¥' = Dyo; = \/MTl(l + %y)

These symbols correspond to so-calidxsorbing conditionsUnfortunately, since these op-
timal symbols are not polynomials i, the absorbing conditions are nonlocal in time in the
physical space. The problem is thus to determine local épesraroviding a good approxi-
mation of nonlocal ones by finding a polynomial formiin to approximate\y”. There are
mainly two approaches for such an approximativ®.[ The first approach is a low frequency
approximation, namely a Taylor expansion for a smallWe decided not to adopt this ap-
proach because we want to be able to consider a wide rangequfeincies. The second and
more sophisticated approach is to solve a minmax probleret&riehine local operators that
optimize the convergence speed over the full range of adlestequencieSwmin, Wmax)-
For a zeroth-order approximation, we look for valué?se R such that/\g? ~ /\;"’. The num-

bers/\g can be defined as the solution of the optimization problem

(2.8) min ( [max p()\?,)\g,w)).
we

A9, \0€R Wnin Wmasx

Since we work on a discrete problem, the frequencies alldwedur temporal grid range
from wmin = F 10 wmax = x5, WhereAt is the time step of the temporal discretization. The
analytical solution of problem2(8) is not an easy task: the minimization of a maximum
is known to be one of the most difficult problems in optimieatitheory p]. Moreover,
we are faced with an optimization problem for two paramefgr&ind \9, which substan-
tially enlarges the difficulty. Some analytical resultsséxin the case of &vo-sidedopti-
mization for the 2D stationary diffusion equatio®, 0] and for the 2D Helmholtz equa-
tion [11]. In [10], the asymptotic solution of2(8) for an advection-diffusion-reaction prob-
lem for At — 0, wmin = 0, and a positive advection is found in two particular casest fi

for A\Y = Ay (one-sidedland second for{ # \J (two-sided but D; = D,. In this paper, we



ETNA
Kent State University
http://etna.math.kent.edu

OPTIMIZED SCHWARZ ALGORITHM FOR DIFFUSION EQUATIONS | 153

study the complete minmax problei®.§) in the general casi? # \J andD; # D,. Solv-
ing numerically the minmax problen2 @) is quite expensive from a computational point of
view. Moreover, this optimization must be performed for ahgnge in the values @b, and
D,. That is why we look for an analytical solution in the case @kaoth-order approxima-
tion of the absorbing conditions. This is done with two diffiet sets of interface conditions,
theNeumann-Robigase and th®obin-Robircase.

Algorithm (2.2) with two-sided Robin conditions is well-posed for any deof\! and
A9 such that\! + A9 > 0. This result can be shown following the methodology based on
priori energy estimates as describedihdnd [8].

3. The optimized Schwarz method withNeumann-Robin interface conditions. In
this section, we assume that the solutiofiinis subject to a Neumann boundary condition.
The convergence speed of the Neumann-Robin algorithm iscteg to be slower than that
one obtained by a Robin-Robin algorithm. However, thisexasase is treated explicitly be-
cause it introduces several methodological aspects usefille determination of the general
Robin-Robin optimized interface conditions. Imposing auNann boundary condition on
the solutionus onT' corresponds to having, = 0 in (2.3). The convergence facter: (NR
stands for “Neumann-Robin”) obtained fro@.€) reduces to

Dlof (DQO'; + )\1)
DQCTQ_ (Dlaf' + )\1)

(3.1) Prnr = ’

THEOREM 3.1 (Optimized Robin parameterThe analytical solution\)* of the mini-
max problem

min ( max pNR()\(l), Dy, DQ,w)>

AQER \ WE[Wmin,Wmax

is given by

A?’*=2j§{ (VD2 = VD) (v + Vo)

2
n \/(\/D - \/Dl) (v/@min + V@max)” + 8v/ D1 Day/Wrminwmax } :
Proof. Introducing¢ = +/|w|D1, v = \/D2/D1, A9 = (\/ CminCmax/2) p, forp e R,

and makingr;” anda, in (3.1) explicit, we obtain

1 \/(p —7¢)2 +~2¢”

D, = - )
pNR( C) ~ (p n C)2 n C2
with ¢ = ¢/v/CmaxCmin- Moreover, to ensure the well-posedness of the algorithencon-

sider\{ > 0, i.e.,,p > 0. Defining an additional parametgr= \/(max/Cmin, We obtain
that ¢ is bounded by, = ¢~ ' and¢,,., = p. The aim is to optimize the convergence
speed by finding™, the solution of the minimax problem

min (Cel[gag{#} Pre(Ps C)) :
We first study the behavior of the derivative pf; with respect to¢ and p with ¢ >0

andp > 0. For simplicity we introduce = p/ (7 —14++1+ 72>.
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We first derive some restriction of the parameter’s rangec#yeeasily show that

(3.2) Sign( a§;R> = Sign(q — ¢).

Looking at the sign of the derivative gf. with respect top, we see that for all values
of ¢, the convergence factgky is a decreasing function gffor ¢ < ¢,,;, = =1, proving
thatg™ > ¢, A similar argument shows that < ¢ This proves that the optimized
parameter™* satisfies

max*

/p<g"<p

Along with (3.2), this shows that the convergence factor has to be an inogeasction ofp
at¢ = 1/p and a decreasing function pfat¢ = .

Next we show an equioscillation property of the optimal pagger. The sign of the
derivative ofpys With respect ta( is given by

Sign <88PCNR> = Sign(¢ —q) .

This relation implies thap,sz has a local minimum betweetVy and . The maximum
value of the convergence factor is thus attained eithef -at1/u or at ¢ = p (or both).

If we assumens(p, 1/1) < pwr(p, ), it is always possible to decrease the maximum value
of pwr(p, ¢) by increasing the value of so that we havey(p, 1/1) > pw(p, p). A simi-

lar argument shows thate(p, 1) > pw(p, 1/1). The optimal parameter must thus satisfy
the equioscillation property.(p*, 1/1) = pw(p”, ). After some simple algebra, we find
thatp* is a solution of

(= 1) (u+ 1/ + L =" =0,

The unique positive solution of the equatioh = i—? —p*with v* = (1 —7) (n+1/p) is

given byp* = 1 (—v* + /8y + (v*)Q). After a substitution ofy andy, and a multiplication

of p* by \/CminCmax/2, We retrieve the stated result fm?’*. 0
We find that the optimized convergence factor satisfies aiosgjllation property. This

concept of equioscillation property comes from the Cheby'shalternation theorem (or
equioscillation theorem). The similarities between theelgfshev’s theorem and the opti-
mized Schwarz method are clearly exposeddn€]. Two typical optimized convergence
factorspy, = pNR()\(l)’*) are shown in Figur&.1 (left) for = 2 andu = 6 with v = 5. Note
that the performance of the optimized algorithm is only acfion of the ratioy betweenD,
and D, and not of the actual values of those parameters. The sanmskerpplies to the
temporal frequencies,,i, andwmax: i, IS only a function of their ratiqu.

It is also instructive to look at three particular casgs: 01, v = 1, andy — oo.

o v— 0" (Dy > Dy):

“ 2 w 1/4
lim pf,=/1—2 lim A% =0, withp= [ 2 .
o Pre <1 + ,u2) S0 1 ’ a (wmin)

The minimum value of the convergence factor is attained at 1 and is equal
to \/5/2. When u is increased, the convergence is very slow. Indeed, we tend
towards a Neumann-Neumann algorithm in this case.
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FiG. 3.1.Behavior oprR(A?’*) with respect tav for v = 5, © = 2, andp = 6 (left). Optimized convergence
factor as a function ofy for © = 2 andp = 6 (right).

.’yzl(Dl:DQ:D):

2v2p 0,% = 1/4
p* = 1— S —— Ay =VD WmaxWmin .
NR \/ 1 + #(M + ﬁ) 1 ( )

The convergence factex,, approaches 1 whemis increased. One can also remark
that the optimal paramete\@* is the same as that one found B} [n the Robin-
Robin one-sided case.

® 7y — +00 (D1 < DQ):

»YEIEOO e =0, ’Ygrfoo )\?’* = 4o00.
When ~ tends to+oo, the convergence is very fast (the convergence factor ap-
proaches 0) and the optimal boundary condition tends tanaideumann-Dirichlet
operator.
These results are illustrated in Figusel (right). The efficiency of the Neumann-Robin al-
gorithm is greatly improved whef becomes large and becomes small. We continue this
section by studying the asymptotic convergence rate fodiberetized algorithm when the
time stepAt tends to 0.
THEOREM 3.2 (Asymptotic performanceor Dy > Dy (i..,y > 1), wmax = 3 and
for At tending to zero, the optimal Robin parameter given by Tha@d is

2(y—1)

and the asymptotic convergence of the optimized NeumahimRBlgorithm is

2% ~ /2Dy L_lfA—W A1
1=~ 1 5 TAL + \/m

1 +1 Wmin
max pNR(A?’*,w) =— (1 - E’Z — 1; -

Wmin SW< X7 ol
We conclude that the zeroth-order optimized Neumann-Rbbimdary conditions are effi-
cient when the Robin condition is imposed at the boundarhefdomain with the smaller
diffusion coefficient {2, here). In this case, the asymptotic convergence fagtpis of the
form \/D1 /D, (1 — O(At!/2)) for small At. In the next section, we study the zeroth-order
two-sided Robin-Robin boundary conditions.

Atl/Q) + O(At).
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4. The optimized Schwarz method for a diffusion problem withdiscontinuous (but
constant) coefficients: two-sided Robin transmission contlons. In this section we opti-
mize the conditions on both sides of the interface to gettafasnvergence speed regardless
of the value ofy. By keeping the notationg, ¢, 1, and~ defined in the previous section and

by approximating\* and \3" respectively by\] = y/ Smistmex p, and \) = |/ Sminlmax
the convergence factpk, reads

pra(P1, 2, €) = \/((pl — )2 +¢%) ((r2 —1€)? +2¢%)
o ((pr4+7€)* +97¢%) ((p2+€)* + ¢7)

We can easily demonstrate that for nonnegative fixed valuésnod~ and forp;, po > 0, we
find the three inequalitigge(p1, p2, €) < pre(—p1, —P2, C), Pre(P1, P2, €) < pra(p1, —p2, C),
andpes(p1, P2, €) < per(—p1, P2, €). This shows that we can restrict our study to strictly pos-
itive values ofp; andps (note thapp; = 0 or p, = 0 corresponds to thideumann-Robinase).
The restriction of the parameter range to strictly positiaies ensures tha! + \9 > 0,
and hence the corresponding problem is well-posed. In flenimg, we assume that > 1.
The optimal parametens, andp, for the casey < 1 can be obtained by switching (i.e1
becomesp, andp, becomes) the optimal values for the case > 1. As it was done
previously, we choose the valugsandp, by solving the optimization problem

(4.1) min ( max ]pRR@Lpz,o).

p1,p2>0 \ €[~

4.1. Behavior of the convergence factor with respect to the &bin parameters. First,
we study the behavior gf;; with respect to the parametersandp,. We introduce two new
parameterg; andgs defined by

¢ = P1 and ¢ = P2
L=+ /1+792 Y=1+ /1472

We can demonstrate that for> 1 andg; < g2, we have thapgs(p1, p2, €) < prr(p2, 1, €).
This proves that the optimal parameters satigfy< ¢5. This implies that in turrp; < ps
and thatp, < ps if v > 1. This immediately proves thaine-sidedp; = p2) Robin-Robin
boundary conditions are not optimal as soorn/as 1.

Note that Sigr(%) = Sign(¢q; — ¢) and S|gn(apRR) = Sign(¢o — ¢) implies

Ope >0 when¢ < ¢, Ope <0 when¢ > q,
OPrr Oprr

>0 when( < ¢,

<0 when¢ > ¢.

Op2 dp2

Looking at the signs of the derivatives pf; with respect tagp; andp-, we find that if we
chooseq; < ¢,.;,, = ', we can decrease the convergence factor by increasirzg-
causea‘;RR < 0 holds for allg; > {,,;,- A similar argument shows that < ¢ This
means that the optimized parametgrsindq; must satisfy

max-*

(4.3) ph<gi <5 <p

The inequalities4.2) and @.3) imply that at{ = 1/u, prs IS @n increasing function af;
andp,, (or ¢; andgs) while at¢ = 1, prs is @ decreasing function @f andps (or ¢; andgs).
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4.2, Extrema of pge With respect to . The next step to solvet(1) analytically is to
find the location of the extrema pfg(p1, p2, ¢, ~y) with respect ta;.
THEOREM 4.1 (Extrema ofpre(¢)). The function{ — pee(p1, p2, ¢) has one or three

positive local extrema. In the case of one extremum, it spwads to a minimum and is
located at¢ = y := %.
Proof. We first introduce the following property that can easilweeified:

pip2

pre (P15 P2, €) = prr (P1, P2, X7 /C) » Wherey = 2

Differentiating with respect tq leads to

Oprr _7X72 Oprr
ac (plaPQaC) - CQ 3(:

which shows thaﬁg—z*" (p1,p2, £x) = 0. The derivative% has the same sign as a
(unitary) sixth-order polynomiaP(¢) (the full expression of? is complicated and not given
here). P(¢) has thus either two or six real roots, among théma x is positive and, = —x

is negative. Let us suppose th&{¢) has six real roots. We can show that only three of
these six roots (including = ) are positive. From4.4) we see that it.” is a root of P(¢),
then¢! = XQ/CO is another one. Assuming that the four other roots are pesitie have

(44) (P17P27X2/C),

2 2

C5:_X§0§C6§C1§C2:X§C3(:%)§C4(:%ﬁ)a

and the sum of the six roots must be greater thamnd is therefore positive. However, the
sum of the six roots oP () is given by—as whereas is the coefficient of the terg® and is
equal toas = w. Using the factsy > 1 andps > p; (from (4.3)), —as cannot be
positive. We conclude that we have at most three positivesrfoo P(¢). It can be verified
thatP(0) < 0 andP(+o0) > 0 so that if only one positive root exists (@t= ), itis a local
minimum. a

4.3. Equioscillation of pg at the end points.
THEOREM 4.2 (Equioscillation at the end points)The optimized convergence fac-
tor pea(p1: p3, ¢) satisfies

o pa(PT, 15, X) < max (pra(p?, p5, 117 1), pre(p, P55 1)) With x = /122,

e the equioscillation propertygs(pt, p5, 11~ ") = pra(PT, P35, 1t), Which holds only
for pip; = 2v.
Proof. We first show thapes(p, p3, x) < max (pe(p}, p3, 10 "), prs(Pi, P3. 1)) This
is straightforward whery is the only positive root oiapg% becausey is a local mini-
mum. In the case when there are three positive roptis a local maximum. From the

identity xy = ’g? = /q1q2 and @.3), we get

(4.5) p<a<x=vVaue <qgp <p.

We already know that a} = 1/u, pes is a decreasing function @f and that at = u, pes

is an increasing function of,. The inequality 4.5 shows that at = x, pss IS @n in-
creasing function ofj; sinceq; < x. If we assume thate:(p}, p5, x) > pee(0], 05, 1~ 1),
then we can always decreage(or p;) such that it improves the convergence factor (by re-
ducing the values both & = y and at¢ = p). Playing withg,, we can similarly prove
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that pee(p7, 05, X) < pre(Pi, P35, 1t). Note that this also proves thgt > 1/p and{s < p.
This is sufficient to fully describe the behavior of the caigence factor with respect tg, ¢2,
and¢, as shown in Figuré.1 In practice, the two cases will differ by the sign of the s&to
order derivative ofors(p1,p2,¢) at¢ = x. The following argument proves that the values
taken bypge(p7, 03, ¢) at the two end point§ = 1/u, and¢ = p are equal. Indeed, if we

assume thagber(p1, p2, 1/1) < prr(P1,p2, 1) (OF pra(p1, P2, 1/11) > pea(p1, p2, 11)) holds, it
is always possible to decrease the maximum valug,dt) by increasing (respectively de-

creasing) the values of; (respectivelyp;). The optimal parameters must thus satisfy the
equioscillation propertyes(p}, p5, 11~ 1) = pra(p}, P4, ). This holds when
(4.6) (p1 +p2)(2y — p1p2)S(p1, P2, p1,7) = 0,

where

S(p1 2, 1,7) = 2 [(1+9%) = (e + )2 pip2
+ (v = D)+ 1/p)(p1 — p2)(2y + p1p2)
+29(p1 = p2)® = (27 — p1p2)*.
Obviously every paifp;, p2) that satisfies the relatiom p, = 2 is a solution to 4.6). We
now show that there are no other admissible values. Othenpat solutions of the problem

are the solutions of'(p1, p2, ) = 0. S is a second-order polynomial i and thus has two
real solutions:

(4.7) P2:f1(p1)7 P2:f2(p1)-

If we assume thap- is related top; with one of the relations4(7), looking at Figure4.1,
we can argue that for any paip;, p2) we must havej%f < 0 to satisfy an equioscillation

property. Indeed, let!.(p1, ¢) be defined as

pla(p1,€) = pra(p1, p2(p1), €).
Then

8P;R(p17C) . apRR(plaPQ(pl)aC) apRR(plap2(p1)7c) dp2
(4.8) = + —.
op1 Op1 Op2 dp:
We have already proved that the following properties mukt ho

Opea(pP1,p2(p1),1/ 1) Opea(pP1,p2(p1),1/ 1)

> 0, > 0,
(4 9) Op1 Opa2
Opea(p1,p2(p1), 11) Opra(p1, p2(p1), 1)
< 0, < 0.
Op1 Op2

If we suppose‘j%f > 0, then ¢.8) and @.9) show thatp! (p1,1/4) is an increasing function

of p1 while pl.(p1, 1) is a decreasing function of,. Hence, 4.9) and the equioscillation
property cannot be satisfied at the same tin%—}b 0. It can be shown that the two solutions

given by @.7) do not satisfy this latter condition. Indeed, we can prdw tve havegg%l1 >0

and % > 0. Details of the computations are omitted here but we merttiain the only
conditions necessary to find this result are- 0, > 1. We can conclude thatp, = 2 is
the only solution leading to an equioscillation property. O

It is worth mentioning thag = /%22 = 1 and that
2l

pRR(pf,p§7 C) = pRR(prga 1/C)7 VC € [l/luv /J’}'
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Prm(pl:pZ:C) ﬂrm(p],pz,C)
A A

> >
1/p X 1" 1/ ¢ X Ca 1
6zﬂnn 62Prm
B s M2y, 2 0 P 1 M2y, S 0
78@ (p1.p2 X) HCZ (p1,p2 X)

FiG. 4.1.Behavior of the convergence factor with respeaf to

4.4. Solution of the minmax problem. The convergence factor is now a functionpef
and¢ only:

Pha(1,¢) = pealpr, 2v/p1,€).

LEMMA 4.3. The solution of the minmax probler.{) is given by the solution of the
constraint minimization problem

min_ pl(p},1/p),
Iz equi

pi>py

*,equi

wherep; is the solution of the three-point equioscillation problem
le(plv 1) = p;R(pl’ I/M) = le(pla 1)-

Proof. Thanks to Figurel.1, we can remark that the resolution of the minmax problem
corresponds to the minimization @f (p1,1/p) (or pl.(p1, 1)) with respect top;. In the
case wherg = 1 is a local maximum, the additional constraint given by Tleeo#.2 must
be imposed

(410) le(pla 1) < le(ph 1/”)

Knowing thatp;ps = 2v or equivalentlyg;go = 1, the range of admissible values given
by the inequality 4.3) can now be written a$/u < ¢; < 1 and translates in terms of the
variablep:

p1 € [pl,min7p1,max]a where
P1,min = (1 *'Y‘I“ V 1+")/2)/,LL, P1,max = (1*74“ V 1+’72)

Moreover, it can be shown th@f;R(pl, 1) is a decreasing function gf; and therefore the
constraint 4.10) can also be written gs¢ > pi°®" wherep?*™"' is the solution of a three-
point equioscillation problem,(p; ™™, 1) = pla(p7 ™™, 1/p) (= pla(p} ™, ). 0O
We now look at the minimization gfl,(p1, 1/4) for p1 € [p1 min, P1,max)-
LEMMA 4.4, For v > 1, the derivative ofp!(p1,1/u) has exactly one root in the
range [p1,min, P1,max)- ThiS root corresponds to a local minimum ,@‘R(pl, 1/p). In the

h
special casey = 1, p; = p1.max (= V2) is always a root o aleR (p1,1/ ).

(4.11)
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Pha (P, 1/p) Phalpr, 1/p)

A b

]
; ;
. n m
. min . min
P1.min 1 Pl max D1,min Py P1,max

FiG. 4.2.Behavior ofp,‘;R(pl, 1/u) with respect tg;. The general casey(> 1) is on the left and the special
casey = 1 on the right.

Proof. The derivative of},(p1,1/u) can be written as

ale
Ip1

(p1,1/1) = g(p1, )N (p1, 1),

whereg is a strictly positive function andV(p;, i) a sixth-order polynomial irp;. The
change of variable = 2/p; — p; transformsN (py, i) into

N(p1, 1) = piQ(v),

where@(v) is the third-order polynomial given by
(4.12)  Q(v) =8(y — 1)(1+°) + 26182 — 3(1 +7))v +2(y — 1)5%? — pv?,

with 8 = 1/u + p.
It can be shown that, foy > 1, this polynomial has only one root [D,in, Vmax], Where,
according to4.11), v,;, andvy,., are given by

vmin:2(’y_1)a UmaX:('y_l)B"' \/1+’72\/62_4-

This root corresponds to a minimum of the functiop&l(p:, 1/1) because we can show

apt api
that Z= (p1,mins 1/12) < 0 @nd Z5= (p1 max, 1/p1) > 0. Fory = 1, the valuev = vyin =0,

e, D1 = Plmax = V2, is always a root ofp(v). Figure4.2 illustrates the variations
of pl.(p1,1/u) with respect top;. p is the location of the minimum op!.(p1,1/x)
over the intervalp1 min, P1.max]- The solution of the constrained minimization problem is

now easily handled: i < p}°™, then the solution of the minmax problem is given

*,equi

by p7°4™, otherwise the solution of the minmax problem is giverphy®.

*,equi

. T .
The inequalitypi™® < p] is satisfied if and only ifaap—;f (py*™, ) > 0 or equiva-
lently if Q(v*°4") > 0, wherev**au = 2 /py e — pyedt,
Finally, the following result is useful: fov > vy (Or equivalentlyp; < pi min), We
t
haveQ(v) <0 (or %}j{l/“) < 0). Indeed, using the relatiod @) at¢ = 1/u, we obtain

Opke(p1,1/1) _ Opea(pr, p2(p1),1/1) | Opeslpropa(pr), 1/m) dpa
Ip1 Op1 Op2 dp
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If p1 < p1,min holds, then we g ’”RR(pl’gl‘;Epl)’l/") < 0, but the relatiomp, = 2v/p; implies

thatps > pa.max (: (7 141+ 72) u) so that2eeserpe(m).1/1) > o, With the help
T

of 922 — _95/p? < 0, this proves thaw <0. 0

dp1
We are now finished with the problem of finding the solutionhef three-point equioscil-
lation problem. .
THEOREM 4.5 (Equioscillation between three points)the only parameterg; “*"
*,equi

and p3 ™, such thatp} < p1.max, that satisfy an equioscillation of the convergence
factor ps between the three points/u, 1, 1) are

p*lﬁequi — % |:_,U*,equi 4 S,Y + (v*,equi)2:| ,

p;,equi _ 27 (p»lw,equi)—l 7

where

@13) o= L[4 B) - 1)+ VAT TR - D F PG 17

Proof. We have to find the solution of the problesf,(p1,1/1) = pi.(p1,1). It can be
shown that this is equivalent to the search for the roots @fuatti-order polynomiaR(p;)
that can be written as

R(p1) =piT(v), T(v)=2(14+~%) =478+ (1 —7)(2+ B)v+v°,

wherew is again defined by = 2+/p; — p1. The unique root of (v) that satisfie® > v,
(i.e.,p1 < P1,max) IS given by

vre = 2 [(2+ 8)(y — 1) + VAT P - D+ 20— )

and the expression for**" is deduced from the relation betwegnando. d
Gathering the results, the solution of the minmax problemivien in the following the-
orem.
THEOREM4.6. The analytical solution)* and \5™* of the minmax problem

min < max PRR()\?>)\87D17D27W)>

A AJ€ER \ wE[Wmin,Wmax
is given by
\/E (Wminwmax) 1/4
AT = [fv* + /87 + (v 2} ,
0 25 v+ (v*)
/\g,* =V D1D2\/ wminwmaX/A(l),*7
where

. U*,cqui if Q(U*,cqui) > 0’
vo= p*>mini else

with v*°9% given by ¢.13 andv*™™ is the unique solution @ (v) = 0N [Vmin, Vmax)-
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f(3)
2-point equioscillation °r 3-point equioscillation

T~

5

31 32

FIG. 4.3. Transition from a two-point to a three-point equiosciltatifor 3° < 8 < 1 + /5. The three-point
equioscillation occurs whef > f(8).

Proof. All the ingredients for the proof are stated before. Not t#1°4" may be larger
thanv,,.x. However, since we have proved ti@fv > vi,.x) < 0, this case does not have
to be considered explicitly. A substitution 9fand . by their respective expressions, and a
multiplication of p; andp3 by + /CmmCmax 2 lead to the result fo:\0 * and)\O * with respect
to D1, D2, Wmin, anNdwax.

Note that the following addmonal result can be shown ad:wel

(4.14) Q) >0 & B>1+V5o0r (60 <B<1+V5andy> f(ﬁ)) ;

wheres' is the root of the fourth-order polynomiab—16 X —4.X 2+ X * whose approximate
value is given by3° ~ 2.77294 and f is given by

1
T sy (CRE NI GRE)

+(4+28 — B%)y/~16+ 488 — 4452 + 125° + 337 — 45° + B° ).

f(B) =

The functionf () is plotted in Figured.3for 8° < 8 < 1+ /5. We remark thaif (3) > 1
for all 5 so that the conditiony > f() is always false fory = 1 (the continuous case).

It is also interesting to know if = , /B2 = 1 is either a local minimum or a local

2y

2t
maximum of the optimized convergence factor by looking atglgn ofaa)’zsR (p1,X). Itcan

2 T
be proved that in terms of the variable= 2v/p; — p1, the inequalityaaiff (p1,x) > 0can
be written as

v>w, Wherevg =2(y — 1)+ /2(1+~2).

We deduce thag = y = 1 is a local minimum only ifo*™int < 4. This can be verified by
evaluating the polynomia)(v) atv = vy and looking at the sign of the result:(f(vy) < 0,
thenv™™i" < 4, and we have a local minimum &t= y = 1.

It can be found that

Q) <0=2<f<f or (50§5§2\/§and7<9(5))7
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3-point equioscillation

FiG. 4.4. The three different domains of three-point equioscillatfblack), two-point equioscillation witly
being a local maximum (dark grey) and two-point equiostidiawith x being a local minimum (light grey).

10f

FIG. 4.5.Optimized convergence factor with respectitand~y (1 < p < 10,1 < v < 10).

where 3, = 8*"’@) 4 V90+64V2 9 44547, The analytical expression gf 3) is com-

2(3+2v2 2(3+2v2)
plicated and not given here. Note thgt3) > 1 for all 5 so that for the special case= 1,
the inequalityQ(v) < 0 is equivalent t@ < § < 2v/2.

Figure4.4summarizes the three different domains: three-point egillation, two-point
equioscillation withy as a local maximum and two-point equioscillation wjtres a local
minimum. The resulting optimized convergence factor isngh@n Figure4.5 with respect
to u and~.
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FIG. 4.6.Optimized convergence factors for Neumann-Robin and RRblrin boundary conditions for = 2
(left) andp = 6 (right).

We make the following remarks about the convergence prigigeof the Schwarz al-
gorithms: the convergence speed increases when the diagities of the coefficients()
is increased and the convergence speed decreaseswhamnincreasing function of the
ratio ==, is increased. In Figuré.6 we compare, fox = 2 andp = 6, the results
found in the optimized two-sided case with the optimiRabin-Neumantransmission con-
ditions (found in Sectior8). The Robin-Robinapproach is significantly more efficient than
theRobin-Neumanapproach whern is close to one. Whefiis increased, both tend towards
aDirichlet-Neumanroperator.

THEOREMA4.7 (Asymptotic performancefor Dy > Dy (i.e.,y > 1), Wmax = =3, and
for At tending to zero, the optimal Robin parameters given by Tdradr6 are

2
0,% (as) Y — ’77""1 3/4 1/4
)\1 ~ )\1 v/ 2Dy (")/ 1 VWmin — 27 (7 1)3 1/4 mmAt

AD* o AP \/T( fAt—l/Q W’y +1 (wwmin)1/4At_1/4) ,

and the asymptotic convergence of the optimized two-sidbthHRobin algorithm is

max  pe(A0 A0 W) = 1 <1 . 2(7 +1) (wmin)1/4 At1/4> +O(AtY?).

Wmin WS 7 ot (- \ 7

Note that these asymptotic results are obtained by assuimittg* = v*°4 which is
always the case whefat — 0 (i.e., u — ©0), as shown by4.14). The optimized Robin-
Robin conditions lead to an asymptotic convergence fagtdd, /D, (1 — O(At'/4)) for
small At and D; < D,. The associated algorithm is thus less sensitivé\tathan the
Neumann-Robin algorithm. However, the asymptotic Robiapeeters given in Theorem7
must be used with caution as they degenerate when 1 as well as wher\¢ > 0 (in this
case)\0 (%) can become negative). It is worth mentioning that the asgtigpbound on the
0pt|m|zed convergence factor given in Theorémi shows that the optimized Robin-Robin
conditions will always be more efficient than Dirichlet-Nann conditions. Indeed, it can
easily be checked that the multiplicative factgry in front of the bound corresponds to the
convergence factor of the Dirichlet-Neumann algorithm.

Furthermore, we can not directly compare this result with dhe obtained in1[0] for
the advection-diffusion-reaction equation. The latteidgtis done by assuming,,;, = 0
and as a result of this assumption their optimized parametdren canceling the advection
and reaction coefficients, are simpl}* = A\)* = 0. Indeed, one can easily find that for
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a diffusion problem, the low frequency approximatiaft of the absorbing conditionﬁ?pt
given in @.7) for wyin — 0 is indeed\?" = 0.

4.5, The continuous caseBecause the two-sided Robin-Robin case with continuous
diffusion coefficients has never been studied in the liteegtwe now provide the results in
this particular case.

THEOREM 4.8 (Continuous case)Under the assumptio®; = D, = D, the optimal
parameters\)"* and \)"™* are given by

* \/5 min%“max 1/4 *
A= (w2vg ) v+ VB (0

\/5 (wminwmax)1/4
2v2

Ox _
AT =

[ v* 4+ 4/8 +—(v*)2}
where

2/B—-1 ifB>14++5
v* = 282 -12 ifV6<pB<1+5
0 if2<B<v6

with § = Y-omex T vomin V)“jjj“.

(Wminwmax
Proof. We use Theorem.6, which gives the optimality conditions in the general case.
As already mentioned, the conditi@(v**™"") > 0 reduces t@ > 1++/5fory = 1. In that
case, the solution of the minmax problem is given by = v*°% =2,/5 —1.
If 3<1++/5, we have to compute*™™, the value that cancel®(v) in [Umin, Vmax),
wherevmin = 0, vmax = 24/ 2 — 4. Fory = 1, the expressiond(12) of the polynomiall(v)
is

Qv) = —pv (v* — (26° - 12)) .
We find that

v*,min — { \/W7 If B 2 \/61

0, if 2 < B <6.
Note that whens < v/6, we getv* = 0. This impliesA?* = AS* = /Dy (wminwmax) ',
which corresponds to the zeroth-ordere-sidedptimal parameters found ] a

5. Numerical experiments with two subdomains.The model problem2.2) is dis-
cretized using a backward Euler scheme in time and a secalei-scheme on a staggered
grid in space. For the interior points, the scheme is

n+1
Uy,

n
— uk _ 1 Fn—‘rl o Fn+1
k+3 E—1|7

At $k+% _$k7%

with FZ’+1 = Dk+l Zfﬂjt Note that for practical applications, the use of the Crank-
1 1

Nicolson scheme in time is avoided because this leads toysigati behavior. Indeed, un-
like the backward Euler scheme, the Crank-Nicolson scheaite tb satisfy the so-called
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monotonic dampingproperty P2]. We decompose the computational dom&irinto two
non-overlapping subdomaint, = [—Lq,0] andQy = [0, Lo], with L; = Lo = 500 m.

A homogeneous Neumann boundary condition is imposed-at—L, andx = L,. As it

is usually done in numerical models, the resolutidn; is progressively refined to enhance
the resolution in the boundary layers in the vicinity of thiesea interface. We ust& = 75
points in each subdomain and the resolution varies flfam = 25 m atx = L (respec-
tively x = Ly) to Az, = 1 matax = 0. The Robin condltloryN+1 on the interfacd”
(located atr = Typ10ON Q, and atr = z10n Q) is discretized by assuming that the flux F
is constant on the first cell neBr This leads to

UN — UN-1

9N+1—DN7§m s 3+)‘UN7
N- N-3

where is the Robin parameter. We simulate directly the error egosti.e.,f; = fo =0

in (2.2) andug(z) = 0. We start the iteration with a random initial guesg0, ¢), t € [0, 77,

so that it contains a wide range of the temporal frequenbigisdan be resolved by the com-
putational grid. We perform simulations for four differegpes of transmission conditions
atz = 0: Dirichlet-Neumann (DN), optimized Neumann-Robin (NRoptimized Robin-
Robin (RR), and asymptotically optimized Robin-Robin (RR). In Figure5.1we show the
evolution of the£>°-norm of the error obtained for those four cases+ct 101 ~ 1.7783,

v = V10 =~ 3.1623, andy = 10, with x = 6 andyu = 12. We choose the time
stepsAt; = Aty = At = 100s, Dy = 0.5 m?s~!, and D; is then deduced depending
on the value ofy. As expected, we get the best results with the two-sided rRobndi-
tions. Consistent with Figuré.5, the convergence is faster wheris large and when is
small. Moreover, when the discontinuitybetween the diffusion coefficients is increased,
the algorithm becomes less and less sensitive to the chbitansmission conditions and
to the parameter. The asymptotic optimized Robin-Robin conditions provadgood ap-
proximation of the optimized Robin-Robin conditions, efen At = 100 s > 0. Those
conditions are especially efficient whenis sufficiently larger than 1. We remark that the
optimized Neumann-Robin conditions provide only a slighpiovement compared to the
classical Dirichlet-Neumann conditions.

Because we consider a problem with discontinuous coeffiig¢he time step used to
advance the diffusion equation may be different in each aoradn. It is thus instructive to
look at the impact of non-conformities in time on the perfamoe of the optimized algorithm.
For the two cases = 10% andy = 10, which we considered so far, we adapt the time step
in each subdomain so that the ratio= At;/At, between the time steps varies from 100
to 1/100. To handle the exchange of boundary data betweenoifeonforming grids we
use a linear method for the interpolation step and an avegdgr the restriction step, both
steps are conservative. Note that we got very similar resising theC? projection algorithm
described in13, Appendix A]. We conside,,.x = 7/ min(At;, Ats) for the optimization
of the Robin conditions.

As shown in Figurés.2, the performance of the algorithm is degraded as longsl.
Indeed, the interpolation/restriction step modifies tegfrency spectrum of the error and thus
affects the convergence speed of the algorithm. For thesgagel, we have investigated a
wide range of values for the parametgrsin the Robin transmission conditions. Even if the
algorithm is slower than the one with= 1, it turned out that the optimal Robin parameters
found in Theoren¥.6 are still optimal in the case # 1. Note that the results after one
iteration can be quite dependent on the value.dfhis is to be expected since the frequency
spectrum in the initial error is very different whether th@ndom) initial guess is initialized
on the grid with the smaller time step or the larger time step.
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FiG. 5.1. Convergence foty = 10% (top, left),y = +/10 (top, right), andy = 10 (bottom, left) foru = 6
andp = 12 in the DN, RR, and NR cases. Comparison betweenR&d RR2s) (bottom, right).
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FiG. 5.2. Convergence foty = 10% (left) andy = 10 (right) for different values of the ratio = Aty /Ats
with 1 = 6 in the RR case.

Conclusion. In this paper, we obtain new results for an optimized Schwaethod de-
fined for non-overlapping diffusion problems with discontbus coefficients. This method
uses zeroth-order two-sided Robin transmission conditiar., we consider two different
Robin conditions on each side of the interface. We base quioaph on a model problem
with two subdomains and we prove the convergence of the gmoraling algorithm. Then
we analytically study the behavior of the convergence fawith respect to the parameters
of the problem. We show that the optimized convergence fesatisfies an equioscillation
property between two or three points depending on the paesiwaues. In comparison with
other methods using the Neumann-Robin or Dirichlet-Neum@onditions, these two-sided
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Robin-Robin conditions are significantly more efficienpesally when the ratio between the
discontinuous coefficients is close to one. Asymptoticlisdar At small are given. Numer-
ical results show the performance of the different type afismission conditions introduced
in this paper. Those results are consistent with the acalytudy.
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